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2. Overall Objectives
2.1. Overall Objectives

The PAREO team aims at designing and implementing tools for the specification, analysis and verification
of software and systems. At the heart of our project is therefore the will to study fundamental aspects of
programming languages (logic, semantics, algorithmic, etc.) and to make major contributions to the design of
new programming languages. An important part of our research effort will be dedicated to the design of new
fundamental concepts and tools to analyze existing programs and systems. To achieve this goal we focus on:

• the improvement of theoretical foundations of rewriting and deduction;
• the integration of the corresponding formal methods in programming and verification environments;
• the practical applications of the proposed formalisms.

3. Scientific Foundations
3.1. Introduction

It is a common claim that rewriting is ubiquitous in computer science and mathematical logic. And indeed
the rewriting concept appears from very theoretical settings to very practical implementations. Some extreme
examples are the mail system under Unix that uses rules in order to rewrite mail addresses in canonical forms
(see the /etc/sendmail.cf file in the configuration of the mail system) and the transition rules describing the
behaviors of tree automata. Rewriting is used in semantics in order to describe the meaning of programming
languages [43] as well as in program transformations like, for example, re-engineering of Cobol programs
[56]. It is used in order to compute, implicitly or explicitly as in Mathematica or MuPAD, but also to perform
deduction when describing by inference rules a logic [35], a theorem prover [41] or a constraint solver
[42]. It is of course central in systems making the notion of rule an explicit and first class object, like expert
systems, programming languages based on equational logic, algebraic specifications (e.g., OBJ), functional
programming (e.g., ML) and transition systems (e.g., Murphi).
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In this context, the study of the theoretical foundations of rewriting have to be continued and effective
rewrite based tools should be developed. The extensions of first-order rewriting with higher-order and higher-
dimension features are hot topics and these research directions naturally encompass the study of the rewriting
calculus, of polygraphs and of their interaction. The usefulness of these concepts becomes more clear when
they are implemented and a considerable effort is thus put nowadays in the development of expressive and
efficient rewrite based programming languages.

3.2. Rule-based programming languages
Programming languages are formalisms used to describe programs, applications, or software which aim to
be executed on a given hardware. In principle, any Turing complete language is sufficient to describe the
computations we want to perform. However, in practice the choice of the programming language is important
because it helps to be effective and to improve the quality of the software. For instance, a web application
is rarely developed using a Turing machine or assembly language. By choosing an adequate formalism, it
becomes easier to reason about the program, to analyze, certify, transform, optimize, or compile it. The choice
of the programming language also has an impact on the quality of the software. By providing high-level
constructs as well as static verifications, like typing, we can have an impact on the software design, allowing
more expressiveness, more modularity, and a better reuse of code. This also improves the productivity of the
programmer, and contributes to reducing the presence of errors.

The quality of a programming language depends on two main factors. First, the intrinsic design, which
describes the programming model, the data model, the features provided by the language, as well as the
semantics of the constructs. The second factor is the programmer and the application which is targeted. A
language is not necessarily good for a given application if the concepts of the application domain cannot be
easily manipulated. Similarly, it may not be good for a given person if the constructs provided by the language
are not correctly understood by the programmer.

In the Pareo group we target a population of programmers interested in improving the long-term maintain-
ability and the quality of their software, as well as their efficiency in implementing complex algorithms. Our
privileged domain of application is large since it concerns the development of transformations. This ranges
from the transformation of textual or structured documents such as XML, to the analysis and the transfor-
mation of programs and models. This also includes the development of tools such as theorem provers, proof
assistants, or model checkers, where the transformations of proofs and the transitions between states play a
crucial role. In that context, the expressiveness of the programming language is important. Indeed, complex
encodings into low level data structures should be avoided, in contrast to high level notions such as abstract
types and transformation rules that should be provided.

It is now well established that the notion of term and rewrite rule are two universal abstractions well suited to
model tree based data types and the transformations that can be done upon them. Over the last ten years we
have developed a strong experience in designing and programming with rule based languages [44], [31], [28].
We have introduced and studied the notion of strategy [30], which is a way to control how the rules should be
applied. This provides the separation which is essential to isolate the logic and to make the rules reusable in
different contexts.

