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2. Overall Objectives

2.1. Introduction
The MISTIS team aims to develop statistical methods for dealing with complex problems or data. Our
applications consist mainly of image processing and spatial data problems with some applications in biology
and medicine. Our approach is based on the statement that complexity can be handled by working up from
simple local assumptions in a coherent way, defining a structured model, and that is the key to modelling,
computation, inference and interpretation. The methods we focus on involve mixture models, Markov models,
and, more generally, hidden structure models identified by stochastic algorithms on one hand, and semi and
non-parametric methods on the other hand.
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Hidden structure models are useful for taking into account heterogeneity in data. They concern many areas
of statistical methodology (finite mixture analysis, hidden Markov models, random effect models, etc). Due
to their missing data structure, they induce specific difficulties for both estimating the model parameters and
assessing performance. The team focuses on research regarding both aspects. We design specific algorithms for
estimating the parameters of missing structure models and we propose and study specific criteria for choosing
the most relevant missing structure models in several contexts.

Semi- and non-parametric methods are relevant and useful when no appropriate parametric model exists for
the data under study either because of data complexity, or because information is missing. The focus is on
functions describing curves or surfaces or more generally manifolds rather than real valued parameters. This
can be interesting in image processing for instance where it can be difficult to introduce parametric models
that are general enough (e.g. for contours).

2.2. Highlights
2.2.1. Outstanding paper award at ICMI’11

Our article "Finding Audio-Visual Events in Informal Social Gatherings" [21] received the "Outstanding Paper
Award" (best paper) at the IEEE/ACM 13th International Conference on Multimodal Interaction (ICMI),
Alicante, Spain, November 2011. The paper is co-authored by members of both PERCEPTION and MISTIS,
Xavi Alameda-Pineda, Vasil Khalidov, Radu Horaud and Florence Forbes. The paper addresses the problem of
detecting and localizing audio-visual events (such as people) in a complex/cluttered scenario such as a cocktail
party. The work is carried out within the collaborative European project HUMAVIPS.
BEST PAPER AWARD :
[21] IEEE/ACM International Conference on Multimodal Interfaces. X. ALAMEDA-PINEDA, V. KHALI-
DOV, R. HORAUD, F. FORBES.

3. Scientific Foundations

3.1. Mixture models
Participants: Lamiae Azizi, Christine Bakhous, Lotfi Chaari, Senan James Doyle, Jean-Baptiste Durand,
Florence Forbes, Stéphane Girard, Marie-José Martinez, Darren Wraith.

In a first approach, we consider statistical parametric models, θ being the parameter, possibly multi-
dimensional, usually unknown and to be estimated. We consider cases where the data naturally divides into
observed data y = y1, ..., yn and unobserved or missing data z = z1, ..., zn. The missing data zi represents for
instance the memberships of one of a set of K alternative categories. The distribution of an observed yi can
be written as a finite mixture of distributions,

f(yi | θ) =
K∑
k=1

P (zi = k | θ)f(yi | zi, θ) . (1)

These models are interesting in that they may point out hidden variable responsible for most of the observed
variability and so that the observed variables are conditionally independent. Their estimation is often difficult
due to the missing data. The Expectation-Maximization (EM) algorithm is a general and now standard
approach to maximization of the likelihood in missing data problems. It provides parameter estimation but
also values for missing data.

Mixture models correspond to independent zi’s. They are increasingly used in statistical pattern recognition.
They enable a formal (model-based) approach to (unsupervised) clustering.
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3.2. Markov models
Participants: Laure Amate, Lamiae Azizi, Christine Bakhous, Lotfi Chaari, Senan James Doyle, Jean-Baptiste
Durand, Florence Forbes, Darren Wraith.

Graphical modelling provides a diagrammatic representation of the logical structure of a joint probability
distribution, in the form of a network or graph depicting the local relations among variables. The graph
can have directed or undirected links or edges between the nodes, which represent the individual variables.
Associated with the graph are various Markov properties that specify how the graph encodes conditional
independence assumptions.

It is the conditional independence assumptions that give graphical models their fundamental modular structure,
enabling computation of globally interesting quantities from local specifications. In this way graphical models
form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields. The
specificity of Markovian models is that the dependencies between the nodes are limited to the nearest neighbor
nodes. The neighborhood definition can vary and be adapted to the problem of interest. When parts of the
variables (nodes) are not observed or missing, we refer to these models as Hidden Markov Models (HMM).
Hidden Markov chains or hidden Markov fields correspond to cases where the zi’s in (1) are distributed
according to a Markov chain or a Markov field. They are a natural extension of mixture models. They are
widely used in signal processing (speech recognition, genome sequence analysis) and in image processing
(remote sensing, MRI, etc.). Such models are very flexible in practice and can naturally account for the
phenomena to be studied.

Hidden Markov models are very useful in modelling spatial dependencies but these dependencies and the pos-
sible existence of hidden variables are also responsible for a typically large amount of computation. It follows
that the statistical analysis may not be straightforward. Typical issues are related to the neighborhood structure
to be chosen when not dictated by the context and the possible high dimensionality of the observations. This
also requires a good understanding of the role of each parameter and methods to tune them depending on the
goal in mind. Regarding estimation algorithms, they correspond to an energy minimization problem which
is NP-hard and usually performed through approximation. We focus on a certain type of methods based on
the mean field principle and propose effective algorithms which show good performance in practice and for
which we also study theoretical properties. We also propose some tools for model selection. Eventually we
investigate ways to extend the standard Hidden Markov Field model to increase its modelling power.

3.3. Functional Inference, semi- and non-parametric methods
Participants: El-Hadji Deme, Jonathan El-Methni, Laurent Gardes, Stéphane Girard, Gildas Mazo, Kai Qin,
Huu Giao Nguyen, Farida Enikeeva.

We also consider methods which do not assume a parametric model. The approaches are non-parametric
in the sense that they do not require the assumption of a prior model on the unknown quantities. This
property is important since, for image applications for instance, it is very difficult to introduce sufficiently
general parametric models because of the wide variety of image contents. Projection methods are then a way
to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel methods which rely on
smoothing the data using a set of kernels (usually probability distributions) are other examples. Relationships
exist between these methods and learning techniques using Support Vector Machine (SVM) as this appears
in the context of level-sets estimation (see section 3.3.2). Such non-parametric methods have become the
cornerstone when dealing with functional data [58]. This is the case, for instance, when observations are
curves. They enable us to model the data without a discretization step. More generally, these techniques
are of great use for dimension reduction purposes (section 3.3.3). They enable reduction of the dimension
of the functional or multivariate data without assumptions on the observations distribution. Semi-parametric
methods refer to methods that include both parametric and non-parametric aspects. Examples include the
Sliced Inverse Regression (SIR) method [63] which combines non-parametric regression techniques with
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parametric dimension reduction aspects. This is also the case in extreme value analysis [57], which is based
on the modelling of distribution tails (see section 3.3.1). It differs from traditional statistics which focuses on
the central part of distributions, i.e. on the most probable events. Extreme value theory shows that distribution
tails can be modelled by both a functional part and a real parameter, the extreme value index.

