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2. Overall Objectives

2.1. Introduction
monitoring, system identification, change detection, diagnostics, on-line identification and detection algo-
rithms, subspace-based algorithms, statistical hypotheses testing, sensors fusion, optimal sensors placement,
vibration-based structural analysis and damage detection and localization, aeronautics, civil engineering

2.1.1. Context.
Structural Health Monitoring (SHM) is the whole process of the design, development and implementation
of techniques for the detection, localization and estimation of damages, for monitoring the integrity of
structures and machines within the aerospace, civil and mechanical engineering infrastructures [31], [38]. In
addition to these key driving application areas, SHM is now spreading over most transportation infrastructures
and vehicles, within the naval, railway and automobile domains. Examples of structures or machines to be
monitored include aircrafts, space crafts, buildings, bridges, dams, ships, offshore platforms, on-shore and
off-shore wind farms (wind energy systems), turbo-alternators and other heavy machineries, ....

The emergence of stronger safety and environmental norms, the need for early decision mechanisms, together
with the widespread diffusion of sensors of all kinds, result in a thorough renewal of sensor information
processing problems. This calls for new research investigations within the sensor data (signal and image)
information processing community. In particular, efficient and robust methods for structural analysis, non
destructive evaluation, integrity monitoring, damage diagnosis and localization, are necessary for fatigue
and aging prevention, and for condition-based maintenance. Moreover, multidisciplinary research, mixing
information science, engineering science and scientific computing, is mandatory. However, most of the SHM
research investigations are conducted within mechanical, civil and aeronautical engineering departments, with
little involvement of advanced data information processing specialists.
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2.1.2. Objectives.
In this context, and based on our background and results on model-based statistical identification, change
detection and vibration monitoring, our objectives are :

• Importing knowledge from engineering communities within our model-based information process-
ing methods;

• Mixing statistical inference tools (identification, detection, rejection) with simplified models of
aerodynamic effects, thermo-dynamical or other environmental effects;

• Involving nonlinearities in the models, algorithms and proofs of performances;

• Exporting our data processing algorithms within the SHM community, based on specific training
actions, on a dedicated free Scilab toolbox, and an industrial software.

2.1.3. Industrial and academic relations.

• Industrial projects: with SNECMA (F.) and SVS (DK).

• Multi–partners projects at European level: on exploitation of flight test data under natural excitation
conditions (FliTE2 - Eurêka), on structural assessment, monitoring and control (SAMCO Associa-
tion), on industrial risk reduction (IRIS CP-IP).

• Academic research: national project on monitoring civil engineering structures (CONSTRUCTIF
- ACI S&I), French Pôle de compétitivité ASTECH MODIPRO, European network on system
identification (FP5 TMR), FWO research network on identification and control.

2.2. Highlights
• Prize : M. Döhler has received the IRiS PRize of Excellence 2011 in the context of european project

FP7 IRIS.

3. Scientific Foundations

3.1. Introduction
In this section, the main features for the key monitoring issues, namely identification, detection, and diagnos-
tics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if
not generic. Handling high order linear dynamical systems, in connection with finite elements models, which
call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature
of model-based sensor information data processing as exercised in I4S, is the combined use of black-box
or semi-physical models together with physical ones. Black-box and semi-physical models are, for example,
eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based
SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be
considered, the issue of model order selection is really a challenge. Traditional advanced techniques from
statistics such as the various forms of Akaike criteria (AIC, BIC, MDL, ...) do not work at all. This gives rise
to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable
assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability
to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual
operating conditions, namely without any artificial excitation or other external action. Such a normal behavior
is summarized in a reference parameter vector θ0, for example a collection of modes and mode-shapes.

3.2. Identification
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The behavior of the monitored continuous system is assumed to be described by a parametric model
{Pθ , θ ∈ Θ}, where the distribution of the observations (Z0, ..., ZN ) is characterized by the parameter
vector θ ∈ Θ. An estimating function, for example of the form :

KN (θ) = 1/N

N∑
k=0

K(θ, Zk)

is such that Eθ[KN (θ)] = 0 for all θ ∈ Θ. In many situations, K is the gradient of a function to be minimized :
squared prediction error, log-likelihood (up to a sign), .... For performing model identification on the basis of
observations (Z0, ..., ZN ), an estimate of the unknown parameter is then [32] :