To improve the quality of programs, it is also essential to have a clear description of their intended behaviors.
For that, the semantics of the programming language should be formally specified.

There is still a lot of progress to be done in these directions. In particular, rule based programming can be
made even more expressive by extending the existing matching algorithms to context-matching or to new data
structures such as graphs or polygraphs. New algorithms and implementation techniques have to be found to
improve the efficiency and make the rule based programming approach effective on large problems. Separating
the rules from the control is very important. This is done by introducing a language for describing strategies.
We still have to invent new formalisms and new strategy primitives which are both expressive enough and
theoretically well grounded. A challenge is to find a good strategy language we can reason about, to prove
termination properties for instance.
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On the static analysis side, new formalized typing algorithms are needed to properly integrate rule based
programming into already existing host languages such as Java. The notion of traversal strategy merits to be
better studied in order to become more flexible and still provide a guarantee that the result of a transformation
is correctly typed.

3.3. Rewriting calculus
The huge diversity of the rewriting concept is obvious and when one wants to focus on the underlying notions,
it becomes quickly clear that several technical points should be settled. For example, what kind of objects are
rewritten? Terms, graphs, strings, sets, multisets, others? Once we have established this, what is a rewrite
rule? What is a left-hand side, a right-hand side, a condition, a context? And then, what is the effect of
a rule application? This leads immediately to defining more technical concepts like variables in bound or
free situations, substitutions and substitution application, matching, replacement; all notions being specific to
the kind of objects that have to be rewritten. Once this is solved one has to understand the meaning of the
application of a set of rules on (classes of) objects. And last but not least, depending on the intended use of
rewriting, one would like to define an induced relation, or a logic, or a calculus.

In this very general picture, we have introduced a calculus whose main design concept is to make all the basic
ingredients of rewriting explicit objects, in particular the notions of rule application and result. We concentrate
on term rewriting, we introduce a very general notion of rewrite rule and we make the rule application and
result explicit concepts. These are the basic ingredients of the rewriting- or ρ-calculus whose originality comes
from the fact that terms, rules, rule application and application strategies are all treated at the object level (a
rule can be applied on a rule for instance).

The λ-calculus is usually put forward as the abstract computational model underlying functional programming.
However, modern functional programming languages have pattern-matching features which cannot be directly
expressed in the λ-calculus. To palliate this problem, pattern-calculi [50], [46], [40] have been introduced.
The rewriting calculus is also a pattern calculus that combines the expressiveness of pure functional calculi
and algebraic term rewriting. This calculus is designed and used for logical and semantical purposes. It could
be equipped with powerful type systems and used for expressing the semantics of rule based as well as object
oriented languages. It allows one to naturally express exception handling mechanisms and elaborated rewriting
strategies. It can be also extended with imperative features and cyclic data structures.

The study of the rewriting calculus turns out to be extremely successful in terms of fundamental results and
of applications [33]. Different instances of this calculus together with their corresponding type systems have
been proposed and studied. The expressive power of this calculus was illustrated by comparing it with similar
formalisms and in particular by giving a typed encoding of standard strategies used in first-order rewriting and
classical rewrite based languages like ELAN and Tom.

3.4. Algebraic rewriting
Rewriting theory, in computer science, and combinatorial algebra, in mathematics, are two research fields that
share striking similarities: both study the properties of intentional descriptions of complex objects, respectively
rewriting systems and presentations by generators and relations. This research direction is devoted to develop
a theoretical setting that unifies rewriting and combinatorial algebra, in order to transpose methods of one field
to the other one.

Rewriting systems and presentations of algebraic structures have a common generalisation as polygraphs,
which are cellular specifications of higher-dimensional categories [32]. In this setting, we can describe, in a
uniform way, different kinds of objects, such as the following ones:

• A rule-based program that computes the list-splitting function used in the merge-sort algorithm:

• The usual presentation by generators and relations of the structure of Hopf algebras, containing, in
particular, the following relations:

• The Reidemeister moves for braids, giving a combinatorial description of those topological objects:
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Figure 1.

Figure 2.

Figure 3.