3.3.1. Modelling extremal events
Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of probability
distributions. More specifically, it focuses on the limiting distributions for the minimum or the maximum of
a large collection of random observations from the same arbitrary distribution. Let X1,n ≤ ... ≤ Xn,n denote
n ordered observations from a random variable X representing some quantity of interest. A pn-quantile of
X is the value xpn such that the probability that X is greater than xpn is pn, i.e. P (X > xpn) = pn. When
pn < 1/n, such a quantile is said to be extreme since it is usually greater than the maximum observation Xn,n

(see Figure 1).

Figure 1. The curve represents the survival function x→ P (X > x). The 1/n-quantile is estimated by the
maximum observation so that x̂1/n = Xn,n. As illustrated in the figure, to estimate pn-quantiles with pn < 1/n, it

is necessary to extrapolate beyond the maximum observation.

To estimate such quantiles therefore requires dedicated methods to extrapolate information beyond the
observed values of X . Those methods are based on Extreme value theory. This kind of issue appeared in
hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting from
flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function ` is a slowly
varying function i.e. such that

`(tx)

`x
→ 1 as x→∞ (3)
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for all t > 0. The function `(x) acts as a nuisance parameter which yields a bias in the classical extreme-
value estimators developed so far. Such models are often referred to as heavy-tail models since the probability
of extreme events decreases at a polynomial rate to zero. It may be necessary to refine the model (2,3) by
specifying a precise rate of convergence in (3). To this end, a second order condition is introduced involving
an additional parameter ρ ≤ 0. The larger ρ is, the slower the convergence in (3) and the more difficult the
estimation of extreme quantiles.
More generally, the problems that we address are part of the risk management theory. For instance, in
reliability, the distributions of interest are included in a semi-parametric family whose tails are decreasing
exponentially fast. These so-called Weibull-tail distributions [9] are defined by their survival distribution
function:

P (X > x) = exp {−xθ`(x)}, x > x0 > 0. (4)

Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family. An
important part of our work consists in establishing links between models (2) and (4) in order to propose
new estimation methods. We also consider the case where the observations were recorded with a covariate
information. In this case, the extreme-value index and the pn-quantile are functions of the covariate. We
propose estimators of these functions by using moving window approaches, nearest neighbor methods, or
kernel estimators.

3.3.2. Level sets estimation
Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology, one
is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
population. Points outside this bound are considered as outliers compared to the reference population. Level
sets estimation can be looked at as a conditional quantile estimation problem which benefits from a non-
parametric statistical framework. In particular, boundary estimation, arising in image segmentation as well as
in supervised learning, is interpreted as an extreme level set estimation problem. Level sets estimation can also
be formulated as a linear programming problem. In this context, estimates are sparse since they involve only a
small fraction of the dataset, called the set of support vectors.

3.3.3. Dimension reduction
Our work on high dimensional data requires that we face the curse of dimensionality phenomenon. Indeed,
the modelling of high dimensional data requires complex models and thus the estimation of high number of
parameters compared to the sample size. In this framework, dimension reduction methods aim at replacing the
original variables by a small number of linear combinations with as small as a possible loss of information.
Principal Component Analysis (PCA) is the most widely used method to reduce dimension in data. However,
standard linear PCA can be quite inefficient on image data where even simple image distorsions can lead to
highly non-linear data. Two directions are investigated. First, non-linear PCAs can be proposed, leading to
semi-parametric dimension reduction methods [60]. Another field of investigation is to take into account the
application goal in the dimension reduction step. One of our approaches is therefore to develop new Gaussian
models of high dimensional data for parametric inference [53]. Such models can then be used in a Mixtures or
Markov framework for classification purposes. Another approach consists in combining dimension reduction,
regularization techniques, and regression techniques to improve the Sliced Inverse Regression method [63].

4. Software

4.1. The ECMPR software
Participant: Florence Forbes.

Joint work with: Radu Horaud and Manuel Iguel.
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The ECMPR (Expectation Conditional Maximization for Point Registration) package implements [56] [17].
It registers two (2D or 3D) point clouds using an algorithm based on maximum likelihood with hidden
variables. The method can register both rigid and articulated shapes. It estimates both the rigid or the kinematic
transformation between the two shapes as well as the parameters (covariances) associated with the underlying
Gaussian mixture model. It has been registered in APP in 2010 under the GPL license.

4.2. The LOCUS and P-LOCUS software
Participants: Florence Forbes, Senan James Doyle.

Joint work with: Michel Dojat.

From brain MR images, neuroradiologists are able to delineate tissues such as grey matter and structures
such as Thalamus and damaged regions. This delineation is a common task for an expert but unsupervised
segmentation is difficult due to a number of artefacts. The LOCUS software and its recent extension P-LOCUS
automatically perform this segmentation for healthy and pathological brains An image is divided into cubes on
each of which a statistical model is applied. This provides a number of local treatments that are then integrated
to ensure consistency at a global level, resulting in low sensitivity to artifacts. The statistical model is based on
a Markovian approach that enables to capture the relations between tissues and structures, to integrate a priori
anatomical knowledge and to handle local estimations and spatial correlations.

The LOCUS software has been developed in the context of a collaboration between Mistis, a computer science
team (Magma, LIG) and a Neuroscience methodological team (the Neuroimaging team from Grenoble Institut
of Neurosciences, INSERM). This collaboration resulted over the period 2006-2008 into the PhD thesis of
B. Scherrer (advised by C. Garbay and M. Dojat) and in a number of publications. In particular, B. Scherrer
received a "Young Investigator Award" at the 2008 MICCAI conference. Its extension for lesion detection is
realized by S. Doyle with financial support from Gravit for possible industrial transfer.

The originality of this work comes from the successful combination of the teams respective strengths i.e.
expertise in distributed computing, in neuroimaging data processing and in statistical methods.

4.3. The POPEYE software
Participant: Florence Forbes.

Joint work with: Vasil Khalidov, Radu Horaud, Miles Hansard, Ramya Narasimha, Elise Arnaud.

POPEYE contains software modules and libraries jointly developed by three partners within the POP STREP
project: INRIA, University of Sheffield, and University of Coimbra. It includes kinematic and dynamic control
of the robot head, stereo calibration, camera-microphone calibration, auditory and image processing, stereo
matching, binaural localization, audio-visual speaker localization. Currently, this software package is not
distributed outside POP.

