
Activity Report 2011

Project-Team INDES

Secure Diffuse Programming

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Distributed Systems and Services

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Parallelism, concurrency, and distribution 2
3.2. Web and functional programming 2
3.3. Security of diffuse programs 2

4. Application Domains .2
4.1. Web programming 2
4.2. Multimedia 3
4.3. House Automation 3

5. Software . 3
5.1. Introduction 3
5.2. Functional programming 4

5.2.1. The Bigloo compiler 4
5.2.2. Camloo 4
5.2.3. The FunLoft language 4

5.3. Web programming 4
5.4. Language-based security 5

5.4.1. CFlow 5
5.4.2. FHE type-checker 5
5.4.3. Mashic compiler 5

5.5. Old software 5
5.5.1. Skribe 5
5.5.2. Scheme2JS 6

6. New Results . 6
6.1. Security 6

6.1.1. Secure session calculi 6
6.1.2. Automatic Code Injection Prevention for Web Applications 7
6.1.3. A Certified Lightweight Non-Interference Java Bytecode Verifier 7
6.1.4. Information-flow types for homomorphic encryptions 7
6.1.5. The Mashic compiler 7
6.1.6. Secure Information Flow by Self-Composition 7
6.1.7. Secure Information flow enforcement techniques for dynamic security policies 8

6.2. Models, semantics, and languages 8
6.2.1. HipHop 8
6.2.2. Tesard 8
6.2.3. Synchronous orchestration and beyond 9

6.3. Web programming 9
6.3.1. A new evaluator for Hop 9
6.3.2. Abstraction of Hop with a bicolored lambda-calculus 9
6.3.3. HopTeX, an Hop application for authoring documents 9

7. Contracts and Grants with Industry . 10
7.1.1. DGE SmartImmo 10
7.1.2. Collaboration with Xiring 10
7.1.3. Microsoft Research and Inria Joint Lab 10

8. Partnerships and Cooperations . 10
8.1.1. ANR DEFIS ParTout 10
8.1.2. ANR DEFIS PWD 11
8.1.3. MEALS 11

2 Activity Report INRIA 2011

8.1.4. CIRIC 11
9. Dissemination . 11

9.1. Seminars and conferences 11
9.2. Animation 12
9.3. Teaching 13

10. Bibliography .14

Project-Team INDES

Keywords: Programming Languages, Compiling, Security, Concurrency, Web

1. Members
Research Scientists

Gérard Berry [Research Director, Inria, HdR]
Gérard Boudol [Research Director, Inria, HdR]
Ilaria Castellani [Research Scientist, Inria]
Tamara Rezk [Research Scientist, Inria]
Bernard Serpette [Research Scientist, Inria]
Manuel Serrano [Team Leader, Research Director, Inria, HdR]
Frédéric Boussinot [Research Director, CMA, HdR]

Faculty Member
Christian Queinnec [Professor, University Pierre et Marie Curie - Paris 6, HdR]

PhD Students
Zhengqin Luo [MENRT]
Cyprien Nicolas [Inria]
Johan Grande [Inria]
Pejman Attar [Inria]
José Santos [Inria]

Post-Doctoral Fellow
Thomas Gazagnaire [Inria]

Administrative Assistant
Nathalie Bellesso [Inria]

2. Overall Objectives

2.1. Overall Objectives
The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are the new
applications emerging from the convergence of broad network accessibility, rich personal digital environment,
and vast sources of information. Strong security guarantees are required for these applications, which
intrinsically rely on sharing private information over networks of mutually distrustful nodes connected by
unreliable media.

Diffuse computing requires an original combination of nearly all previous computing paradigms, ranging from
classical sequential computing to parallel and concurrent computing in both their synchronous / reactive and
asynchronous variants. It also benefits from the recent advances in mobile computing, since devices involved
in diffuse applications are often mobile or portable.

The Indes team contributes to the whole chain of research on models and languages for diffuse computing,
going from the study of foundational models and formal semantics to the design and implementation of
new languages to be put to work on concrete applications. Emphasis is placed on correct-by-construction
mechanisms to guarantee correct, efficient and secure implementation of high-level programs. The research is
partly inspired by and built around Hop, the web programming model proposed by the former Mimosa team,
which takes the web as its execution platform and targets interactive and multimedia applications.

2 Activity Report INRIA 2011

3. Scientific Foundations

3.1. Parallelism, concurrency, and distribution
Concurrency magagement is at the heart of diffuse programming. Since the execution platforms are highly
heterogeneous, many different concurrency principles and models may involved. Asynchronous concurrency
is the basis of shared-memory process handling within multiprocessor or multicore computers, of direct or
fifo-based message passing in distributed networks, and of fifo- or interrupt-based event handling in web-based
human-machine interaction or sensor handling. Synchronous or quasi-synchronous concurrency is the basis of
signal processing, of real-time control, and of safety-critical information acquisition and display. Interfacing
existing devices based on these different concurrency principles within HOP or other diffuse programming
languages will require better understanding of the underlying concurrency models and of the way they can
nicely cooperate, a currently ill-resolved problem.

3.2. Web and functional programming
We are studying new paradigms for programming Web applications that rely on multi-tier functional program-
ming [4]. We have have created a Web programming environment named HOP. It relies on a single formalism
for programming the server-side and the client-side of the applications as well as for configuring the execution
engine.