More precisely, polygraphs are a common algebraic setting for: abstract, word, term and term-graph rewriting
systems [32], [36], [6] and, in particular, first-order functional programs [39], [29], [3]; set-theoretic operads,
pro(p)s, algebraic theories [36], [6]; Turing machines and Petri nets [36], [38], [29], [3]; formal proofs of
propositional calculus and linear logic [37].

In the theoretical setting of polygraphs, the Fox-Squier theory shows that the computational properties
of rewriting systems and the mathematical properties of presentations are intimately related to the same
topological properties of polygraphs [7]. From this starting point, we progressively establish a correspondence
between programs and algebras and we use it to develop applications in different directions:

• Algebraic semantics of programs, such as the new characterisation of evaluation strategies in terms of
algebraic resolutions [14]. Here, we want to use well-founded mathematical theories to give a better
understanding of programming and, that way, extend the expressiveness of rule-based programming
languages.

• Methods from algebraic topology to produce new tools for the static analysis of programs, such as
the use of derivations to prove termination and bound computational complexity [6], [29], [3]. In
this direction, we plan to develop tools from cohomology to classify derivations and, this way, to
propose a radically new point of view on computational complexity theory.

• New applications for rewriting, in the field of the formalisation and certification of mathematics,
such as the use of rewriting methods to prove coherence theorems or to build resolutions [13], [14],
[26].

4. Application Domains

4.1. Application Domains
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Beside the theoretical transfer that can be performed via the cooperations or the scientific publications, an
important part of the research done in the Pareo group team is published within software. Tom is our flagship
implementation. It is available via the INRIA Gforge (http://gforge.inria.fr) and is one of the most visited and
downloaded projects. The integration of high-level constructs in a widely used programming language such as
Java may have an impact in the following areas:

• Teaching: when (for good or bad reasons) functional programming is not taught nor used, Tom is an
interesting alternative to exemplify the notions of abstract data type and pattern-matching in a Java
object oriented course.

• Software quality: it is now well established that functional languages such as Caml are very
successful to produce high-assurance software as well as tools used for software certification. In
the same vein, Tom is very well suited to develop, in Java, tools such as provers, model checkers, or
static analyzers.

• Symbolic transformation: the use of formal anchors makes possible the transformation of low-
level data structures such as C structures or arrays, using a high-level formalism, namely pattern
matching, including associative matching. Tom is therefore a natural choice each time a symbolic
transformation has to be implemented in C or Java for instance. Tom has been successfully used to
implement the Rodin simplifier, for the B formal method.

• Prototyping: by providing abstract data types, private types, pattern matching, rules and strategies,
Tom allows the development of quite complex prototypes in a short time. When using Java as the
host-language, the full runtime library can be used. Combined with the constructs provided by Tom,
such as strategies, this procures a tremendous advantage.

One of the most successful transfer is certainly the use of Tom made by Business Objects/SAP. Indeed, after
benchmarking several other rule based languages, they decided to choose Tom to implement a part of their
software. Tom is used in Paris, Toulouse and Vancouver. The standard representation provided by Tom is used
as an exchange format by the teams of these sites.

5. Software

5.1. ATerm
Participant: Pierre-Etienne Moreau [correspondant].

ATerm (short for Annotated Term) is an abstract data type designed for the exchange of tree-like data structures
between distributed applications.

The ATerm library forms a comprehensive procedural interface which enables creation and manipulation of
ATerms in C and Java. The ATerm implementation is based on maximal subterm sharing and automatic garbage
collection.

A binary exchange format for the concise representation of ATerms (sharing preserved) allows the fast
exchange of ATerms between applications. In a typical application—parse trees which contain considerable
redundant information—less than 2 bytes are needed to represent a node in memory, and less than 2 bits
are needed to represent it in binary format. The implementation of ATerms scales up to the manipulation of
ATerms in the giga-byte range.

The ATerm library provides a comprehensive interface in C and Java to handle the annotated term data-type in
an efficient manner.

We are involved (with the CWI) in the implementation of the Java version, as well as in the garbage collector
of the C version. The Java version of the ATerm library is used in particular by Tom.

