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2. Overall Objectives

2.1. Overall Objectives
The research domain of Parietal is the design of statistical analysis and machine learning tools for the analysis
of neuroimaging data. Such data have a limited signal-to-noise ratio, and generally display weakly contrasted
structures. More importantly, due to the cost and complexity related to acquisition and analysis process, the
estimation of reliable models is plagued by the lack of data, leading to little statistical power.

We try to solve these challenges by combining different modalities, by improving the crucial registration steps
and by designing tools to assess efficiently the structure of the data. We design adapted learning algorithms to
classify and make inference on these images; we also develop a framework to carry out statistical analysis in
high-performance frameworks, such as clouds and grids.
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3. Scientific Foundations
3.1. Human neuroimaging data and its use

Human neuroimaging consists in acquiring non-invasively image data from normal and diseased human
populations. Magnetic Resonance Imaging (MRI) can be used to acquire information on brain structure and
function at high spatial resolution.

• T1-weighted MRI is used to obtain a segmentation of the brain into different different tissues, such
as gray matter, white matter, deep nuclei, cerebro-spinal fluid, at the millimeter or sub-millimeter
resolution. This can then be used to derive geometric and anatomical information on the brain, e.g.
cortical thickness.

• Diffusion-weighted MRI measures the local diffusion of water molecules in the brain at the
resolution of 2mm, in a set of directions (30 to 60 typically). Local anisotropy, observed in white
matter, can be used to yields a geometric of fiber tracts along which water diffusion occurs, and thus
provides essential information of the connectivity structure of the brain.

• Functional MRI measures the blood-oxygen-level-dependent (BOLD) contrast that reflects neural
activity in the brain, at a spatial resolution of 2 to 3mm, and a temporal resolution of 2-3s. This yields
a spatially resolved image of brain functional networks that can be modulated either by specific
cognitive tasks or appear as networks of correlated activity.

• Electro- and Magneto-encephalography (MEEG) are two additional modalities that complement
functional MRI, as they directly measure the electric and magnetic signals elicited by neural activity,
at the millisecond scale. These modalities rely on surface measurements and do not localize brain
activity very accurately in the spatial domain.

3.2. High-field MRI
High field MRI as performed at Neurospin (7T on humans, 11.7T in 2013, 17.6T on rats) brings an
improvement over traditional MRI acquisitions at 1.5T or 3T, related to to a higher signal-to-noise ratio in the
data. Depending on the data and applicative context, this gain in SNR can be traded against spatial resolution
improvements, thus helping in getting more detailed views of brain structure and function. This comes at the
risk of higher susceptibility distortions of the MRI scans and signal inhomogeneities, that need to be corrected
for. Improvements at the acquisition level may come from the use of new coils (such as the new 32 channels
coil on the 7T at Neurospin – Fall 2011).

3.3. Technical challenges for the analysis of neuroimaging data
The first limitation of Neuroimaging-based brain analysis is the limited Signal-to-Noise Ratio of the data.
A particularly striking case if functional MRI, where only a fraction of the data is actually understood, and
from which it is impossible to observe by eye the effect of neural activation on the raw data. Moreover, far
from traditional i.i.d. Gaussian models, the noise in MRI typically exhibits correlations and long-distance
correlation properties (e.g. motion-related signal) and has potentially large amplitude, which can make it hard
to distinguish from true signal on a purely statistical basis. A related difficulty is the lack of salient structure in
the data: it is hard to infer meaningful patterns (either through segmentation or factorization procedures) based
on the data only. A typical case is the inference of brain networks from resting-state functional connectivity
data.

Regarding statistical methodology, neuroimaging problems also suffer from the relative paucity of the data, i.e.
the relatively small number of images available to learn brain features or models, e.g. with respect to the size
of the images or the number of potential structures of interest. This leads to several kinds of difficulties, known
either as multiple comparison problems or curse of dimensionality. One possibility to overcome this challenge
is to increase the amount of data by using images from multiple acquisition centers, at the risk of introducing
scanner-related variability, thus challenging the homogeneity of the data. This becomes an important concern
with the advent of cross-modal neuroimaging-genetics studies.
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4. Application Domains

4.1. Application Domains
• Multi-modal brain image registration for the estimation of brain templates.

• Segmentation and dictionary learning techniques for the creation of functional brain atlases.