4.4. The HDDA and HDDC toolboxes
Participant: Stéphane Girard.

Joint work with: Charles Bouveyron (Université Paris 1) and Gilles Celeux (Select, INRIA). The High-
Dimensional Discriminant Analysis (HDDA) and the High-Dimensional Data Clustering (HDDC) toolboxes
contain respectively efficient supervised and unsupervised classifiers for high-dimensional data. These classi-
fiers are based on Gaussian models adapted for high-dimensional data [53]. The HDDA and HDDC toolboxes
are available for Matlab and are included into the software MixMod [52]. Recently, a R package has been
developped and integrated in The Comprehensive R Archive Network (CRAN). It can be downloaded at the
following URL: http://cran.r-project.org/web/packages/HDclassif/.

4.5. The Extremes freeware
Participants: Laurent Gardes, Stéphane Girard.

http://cran.r-project.org/web/packages/HDclassif/
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Joint work with: Diebolt, J. (CNRS) and Garrido, M. (INRA Clermont-Ferrand-Theix).

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme quantile
estimation procedures and model selection methods. This software results from a collaboration with EDF
R&D. It is also a consequence of the PhD thesis work of Myriam Garrido [54]. The software is written in
C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments. It can
be downloaded at the following URL: http://extremes.gforge.inria.fr/.

4.6. The SpaCEM3 program
Participants: Lamiae Azizi, Senan James Doyle, Florence Forbes.

SpaCEM3 (Spatial Clustering with EM and Markov Models) is a software that provides a wide range of
supervised or unsupervised clustering algorithms. The main originality of the proposed algorithms is that
clustered objects do not need to be assumed independent and can be associated with very high-dimensional
measurements. Typical examples include image segmentation where the objects are the pixels on a regular grid
and depend on neighbouring pixels on this grid. More generally, the software provides algorithms to cluster
multimodal data with an underlying dependence structure accounting for some spatial localisation or some
kind of interaction that can be encoded in a graph.

This software, developed by present and past members of the team, is the result of several research develop-
ments on the subject. The current version 2.09 of the software is CeCILLB licensed.
Main features. The approach is based on the EM algorithm for clustering and on Markov Random Fields
(MRF) to account for dependencies. In addition to standard clustering tools based on independent Gaussian
mixture models, SpaCEM3 features include:

• The unsupervised clustering of dependent objects. Their dependencies are encoded via a graph not
necessarily regular and data sets are modelled via Markov random fields and mixture models (eg.
MRF and Hidden MRF). Available Markov models include extensions of the Potts model with the
possibility to define more general interaction models.

• The supervised clustering of dependent objects when standard Hidden MRF (HMRF) assumptions
do not hold (ie. in the case of non-correlated and non-unimodal noise models). The learning and test
steps are based on recently introduced Triplet Markov models.

• Selection model criteria (BIC, ICL and their mean-field approximations) that select the "best" HMRF
according to the data.

• The possibility of producing simulated data from:

– general pairwise MRF with singleton and pair potentials (typically Potts models and
extensions)

– standard HMRF, ie. with independent noise model

– general Triplet Markov models with interaction up to order 2

• A specific setting to account for high-dimensional observations.

• An integrated framework to deal with missing observations, under Missing At Random (MAR)
hypothesis, with prior imputation (KNN, mean, etc), online imputation (as a step in the algorithm),
or without imputation.

The software is available at http://spacem3.gforge.inria.fr. A user manual in English is available on the web
site above together with example data sets. The INRA Toulouse unit is more recently participating to this
project for promotion among the bioinformatics community [20].

4.7. The FASTRUCT software
Participant: Florence Forbes.

http://extremes.gforge.inria.fr/
http://spacem3.gforge.inria.fr
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Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former Post-doctoral fellow in Mistis).

The FASTRUCT program is dedicated to the modelling and inference of population structure from genetic
data. Bayesian model-based clustering programs have gained increased popularity in studies of population
structure since the publication of the software STRUCTURE [65]. These programs are generally acknowl-
edged as performing well, but their running-time may be prohibitive. FASTRUCT is a non-Bayesian imple-
mentation of the classical model with no-admixture uncorrelated allele frequencies. This new program relies
on the Expectation-Maximization principle, and produces assignment rivaling other model-based clustering
programs. In addition, it can be several-fold faster than Bayesian implementations. The software consists of
a command-line engine, which is suitable for batch-analysis of data, and a MS Windows graphical interface,
which is convenient for exploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at http://mistis.inrialpes.fr/
realisations.html.

The functionalities are further described in the related publication:

• Molecular Ecology Notes 2006 [55].

4.8. The TESS software
Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former post-doctoral fellow in Mistis).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial population genetics.
Is it particularly useful for seeking genetic barriers or genetic discontinuities in continuous populations. The
method is based on a hierarchical mixture model where the prior distribution on cluster labels is defined as a
Hidden Markov Random Field [59]. Given individual geographical locations, the program seeks population
structure from multilocus genotypes without assuming predefined populations. TESS takes input data files
in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE). It returns graphical
displays of cluster membership probabilities and geographical cluster assignments through its Graphical User
Interface.

The functionalities and the comparison with three other Bayesian Clustering programs are specified in the
following publication:

• Molecular Ecology Notes 2007

5. New Results

5.1. Mixture models
5.1.1. Taking into account the curse of dimensionality

Participant: Stéphane Girard.

Joint work with: Bouveyron, C. (Université Paris 1), Celeux, G. (Select, INRIA).

In the PhD work of Charles Bouveyron (co-advised by Cordelia Schmid from the INRIA LEAR team) [53],
we propose new Gaussian models of high dimensional data for classification purposes. We assume that the
data live in several groups located in subspaces of lower dimensions. Two different strategies arise:

• the introduction in the model of a dimension reduction constraint for each group

• the use of parsimonious models obtained by imposing to different groups to share the same values
of some parameters

http://mistis.inrialpes.fr/realisations.html
http://mistis.inrialpes.fr/realisations.html
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This modelling yields a new supervised classification method called High Dimensional Discriminant Analysis
(HDDA) [4]. Some versions of this method have been tested on the supervised classification of objects in
images. This approach has been adapted to the unsupervised classification framework, and the related method
is named High Dimensional Data Clustering (HDDC) [3].

In collaboration with Gilles Celeux and Charles Bouveyron, we have designed an automatic selection of the
discrete parameters of the model [12]. Also, the description of the R package is submitted for publication [44].