The ATerm library is documented, maintained, and available at the following address: http://www.meta-
environment.org/Meta-Environment/ATerms.

http://gforge.inria.fr
http://www.meta-environment.org/Meta-Environment/ATerms
http://www.meta-environment.org/Meta-Environment/ATerms
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5.2. Tom
Participants: Jean-Christophe Bach, Horatiu Cirstea, Pierre-Etienne Moreau [correspondant], Claudia
Tavares.

Since 2002, we have developed a new system called Tom [49], presented in [27], [28]. This system consists
of a pattern matching compiler which is particularly well-suited for programming various transformations
on trees/terms and XML documents. Its design follows our experiences on the efficient compilation of rule-
based systems [45]. The main originality of this system is to be language and data-structure independent.
This means that the Tom technology can be used in a C, C++ or Java environment. The tool can be
seen as a Yacc-like compiler translating patterns into executable pattern matching automata. Similarly to
Yacc, when a match is found, the corresponding semantic action (a sequence of instructions written in the
chosen underlying language) is triggered and executed. Tom supports sophisticated matching theories such
as associative matching with neutral element (also known as list-matching). This kind of matching theory is
particularly well-suited to perform list or XML based transformations for example.

In addition to the notion of rule, Tom offers a sophisticated way of controlling their application: a strategy
language. Based on a clear semantics, this language allows to define classical traversal strategies such a
innermost, outermost, etc.. Moreover, Tom provides an extension of pattern matching, called anti-pattern
matching. This corresponds to a natural way to specify complements (i.e.what should not be there to fire
a rule). Tom also supports the definition of cyclic graph data-structures, as well as matching algorithm and
rewriting rules for term-graphs.

Tom is documented, maintained, and available at http://tom.loria.fr as well as at http://gforge.inria.fr/projects/
tom.

5.3. Cat
Participant: Yves Guiraud [correspondant].

Cat is a library for polygraphic calculus, written in Caml. It has been used, in a joint work with F. Blanqui,
to produce an automatic termination prover for first-order functional programs. It translates such a rewriting
system into a polygraph and tries to find a derivation proving its termination, using the results of [6], [39]. If
possible, it seeks a derivation that proves that the program is polynomial [29], [3]. Cat is also at the basis of
Catex.

5.4. Catex
Participant: Yves Guiraud [correspondant].

Catex is a tool for (pdf)Latex, used in the same way as Bibtex, that automatically produces string diagrams
from their algebraic expression. It follows the same design as Tom, a Catex file being a Latex file enriched
with formal islands corresponding to those algebraic expressions, such as:

\deftwocell[red]{delta : 1 -> 2}

\deftwocell[orange]{mu : 2 -> 1}

\deftwocell[crossing]{tau : 2 -> 2}

\twocell{(delta *0 delta) *1 (1 *0 tau *0 1) *1 (mu *0 mu)}

Catex dissolves such an island into Latex code, using the PGF/Tikz package. Executed on the result, (pdf)Latex
produces the following diagram:

Catex is distributed through the page: http://www.loria.fr/~guiraudy/catex. We want to extend Catex in two
directions. First, to produce diagrams not only for Latex but also for web publications. Then, Catex will be
adapted to a tool for the automatic production, in scientific papers, of certified algebraic computations, which
are a three-dimensional equivalent of string diagrams.

http://tom.loria.fr
http://gforge.inria.fr/projects/tom
http://gforge.inria.fr/projects/tom
http://www.loria.fr/~guiraudy/catex
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Figure 4.

6. New Results

6.1. Improvement of theoretical foundations
6.1.1. Algebraic rewriting

Participant: Yves Guiraud.

With P. Malbos (Institut Camille Jordan, Univ. Lyon 1), in [13], we have used rewriting to give a theoretical
setting and concrete formal methods to formalise and give constructive proofs of coherence theorems. The
first one is Mac Lane’s classical result on monoidal categories: the new proof we give is a direct application
of [7]. Then, cases like symmetric monoidal categories are a first step towards a “rewriting modulo” version
of the same work. Finally, we give a new understanding and a constructive proof of the result for cases like
braided monoidal categories.