• Detection of statistical association between the genetic variability and brain characteristics.

• Detection of abnormal data in neuroimaging datasets and robust statistics.

• Evaluation of neuro-computational of vision based on functional neuroimaging experiments.

• Inference of brain states or cognitive variables based on activation patterns.

• Extraction of biomarkers from functional connectivity data for neurodegenrative diseases.

5. Software

5.1. Mayavi
Participant: Gaël Varoquaux [Correspondant].

Mayavi is the most used scientific 3D visualization Python software (http://mayavi.sourceforge.net/). It has
been developed by Prabhu Ramachandran (IIT Bombay) and Gaël Varoquaux (PARIETAL, INRIA Saclay).
Mayavi can be used as a visualization tool, through interactive command line or as a library. It is distributed
under Linux through Ubuntu, Debian, Fedora and Mandriva, as well as in PythonXY and EPD Python scientific
distributions. Mayavi is used by several software platforms, such as PDE solvers (fipy, sfepy), molecule
visualization tools (http://pyrx.scripps.edu) and brain connectivity analysis tools (connectomeViewer).

See also the web page http://mayavi.sourceforge.net/ and the following paper http://hal.inria.fr/inria-
00528985/en.

• Version: 3.4.0

5.2. Nipy
Participants: Bertrand Thirion [correspondant], Virgile Fritsch, Gaël Varoquaux.

Nipy is an open-source Python library for neuroimaging data analysis, developed mainly at Berkeley, Stanford,
MIT and Neurospin. It is open to any contributors and aims at developing code and tools sharing. Some
parts of the library are completely developed by Parietal and LNAO (CEA, DSV, Neurospin). It is devoted to
algorithmic solutions for various issues in neuroimaging data analysis. All the nipy project is freely available,
under BSD licence. It is available in NeuroDebian.

See also the web page http://nipy.org.

• Version: 0.2

5.3. MedINRIA
Participants: Pierre Fillard [correspondant], Sergio Medina, Viviana Siless.

MedINRIA is a free collection of softwares developed within the ASCLEPIOS, ATHENA and VISAGES
research projects. It aims at providing to clinicians state-of-the-art algorithms dedicated to medical image
processing and visualization. Efforts have been made to simplify the user interface, while keeping high-level
algorithms. MedINRIA is available for Microsoft windows XP/Vista, Linux Fedora Core, MacOSX, and is
fully multithreaded.

http://mayavi.sourceforge.net/
http://pyrx.scripps.edu
http://mayavi.sourceforge.net/
http://hal.inria.fr/inria-00528985/en
http://hal.inria.fr/inria-00528985/en
http://nipy.org
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See also the web page http://med.inria.fr/.

• Version: 2.0

5.4. Scikit learn
Participants: Bertrand Thirion [correspondant], Gaël Varoquaux, Alexandre Gramfort, Fabian Pedregosa,
Virgile Fritsch.

Scikit-learn is open-source a machine learning toolkit written in Python/C that provides generic tools to learn
information for the classification of various kinds of data, such as images or texts. It is tightly associated to
the scientific Python software suite (numpy/scipy) for which it aims at providing a complementary toolkit for
machine learning (classification, clustering, dimension reduction, regression). There is an important focus on
code quality (API consistency, code readability, tests, documentation and examples), and on efficiency, as the
scikit-learn compares favorably to state-of-the-art modules developed in R in terms of computation time or
memory requirements. Scikit-learn is currently developed by about 30 contributors, but the core developer
team has been with the Parietal INRIA team at Saclay-Île-de- France since January 2010. The scikit-learn has
recently become the reference machine learning library in Python.

• Version: 0.9
• Programming language: Python, C/Cython

6. New Results
6.1. A supervised clustering approach for fMRI-based inference of brain states

We propose a method that combines signals from many brain regions observed in functional Magnetic
Resonance Imaging (fMRI) to predict the subject’s behavior during a scanning session. Such predictions suffer
from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of
dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature
selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the
signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints,
we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal.
We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a
parcellation (division of the volume) such that parcel-based signal averages best predict the target information.
Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide
a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data
show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover,
the method infers an explicit weighting of the regions involved in the regression or classification task. See also
[14] and Fig. 1.