5.1.2. A new family of multivariate heavy-tailed distributions with variable marginal amounts
of tailweight: Application to robust clustering
Participants: Florence Forbes, Darren Wraith.

We proposed a family of multivariate heavy-tailed distributions that allow variable marginal amounts of
tailweight. The originality comes from the eigenvalue decomposition of the covariance matrix in the traditional
Gaussian scale mixture representation. By contrast to most existing approaches, the derived distributions can
account for a variety of shapes and have a simple tractable form with a closed-form probability density
function whatever the dimension. We examined a number of properties of these distributions and illustrate
them in the particular case of Pearson type VII and t tails. For these latter cases, we provided maximum
likelihood estimation of the parameters and illustrated their modelling flexibility on clustering examples for
several simulated and real data sets.

5.2. Markov models
5.2.1. Variational approach for the joint estimation-detection of Brain activity from functional

MRI data
Participants: Florence Forbes, Lotfi Chaari, Thomas Vincent.

Joint work with: Michel Dojat (Grenoble Institute of Neuroscience) and Philippe Ciuciu from Neurospin,
CEA in Saclay.

In standard fMRI within-subject analysis, two steps are generally performed separately: detection and
estimation. Because these two steps are inherently linked, we proposed in this work a joint detection-estimation
procedure. We adopt the so-called region-based Joint Detection Estimation (JDE) framework that deals with
spatial dependencies between voxels belonging to the same functionally homogeneous parcel in the mask of
the 3D brain. After building a spatially adaptive General Linear Model, prior information is introduced and a
hierarchical Bayesian model is established. In contrast to previous works that use Markov Chain Monte Carlo
(MCMC) techniques to approximate the resulting intractable posterior distribution, we recast the JDE into a
missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference.
It follows a new algorithm that exhibits interesting properties compared to the previously used MCMC-based
approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and
provides computational gain while maintaining good performance. Corresponding papers [27], [38], [26].

5.2.2. Adaptive experimental condition selection in event-related fMRI
Participants: Florence Forbes, Christine Bakhous, Lotfi Chaari, Thomas Vincent, Thomas Vincent.

Joint work with: Michel Dojat (Grenoble Institute of Neuroscience) and Philippe Ciuciu from Neurospin,
CEA in Saclay..

Standard Bayesian analysis of event-related functional Magnetic Resonance Imaging (fMRI) data usually
assumes that all delivered stimuli possibly generate a BOLD response everywhere in the brain although
activation is likely to be induced by only some of them in specific brain areas. Criteria are not always available
to select the relevant conditions or stimulus types (e.g. visual, auditory, etc.) prior to estimation and the
unnecessary inclusion of the corresponding events may degrade the results. To face this issue, we propose
within a Joint Detection Estimation (JDE) framework, a procedure that automatically selects the conditions
according to the brain activity they elicit. It follows an improved activation detection that we illustrate on real
data.
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5.2.3. Finding Audio-Visual Events in Informal Social Gatherings
Participant: Florence Forbes.

Joint work with: Xavier Alameida-Pineda and Radu Horaud from the INRIA Perception team.

In this work [21] we addressed the problem of detecting and localizing objects that can be both seen and heard,
e.g., people. This may be solved within the framework of data clustering. We proposed a new multimodal
clustering algorithm based on a Gaussian mixture model, where one of the modalities (visual data) is used to
supervise the clustering process. This was made possible by mapping both modalities into the same metric
space. To this end, we fully exploited the geometric and physical properties of an audio-visual sensor based
on binocular vision and binaural hearing. We proposed an EM algorithm that is theoretically well justified,
intuitive, and extremely efficient from a computational point of view. This efficiency makes the method
implementable on advanced platforms such as humanoid robots. We described in detail tests and experiments
performed with publicly available data sets that yield very interesting results.

5.2.4. Spatial risk mapping for rare disease with hidden Markov fields and variational EM
Participants: Lamiae Azizi, Florence Forbes, Senan James Doyle.

Joint work with: David Abrial and Myriam Garrido from INRA Clermont-Ferrand-Theix.

We recast the disease mapping issue of automatically classifying geographical units into risk classes as a
clustering task using a discrete hidden Markov model and Poisson class-dependent distributions. The designed
hidden Markov prior is non standard and consists of a variation of the Potts model where the interaction
parameter can depend on the risk classes. The model parameters are estimated using an EM algorithm and
the mean field approximation. This provides a way to face the intractability of the standard EM in this spatial
context, with a computationally efficient alternative to more intensive simulation based Monte Carlo Markov
Chain (MCMC) procedures. We then focus on the issue of dealing with very low risk values and small numbers
of observed cases and population sizes. We address the problem of finding good initial parameter values in
this context and develop a new initialization strategy appropriate for spatial Poisson mixtures in the case of
not so well separated classes as encountered in animal disease risk analysis. Using both simulated and real
data, we compare this strategy to other standard strategies and show that it performs well in a lot of situations.
Corresponding papers and communications [43], [24], [37], [25].

5.2.5. Probabilistic model definition for physiological state monitoring
Participants: Laure Amate, Florence Forbes.

Joint work with: Catherine Garbay, Julie Fontecave-Jallon and Benoit Vettier from LIG.

Assessing the global situation of a person from physiological data is a well-known difficult problem. In
previous work, we proposed a system that does not produce a diagnosis but instead follows a set of hypotheses
and decides of an alarming situation with this information. In this work [22], we focus on data processing
part of the system taking into account the complexity and the ambiguity of the data. We propose a statistical
approach with a global model based on Hidden Markov Model and we present data models that rely on
classical physiological parameters and expert’s knowledge. We then learn a model that depends on the person
and its environment, and we define and compute confidence values to assess the plausibility of hypotheses.

5.2.6. Solder Paste Inspection
Participants: Florence Forbes, Senan James Doyle, Darren Wraith.

This is joint work with VI-Technology.

The majority of defects in PCB manufacture are attributed to the stencil printing process. Stencil printing is
the process where solder paste bricks are deposited on the PCB pads. Solder paste deposition is required to be
accurate and repeatable, however complex physical process make this problematic. Components are placed,
and their leads are pushed into the solder paste. The solder paste is then melted using, for example, reflow
soldering.
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Inspection can be performed before the solder paste is melted, and it is more economical to identify defects at
this stage.
The evaluation of solder paste joint quality involves the analysis of a number of indicative measurements.
From these measurements, potential faults are identified and inspected manually. The general challenge is
to reduce of the number of potential faults by better analyzing the indicative factor measurements. That is, to
improve the first pass yield (FPY) which is the percentage of total solder deposits that are good, and that do not
require manual inspection. However, the ability to catch defects must be retained. Another aspect to consider
is the temporal nature of the process; The mechanism for identifying faults needs to be retrained after a period
of time, and so a solution must be capable of using a small training dataset.
It is important to understand and identify the factors that influence quality. The industry standard factor for
measuring quality is solder volume. The precise volume is not directly observable, and so is estimated. Often,
height is used as a proxy measure for solder bricks of equal area and shape. There are many other contributing
factors, however not all of these can be measured directly, making accurate quality determination difficult.