With P. Malbos, in [14], we have generalised the work of [7] to any dimension. We have introduced a
notion of polygraphic resolution that generalises both usual algebraic resolutions, in combinatorial algebra,
but also, more surprisingly, normalisation strategies, as used in rewriting theory and, in particular, in rule-
based programming languages. Thus, a functional program can be mathematically defined as a complete
cellular model of the functions it computes. This gives a strong mathematical background to the notion of
program, together with a constructive way to build resolutions from convergent polygraphs. This work has
been presented during an invited conference at the International Congress on Operads and Universal Algebra,
held in Tianjin, China, in July 2010. Those results will be further explored to give a mathematical description
of the strategies used in Tom, in order to develop methods from algebraic topology to study their computational
properties, like termination and complexity.

With S. Gaussent (Institut Élie Cartan, Univ. Nancy 1) and P. Malbos, in [26], we have applied higher-
dimensional rewriting methods to actions of monoids on categories. The objective was to compute, starting
from a presentation of a monoid by generators and relations, a “homotopy basis” that generates all the relations
between the relations: this is exactly the piece of data one needs to use a presentation to give a practical
definition of action of the monoid on categories. We show that methods from rewriting theory (Squier’s
theorem, Knuth-Bendix completion procedure), adapted to Burroni’s polygraphs, can be used to compute
that homotopy basis. In particular, we get a new, algebraic and constructive proof of a result by Deligne on
actions of braid groups.

6.1.2. Certification of induction proofs
Participant: Sorin Stratulat.

We have defined a methodology for validating implicit induction proofs. In collaboration with Vincent
Demange, we gave evidence of the possibility to perform implicit induction-based proofs inside certified
reasoning environments, as that provided by the Coq proof assistant. This is the first step of a long term project
focused on 1) mechanically certifying implicit induction proofs generated by automated provers like Spike,
and 2) narrowing the gap between automated and interactive proof techniques by devising powerful proof
strategies inside proof assistants that aim to perform automatically multiple induction steps and to deal with
mutual induction more conveniently. Contrary to the current approaches of reconstructing implicit induction
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proofs into scripts based on explicit induction tactics that integrate the usual proof assistants, our checking
methodology is simpler and fits better for automation. The underlying implicit induction principles are
separated and validated independently from the proof scripts that consist in a bunch of one-to-one translations
of implicit induction proof steps. The translated steps can be checked independently, too, so the validation
process fits well for parallelisation and for the management of large proof scripts. Moreover, our approach is
more general; any kind of implicit induction proof can be considered because the limitations imposed by the
proof reconstruction techniques no longer exist. This result has been firstly presented at the Poster session of
2010 Grande Region Security and Reliability Day, Saarbrucken.

Based on the previous result, an implementation that integrates automatic translators for generating fully
checkable Coq scripts from Spike proofs is reported in [55]. The induction ordering underlying the Spike
induction principle was defined using COCCINELLE [34], a Coq library well suited for modelling math-
ematical notions needed for rewriting, such as term algebras and RPO. COCCINELLE formalises RPO in
a generic way using a precedence and a status (multiset/lexicographic) for each function symbol. Spike au-
tomatically generates a term algebra starting from Coq function symbols which preserve the precedence of
the original Spike symbols. Many useful properties about the RPO orderings have been already provided by
COCCINELLE. On the other hand, the induction ordering was modelled as a multiset extension of RPO and
only few properties about it were provided by COCCINELLE. We have proved useful lemmas about it and
added them to COCCINELLE, for example, the multiset extensions of RPO is stable under substitutions. Fi-
nally, every single inference step derived with a restricted version of Spike can be automatically translated
into equivalent Coq script. The restricted inference system was powerful enough to prove properties about
specifications involving mutually defined functions and to validate a sorting algorithm. The scripts resulted
from the translation of these proofs were successfully validated by Coq.

Another improvement of the COCCINELLE library was the redefinition of the RPO ordering in order to con-
sider precedencies that take into account equivalent function symbols. The new release of CoLoR (http://color.
inria.fr) that compiles with the new version 8.3 of Coq includes the updated version of COCCINELLE. This
improvement allowed Rainbow, a program developped within the CoLoR project that uses COCCINELLE’s
formalisation for RPO, to certify more than 30 additional proofs from the set of CPF files generated during the
2009 annual termination competition (http://termination-portal.org/wiki/Termination_Competition).