θ̂N = arg {θ ∈ Θ : KN (θ) = 0}

Assuming that θ∗ is the true parameter value, and that Eθ∗ [KN (θ)] = 0 if and only if θ = θ∗ with θ∗ fixed
(identifiability condition), then θ̂N converges towards θ∗. Thanks to the central limit theorem, the vector
KN (θ∗) is asymptotically Gaussian with zero mean, with covariance matrix Σ which can be either computed
or estimated. If, additionally, the matrix JN = −Eθ∗ [K′N (θ∗)] is invertible, then using a Taylor expansion and
the constraint KN (θ̂N ) = 0, the asymptotic normality of the estimate is obtained :

√
N (θ̂N − θ∗) ≈ J−1

N

√
N KN (θ∗)

In many applications, such an approach must be improved in the following directions :

• Recursive estimation: the ability to compute θ̂N+1 simply from θ̂N ;

• Adaptive estimation: the ability to track the true parameter θ∗ when it is time-varying.

3.3. Detection
Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which
we have extended and adapted [5], [4], [2]. It is worth noticing that these investigations of ours have been
initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite
to many monitoring approaches, our method does not require repeated identification for each newly collected
data sample.

For achieving the early detection of small deviations with respect to the normal behavior, our approach
generates, on the basis of the reference parameter vector θ0 and a new data record, indicators which
automatically perform :

• The early detection of a slight mismatch between the model and the data;

• A preliminary diagnostics and localization of the deviation(s);

• The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the
estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some
applications, such as flutter monitoring, as explained in module 4.4.
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As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under
normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to
small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our
approach is to :

• Design the residual basically as a parameter estimating function,

• Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptot-
ically Gaussian and reflects the presence of a deviation in the parameter vector through a change in
its own mean vector, which switches from zero in the reference situation to a non-zero value.

This is actually a strong result, which transforms any detection problem concerning a parameterized stochastic
process into the problem of monitoring the mean of a Gaussian vector.

The behavior of the monitored system is again assumed to be described by a parametric model {Pθ , θ ∈ Θ},
and the safe behavior of the process is assumed to correspond to the parameter value θ0. This parameter often
results from a preliminary identification based on reference data, as in module 3.2.

Given a new N -size sample of sensors data, the following question is addressed : Does the new sample still
correspond to the nominal model Pθ0 ? One manner to address this generally difficult question is the following.
The asymptotic local approach consists in deciding between the nominal hypothesis and a close alternative
hypothesis, namely :

(Safe) H0 : θ = θ0 and (Damaged) H1 : θ = θ0 + η/
√
N (1)

where η is an unknown but fixed change vector. A residual is generated under the form :

ζN = 1/
√
N

N∑
k=0

K(θ0, Zk) =
√
N KN (θ0) . (2)

If the matrix JN = −Eθ0 [K′N (θ0)] converges towards a limit J, then the central limit theorem shows [29]
that the residual is asymptotically Gaussian :

ζN
N →∞

→


N(0,Σ) under Pθ0 ,

N(J η,Σ) under Pθ0+η/
√
N ,

(3)

where the asymptotic covariance matrix Σ can be estimated, and manifests the deviation in the parameter
vector by a change in its own mean value. Then, deciding between η = 0 and η 6= 0 amounts to compute the
following χ2-test, provided that J is full rank and Σ is invertible :

χ2 = ζ
T
F−1 ζ ≷ λ . (4)

where

ζ
∆
= JT Σ−1 ζN and F

∆
= JT Σ−1 J (5)
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With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly
different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual
and the sensitivity and covariance matrices J and Σ can be evaluated (or estimated) for the nominal model.
In particular, it is not necessary to re-identify the model, and the sensitivity and covariance matrices can be
pre-computed off-line.

3.4. Diagnostics
A further monitoring step, often called fault isolation, consists in determining which (subsets of) components
of the parameter vector θ have been affected by the change. Solutions for that are now described. How this
relates to diagnostics is addressed afterwards.

3.4.1. Isolation.
The question: which (subsets of) components of θ have changed ?, can be addressed using either nuisance
parameters elimination methods or a multiple hypotheses testing approach [27]. Here we only sketch two
intuitively simple statistical nuisance elimination techniques, which proceed by projection and rejection,
respectively.

The fault vector η is partitioned into an informative part and a nuisance part, and the sensitivity matrix
J, the Fisher information matrix F = JT Σ−1 J and the normalized residual ζ = JT Σ−1 ζN are partitioned
accordingly

η =

(
ηa

ηb

)
, J =

(
Ja Jb

)
, F =

(
Faa Fab

Fba Fbb

)
, ζ =

(
ζa

ζb

)
.