Stencil printing process control attempts to adjust machine parameters according to informative factors. Online
printing process control faces a similar challenge of using a limited number of measurements to inform on the
quality of solder paste deposition.
We used statistical techniques to analyze such measurements. The exact nature of the work is confidential.

5.2.7. PCB defect detection
Participants: Florence Forbes, Kai Qin, Huu Giao Nguyen.

This is joint work with VI-Technology.

The objective is to detect defective components in PC Boards from image data. The exact nature of the work
is confidential.

5.2.8. Statistical characterization of tree structures based on Markov Tree Models and
multitype branching processes, with applications to tree growth modeling.
Participant: Jean-Baptiste Durand.

Joint work with: Pierre Fernique (Montpellier 2 University and CIRAD) and Yann Guédon (CIRAD), INRIA
Virtual Plants.

The quantity and quality of yields in fruit trees is closely related to processes of growth and branching, which
determine ultimately the regularity of flowering and the position of flowers. Flowering and fruiting patterns
are explained by statistical dependence between the nature of a parent shoot (e.g flowering or not) and the
quantity and natures of its children shoots – with potential effect of covariates. Thus, better characterization of
patterns and dependencies is expected to lead to strategies to control the demographic properties of the shoots
(through varietal selection or crop management policies), and thus to bring substantial improvements in the
quantity and quality of yields.

Since the connections between shoots can be represented by mathematical trees, statistical models based on
multitype branching processes and Markov trees appear as a natural tool to model the dependencies of interest.
Formally, the properties of a vertex are summed up using the notion of vertex state. In such models, the num-
bers of children in each state given the parent state are modelled through discrete multivariate distributions.
Model selection procedures are necessary to specify parsimonious distributions. We developed an approach
based on probabilistic graphical models to identify and exploit properties of conditional independence be-
tween numbers of children in different states, so as to simplify the specification of their joint distribution. The
graph building stage was based on a Poissonian Generalized Linear Model for the contingency tables of the
counts of joint children state configurations. Then, parametric families of distributions were implemented and
compared statistically to provide probabilistic models compatible with the estimated independence graph.
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This work was carried out in the context of Pierre Fernique’s Master 2 internship (Montpellier 2 University and
AgroParisTech). It was applied to model dependencies between short or long, vegetative or flowering shoots
in apple trees. The results highlighted contrasted patterns related to the parent shoot state, with interpretation
in terms of alternation of flowering (see paragraph 5.2.9. This work will be continued during Pierre Fernique’s
PhD thesis, with extensions to other fruit tree species and other strategies to build probabilistic graphical
models and parametric discrete multivariate distributions including covariates and mixed effects.

5.2.9. Statistical characterization of the alternation of flowering in fruit tree species
Participant: Jean-Baptiste Durand.

Joint work with: Jean Peyhardi and Yann Guédon (Mixed Research Unit DAP, Virtual Plants team), Evelyne
Costes and Baptiste Guitton (DAP, AFEF team), Catherine Trottier (Montpellier University)

The aim of this work was to characterize genetic determinisms of the alternation of flowering in apple tree
progenies. Data were collected at two scales: at whole tree scale (with annual time step) and a local scale
(annual shoot or AS, which is the portions of stem that were grown during the same year). Two replications of
each genotype were available.

To model alternation of flowering at AS scale, a second-order Markov tree model was built. The ASs were of
two types: flowering or vegetative. Generalized Linear Mixed Models (GLMMs) were used to model the effet
of year, replications and genotypes (with their interactions with year or memories of the Markov model) on the
transition probabilities. This work was the continuation of the Master 2 internship of Jean Peyhardi (Bordeaux
2 University) and was carried out in the context of the PhD thesis of Baptiste Guitton.

This PhD thesis also comprised the study of alternation in flowering at individual scale, with annual time
step. To relate alternation of flowering at AS and individual scales, indices were proposed to characterize
alternation at individual scale. The difficulty is related to early detection of alternating genotypes, in a context
where alternation is often concealed by a substantial increase of the number of flowers over consecutive years.
To separate correctly the increase of the number of flowers due to aging of young trees from alternation in
flowering, our model relied on a parametric hypothesis on the base effect random slopes specific to genotype
and replications), which translated into mixed effect modelling. Different indices of alternation were then
computed on the residuals. Clusters of individuals with contrasted patterns of bearing habits were identified.
Our models highlighted significant correlations between indices of alternation at AS and individual scales. The
roles of local alternation and asynchronism in regularity of flowering were assessed using an entropy-based
criterion, which characterized asynchronism.

As a perspective of this work, patterns in the production of children ASs (numbers of flowering and vegetative
children) depending on the type of the parent AS must be analyzed using branching processes and different
types of Markov trees, in the context of Pierre Fernique’s PhD Thesis (see paragraph 5.2.8).

5.3. Semi and non-parametric methods
5.3.1. Harmony Search with Differential Mutation Based Pitch Adjustment

Participants: Kai Qin, Florence Forbes.

Harmony search (HS), as an emerging metaheuristic technique mimicking the improvisation behavior of mu-
sicians, has demonstrated strong efficacy of solving various numerical and real-world optimization problems.
This work [36] presents a harmony search with differential mutation based pitch adjustment (HSDM) al-
gorithm, which improves the original pitch adjustment operator of HS using the self-referential differential
mutation scheme that features differential evolution - another celebrated metaheuristic algorithm. In HSDM,
the differential mutation based pitch adjustment can dynamically adapt the properties of the landscapes being
explored at different searching stages. Meanwhile, the pitch adjustment operator’s execution probability is
allowed to vary randomly between 0 and 1, which can maintain both wild and fine exploitation throughout the
searching course. HSDM has been evaluated and compared to the original HS and two recent HS variants us-
ing 16 numerical test problems of various searching landscape complexities at 10 and 30 dimensions. HSDM
consistently demonstrates superiority on most of test problems.
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5.3.2. Dynamic Regional Harmony Search Algorithm with Opposition and Local Learning
Participants: Kai Qin, Florence Forbes.