In [21], we reported new improvements in order to certify implicit induction proofs concerning industrial-size
applications, in particular the validation proof of a conformance algorithm for the ABR protocol [51]. An
interactive proof using PVS [54] was firstly presented in [52], then it has been shown in [53] that more than
a third of the user interactions can be avoided using implicit induction techniques, Spike succeeding to prove
60% of the user-provided lemmas automatically. Now, a simpler but more restrictive version of the Spike
inference system has been shown powerful enough to prove 2/3 out of these lemmas. Moreover, any generated
proof has been automatically translated into a Coq script, then automatically certified by Coq. We stressed the
importance of the automatic feature since the proof scripts are in many cases big and hard to manipulate by
the users. The bottom-line is that these improvements allowed us to certify big proof scripts in a reasonable
time, 20 times faster than in [55].

6.2. Integration of formal methods in programming languages
6.2.1. Formal islands and Tom

Participants: Jean-Christophe Bach, Horatiu Cirstea, Pierre-Etienne Moreau, Claudia Tavares.

In [1] we have proposed a framework which makes possible the integration of formally defined constructs
into an existing language. The Tom system is an instance of this principle: terms, first-order signatures,
rewrite rules, strategies and matching constructs are integrated into Java and C for instance. The high level
programming features provided by this approach are presented in [48]. The Tom system is documented in
[27]. A general overview of the research problem raised by this approach are presented in [47].

One interest of Tom is to make the compilation process independent of the considered data-structure. Given
any existing data-structure, using a formal anchor definition, it becomes possible to match and to apply
transformation rules on the considered data-structures.

http://color.inria.fr
http://color.inria.fr
http://termination-portal.org/wiki/Termination_Competition
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During the internship of Maxime Gabut, we have developed a new approach for parsing island based
languages. We have clearly separated the grammars of the two considered languages (host and island
languages). At present, there is one scanner for each language, but this is not powerful enough to handle
the general case. We are currently studying another approach based on a scanner able to recognized tokens
from both languages.

During the internship of Alexandre Papin, we have developed a new backend for ADA 2005. The mid-term
project is to use tom-ADA to develop new optimisation phases of the GNAT-ADA compiler.

We have defined a new type system for Tom which allows to declare first-order signatures with subtyping.
This is particularly useful to encode inheritance relations into algebraic terms. Considering Java as the host
language, in [25] we present this type system with subtyping for Tom, that is compatible with Java’s type
system, and that performs both type checking and type inference. We propose an algorithm that checks if
all patterns of a Tom program are well-typed. In addition, we propose an algorithm based on equality and
subtyping constraints that infers types of variables occurring in a pattern. Both algorithms are exemplified and
the proposed type system is showed to be sound and complete.

A first application consists in defining algebraic mappings for implementations of meta-models generated by
the Eclipse Modeling Framework.

6.3. Practical applications
6.3.1. Security policies specification and analysis

Participants: Tony Bourdier, Horatiu Cirstea, Hélène Kirchner, Pierre-Etienne Moreau.

Access control policies, a particular case of security policies should guarantee that information can be accessed
only by authorized users and thus prevent all information leakage. We proposed [18] a framework where the
security policies and the systems they are applied on are specified separately but using a common formalism.
This separation allows not only some analysis of the policy independently of the target system but also the
application of a given policy on different systems. In this framework, we propose a method to check properties
like confidentiality, integrity or confinement over secure systems based on different policy specifications.

We also propose an approach [12] where the specification of a security policy is split into two distinct elements:
a security model and a configuration. The security model (expressed as an equational problem) describes how
authorization requests must be evaluated depending on security information. The configuration (expressed
as a rewriting system) assigns values to security information. We show that this separation eases the formal
analysis of security policies and makes it possible to automatically convert a given policy with respect to an
alternative security model.

6.3.2. Symbolic analysis of network security policies
Participants: Tony Bourdier, Horatiu Cirstea.

In computer networks, security policies are generally implemented by firewalls. We propose in [16] an original
framework based on tree automata which can be used to specify firewalls and which takes into account the
network address translation functionality. We show that this framework allows us to perform structural analysis
as well as query analysis and comparisons over firewall policies.