A rather intuitive statistical solution to the isolation problem, which can be called sensitivity approach, consists
in projecting the deviations in η onto the subspace generated by the components ηa to be isolated, and deciding
between ηa = ηb = 0 and ηa 6= 0, ηb = 0. This results in the following test statistics :

ta = ζ
T

a F−1
aa ζa , (6)

where ζa is the partial residual (score). If ta ≥ tb, the component responsible for the fault is considered to be
a rather than b.

Another statistical solution to the problem of isolating ηa consists in viewing parameter ηb as a nuisance,
and using an existing method for inferring part of the parameters while ignoring and being robust to the
complementary part. This method is called min-max approach. It consists in replacing the nuisance parameter
component ηb by its least favorable value, for deciding between ηa = 0 and ηa 6= 0, with ηb unknown. This
results in the following test statistics :

t∗a = ζ
∗ T
a F∗−1

a ζ
∗
a , (7)

where ζ
∗
a

∆
= ζa − Fab F

−1
bb ζb is the effective residual (score) resulting from the regression of the

informative partial score ζa over the nuisance partial score ζb, and where the Schur complement
F∗a = Faa − Fab F

−1
bb Fba is the associated Fisher information matrix. If t∗a ≥ t∗b , the component re-

sponsible for the fault is considered to be a rather than b.

The properties and relationships of these two types of tests are investigated in [26].
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3.4.2. Diagnostics.
In most SHM applications, a complex physical system, characterized by a generally non identifiable parameter
vector Φ has to be monitored using a simple (black-box) model characterized by an identifiable parameter
vector θ. A typical example is the vibration monitoring problem in module 4.2, for which complex finite
elements models are often available but not identifiable, whereas the small number of existing sensors calls
for identifying only simplified input-output (black-box) representations. In such a situation, two different
diagnosis problems may arise, namely diagnosis in terms of the black-box parameter θ and diagnosis in terms
of the parameter vector Φ of the underlying physical model.

The isolation methods sketched above are possible solutions to the former. Our approach to the latter diagnosis
problem is basically a detection approach again, and not a (generally ill-posed) inverse problem estimation
approach [3]. The basic idea is to note that the physical sensitivity matrix writes J JΦθ, where JΦθ is the
Jacobian matrix at Φ0 of the application Φ 7→ θ(Φ), and to use the sensitivity test (6) for the components of
the parameter vector Φ. Typically this results in the following type of directional test :

χ2
Φ = ζT Σ−1 J JΦθ (JTΦθ J

T Σ−1 J JΦθ)
−1

JTΦθ J
T Σ−1 ζ ≷ λ . (8)

It should be clear that the selection of a particular parameterization Φ for the physical model may have a non
negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices
JΦθ.

As a summary, the machinery in modules 3.2, 3.3 and 3.4 provides us with a generic framework for designing
monitoring algorithms for continuous structures, machines and processes. This approach assumes that a model
of the monitored system is available. This is a reasonable assumption within the field of applications described
in module 4.2, since most mechanical processes rely on physical principles which write in terms of equations,
providing us with models. These important modeling and parameterization issues are among the questions we
intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently
the choice of the parameter estimating function.

3.5. Subspace-based identification and detection
For reasons closely related to the vibrations monitoring applications described in module 4.2, we have been
investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure
(λ, φλ) of the state transition matrix F of a linear dynamical state-space system :{

Xk+1 = F Xk + Vk+1

Yk = H Xk

, (9)

namely the (λ, ϕλ) defined by :

det (F − λ I) = 0, (F − λ I) φλ = 0, ϕλ
∆
= H φλ (10)

The (canonical) parameter vector in that case is :

θ
∆
=

(
Λ

vecΦ

)
(11)

where Λ is the vector whose elements are the eigenvalues λ, Φ is the matrix whose columns are the ϕλ’s, and
vec is the column stacking operator.
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Subspace-based methods is the generic name for linear systems identification algorithms based on either time
domain measurements or output covariance matrices, in which different subspaces of Gaussian random vectors
play a key role [37]. A contribution of ours, minor but extremely fruitful, has been to write the output-only
covariance-driven subspace identification method under a form that involves a parameter estimating function,
from which we define a residual adapted to vibration monitoring [1]. This is explained next.

3.5.1. Covariance-driven subspace identification.

Let Ri
∆
= E

(
Yk Y

T
k−i
)

and:

Hp+1,q
∆
=



R0 R1

... Rq−1

R1 R2

... Rq
...

...
...

...