To deal with the deficiencies associated with the original Harmony Search (HS) such as premature convergence
and stagnation, a dynamic regional harmony search (DRHS) algorithm incorporating opposition and local
learning is proposed [35]. DRHS utilizes the opposition-based initialization, and performs independent HS
with respect to multiple groups that are randomly recreated on a fixed period basis. Besides the traditional
harmony improvisation operators, an opposition based harmony creation scheme is introduced to update
the group memory. Any prematurely converged group will be restarted with the doubled size to further
augment its exploration capability. Local search is periodically applied to exploit promising regions around
top-ranked candidate solutions. The performance of DRHS has been evaluated and compared to HS using 12
numerical test problems at 10D and 30D, which are taken from the CEC2005 benchmark. DRHS consistently
demonstrate superiority to HR over all the test problems at both 10D and 30D.

5.3.3. Evolutionary algorithms with CUDA
Participants: Kai Qin, Federico Raimondo.

Evolutionary algorithms (EAs), inspired by natural evolution processes, have demonstrated strong efficacy
for solving various real-world optimization problems, although their practical use may be constrained by their
computation efficiency. In fact, EAs are inherently parallelizable due to the operations at the individual element
level and population-wise evolution. However, most of the existing EAs are designed and implemented in
the sequential manner mainly because hardware platforms supporting parallel computing tasks and software
platforms facilitating parallel programming tasks are not prevalently available.

In recent year, the graphics processing unit (GPU) has emerged as a powerful general-purpose computation
device that can favorably support massively data parallel computing tasks carried out on its hundreds of cores.
The compute unified device architecture (CUDA) technology invented by NVIDIA provides an intuitive way
to express parallelism and to implement parallel programs using some popular programming languages, such
as C, C++ and FORTRAN. Accordingly, we can simply write a program for one data elements, which gets
automatically distributed across hundreds of cores for thousands of threads to execute. Although the CUDA
programming model is easy-to-use, the computation efficiency of CUDA parallel programs crucially depends
on careful consideration of hardware characteristics of GPUs during algorithmic design and implementation,
especially about memory utilization and thread management (to maximize the occupancy of streaming multi-
processors). Without proper considerations, the parallel programs may even run slower than their sequential
counterparts.

The objectives of our project are to: 1. Redesign state-of-the-art EAs using CUDA under thorough consid-
eration of GPU’s hardware characteristics. 2. Develop a generic hardware-self-configurable EA framework,
which allows automatically configuring available hardware computing resources to maximize the computation
efficiency of the EA.

Currently, we had developed a memory-efficient parallel differential evolution algorithm, which features
maximally utilizing the available shared memory in GPU while maximally reducing the use of the global
memory in GPU considering its very limited access bandwidth. Compared with two recent parallel differential
evolution algorithms implemented with CUDA in 2010 and 2011, our algorithm demonstrated significantly
faster computation speed. We had also investigated the parallel implementation of test problems and provided
a guideline on how to implement any user-defined test problem and combine it with an existing parallel EA
framework. To the best of our knowledge, this is the first research work on this topic.

5.3.4. Modelling extremal events
Participants: Stéphane Girard, Laurent Gardes, Jonathan El-methni, El-Hadji Deme.

Joint work with: Guillou, A. (Univ. Strasbourg).
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We introduced a new model of tail distributions depending on two parameters τ ∈ [0, 1] and θ > 0 [16]. This
model includes very different distribution tail behaviors from Fréchet and Gumbel maximum domains of
attraction. In the particular cases of Pareto type tails (τ = 1) or Weibull tails (τ = 0), our estimators coincide
with classical ones proposed in the literature, thus permitting us to retrieve their asymptotic normality in an
unified way. The first year of the PhD work of Jonathan El-methni has been dedicated to the definition of
an estimator of the parameter τ . This permits the construction of new estimators of extreme quantiles. The
results are submitted for publication [48]. Our future work will consist in proposing a test procedure in order
to discriminate between Pareto and Weibull tails.
We are also working on the estimation of the second order parameter ρ (see paragraph 3.3.1). We proposed
a new family of estimators encompassing the existing ones (see for instance [62], [61]). This work is in
collaboration with El-Hadji Deme, a PhD student from the Université de Saint-Louis (Sénégal). El-Hadji
Deme obtained a one-year mobility grant to work within the Mistis team on extreme-value statistics. The
results are submitted for publication [46].

5.3.5. Conditional extremal events
Participants: Stéphane Girard, Laurent Gardes, Gildas Mazo, Jonathan El-methni.

Joint work with: J. Carreau, A. Lekina, Amblard, C. (TimB in TIMC laboratory, Univ. Grenoble I) and
Daouia, A. (Univ. Toulouse I)

The goal of the PhD thesis of Alexandre Lekina is to contribute to the development of theoretical and
algorithmic models to tackle conditional extreme value analysis, ie the situation where some covariate
information X is recorded simultaneously with a quantity of interest Y . In such a case, the tail heaviness
of Y depends on X , and thus the tail index as well as the extreme quantiles are also functions of the covariate.
We combine nonparametric smoothing techniques [58] with extreme-value methods in order to obtain efficient
estimators of the conditional tail index and conditional extreme quantiles. When the covariate is random
(random design) and the tail of the distribution is heavy, we focus on kernel methods [14]. We extension
to all kind of tails in investigated in [45].

Conditional extremes are studied in climatology where one is interested in how climate change over years
might affect extreme temperatures or rainfalls. In this case, the covariate is univariate (time). Bivariate
examples include the study of extreme rainfalls as a function of the geographical location. The application part
of the study is joint work with the LTHE (Laboratoire d’étude des Transferts en Hydrologie et Environnement)
located in Grenoble.

More future work will include the study of multivariate and spatial extreme values. With this aim, a research
on some particular copulas [1] has been initiated with Cécile Amblard, since they are the key tool for building
multivariate distributions [64]. The PhD theses of Jonathan El-methni and Gildas Mazo should address this
issue too.

5.3.6. Level sets estimation
Participants: Stéphane Girard, Laurent Gardes.

Joint work with: Guillou, A. (Univ. Strasbourg), Stupfler, G. (Univ. Strasbourg), P. Jacob (Univ. Montpellier
II) and Daouia, A. (Univ. Toulouse I).

The boundary bounding the set of points is viewed as the larger level set of the points distribution. This is
then an extreme quantile curve estimation problem. We proposed estimators based on projection as well as on
kernel regression methods applied on the extreme values set, for particular set of points [10].
In collaboration with A. Daouia, we investigate the application of such methods in econometrics [41]: A new
characterization of partial boundaries of a free disposal multivariate support is introduced by making use of
large quantiles of a simple transformation of the underlying multivariate distribution. Pointwise empirical
and smoothed estimators of the full and partial support curves are built as extreme sample and smoothed
quantiles. The extreme-value theory holds then automatically for the empirical frontiers and we show that
some fundamental properties of extreme order statistics carry over to Nadaraya’s estimates of upper quantile-
based frontiers.
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In the PhD thesis of Gilles Stupfler (co-directed by Armelle Guillou and Stéphane Girard), new estimators
of the boundary are introduced. The regression is performed on the whole set of points, the selection of the
“highest” points being automatically performed by the introduction of high order moments. The results are
submitted for publication [51].