6.2. Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
Inverse inference has recently become a popular approach for analyzing neuroimaging data, by quantifying the
amount of information contained in brain images on perceptual, cognitive, and behavioral parameters. As it
outlines brain regions that convey information for an accurate prediction of the parameter of interest, it allows
to understand how the corresponding information is encoded in the brain. However, it relies on a prediction
function that is plagued by the curse of dimensionality, as there are far more features (voxels) than samples
(images), and dimension reduction is thus a mandatory step. We introduce in this work a new model, called
Multiclass Sparse Bayesian Regression (MCBR), that, unlike classical alternatives, automatically adapts the
amount of regularization to the available data. MCBR consists in grouping features into several classes and
then regularizing each class differently in order to apply an adaptive and efficient regularization. We detail
these framework and validate our algorithm on simulated and real neuroimaging data sets, showing that it
performs better than reference methods while yielding interpretable clusters of features. See also [13] and Fig.
2.

http://med.inria.fr/
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Figure 1. Results for prediction of object size. Maps of weights found by supervised cut in the prediction of the size
of an object. The proposed algorithm creates very interpretable clusters, compared to the reference methods that do

not consider the spatial structure of the image.

Figure 2. Mental representation of size - Inter-subject analysis. Histogram of the weights found by Gibbs-MCBR,
and corresponding class membership values (each color of dots represents a different class), for the inter-subject

analyzes on the mental representation of size. We can see that Gibbs-MCBR creates clusters of informative and non
informative voxels, and that the different classes are regularized differently, according to the relevance of the

features within them.
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6.3. Total variation regularization for fMRI-based prediction of behaviour
While medical imaging typically provides massive amounts of data, the extraction of relevant information
for predictive diagnosis remains a difficult challenge. Functional MRI (fMRI) data, that provide an indirect
measure of task related or spontaneous neuronal activity, are classically analyzed in a mass-univariate
procedure yielding statistical parametric maps. This analysis framework disregards some important principles
of brain organization: population coding, distributed and overlapping representations. Multivariate pattern
analysis, i.e., the prediction of behavioural variables from brain activation patterns better captures this
structure. To cope with the high dimensionality of the data, the learning method has to be regularized. However,
the spatial structure of the image is not taken into account in standard regularization methods, so that the
extracted features are often hard to interpret. More informative and interpretable results can be obtained with
the `1 norm of the image gradient, a.k.a. its Total Variation (TV), as regularization. We apply for the first time
this method to fMRI data, and show that TV regularization is well suited to the purpose of brain mapping while
being a powerful tool for brain decoding. Moreover, this article presents the first use of TV regularization for
classification. See also [15] and Fig. 3.

6.4. Quantitative evaluation of 10 tractography algorithms on a realistic
diffusion MR phantom.
As it provides the only method for mapping white matter fibers in vivo, diffusion MRI tractography is gaining
importance in clinical and neuroscience research. However, despite the increasing availability of different
diffusion models and tractography algorithms, it remains unclear how to select the optimal fiber reconstruction
method, given certain imaging parameters. Consequently, it is of utmost importance to have a quantitative
comparison of these models and algorithms and a deeper understanding of the corresponding strengths and
weaknesses. In this work, we use a common dataset with known ground truth and a reproducible methodology
to quantitatively evaluate the performance of various diffusion models and tractography algorithms. To
examine a wide range of methods, the dataset, but not the ground truth, was released to the public for evaluation
in a contest, the "Fiber Cup". 10 fiber reconstruction methods were evaluated. The results provide evidence
that: 1. For high SNR datasets, diffusion models such as (fiber) orientation distribution functions correctly
model the underlying fiber distribution and can be used in conjunction with streamline tractography, and 2.
For medium or low SNR datasets, a prior on the spatial smoothness of either the diffusion model or the fibers
is recommended for correct modelling of the fiber distribution and proper tractography results. The phantom
dataset, the ground truth fibers, the evaluation methodology and the results obtained so far will remain publicly
available on http://www.lnao.fr See also [10].