Rp Rp+1

... Rp+q−1


∆
= Hank (Ri) (12)

be the output covariance and Hankel matrices, respectively; and: G ∆
= E

(
XkY

T
k

)
. Direct computations of

the Ri’s from the equations (9) lead to the well known key factorizations :

Ri = HF iG

Hp+1,q = Op+1(H,F ) Cq(F,G)
(13)

where:

Op+1(H,F )
∆
=


H

HF

...
HF p

 and Cq(F,G)
∆
=(G FG · · · F q−1G) (14)

are the observability and controllability matrices, respectively. The observation matrix H is then found in the
first block-row of the observability matrix O. The state-transition matrix F is obtained from the shift invariance
property of O. The eigenstructure (λ, φλ) then results from (10).

Since the actual model order is generally not known, this procedure is run with increasing model orders.

3.5.2. Model parameter characterization.
Choosing the eigenvectors of matrix F as a basis for the state space of model (9) yields the following
representation of the observability matrix:

Op+1(θ) =


Φ

Φ∆

...
Φ∆p

 (15)

where ∆
∆
= diag(Λ), and Λ and Φ are as in (11). Whether a nominal parameter θ0 fits a given output covariance

sequence (Rj)j is characterized by [1]:
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Op+1(θ0) and Hp+1,q have the same left kernel space. (16)

This property can be checked as follows. From the nominal θ0, compute Op+1(θ0) using (15), and perform
e.g. a singular value decomposition (SVD) of Op+1(θ0) for extracting a matrix U such that:

UT U = Is and UT Op+1(θ0) = 0 (17)

Matrix U is not unique (two such matrices relate through a post-multiplication with an orthonormal matrix),
but can be regarded as a function of θ0. Then the characterization writes:

U(θ0)
T
Hp+1,q = 0 (18)

3.5.3. Residual associated with subspace identification.
Assume now that a reference θ0 and a new sample Y1, · · · , YN are available. For checking whether the data
agree with θ0, the idea is to compute the empirical Hankel matrix Ĥp+1,q:

Ĥp+1,q
∆
= Hank

(
R̂i

)
, R̂i

∆
= 1/(N − i)

N∑
k=i+1

Yk Y
T
k−i (19)

and to define the residual vector:

ζN (θ0)
∆
=
√
N vec

(
U(θ0)

T
Ĥp+1,q

)
(20)

Let θ be the actual parameter value for the system which generated the new data sample, and Eθ be the
expectation when the actual system parameter is θ. From (18), we know that ζN (θ0) has zero mean when no
change occurs in θ, and nonzero mean if a change occurs. Thus ζN (θ0) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and
localization [3], and for flutter monitoring [8].

3.5.4. Other uses of the key factorizations.
Factorization (3.5.1) is the key for a characterization of the canonical parameter vector θ in (11), and for
deriving the residual. Factorization (13) is also the key for :

• Proving consistency and robustness results [6];
• Designing an extension of covariance-driven subspace identification algorithm adapted to the pres-

ence and fusion of non-simultaneously recorded multiple sensors setups [7];
• Proving the consistency and robustness of this extension [9];
• Designing various forms of input-output covariance-driven subspace identification algorithms

adapted to the presence of both known inputs and unknown excitations [10].

4. Application Domains
4.1. Introduction

In this section, the problems we are faced with vibration-based monitoring and within our two major
application domains are briefly described.
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4.2. Vibrations-based monitoring
Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic
of growing interest, due to the aging of many engineering constructions and machines and to increased safety
norms. Many current approaches still rely on visual inspections or local non destructive evaluations performed
manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field
techniques, .... These experimental approaches assume an a priori knowledge and the accessibility of a
neighborhood of the damage location. Automatic global vibration-based monitoring techniques have been
recognized to be useful alternatives to those local evaluations [31]. However this has led to actual damage
monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes or
earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences, ...) is the following.
These systems are subject to both fast and unmeasured variations in their environment and small slow
variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or
accelerometers) do not separate the effects of the external forces from the effect of the structure. The external
forces vary more rapidly than the structure itself (fortunately !), damages or fatigues on the structure are of
interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation
of recorded spectra can hardly work in such a case : the changes of interest (1% in eigenfrequencies) are
visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a
model that will help in discriminating between the two mixed causes of the changes that are contained in the
measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test beds
or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring
algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of
the considered structure or machine, without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements basically handle two types of
characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode-shapes); see [35] and references therein. A
central question for monitoring is to compute changes in those characteristics and to assess their significance.
For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are
significant, to handle correlations among individual changes. A related issue is how to compare the changes
in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from
an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies
bear useful information for damage detection, information on changes in (the curvature of) mode-shapes
is mandatory for performing damage localization. Then, similar issues arise for the computation and the
significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-
shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered
as open questions [35], [31].