HOP is a functional language based on the SCHEME programming language. That is, it is a strict functional
language, fully polymorphic, supporting side effects, and dynamically type-checked. HOP is implemented as
an extension of the BIGLOO compiler that we develop [5]. In the past, we have extensively studied static
analyses (type systems and inference, abstract interpretations, as well as classical compiler optimizations) to
improve the efficiency of compilation in both space and time.

3.3. Security of diffuse programs
The main goal of our security research is to provide scalable and rigorous language-based techniques that can
be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on language-based
security has been carried on before in former Inria teams [2], [1]. In particular previous research has focused
on controlling information flow to ensure confidentiality.

Typical language-based solutions to these problems are founded on static analysis, logics, provable cryptog-
raphy, and compilers that generate correct code by construction [3]. Relying on the multi-tier programming
language HOP that tames the complexity of writing and analysing secure diffuse applications, we are studying
language-based solutions to prominent web security problems such as code injection and cross-site scripting,
to name a few.

4. Application Domains

4.1. Web programming
Along with games, multimedia applications, electronic commerce, and email, the web has popularized
computers in everybody’s life. The revolution is engaged and we may be at the dawn of a new era of computing
where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and
open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it
is likely than most of the computer programs we will write in the future, for professional purposes as well as
for our own needs, will extensively rely on the web.

Project-Team INDES 3

In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed.
Implementing an application with a web interface makes it instantly open to the world and accessible from
much more than one computer. The web also partially solves the problem of platform compatibility because
it physically separates the rendering engine from the computation engine. Therefore, the client does not have
to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable.
While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking
backward compatibility, modern web browsers that render on the edge web pages are still able to correctly
display the web pages of the early 1990’s.

For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting
and interaction based on HTML forms. However, we think that it still lacks programming abstractions that
minimize the overwhelming amount of technologies that need to be mastered when web programming is
involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia
Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in
industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile
phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are
also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or
the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with
mostly isolated devices.

The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are
Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to
access the various multimedia resources available all over the Internet via their web browser. The convergence
between our new electronic environment and the multimedia facilities offered by the web will allow engineers
to create new applications. However, since these applications are complex to implement this will not happen
until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and
libraries that address this problem.

4.3. House Automation
The web is the de facto standard of communication for heterogeneous devices. The number of devices able to
access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it
could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing
applications relying on the “ambient” computing facilities. However, since current programming languages do
not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions.
Programming ambient computing via the web is still to be explored. The tools developed in the Indes team
allow us to build prototypes of a web-based home automation platform. For instance, we experiment with
controlling heaters, air-conditioners, and electronic shutters with our mobile phones using web GUIs.

5. Software

5.1. Introduction
Most INDES software packages, even the older stable ones that are not described in the following sections are
freely available on the Web. In particular, some are available directly from the INRIA Web site:

http://www.inria.fr/centre/sophia/innovation

Most other software packages can be downloaded from the INDES Web site:

http://www-sop.inria.fr/teams/indes

http://www.inria.fr/centre/sophia/innovation
http://www-sop.inria.fr/teams/indes

4 Activity Report INRIA 2011

5.2. Functional programming
Participants: Frédéric Boussinot [Inria], Thomas Gazagnaire [Inria], Zhengqin Luo [Inria], Cyprien Nicolas
[Inria], Tamara Rezk [Inria], Bernard Serpette [Inria], Manuel Serrano [correspondant].

5.2.1. The Bigloo compiler
The programming environment for the Bigloo compiler [5] is available on the INRIA Web site at the following
URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo. The distribution contains an optimizing compiler that
delivers native code, JVM bytecode, and .NET CLR bytecode. It contains a debugger, a profiler, and various
Bigloo development tools. The distribution also contains several user libraries that enable the implementation
of realistic applications.

BIGLOO was initially designed for implementing compact stand-alone applications under Unix. Nowadays, it
runs harmoniously under Linux and MacOSX. The effort initiated in 2002 for porting it to Microsoft Windows
is pursued by external contributors. In addition to the native back-ends, the BIGLOO JVM back-end has enabled
a new set of applications: Web services, Web browser plug-ins, cross platform development, etc. The new
BIGLOO .NET CLR back-end that is fully operational since release 2.6e enables a smooth integration of
Bigloo programs under the Microsoft .NET environment.

5.2.2. Camloo
Camloo is a caml-light to bigloo compiler, which was developed few years ago to target bigloo 1.6c. New
major releases 0.4.x of camloo have been done to support bigloo 3.4 and bigloo 3.5. Camloo make it possible
for the user to develop seamlessly a multi-language project, where some files are written in caml-light, in C,
and in bigloo. Unlike the previous versions of camloo, 0.4.x versions do not need a modified bigloo compiler
to obtain good performance. Currently, the only supported backend for camloo is bigloo/C. We are currently
rewriting the runtime of camloo in bigloo to get more portability and to be able to use HOP and camloo
together.

5.2.3. The FunLoft language
FunLoft (described in http://www-sop.inria.fr/teams/indes/rp/FunLoft) is a programming language in which
the focus is put on safety and multicore.

FunLoft is built on the model of FairThreads which makes concurrent programming simpler than usual
preemptive-based techniques by providing a framework with a clear and sound semantics. FunLoft is designed
with the following objectives:

• provide a safe language, in which, for example, data-races are impossible.

• control the use of resources (CPU and memory), for example, memory leaks cannot occur in FunLoft
programs, which always react in finite time.