We have extended the above formalism to take into account the composition of firewalls. In our approach [17]
all the components of a firewall, i.e. filtering and translation rules, are specified as rewrite systems. The same
formalism can be used to formally describe the composition of firewalls (including routing) in order to build
a whole network security policy. The properties of the obtained rewrite systems are strongly related to the
properties of the specified networks and thus, classical theoretical and practical tools can be used to obtain
relevant properties of the security policies. We showed that the proposed specifications allow us to handle
usual problems such as comparison, structural analysis, and query analysis over complete networks.

6.3.3. Model transformation using rewriting
Participants: Jean-Christophe Bach, Pierre-Etienne Moreau.
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New development chains of critical systems rely on Domain Specific Modeling Languages (DSML) and on
qualifiable transformations (insurance that a transformation preserves interesting properties). To specify and
to make such transformations we have started to extend Tom.

A first part of this extension is an EMF 1 mapping generator which allows to use Tom with EMF. The idea
of this tool is to generate Tom mappings (i.e. an algebraic view) by introspecting EMF generated Java code.
These mappings can then be used to describe transformations of models that have been created in Eclipse.
Tom-EMF is documented and available in the Tom source distribution.

The second part of this extension consists in the addition of new Tom language constructs to express
transformations of models. Studying several use cases2, we have already handwritten the code that should
be generated. We are currently considering abstraction of the code in order to make the generation of this one
automatic in a near future.

6.3.4. A constraint language for algebraic terms
Participants: Horatiu Cirstea, Pierre-Etienne Moreau, François Prugniel.

With the development of model transformation formalisms and tools, a need for checking the result of trans-
formations appears. For UML, the Object Management Group developed OCL3 but there are no equivalent
formalisms for the algebraic views of models used in Tom-EMF. Starting from the OCL experiences, we have
proposed an extension of Tom with a constraint language for algebraic signatures [23].

We show that the constructs of this new constraint language inspired from OCL and XPath can be naturally
described using strategic rewriting and consequently, constraint checking can be performed by executing Tom
programs. This kind of language is a major asset for debugging tools and a great step to obtain trustworthy
compilers. Indeed, the first important application for this language will be the Tom compiler itself.

7. Partnerships and Cooperations

7.1. National Initiatives
We participate in the “Logic and Complexity” part of the GDR–IM (CNRS Research Group on Mathematical
Computer Science), in the projects “Logic, Algebra and Computation” (mixing algebraic and logical systems)
and “Geometry of Computation” (using geometrical and topological methods in computer science).

We participate and co-animate the “Transformation” group of the GDR–GPL (CNRS Research Group on
Software Engineering).

7.1.1. ANR Complice (2009-2012)
Participant: Yves Guiraud.

The ANR project “Complexité implicite, concurrence et extraction” (Complice), headed by Patrick Baillot
(CNRS, LIP Lyon), federates researchers from Lyon (LIP), Nancy (LORIA) and Villetaneuse (LCR). The
coordinator for the LORIA site is Guillaume Bonfante (Carte).

7.1.2. ARC ACCESS (2010-2011)
Participant: Horatiu Cirstea.

This project is concerned with the security and access control for Web data exchange, in the context of Web
applications and Web services. We aim at defining automatic verification methods for checking properties of
access control policies (ACP) for XML, like consistency or secrecy. A more detailed presentation is available
at http://acxml.gforge.inria.fr/.

1Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
2available on the Quarteft subversion repository: https://gforge.enseeiht.fr/projects/quarteft/
3Object Constraint Language, http://www.omg.org/spec/OCL/2.2/

http://acxml.gforge.inria.fr/
http://www.eclipse.org/modeling/emf/
https://gforge.enseeiht.fr/projects/quarteft/
http://www.omg.org/spec/OCL/2.2/
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7.1.3. FRAE QUARTEFT (2009-2012)
Participants: Jean-Christophe Bach, Horatiu Cirstea, Pierre-Etienne Moreau.