Controlling the computational complexity of the processing of the collected data is another standard monitor-
ing requirement, which includes a limited use of an analytical model of the structure. Moreover, the reduction
from the analytical model to the experimental model (truncated modal space) is known to play a key role in
the success of model-based damage detection and localization.

The approach which we have been developing, based on the foundations in modules 3.2–3.5, aims at
addressing all the issues and overcoming the limitations above.

4.3. Civil engineering
Civil engineering is a currently renewing scientific research area, which can no longer be restricted to the single
mechanical domain, with numerical codes as its central focus. Recent and significant advances in physics and
physical chemistry have improved the understanding of the detailed mechanisms of the constitution and the
behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-Lafarge). Moreover,
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because of major economical and societal issues, such as durability and safety of infrastructures, buildings and
networks, civil engineering is evolving towards a multi-disciplinary field, involving in particular information
sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic,
including in connected areas such as automatic control, for mastering either the aging of the bridges, as in
America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural
heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a
tendency of long term design without fatigue oriented inspections, as opposite to less severe design with
planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain
(RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is
somewhat different, in that the demand for automatic data processing for global SHM systems is much higher,
because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular
the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different kinds
of (non measured) excitation sources and the environmental effects [36]. Typically the traffic on and under
the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured dynamics.
Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an extent which
is significant w.r.t. the deviations to be monitored.

4.4. Aeronautics
The aging of aerospace structures is a major current concern of civilian and military aircraft operators. Another
key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet. A SHM
system is viewed as a component of a global integrated vehicle health management (IVHM) system. An
overview of the users needs can be found in [28].

Improved safety and performance and reduced aircraft development and operating costs are other major
concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations
(flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure
subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests
and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed.
Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and
the presence of unmeasured natural excitation inputs (turbulence). A better exploitation of flight test data can
be achieved by using output-only system identification methods, which exploits data recorded under natural
excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types
of excitation inputs [10].

A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range. A critical
instability phenomenon, known under the name of “aero-elastic flutter, involves the unfavorable interaction
of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that often results
in structural failure” [33]. For preventing from this phenomenon, the airplane is submitted to a flight flutter
testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting the speed at
which flutter can occur is usually addressed with the aid of identification methods achieving modal analysis
from the in-flight data recorded during these tests. The rationale is that the damping coefficient reflects the rate
of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant measure of stability.
Therefore, while frequencies and mode-shapes are usually the most important parameters in structural analysis,
the most critical ones in flutter analysis are the damping factors, for some critical modes. The mode-shapes
are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to data-based methods, processing
different types of data. A combined data-based and model-based method has been introduced recently under
the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer
functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust
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flutter margin using the µ-method for analyzing the worst case effects of model uncertainty. In recent
comparative evaluations using simulated and real data [30], [34], several data-based methods are shown to
fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out
not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving the on-line in-flight exploitation of flight test data are expected to allow a more direct
exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one
important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of
monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds,
that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and
moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely
on detection algorithms able to decide whether some damping factor decreases below some critical value or
not. The rationale is that detection algorithms usually have a much shorter response time than identification
algorithms.

5. Software

5.1. COSMAD
With the help of former engineers, I4S team has developed and maintained a Scilabtoolbox devoted to
modal analysis and vibration monitoring of structures or machines subjected to known or ambient (unknown)
excitation. This software (COSMAD 3.64) has been registered at the APP under the number

IDDN.FR.001.210011.002.S.A.2003.000.20700

A list of test-cases (simulators, laboratory test-beds, real structures) for which COSMAD has been used is
available on I4S website. The problem is to identify the eigenstructure (eigenvalues and observed components
of the associated eigenvectors) of the state transition matrix of a linear dynamical system, using only the
observation of some measured outputs summarized into a sequence of covariance matrices corresponding to
successive time shifts. Other services are

• Output-only and Input/Ouptut subspace-based identification,

• Automated on-line identification package,

• Subspace-based identification through moving sensors data fusion,

• Damage detection and monitoring,

• Damage localization,

The modules have been tested by different partners, especially the French industrial partners, EADS, Dassault
and Sopemea, within the FLITE2 project, by partners from the past CONSTRUCTIF project, and within the
framework of bilateral contracts with SNECMA and SVS.