• have an efficient implementation which can deal with large numbers of concurrent components.

• benefit from the real parallelism offered by multicore machines.

A first experimental version of the compiler is available on the Reactive Programming site http://www-sop.
inria.fr/teams/indes/rp. Several benchmarks are given, including cellular automata and simulation of colliding
particles.

5.3. Web programming
Participants: Gérard Berry [Inria], Cyprien Nicolas [Inria], Manuel Serrano [correspondant].

http://www-sop.inria.fr/teams/indes/fp/Bigloo
http://www-sop.inria.fr/teams/indes/rp/FunLoft
http://www-sop.inria.fr/teams/indes/rp
http://www-sop.inria.fr/teams/indes/rp

Project-Team INDES 5

5.3.1. The HOP web programming environment
HOP is a higher-order language designed for programming interactive web applications such as web agendas,
web galleries, music players, etc. It exposes a programming model based on two computation levels. The first
one is in charge of executing the logic of an application while the second one is in charge of executing the
graphical user interface. HOP separates the logic and the graphical user interface but it packages them together
and it supports strong collaboration between the two engines. The two execution flows communicate through
function calls and event loops. Both ends can initiate communications.

The HOP programming environment consists in a web broker that intuitively combines in a single architecture
a web server and a web proxy. The broker embeds a HOP interpreter for executing server-side code and a HOP
client-side compiler for generating the code that will get executed by the client.

An important effort is devoted to providing HOP with a realistic and efficient implementation. The HOP
implementation is validated against web applications that are used on a daily-basis. In particular, we have
developed HOP applications for authoring and projecting slides, editing calendars, reading RSS streams, or
managing blogs.

HOP has won the software open source contest organized by the ACM Multimedia Conference 2007 http://
mmc36.informatik.uni-augsburg.de/acmmm2007/. It is released under the GPL license. It is available at http://
hop.inria.fr

5.4. Language-based security
Participants: Zhengqin Luo [Inria], Tamara Rezk [correspondant].

5.4.1. CFlow
The prototype compiler “CFlow” takes as input code annotated with information flow security labels for
integrity and confidentiality and compiles to F# code that implements cryptography and protocols that satisfy
the given security specification.

Cflow has been coded in F#, developed mainly on Linux using mono (as a substitute to .NET), and partially
tested under Windows (relying on .NET and Cygwin). The code is distributed under the terms of the CeCILL-B
license http://www.msr-inria.inria.fr/projects/sec/cflow/index.html.

5.4.2. FHE type-checker
We have developed a type checker for programs that feature modern cryptographic primitives such as fully
homomorphic encryption. The type checker is thought as an extension of the “CFlow” compiler developed last
year on the same project. It is implemented in F#. The code is distributed under the terms of the CeCILL-B
license http://www.msr-inria.inria.fr/projects/sec/cflow/index.html.

5.4.3. Mashic compiler
The Mashic compiler is applied to mashups with untrusted scripts. The compiler generates mashups with
sandboxed scripts, secured by the same origin policy of the browsers. The compiler is written in Bigloo and
can be found at http://www.mashic.net.

5.5. Old software
5.5.1. Skribe

SKRIBE is a functional programming language designed for authoring documents, such as Web pages or
technical reports. It is built on top of the SCHEME programming language. Its concrete syntax is simple and
looks familiar to anyone used to markup languages. Authoring a document with SKRIBE is as simple as with
HTML or LaTeX. It is even possible to use it without noticing that it is a programming language because of
the conciseness of its original syntax: the ratio tag/text is smaller than with the other markup systems we have
tested.

http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://mmc36.informatik.uni-augsburg.de/acmmm2007/
http://hop.inria.fr
http://hop.inria.fr
http://www.msr-inria.inria.fr/projects/sec/cflow/index.html
http://www.msr-inria.inria.fr/projects/sec/cflow/index.html
http://www.mashic.net

6 Activity Report INRIA 2011

Executing a SKRIBE program with a SKRIBE evaluator produces a target document. It can be HTML files
for Web browsers, a LaTeX file for high-quality printed documents, or a set of info pages for on-line
documentation.

5.5.2. Scheme2JS
Scm2JS is a Scheme to JavaScript compiler distributed under the GPL license. Even though much effort has
been spent on being as close as possible to R5RS, we concentrated mainly on efficiency and interoperability.
Usually Scm2JS produces JavaScript code that is comparable (in speed) to hand-written code. In order to
achieve this performance, Scm2JS is not completely R5RS compliant. In particular it lacks exact numbers.

Interoperability with existing JavaScript code is ensured by a JavaScript-like dot-notation to access JavaScript
objects and by a flexible symbol-resolution implementation.

Scm2JS is used on a daily basis within HOP, where it generates the code which is sent to the clients (web-
browsers). Scm2JS can be found at http://www-sop.inria.fr/indes/scheme2js.

6. New Results

6.1. Security
Participants: Ilaria Castellani, Zhengqin Luo, Tamara Rezk [correspondant], José Santos, Manuel Serrano.

6.1.1. Secure session calculi
We have pursued our work on controlling information flow in session calculi, started in previous years
in collaboration with colleagues from the university of Torino. We also started investigating a notion of
(objective) reputation for principals participating in sessions. The reputation of a principal is based on her
previous behaviour as a user of a service. A principal’s reputation can be checked both by the service itself,
before admitting again the principal as a user, or by other principals to evaluate the reputation of the current
users before they join a service (we consider multi-user services). We plan to apply this idea to refine our
previous work on information flow control in multiparty sessions, by considering reputations built on the
“security behaviour” of principals.