“QUARTEFT: QUAlifiable Real TimE Fiacre Transformations” is a research project founder by the FRAE
(Fondation de Recherche pour l’Aéronautique et l’Espace). A first goal is to develop an extension of the Fiacre
intermediate language to support real-time constructs. A second goal is to develop new model transformation
techniques to translate this extended language, Fiacre-RT, into core Fiacre. A main difficulty consists in
proposing transformation techniques that could be verified in a formal way. A more detailed presentation
is available at http://quarteft.loria.fr/dokuwiki/.

7.2. International Initiatives
7.2.1. Visits of International Scientists

Cooperation with Prof. Mark van den Brand from Technical University of Eindhoven.

8. Dissemination

8.1. Animation of the scientific community
Tony Bourdier:

– Member of the scientific board of the University of Nancy 1.

– Member of the board of the Doctoral School in Computer Science and Mathematics.

Horatiu Cirstea:

– PC member of RuleML 2011 (International RuleML Symposium on Rule Interchange and Applica-
tions).

– Organisation of “Journées nationales 2011 des groupes LAC et GEOCAL du GDR Informatique
Mathématique”.

– Steering committee of RULE.

Yves Guiraud:

– Organisation of the conference “Operads and rewriting”, http://math.univ-lyon1.fr/~guiraud/or2011,
2–4 Nov., Institut Camille Jordan, Lyon.

– Reviewer for the conferences “Rewriting Techniques and Applications 2011” (RTA) and “Confer-
ence on Algebraic Informatics 2011” (CAI), for the proceedings of the conference “Operads 2010”,
for the journal “Information and Computation”.

Pierre-Etienne Moreau:

– PC member of AMMSE 2011: 2nd International Workshop on Algebraic Methods in Model-
Based Software Engineering, WASDETT 2011: 4th International Workshop on Academic Software
Development Tools and Techniques

– Member of the board of the Doctoral School in Computer Science and Mathematics.

– Head of the local committee for INRIA “détachements” and “délégations”.

– Head of the Computer Science department at Ecole des Mines de Nancy.

http://quarteft.loria.fr/dokuwiki/
http://math.univ-lyon1.fr/~guiraud/or2011
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Sorin Stratulat:

– PC member of SYNASC’2011 ( 13th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing), IAS’2011 (Seventh International Conference on Information As-
surance and Security), CISIS’2011 (Fourth International Workshop on Computational Intelligence
in Security for Information Systems).

– member of the LITA Laboratory Council.

8.2. Teaching
Licence : Programmation et Algorithmique, 60h, L3, Ecole des Mines de Nancy

Licence : Programmation Orientée Objet, 60h, L1, IUT Charlemagne, Nancy

Licence : Programmation Distribuée, 20h, L2, IUT Charlemagne, Nancy

Licence : Sécurité dans les bases de donées, 20h, L2, IUT Charlemagne, Nancy

Licence : Services d’annuaire et d’authentification, 30h, LPro, IUT Charlemagne, Nancy

Master : Software Engineering, 15h, M1, Ecole des Mines de Nancy

Master : OO Programming, 30h, M1, Ecole des Mines de Nancy

Master : Research project, 30h, M2, Ecole des Mines de Nancy

Master : Analyse et conception de logiciels, 100h, M1, Université Henri Poincaré, Nancy

Master : Génie logiciel avancé, 30h, M2, Université Henri Poincaré, Nancy

PhD : Tony Bourdier, "Méthodes algébriques pour la formalisation et l’analyse de politiques de
sécurité", Université Henri Poincaré, October 7th 2011, Horatiu Cirstea

PhD : Cody Roux, "Terminaison a base de tailles: sémantique et généralisations", June 14th 2011,
Frederic Blanqui et Claude Kirchner

PhD in progress : Jean-Christophe Bach, "Transformation de

PhD in progress : François Prugniel, "Filtrage et stratégies sur les structures cycliques. Application à
l’analyse pour l’ingénierie des modèles", October 1st 2010, Horatiu Cirstea et Pierre-Etienne Moreau
modèles et certification", November 1st 2010, Pierre-Etienne Moreau

PhD in progress : Cláudia Tavares, "Un système de types pour la programmation par réécriture
embarquée", October 15th 2007, Claude Kirchner et Pierre-Etienne Moreau
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