Based on intensive internal evaluation of the toolbox, on both simulated and real data sets, EADS Space
Transportation and CNES have been investigating how to use the toolbox for the exploitation of the Ariane 5
flight data sets.

This Scilabtoolbox continues to play the role of a programming and development environment for all our
newly designed algorithms. Moreover, offering a maintained Scilabplatform turns out to be a crucial factor
in convincing industrial partners to undertake joint investigations with us. Just recently, SNECMA funded
development for the Cosmad toolbox in 2010.



12 Activity Report INRIA 2011

5.2. Prototypes
Three software have been deposed to the Agency of Program Protection, i.e.

• 1/ Fast multi-order Stochastic Subspace Identification (FMO-SSI) IDDN.FR.001.100017.000.S.P.2011.000.20700

• 2/ Multi-setup Stochastic Subspace Identification (MS-SI) IDDN.FR.001.100016.000.S.P.2011.000.20700

• 3/ Multi-order confidence interval computation for single-setup and multi-setup Stochastic Subspace
Identification (MOCI-SSI) IDDN.FR.001.100018.000.S.P.2011.000.20700

They will be transferred to partners and industrial contracts, starting in 2011.

6. New Results

6.1. identification of linear systems
6.1.1. Modular identification and damage detection for large structures

Participants: Michael Döhler, Laurent Mevel.

In Operational Modal Analysis (OMA) of large structures it is often needed to process sensor data from
multiple non-simultaneously recorded measurement setups, especially in the case of large structures.. In this
work a new efficient variant of the PreGER algorithm is presented that avoids the numerical explosion of the
calculation by using a modular approach, where the data from the measurement setups is processed setup by
setup and not at the same time [16].

6.1.2. Fast multi order subspace identification algorithm
Participants: Michael Döhler, Laurent Mevel.

Stochastic subspace identification methods are an efficient tool for system identification of mechanical systems
in Operational Modal Analysis (OMA), where modal parameters are estimated from measured vibrational
data of a structure. System identification is usually done for many successive model orders, as the true system
order is unknown and identification in results at different model orders need to be compared to distinguish
true structural modes from spurious modes in so-called stabilization diagrams. An algorithm to estimate the
system matrices at multiple model orders has been derived [20].

6.1.3. Evaluation of confidence intervals and computation of sensitivities for subspace methods
Participants: Michael Döhler, Xuan Lam, Laurent Mevel.

In Operational Modal Analysis, the modal parameters (natural frequencies, damping ratios and mode shapes)
obtained from Stochastic Subspace Identification (SSI) of a structure, are afflicted with statistical uncertainty.
A variant of this approach has been derived for the Eigenvalue-Realization-Algorithm (ERA) [25]. Another
version has been proposed for the merging subspace algorithm [17], [17]. This approach has been validated
on large scale examples[14].

6.2. damage detection for mechanical structures
6.2.1. Damage detection and localisation

Participants: Michael Döhler, Laurent Mevel.

Statistical methods using output-only data have been shown to offer a robust solution to the damage detection
task. These techniques have also been combined with sensitivities extracted from

finite element models to offer information on the location of damage accounting for uncertainties in the
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finite element sensitivities. In some applications, however, the formulation of the

finite element model makes implementation impractical and this motivates the search for model-free damage
localization alternatives. One option is to use experimentally extracted sensitivities but their computation
requires a set of constants (usually absorbed in the normalization of the eigenvectors) that are not available in
output only identification. The noted limitation can be circumvented by adding a known perturbation to the
mass distribution and repeating the output only identification, a procedure that can be practical in some cases.
Linking a null-space based subspace damage index with experimentally extracted sensitivities allows us to
infer on the position of damage without formulating a

finite element model and without the need for input measurements. The performance of the algorithm is
illustrated on simulated data [19]. Damage detdction has also been applied to a large scale example of an
european project [23], [15].

6.2.2. Robust subspace damage detection
Participants: Michael Döhler, Laurent Mevel.

Subspace methods enjoy some popularity, especially in mechanical engineering, where large model orders
have to be considered. In the context of detecting changes in the structural properties and the modal parameters
linked to them, some subspace based fault detection residual has been recently proposed and applied
successfully. However, most works assume that the unmeasured ambient excitation level during measurements
of the structure in the reference and possibly damaged condition stays constant, which is not possible in any
application. This work addresses the problem of robustness of such fault detection methods. A subspace-based
fault detection test is derived that is robust to excitation change but also to numerical instabilities that could
arise easily in the computations [21].