In the work “Information flow safety in multiparty sessions” [11], we consider a calculus for multiparty
sessions enriched with security levels for messages. We propose a monitored semantics for this calculus,
which blocks the execution of processes as soon as they attempt to leak information. We illustrate the use of
our monitored semantics with various examples, and show that the induced safety property implies the security
property studied previously for the same calculus. This work was presented at the 18th International Workshop
on Expressiveness in Concurrency (EXPRESS’11).

In the work “A Reputation System for Multirole Sessions” [10], we extend role-based multiparty sessions with
reputations and policies associated with principals. The reputation associated with a principal in a service is
built by collecting her relevant behaviour as a participant in sessions of the service. The service checks the
reputation of principals before allowing them to take part in a session, and decides whether to accept them or
not depending on their reputation and on the role they want to play. Furthermore, principals can declare policies
that must be fulfilled by the other participants of the same service. These policies are used by principals to
check the reputation of the current participants and to decide accordingly whether or not to join the service.
Our approach is illustrated by an example describing a real-world protocol. This work was presented at the
6th International Symposium on Trustworthy Global Computing (TGC’11).

Both [11] and [10] were partially funded by the ANR-08-EMER-010 grant PARTOUT.

http://www-sop.inria.fr/indes/scheme2js

Project-Team INDES 7

6.1.2. Automatic Code Injection Prevention for Web Applications
We propose a new technique based on multitier compilation for preventing code injection in web applications.
It consists in adding an extra stage to the client code generator which compares the dynamically generated code
with the specification obtained from the syntax of the source program. No intervention from the programmer is
needed. No plugin or modification of the web browser is required. The soundness and validity of the approach
are proved formally by showing that the client compiler can be fully abstract. The practical interest of the
approach is proved by showing the actual implementation in the HOP environment.

This work was presented in TOSCA’11 and appeared in the LNCS series [13]. See also software section.

6.1.3. A Certified Lightweight Non-Interference Java Bytecode Verifier
We propose a type system to verify the non-interference property in the Java Virtual Machine. We verify the
system in the Coq theorem prover.

This work will appear in the journal of Mathematical Structures in Computer Science [8].

6.1.4. Information-flow types for homomorphic encryptions
We develop a flexible information-flow type system for a range of encryption primitives, precisely reflecting
their diverse functional and security features. Our rules enable encryption, blinding, homomorphic computa-
tion, and decryption, with selective key re-use for different types of payloads. We show that, under standard
cryptographic assumptions, any well-typed probabilistic program using encryptions is secure (that is, compu-
tationally non-interferent) against active adversaries, both for confidentiality and integrity. We illustrate our
approach using ElGamal and Paillier encryption.

We present two applications of cryptographic verification by typing: (1) private search on data streams; and
(2) the bootstrapping part of Gentry’s fully homomorphic encryption.

We provide a prototype typechecker for our system.

This work appeared in CCS’11 [12]. See also software section.

6.1.5. The Mashic compiler
Mashups are a prevailing kind of web applications integrating external gadget APIs often written in the
Javascript programming language. Writing secure mashups is a challenging task due to the heterogeneity
of existing gadget APIs, the privileges granted to gadgets during mashup executions, and Javascript’s highly
dynamic environment.

We propose a new compiler, called Mashic, for the automatic generation of secure Javascript-based mashups
from existing mashup code. The Mashic compiler can effortlessly be applied to existing mashups based on
a wide-range of gadget APIs. It offers security and correctness guarantees. Security is achieved by using the
Same Origin Policy. Correctness is ensured in the presence of benign gadgets, that satisfy confidentiality and
integrity constrains with regard to the integrator code. The compiler has been successfully applied to real world
mashups based on Google maps, Bing maps, YouTube, and Zwibbler APIs.

See also software section.

6.1.6. Secure Information Flow by Self-Composition
Information flow policies are confidentiality policies that control information leakage through program
execution. A common means to enforce secure information flow is through information flow type systems.
Although type systems are compositional and usually enjoy decidable type checking or inference, their
extensibility is very poor: type systems need to be redefined and proven sound for each new single variation
of security policy and programming language for which secure information flow verification is desired. In
contrast, program logics offer a general mechanism to enforce a variety of safety policies, and for this reason
are favored in Proof Carrying Code, a promising security architecture for mobile code. However, the encoding
of information flow policies in program logics is not straightforward, because they refer to a relation between
two program executions. The purpose of this work is to investigate logical formulations of secure information

8 Activity Report INRIA 2011

flow based on the idea of self-composition, that reduces the problem of secure information flow of a program
P to a safety property for program P composed with itself.

This work appeared in the special issue of MSCS of PLID [7].

6.1.7. Secure Information flow enforcement techniques for dynamic security policies
We performed a comprehensive investigation of alternative static mechanisms to enforce information flow
policies considering a setting in which programs run under an authority that is only known at runtime and that
yields a relaxation of the base security policy. The devised method aims at eliminating the need to reanalyse
a program each time its authority changes. The soundness of the proposed approach was established for a
concurrent higher-order imperative lambda calculus with reference creation. This work resulted in the report
“Typing Illegal Information Flows as Program Effects” available at http://www-sop.inria.fr/members/Jose.
Santos/reportInfFlow.pdf.