5.3.7. Quantifying uncertainties on extreme rainfall estimations
Participants: Laurent Gardes, Stéphane Girard.

Joint work with: Carreau, J. (Hydrosciences Montpellier) and Molinié, G. from Laboratoire d’Etude des
Transferts en Hydrologie et Environnement (LTHE), France.

Extreme rainfalls are generally associated with two different precipitation regimes. Extreme cumulated rainfall
over 24 hours results from stratiform clouds on which the relief forcing is of primary importance. Extreme
rainfall rates are defined as rainfall rates with low probability of occurrence, typically with higher mean return-
levels than the maximum observed level. For example Figure 2 presents the return levels for the Cévennes-
Vivarais region obtained in [14]. It is then of primary importance to study the sensitivity of the extreme rainfall
estimation to the estimation method considered.

Figure 2. Map of the mean return-levels (in mm) for a period of 10 years.

The obtained results are published in [13].

5.3.8. Retrieval of Mars surface physical properties from OMEGA hyperspectral images.
Participant: Stéphane Girard.

Joint work with: Douté, S. from Laboratoire de Planétologie de Grenoble, France and Saracco, J (University
Bordeaux).

Visible and near infrared imaging spectroscopy is one of the key techniques to detect, to map and to
characterize mineral and volatile (eg. water-ice) species existing at the surface of planets. Indeed the chemical
composition, granularity, texture, physical state, etc. of the materials determine the existence and morphology
of the absorption bands. The resulting spectra contain therefore very useful information. Current imaging
spectrometers provide data organized as three dimensional hyperspectral images: two spatial dimensions and
one spectral dimension. Our goal is to estimate the functional relationship F between some observed spectra
and some physical parameters. To this end, a database of synthetic spectra is generated by a physical radiative
transfer model and used to estimate F . The high dimension of spectra is reduced by Gaussian regularized
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sliced inverse regression (GRSIR) to overcome the curse of dimensionality and consequently the sensitivity
of the inversion to noise (ill-conditioned problems). We have also defined an adaptive version of the method
which is able to deal with block-wise evolving data streams [28].

5.3.9. Statistical modelling development for low power processor.
Participant: Stéphane Girard.

Joint work with: A. Lombardot and S. Joshi (ST Crolles).

With scaling down technologies to the nanometer regime, the static power dissipation in semiconductor
devices is becoming more and more important. Techniques to accurately estimate System On Chip static
power dissipation are becoming essential. Traditionally, designers use a standard corner based approach to
optimize and check their devices. However, this approach can drastically underestimate or over-estimate
process variations impact and leads to important errors.

The need for an effective modeling of process variation for static power analysis has led to the introduction of
Statistical static power analysis. Some publication state that it is possible to save up to 50% static power using
statistical approach. However, most of the statistical approaches are based on Monte Carlo analysis, and such
methods are not suited to large devices. It is thus necessary to develop solutions for large devices integrated
in an industrial design flow. Our objective to model the total consumption of the circuit from the probability
distribution of consumption of each individual gate. Our preliminary results are published in [18].

6. Partnerships and Cooperations

6.1. National Actions
MISTIS is a partner in a three-year MINALOGIC project (I-VP for Intuitive Vision Programming) supported by
the French Government. The project is led by VI Technology (http://www.vitechnology.com), a world leader
in Automated Optical Inspection (AOI) of a broad range of electronic components. The other partners involved
are the CMM (Centre de Morphologie Mathematiques) in Fontainebleau, and Pige Electronique in Bourg-Les-
Valence. The NOESIS company, which is a leader in the field of image processing and analysis software, in
Crolles, is also involved to provide help with software development. The overall goal is to exploit statistical
and image processing techniques more intensively to improve defect detection capability and programming
time based on existing AOI principles so as to eventually reach a reliable defect detection with virtually zero
programming skills and efforts.

MISTIS is also involved in another three-year MINALOGIC project, called OPTYMIST-II. The goal is to
address variability issues when designing electronic components.

MISTIS got, for the period 2008-2011, Ministry grants for two projects supported by the French National
Research Agency (ANR):

• MDCO (Masse de Données et Connaissances) program. This three-year project is called "Visuali-
sation et analyse d’images hyperspectrales multidimensionnelles en Astrophysique" (VAHINE). It
aims at developing physical as well as mathematical models, algorithms, and software able to deal
efficiently with hyperspectral multi-angle data but also with any other kind of large hyperspectral
dataset (astronomical or experimental). It involves the Observatoire de la Côte d’Azur (Nice), and
two universities (Strasbourg I and Grenoble I). For more information please visit the associated web
site: http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php.

• VMC (Vulnérabilité : Milieux et climats) program. This three-year project is called "Forecast
and projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation
on environment" (MEDUP) and deals with the quantification and identification of sources of
uncertainties associated with forecasting and climate projection for Mediterranean high-impact
weather events. The propagation of these uncertainties on the environment is also considered, as

http://www.vitechnology.com
http://mistis.inrialpes.fr/vahine/dokuwiki/doku.php
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well as how they may combine with the intrinsic uncertainties of the vulnerability and risk analysis
methods. It involves Météo-France and three universities (Paris VI, Grenoble I and Toulouse III).
(http://www.cnrm.meteo.fr/medup/).

Florence Forbes is coordinating the 2-year INRIA ARC project AINSI (htmladdnormallinkhttp://thalie.ujf-
grenoble.fr/ainsi). AINSI stands for "Modeles statistiques pour l’Assimilation d’Informations de Neuroim-
agerie fonctionnelle et de perfuSIon cerebrale". The goal is to propose an innovative statistically well-based
solution to the joint determination of neural activity and brain vascularization by combining BOLD constrast
images obtained in functional MRI and quantitative parametric images (Arterial Spin Labelling: ASL). The
partners involved are Visages team from INRIA in Rennes and Parietal in Saclay, the INSERM Unit U594
(Grenoble Institute of Neuroscience) and the LNAO laboratory from CEA NeuroSpin.

6.2. Regional Initiatives
MISTIS participates in the weekly statistical seminar of Grenoble. F. Forbes is one of the organizers and several
lecturers have been invited in this context.