6.3. Instability monitoring of aeronautical structures

6.3.1. Subspace identification for hinged-blades helicopters
Participants: Ahmed Jhinaoui, Laurent Mevel.

In this work, an extension of the output-only subspace identification, to the class of linear periodically time-
varying (LPTV) systems, is proposed. The goal is to identify a useful information about the system’s stability
using the Floquet theory which gives a necessary and sufficient condition for stability analysis [24].

6.3.2. Optimal input design for identification and detection
Participants: Alireza Esna Ashari, Laurent Mevel.

Output only techniques rely on the presence on unknown turbulence, which may or may not be enough to
excite the system. A new approach for applying artificial input to the system for maximizing detection and
identifiability has been developed. This work considers the problem of auxiliary input design for subspace-
based fault detection methods. In several real applications, particularly in the damage detection of mechanical
structures and vibrating systems, environment noise is the only input to the system. In some applications,
white noise produces low quality output data for the subspace-based fault detection method. In those methods,
a residual is calculated to detect the fault based on the output information. However, some modes of the
system may not influence the outputs and the residual appropriately if the input is not exciting enough for
those modes. In this work, rotated inputs method is implemented to excite the system modes. In addition to
produce a residual more sensitive to the weak modes, it is possible to detect system order changes due to the
fault using the rotated inputs. Simulation results demonstrate the efficiency of injecting these auxiliary inputs
to improve the subspace-based fault detection methodology [22]. This work is funded by FP7-NMP Large
Scale Integrated Project IRIS.



14 Activity Report INRIA 2011

7. Contracts and Grants with Industry

7.1. SVS
Participants: Laurent Mevel, Michael Döhler.

Annual agreement INRIA-SVS 2381 + contract 4329

SVS (Structural Vibration Solutions A/S) is a company located in Aalborg, Denmark, having strong connec-
tions with the Department of Civil Engineering of University of British Columbia, CA (Prof. Carlos Ventura).

SVS and I4S are investigating how to link the modal analysis software ARTeMIS of SVS and COSMAD.
Through an annual agreement, I4S gets a license of ARTeMIS in exchange to offer support for integrating our
damage detection software into SVS software and offerings. A contract has been signed, where I4S provides
algorithms and expertise for integration within a damage detection structural health monitoring system and
SVIBS does the implementation. This technology transfer has been funded by the ministry of transportation
of British Columbia, Canada. The work is supervised by UBC, CA. The end product will be a web based
structural health monitoring system for in operation bridges.

I4S is doing technology transfer towards SVS to implement I4S technologies into ARTEMIS Extractor
Pro. This is done under a royalty agreement between INRIA and SVS . First achievements include the
implementation of the so called Crystal Clear SSI, a subspace variant, with much lower signal to noise ratio,
and whose interest in the mechanical engineering community is very high.This year, the merging algorithm
[16] and the fast implementation of subspace methods [20] has been performed. Other I4S algorithms are
currently under review to be integrated within ARTEMIS. SVS and I4S are also related in the related IAPP
ISMS and the SIMS project.

7.2. SNECMA
Participant: Laurent Mevel.

Contracts INRIA signed in December 2009 (2009-alloc 4589) and July 2010 (2010-alloc 5110).

In 2007, I4S has investigated for SNECMA an identification case study on some undisclosed engine structure.
Successful results yield to the delivery of the COSMAD toolbox for internal evaluation at SNECMA. The end
goal is the use of COSMAD in the industrial process of SNECMA. Internal evaluation of COSMAD has been
performed inhouse by SNECMA in 2008. A contract has been signed and some software package has been
developed to suit SNECMA needs in 2011. Work on the SNECMA prototype has been performed in 2009 to
2011.

7.3. PhD CIFRE with Dassault Aviation
Participants: Laurent Mevel, Philippe Mellinger.

Following the FliTE2 project, a joint PhD thesis between INRIA and Dassault Aviation has been initiated. The
thesis will pursue the work achieved in FliTE2 and started in June 2011 funded by Dassault Aviation and the
CIFRE Agency.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. Pôle de Compétitivité ASTECH MODIPRO

Participants: Laurent Mevel, Meriem Zghal.

Contract INRIA 4162
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I4S is implied in a national project for aircraft SHM starting Fall 2009. This project will improve on monitoring
procedures developed in previous projects to provide some algorithms for use in Dassault Aviation aircraft
monitoring procedures. I4S works together with Qinghua Zhang of INRIA Rocquencourt, project team
SISYPHE, on this topic.