6.2. Models, semantics, and languages
Participants: Pejman Attar, Gérard Berry [correspondant], Gérard Boudol, Frédéric Boussinot, Johan Grande,
Cyprien Nicolas, Manuel Serrano.

6.2.1. HipHop
HipHop is a new Domain Specific Language for HOP dedicated to request and event orchestration. HipHop
follows the synchronous reactive model of the Esterel and ReactiveC languages, originally developed for
embedded systems programming. It is based on synchronous concurrency and preemption primitives, which
are known to be key components for the modular design of complex temporal behaviors. Although the
language is concurrent, the generated code is purely sequential and thread-free. HipHop is translated to Hop
code to be interpreted by the Hop runtime, either on server or client sides. HipHop has been described in a
paper [9] accepted at the new International Workshop on Programming Language And Systems Technologies
for Internet Clients (Plastic 2011).

6.2.2. Tesard
Tesard is a programming language of the Caml family, designed to offer simple constructs for shared memory
concurrency and a deadlock-free semantics.

It features in particular the 2 following constructs:

• thread e which launches a thread that will execute expression e, and returns immediately;

• lock x in e which takes a lock on mutable value x (possibly waiting to be able to do so), executes
expression e, releases the lock on x and returns the result of the execution of e.

A type and effect system is used at compile-time to:

• associate a mutex with every mutable value

• make the lock ... in... construct implement deadlock avoidance.

The language is implemented as an interpreter and a bytecode compiler. It is a fork of Llama Light, which is
itself derived from Caml. Llama Light is functionnaly roughly equivalent to Caml Light, but a large part of its
code comes from OCaml, along with the threads library and runtime that we ported ourselves.

Several key parts of the language have been implemented: the runtime and most of the type and effect system,
including inference of the creation of mutexes (let region r in ...) but not region polymorphism yet.
The project is not in a usable state (no release has been made yet). Development versions are publicly available
via GitHub at https://github.com/nahoj/llama.

http://www-sop.inria.fr/members/Jose.Santos/reportInfFlow.pdf
http://www-sop.inria.fr/members/Jose.Santos/reportInfFlow.pdf
https://github.com/nahoj/llama

Project-Team INDES 9

6.2.3. Synchronous orchestration and beyond
We studied DSL, an orchestration language based on the synchronous/reactive model. In DSL, systems are
composed of several sites executed asynchronously. Within each site, scripts are run in a synchronous parallel
way. Scripts may call functions that are treated in an abstract way: their effect on the memory is not considered,
but only their “orchestration”, i.e., the organisation of their calls in time and in place (the site where they are
called). The mapping of sites onto cores allows one to benefit from multicore architectures. Two properties are
required by DSL: reactivity of sites and absence of interferences between scripts run by distinct sites. We also
introduced DSLM, which adds a memory level to DSL and a way to automatically adapt the execution to get
a maximal use of the available cores. This work, presented respectively in [18] and [15], was funded by the
ANR-08-EMER-010 grant PARTOUT.

6.3. Web programming
Participants: Zhengqin Luo, Cyprien Nicolas, Tamara Rezk, Bernard Serpette, Manuel Serrano [correspon-
dant].

6.3.1. A new evaluator for Hop
At the time where Hop programs were basic scripts, the performance of the server-side interpreter was not
a concern. An inefficient interpreter was acceptable. As Hop expanded, Hop programs got larger and more
complex. A more efficient interpreter was necessary. Therefore, this year we have design and implemented a
new interpreter for Hop. It is compact, its whole implementation counting no more than 2.5 KLOC. It is more
than twice faster than the old interpreter and consumes less than a third of its memory. The architecture and
the performance of the new interpreter are described in [14].

6.3.2. Abstraction of Hop with a bicolored lambda-calculus
We have studied an extension of the λ-calculus where each expression has a color. These colors designate
the sites where expressions are evaluated, i.e., in the server or in the client. Colors are similar to the $ and ~

annotations of Hop. With this, we have defined a transformation, using β-expansion, which groups together
expressions with the same color. Correction, confluence and termination of the transformation was verified
using the Coq system and its description was described in paper to appear in 2012 [16].

Following Hop’s syntax, $ mentions that the followed expression is evaluated on the server while the ~

character introduce client code. Inside the client code it is allowed to reintroduce some server expressions
by reusing a $. We can imagine, for example, that the action associated to a client’s button is dependent on
some server’s data (order number, proxies, data bases, ...). This kind of example is depicted with the abstract
syntax tree in the upper left part of figure 1.

From the server’s point of view, the client’s code following a ~ is ignored, but the environment in which this
client code is activated must be preserved for all $ inside this code. Therefore, there exists a relation between
a node ~ and its including $. These relations are depicted by the dashed arrows in the upper right tree of Figure
1. The proposed transformation highlights this relation and is shown in the bottom of the figure where it can
be observed that the transformation groups together expressions of the same color.

6.3.3. HopTeX, an Hop application for authoring documents
HOPTEX is a HOP application for authoring HTML and LaTeX documents. The content of the document is
either expressed in HTML or in a blending of HTML and a dedicated wiki syntax, for the sake of conciseness
and readability. The rendering of the document is expressed by a set of CSS rules. The main originality of
HOPTEX is to consider LaTeX as a new media type for HTML and to express the compilation from HTML
to LaTeX by the means of dedicated style sheet rules. HOPTEX can then be used to generate high quality
documents for both paper printed version and electronic version.