6.3. European Initiatives
6.3.1. FP7 Projet
6.3.1.1. HUMAVIPS

Title: Humanoids with audiovisual skills in populated spaces

Type: COOPERATION (ICT)

Defi: Cognitive Systems and Robotics

Instrument: Specific Targeted Research Project (STREP)

Duration: February 2010 - January 2013

Coordinator: INRIA (France)

Others partners: CTU Prague (Czech Republic), University of Bielefeld (Germany), IDIAP (Switzer-
land), Aldebaran Robotics (France)

See also: http://humavips.inrialpes.fr

Abstract: Humanoids expected to collaborate with people should be able to interact with them in
the most natural way. This involves significant perceptual, communication, and motor processes,
operating in a coordinated fashion. Consider a social gathering scenario where a humanoid is
expected to possess certain social skills. It should be able to explore a populated space, to localize
people and to determine their status, to decide to join one or two persons, to synthetize appropriate
behavior, and to engage in dialog with them. Humans appear to solve these tasks routinely by
integrating the often complementary information provided by multi sensory data processing, from
low-level 3D object positioning to high-level gesture recognition and dialog handling. Understanding
the world from unrestricted sensorial data, recognizing people’s intentions and behaving like them
are extremely challenging problems. The objective of HUMAVIPS is to endow humanoid robots with
audiovisual (AV) abilities: exploration, recognition, and interaction, such that they exhibit adequate
behavior when dealing with a group of people. Proposed research and technological developments
will emphasize the role played by multimodal perception within principled models of human-
robot interaction and of humanoid behavior. An adequate architecture will implement auditory and
visual skills onto a fully programmable humanoid robot. An open-source software platform will be
developed to foster dissemination and to ensure exploitation beyond the lifetime of the project. The
MISTIS contribution will consist in developing statistical machine learning techniques for interactive
robotic applications.

http://www.cnrm.meteo.fr/medup/
http://thalie.ujf-grenoble.fr/ainsi
http://thalie.ujf-grenoble.fr/ainsi
http://humavips.inrialpes.fr
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6.4. International Initiatives
6.4.1. Visits of International Scientists
6.4.1.1. Internships

Federico Raimondo (from Jul 2011 until Dec 2011)

Subject: Parallel Self-Adaptive Evolutionary Optimization Framework on GPU
Institution: Universidad de Buenos Aires (Argentina)

El Hadji DEME (from Apr 2011 until Dec 2011)

Subject: Estimation de copules extremaux, de la densite spectrale multivariee et applica-
tions : Biologie et changements climatiques
Institution: Universite Gaston Berger (Senegal)

7. Dissemination
7.1. Animation of the scientific community

Florence Forbes and Stéphane Girard co-organized the workshops “Astrostatistique en France” http://astrostat.
sciencesconf.org/ and Statlearn, "Challenging problems in Statistical Learning" http://mistis.inrialpes.fr/
statlearn/ in Grenoble.

Since September 2009, F. Forbes is head of the committee in charge of examining post-doctoral candidates at
INRIA Grenoble Rhône-Alpes ("Comité des Emplois Scientifiques").

Since September 2009, F. Forbes is also a member of the INRIA national committee, "Comité d’animation
scientifique", in charge of analyzing and motivating innovative activities in Applied Mathematics. In this
context, she organized with R. Munos, B. Espiau and M. Thonnat an INRIA workshop on Statistical Learning
in Paris (December).

F. Forbes is part of an INRA (French National Institute for Agricultural Research) Network (MSTGA) on
spatial statistics. She is also part of an INRA committee (CSS MBIA) in charge of evaluating INRA researchers
once a year.

S. Girard is a member of the committee (Comité de Sélection) in charge of examining applications to Faculty
member positions at University Paris I.

F. Forbes and S. Girard were elected as members of the bureau of the “Analyse d’images, quantification, et
statistique” group in the Société Française de Statistique (SFdS).

S. Girard was selected as an expert for

• the national fund for the scientific development of Chili (FONDECYT) to evaluate research propos-
als,

• evaluation of interdisciplinary and inter-institutes projects (PEPII) for the CNRS,
• the national fund for research of Québec - Nature and technology (FRQNT) to evaluate research

proposals.

S. Girard was involved in the following PhD committees

• Mohammed El Anbari “Regularisation and variable selection using penalized likelihood”, Paris-
Sud University and Cadi Ayyad University, december 2011.

• Dmitri Novikov “Statistical methods of detection of current flow structures in stretches of water”,
Montpellier University, december 2011.

• Davide Ceresetti “Structure spatio-temporelle des fortes précipitations: application à la région
Cévennes-Vivarais.”, Grenoble University, january 2011.

http://astrostat.sciencesconf.org/
http://astrostat.sciencesconf.org/
http://mistis.inrialpes.fr/statlearn/
http://mistis.inrialpes.fr/statlearn/
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F. Forbes was involved in the PhD committes of Flora Jay from TimB, Univ. Grenoble I. PhD title:"Méthodes
bayésiennes pour la génétique des populations: relations entre structure génétique des populations et environ-
nement" (October 2011).

F. Forbes was also involved in the HDR committee of Cécile Hardouin, assistant professor at Paris Ouest
Nanterre La Défense University (July 2011). Title:"Quelques contributions à la modélisation et l’analyse
statistique de processus spatiaux".

F. Forbes was also involved in the Master committee of Arun Shivanandan from IBIS team(June 2011). Title:
Stochastic modelling and indentification of arabinose uptake network in Escherichia coli.

7.2. Teaching
Stéphane Girard

Master : Statistique inférentielle avancée, 27h, M1, Ensimag (Grenoble INP), France.

Master : Statistique des valeurs extrêmes, 45h, M2, Université Grenoble I, France.

Florence Forbes

Master : Mixture models and EM algorithm, 12h, M2, UFR IM2A, Université Grenoble I, France.

L. Gardes and M.-J. Martinez are faculty members at Univ. Pierre Mendès France, Grenoble II.

J.-B. Durand is a faculty member at Ensimag, Grenoble INP.

PhD & HdR :

PhD : Lamiae Azizi, Champs aléatoires de Markov cachés pour la cartographie du risque en
épidémiologie, Université Joseph Fourier, December 13, Florence Forbes and Myriam Garrido

PhD in progress : Jonathan El Methni, Différentes contributions à l’estimation des quantiles ex-
trêmes, October, 2010, Stéphane Girard et Laurent Gardes

PhD in progress : Christine Bakhous, Problèmes de sélection de modèles en IRM fonctionnelle,
November, 2010, Florence Forbes and Michel Dojat

PhD in progress : Gildas Mazo, Estimation de quantiles extrêmes spatiaux, October, 2011, Florence
Forbes and Stéphane Girard
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