8.1.2. Collaboration with IFSTTAR
Participant: Laurent Mevel.

I4S is related to the forthcoming project FUI SIPRIS (Systèmes d’Instrumentation pour la prévention des
risques), lead by Advitam.

8.1.3. Collaboration with ALEA, EPI Team at Inria Bordeaux Center
Participants: Laurent Mevel, Meriem Zghal.

I4S has started a 2 year collaboration with EPI ALEA on using particular filtering in vibration analysis. A new
engineer has been hired for that task, starting October 2010.

8.1.4. Collaboration with ISAE
Participants: Laurent Mevel, Ahmed Jhinaoui.

A new PhD student, Ahmed Jhinaoui has started a new thesis on helicopter instability. This thesis is codirected
by professor Morlier from ISAE, France. This thesis is funded by FP7-NMP Large Scale Integrated Project
IRIS.

8.2. European Initiatives
8.2.1. FP7 ISMS

Type: PEOPLE

Instrument: Industry-Academia Partnerships and Pathway (IAPP)

Duration: September 2010 - August 2013

Coordinator: SVS (Structural Vibrations Solutions) (Denmark)

Others partners: University of British Columbia, Canada

In 2009, a proposal has been submitted with SVS, University of British Columbia and I4S to develop
a framework for handling structural health monitoring methods. This proposal implies some long
stay of the concerned people, Laurent Mevel and Michael Döhler for I4S abroad. Palle Andersen
and one of its engineer from SVS are assumed to stay 9 months at INRIA, for tighten integration of
COSMAD and ARTEMIS software. The proposal has been rated 88/100 and ranked A in the final
selection procedure. The project has been signed on August 1st 2010 and has been running from
September 1st. Michael Döhler is spending 5 months in 2010-2011 in Danemark.

8.2.2. FP7-NMP CP-IP 213968-2 IRIS

Type: Cooperation

Instrument: Collaborative project -Large Scale Integrating project

Duration: October 2008 - March 2012

Coordinator: VCE, Austria (Denmark)

Others partners: 40 partners
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IIRIS (Integrated European Industrial Risk Reduction System), which helds its kick off meeting in
October 2008. This project has been elaborated within the framework of the SAMCO association.
I4S is involved in the online monitoring sub-project.

I4S is involved in the core consortium of this FP7-NMP Large Scale Integrated Project.

INRIA is involved in Group 3 about Structural Health Monitoring. I4S works with Sheffield
University and BAM (Germany) for development of tools for structural damage detection for bridges
and wind farms. Laurent Mevel is also member of the core IRIS Vision group, and is responsible of
the scientific coherency of the project.

8.3. International Initiatives
8.3.1. INRIA International Partners
8.3.1.1. SIMS, Canada

Participants: Michael Döhler, Laurent Mevel.

A new project called SIMS is currently ongoing on vibration analysis and monitoring in Canada. This project
is funded by Ministry of Transport, British Columbia, Canada. It implies deep collaboration with University
of British Columbia, Canada. This project has connexions with partners of IRIS project, including University
of Tokyo, Japan.

8.3.1.2. Collaboration on damage localization and monitoring with Boston University
Participants: Michael Döhler, Laurent Mevel, Luciano Marin.

This collaboration involves a new PhD student, Luciano Marin, and is involving Professor Bernal from
University of Boston, USA. Professor Bernal visited us for one week in 2010.

8.3.2. Visits of International Scientists
D. Bernal of Northeastern University, Boston visited us in October 2011.

H. Vollesen was 6 months in 2011 in I4S during the ISMS project.

9. Dissemination

9.1. Animation of the scientific community
L. Mevel is part of the IOMAC organisation committee. He is also reviewer for numerous journals and
conference boards.

9.2. Teaching
PhD : Michael Döhler, Subspace based system identification and fault detection : Algorithms for
large systems and application to structural vibration analysis, Université de Rennes 1, 10/10/11, L.
Mevel [11].

PhD: Xuan-Binh Lam, Uncertainty quantification for Subspace methods, Université de Rennes 1,
26/10/11, L. Meve [12].

PhD in progress : Ambient diagnosis and early instability monitoring for helicopter rotor : Ahmed
Jhinaoui, ,since June 2010, L.Mevel and J. Morlier (ISAE)

PhD in progress : Algorithms for monitoring and localization of damage. Luciano Marin, since
October 2010, L.Mevel and D. Bernal (University of NorthEastern, Boston, USA)

PhD in progress : Aeroelastic instability early detection methods in frequency domain. Philippe
Mellinger, since June 2011, L. Mevel and C. Meyer (Dassault Aviation)
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