HOPTEX is implemented in HOP, a multi-tier programming language for the Web 2.0. This implementation
extensively relies on two facilities generally only available on the client-side that HOP also supports on the
server-side of the application: DOM manipulations and CSS server-side resolutions.

10 Activity Report INRIA 2011

Figure 1. Example of Hop colored tree

The online version of the paper describing HOPTEX [17] is available at the HOPTEX web page (http://
hop.inria.fr/hop/weblets/homepage?weblet=hoptex). Contrary to the PDF version published in the
proceeding of the workshop, the online version is convenient for both desktop computers and Smartphones.

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry
7.1.1. DGE SmartImmo

The SmartImmo DGE project of the world class ICT cluster SCS (Solutions Communicantes Sécurisées)
started in 2009. It aimed at controlling and reducing the costs associated with building management. The
duration of the project is 2 years, and the funding is 75k Euros. In the context of this project, the INDES team
focuses on making the Hop Web development kit compatible with industrial house automation systems.

7.1.2. Collaboration with Xiring
In 2011, Tamara Rezk collaborated with a french company based on Paris, Xiring. She visited the company
several times in 2011 to carry out this collaboration.

7.1.3. Microsoft Research and Inria Joint Lab
Since 2007, Tamara Rezk is part of the Secure Distributed Computations and their Proofs project of the MSR-
Inria lab in Saclay. She travelled several times in 2011 to visit the lab and continue with several collaborations
concerning the project.

8. Partnerships and Cooperations

8.1. National initiatives
8.1.1. ANR DEFIS ParTout

The PARTOUT project (PARTOUT = PARallélisme parTOUT) is funded by the ANR Défis programme for 4
years, starting January 2009. The partners of this project are the teams INDES (coordinator), CNAM/CÉDRIC,
and LRI, Université d’Orsay.

http://hop.inria.fr/hop/weblets/homepage?weblet=hoptex
http://hop.inria.fr/hop/weblets/homepage?weblet=hoptex

Project-Team INDES 11

8.1.2. ANR DEFIS PWD
The PWD project (for “Programmation du Web diffus”) has been funded by the ANR Défis programme for
4 years, starting November 2009. The partners of this project are the teams INDES (coordinator), LIP6 at
University Pierre et Marie Curie and PPS at University Denis Diderot.

8.1.3. MEALS
The MEALS project (Mobility between Europe and Argentina applying Logics to Systems), IRSES program,
started October 1st (2011), and will end September 30th, 2015. The project goals cover three aspects of formal
methods: specification (of both requirement properties and system behavior), verification, and synthesis. The
Indes members are involved in the task of Security and Information Flow Properties (WP3). The partners in this
task include University of Buenos Aires, University of Cordoba, INRIA (together with Catuscia Palamidessi,
Kostas Chatzikokolakis, Miguel Andrés) and University of Twente.

8.1.4. CIRIC
Indes participated in the proposal of the CIRIC project, a joint lab between Inria and Chile, that will start in
2012. Indes members are involved in the line: Internet Research and Development.

9. Dissemination

9.1. Seminars and conferences
• Pejman Attar attended the conference MSR’11 in Lille, where he presented the work [15]. In

November/December 2011, he participated in the SYNCHRON’11 5 day-workshop in Melun, where
he presented [15] and the future perspectives of his work.

• Gérard Berry gave the following conferences:

– Challenges and Constructive Solutions for Complex Embedded Systems, University of
Bordeaux.

– Constructive Semantics for Discrete and Continuous Systems, University of Barcelona.

– Keynote Talk hallenges and Constructive Solutions for Complex Embedded Systems Em-
bedded Systems Week, Taipei.

– Logic and Digital Circuits: from Practice to Theory Workshop Analysing programs: logic
to the rescue, 14th Congress of Logic, Methodology and Philosophy of Science, Nancy.

– Embedded Systems: Scientific Questions and Progress European Commission study project
on Embedded Systems Design, Bruxelles.

– Lecture « Hardware and software synchronous design and verification with Esterel v7 aux
Microsoft Research Laboratories, Mountain View, CA.

• Gérard Boudol participated in a one-week Seminar in Dagstuhl on Multi-Core Memory Models and
Concurrency Theory, where he gave a talk. He also gave a talk at the GG&JJ workshop in honour of
Gérard Berry and Jean-Jacques Lévy, held in Gerardmer.

• Ilaria Castellani participated in the Behavioural Types workshop, in Lisbon, where she presented a
preliminary version of the work [11].

In May and October, she visited the university of Torino to pursue the collaborative work [11] and
[10].

In September, she attended the conference CONCUR 2010, as well as the associated workshop
EXPRESS’11, where she presented the work [11], and the symposium on Trustworthy Global
Computing (TGC’11), where the work [10] was presented by M. Dezani as an invited talk. The
three events were held jointly in Aachen.

12 Activity Report INRIA 2011

• Zhengqin Luo participated in the Cross-Seminar at INRIA in January, where he presented his work
on semantics and security of web applications. In March, he participated to ETAPS conference, and
presented his work on code injection prevention in TOSCA [13]. He visited Microsoft Research
Cambridge from July to September, where he gave a talk on the work of automated mashup
isolation in July. In October, he defended his thesis on the title of “Semantics and Security of Web
Application” at INRIA [6].

• Cyprien Nicolas participated at the SPLASH conference organized by the ACM, where he gave
three talks. The first talk was at the Scheme workshop annual conference about Manuel Serrano’s
work on HopTeX. The second was at DLS’11 about the new Hop interpreter, paper by Manuel
Serrano and Bernard Serpette. Last talk was presenting Cyprien’s work on HipHop (work done with
Gérard Berry and Manuel Serrano) at the new International Workshop on Programming Language
And Systems Technologies for Internet Clients (PLASTIC 2011). Cyprien also presented HipHop at
Synchron’11 near Fontainebleau.

• José Santos gave a seminar entitled “Coping with dynamically allowed flow policies” concerning
his work on information flow for the SQIG research group at IST Lisbon (in April 2011).

• Tamara Rezk presented her work in the FCC workshop, June 2011, Paris. In June 2011, she gave a
seminar in LSV, where she was invited. In October 2011, she attended CCS’11 where her work was
presented.

• Manuel Serrano gave a talk at the GG&JJ workshop in honour of Gérard Berry and Jean-Jacques
Lévy, held in Gerardmer. He presented the diffuse computing at the Microsoft Software Summit in
April. He presented the Hop programming language at Ircam in May. Manuel Serrano presented Hop
at the meeting Inria, Industrie mobile initiative 2011.

9.2. Animation
• Gérard Berry is a member of the Académie des sciences, of the Académie des technologies, and the

Academia Europaea. He is member of the steering committee of the ANR. He was the chair of the
evaluation committee of University of Santander (12-16 Mars). He was the director of the scientific
board of the computer science department of the École Normale Supérieure (May). He was a member
of the scientific board of IRCAM (December). He was a member of Franco-Taiwanais award (Tapei
2011).

Gérard Berry was the chair of the PhD jury of Stéphanie Delaune. We was a member of the HDR of
Frédéric Boulanger, Supelec and Eric Madeleine, Nice. He was a member of the PhD jury of Marc
Galceran, University of Barcelona.

• Ilaria Castellani was an examiner of the PhD thesis Une étude dénotationnelle de la mobilité by
Joël-Alexis Bialkiewicz, UPMC, Paris (supervisor: Frédéric Peschanski).

• Tamara Rezk is a member of the programme committees of Bytecode, PLAS (co-chair with Sergio
Maffeis), SAFA (co-chair). In December, she reviewed a grant proposal for the Estonian Science
Foundation (ETF). She was a reviewer for TISSEC (journal) and MSCS (journal). In October, she
was part of the jury in the thesis defense of Zhengqin Luo.

• Manuel Serrano is the coordinator of the ANR DEFIS project PWD. He served on the program
committees of the following conferences:

– SCHEME’11, 12th Workshop on Scheme and Functional languages.

– DLS’11, 6th Dynamic Languages Symposium.

– COORDINATION’11, 6th International Federated Conferences on Distributed Computing
Techniques.

Manuel Serrano was a member of the jury of the PhD Thesis of Benjamin Canou (Universities Paris
6 & 7) and Zhenqgin Luo (University of Nice). He was a member of the selection committee of PPS
(Paris 7).

Project-Team INDES 13

9.3. Teaching
• Gérard Berry gave the following conferences:

– Les inversions mentales de l’informatique, Colloque Vivre Ensemble, organisé par le
Conseil Economique, social et environnemental, 2 decembre 2011.

– Les inversions mentales de l’informatique, University of Bordeaux, 24 novembre 2011.

– La révolution numérique dans les sciences, Université populaire de la vallée de l’Eyrieux,
14 octobre 2011.

– Les inversions mentales de l’informatique, club DANAE, session sur les systèmes
d’informations des ressources humaines, 27 septembre 2011.

– Table ronde Préparés à Internet à l’Ecole des Mines de Paris, 22 septembre 2011.

– Les bouleversements du numérique et les inversions mentales associées, Ecole Centrale de
Paris, 16 septembre 2011.

– Systèmes d’informations médicales, CNAM, 23 juin 2011.

– Conférence-débat Attention, les digital natives arrivent, Ecole de Paris du magagement, 7
juin 2011.

– Les inversions mentales de l’informatique, clefs de la révolution numérique au Ministère
de la recherche et de l’enseignement supérieur, 27 may 2011.

– Le monde devint numérique, cycle de trois conférences organisées par Universciences à la
Cité des sciences de La Villette, Paris :

* Les racines scientifiques du monde numérique, 18 mai 2011,

* La révolution numérique dans les sciences, 25 mai 2011,

* A la chasse aux bugs, la maladie du certain, 8 juin.

– Révolution numérique et inversions mentales, Séminaire d’Histoire et de Philosophie des
Sciences, University of Montpellier, 26 april 2011.

– Les inversions mentales de l’informatique, racines de la révolution numérique, Cycle de
conférences Sciences en question du Collège de France à Tunis, organisé par l’Institut
français de coopération, ambassade de France à Tunis, 11 april 2011. Live broadcast to the
Universities of Sfax et Gabès and palais des sciences de Monastir. Recorded for a DVD.

– Informatique et société numérique aux lycées français Gustave Flaubert de Tunis.

– Les inversions mentales du numérique, Nancy-Université, 31 march 2011.

– Les inversions mentales du numérique, les mercredis de l’Académie de Créteil, 9 mars
2011. Video record by the rectorat de Créteil.

– Distinguished Lecture The Mental Inversions that Root the Digital Revolution University
of Birmingham, 16 february 2011.

– Bouleversements numériques et inversions mentales chez l’éditeur de logiciels financiers
Murex, 1er february 2011.

– Les inversions mentales de l’informatique, racines de la révolution numérique, La science
à Sophia, Fondation Sophia-Antipolis, 1 february 2011.

– les aspects méconnus du numérique, Assosciences Midi-Pyrénées, Toulouse, 12 january
2011.

– Pourquoi le monde et les sciences deviennent numériques Jean Cocteau high school of
Miramas, 4 january 2011.

14 Activity Report INRIA 2011

• Ilaria Castellani taught 9h in the course “Programmation web diffuse” of the Paris 6 Master, UPMC,
held together with Manuel Serrano and Tamara Rezk.

From June to July 2011, she supervised the L3 internship “Prime information flows and composi-
tionality of security properties or parallel programs” by Hadrien Batmalle.

• Johan Grande is giving first year algorithmics and programming (Python) tutorial/practical classes
and supervising a third year programming project, both at Polytech’Nice (52 hours altogether).

• Tamara Rezk taught a course on provable cryptography in the master “Cryptographie et Securité” at
University of Nice-Sophia Antipolis. She supevised two Phd students, Zhengqin Luo (who defended
in october and stay as a postdoc at Inria) and José Santos. In February 2011, she taught a course on
“Secure web programming”, Paris 6 Master, UPMC.

• Manuel Serrano taught 9h in the course “Programmation web diffuse” of the Paris 6 Master, UPMC.

10. Bibliography
Major publications by the team in recent years

[1] G. BARTHE, T. REZK, A. RUSSO, A. SABELFELD. Security of Multithreaded Programs by Compilation, in
"ESORICS", 2007, p. 2-18.

[2] G. BOUDOL, I. CASTELLANI. Noninterference for Concurrent Programs and Thread Systems, in "Theoretical
Computer Science", 2002, vol. 281, no 1, p. 109-130.

[3] C. FOURNET, T. REZK. Cryptographically sound implementations for typed information-flow security, in
"Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008", 2008, p. 323-335.

[4] M. SERRANO, E. GALLESIO, F. LOITSCH. HOP, a language for programming the Web 2.0, in "Proceedings
of the First Dynamic Languages Symposium", Portland, Oregon, USA, October 2006.

[5] M. SERRANO. Bee: an Integrated Development Environment for the Scheme Programming Language, in
"Journal of Functional Programming", May 2000, vol. 10, no 2, p. 1–43.

Publications of the year
Doctoral Dissertations and Habilitation Theses

[6] Z. LUO. Semantics and Security of Web Applications, Université Nice Sophia Antipolis, Oct 2011.

Articles in Non Peer-Reviewed Journal

[7] G. BARTHE, P. D’ARGENIO, T. REZK. Secure Information Flow by Self Composition, in "Journal of
Mathematical Structures in Computer Science", 2011, no 21, p. 1207-1252.

[8] G. BARTHE, D. PICHARDIE, T. REZK. A Certified Lightweight Non-Interference Java Bytecode Verifier, in
"Journal of Mathematical Structures in Computer Science", 2012.

International Conferences with Proceedings

[9] G. BERRY, C. NICOLAS, M. SERRANO. HipHop: A Synchronous Reactive Extension for Hop, in "Proceedings
of the PLASTIC’11 workshop", Portland, USA, Oct 2011.

Project-Team INDES 15

[10] V. BONO, S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI. A Reputation System for Multirole
Sessions, in "TGC", Lecture Notes in Computer Science, Springer, 2011.

[11] S. CAPECCHI, I. CASTELLANI, M. DEZANI-CIANCAGLINI. Information Flow Safety in Multiparty Sessions,
in "EXPRESS’11", EPTCS, 2011, vol. 64, p. 16–30, http://arxiv.org/abs/1108.4465v1.

[12] C. FOURNET, J. PLANUL, T. REZK. Information-flow types for homomorphic encryptions, in "ACM
Conference on Computer and Communications Security", 2011.

[13] Z. LUO, T. REZK, M. SERRANO. Automated Code Injection Prevention for Web Applications, in "Proceedings
of the first Conference on Theory of Security and Applications (TOSCA’11)", Saarbrücken, Germany, Lecture
Notes on Computer Science, Apr 2011, vol. 6993, p. 186–204.

[14] B. SERPETTE, M. SERRANO. An Interpreter for Server-Side Hop, in "Proceedings of the DLS’11 sympo-
sium", Portland, USA, Oct 2011.

National Conferences with Proceeding

[15] P. ATTAR, F. BOUSSINOT. Orchestration synchrone et au-delà, in "Actes de la conférence Modélisation des
Systèmes Réactifs (MSR’11)", Hermes, 2011, vol. 45, p. 77-92.

[16] E. CHAILLOUX, B. SERPETTE. Séparation des couleurs dans un lambda-calcul bichrome, in "Actes des
journées JFLA", Carnac, France, 2012.

Conferences without Proceedings

[17] M. SERRANO. HopTeX - Compiling HTML to LaTeX with CSS, in "Online Proceedings of the Scheme’11
workshop", Portland, USA, Oct 2011.

Research Reports

[18] P. ATTAR, F. BOUSSINOT, L. MANDEL, J.-F. SUSINI. Proposal for a Dynamic Script Language, INRIA,
May 2011, http://hal.inria.fr/hal-00590420.

http://arxiv.org/abs/1108.4465v1
http://hal.inria.fr/hal-00590420