6.5. Multi-subject dictionary learning (MSDL) to segment an atlas of brain
spontaneous activity
Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine
this information, we give a new hierarchical probabilistic model for brain activity patterns that does not
require an experimental design to be specified. We estimate this model in the dictionary learning framework,
learning simultaneously latent spatial maps and the corresponding brain activity time-series. Unlike previous
dictionary learning frameworks, we introduce an explicit difference between subject-level spatial maps
and their corresponding population-level maps, forming an atlas. We give a novel algorithm using convex
optimization techniques to solve efficiently this problem with non-smooth penalties well-suited to image
denoising. We show on simulated data that it can recover population-level maps as well as subject specificities.
On resting-state fMRI data, we extract the first atlas of spontaneous brain activity and show how it defines a
subject-specific functional parcellation of the brain in localized regions. See also [25] and Fif 4.

6.6. Functional brain imaging with M/EEG using structured sparsity in
time-frequency dictionaries

http://www.lnao.fr
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Figure 3. Regression - Sizes prediction experiment - Inter-subject analysis. Maps of weights found by TV regression
for various values of the regularization parameter λ. When λ decreases, the TV regression algorithm creates

different clusters of weights with constant values. These clusters are easily interpretable, compared to voxel-based
map (see below). The TV regression algorithm is very stable for different values of λ.
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Figure 4. Outlines at 33% of all dictionary elements estimated by MSDL for 2 different set of cutting planes. The
motor system is divided in (1) dorsal, (2) lateral, and (3) ventral regions. Similarly, the visual system is divided in

(4) a primary region centered on the Calcarine sulcus, overlapping with (5) a region centered on the striate cortex,
and (6) extrastriate regions. (7), (8): fine details of the vascular system segmented in several maps.

Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with
high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed
in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space
in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled
and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the
non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal
operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to
recently proposed inverse solvers with help of simulations and analysis of real MEG data. See also [22].

6.7. A probabilistic framework to infer brain functional connectivity from
anatomical connections
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical
connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem
must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated.
We introduce a model selection framework based on cross-validation with a parametrization-independent
loss function suitable to the manifold of covariance matrices. Our model is based on constraining the
conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we
learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of
functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches
the structure of the output space. Our results show that functional connectivity can be explained by anatomical
connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to
assess this link. See also [20] and Fig. 5.
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Figure 5. Identifying structural connections associated with the default mode network. With yellow is represented
the lateral parietal cortex, green areas represent the posterior cingulate gyrus (PCC ), blue and light blue represent

the medial prefrontal and orbito-frontal areas, respectively. The right model performs much better in terms of
cross-validated data likelihood.

6.8. M/EEG source reconstruction based on Gabor thresholding in the source
space
Thanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG)
and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since
the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are
generally applied in the time domain, the time-frequency (TF) characteristics of brain signals are rarely
employed as a spatio-temporal prior. In this work, we present an inverse solver which employs a structured
sparse prior formed by the sum of `21 and `1 norms on the coefficients of the Gabor TF decomposition of the
source activations. The resulting convex optimization problem is solved using a first-order scheme based on
proximal operators. We provide empirical evidence based on EEG simulations that the proposed method is able
to recover neural activations that are spatially sparse, temporally smooth and non-stationary. We compare our
approach to alternative solvers based also on convex sparse priors, and demonstrate the benefit of promoting
sparse Gabor decompositions via a mathematically principled iterative thresholding procedure. See also [24].

6.9. Multifractal Analysis of Resting State Networks in Functional MRI
It has been know for at least one decade that functional MRI time series display long-memory properties, such
as power-law scaling in the frequency spectrum. Concomitantly, multivariate model-free analysis of spatial
patterns, such as spatial Independent Component Analysis (sICA), has been successfully used to segment
from spontaneous activity Resting-State Networks (RSN) that correspond to known brain function. As recent
neuroscientific studies suggest a link between spectral properties of brain activity and cognitive processes,
a burning question emerges: can temporal scaling properties offer new markers of brain states encoded in
these large scale networks? In this work, we combine two recent methodologies: group-level canonical ICA
for multi-subject segmentation of brain network, and wavelet leader-based multifractal formalism for the
analysis of RSN scaling properties. We identify the brain networks that elicit self-similarity or multifractality
and explore which spectral properties correspond specifically to known functionallyrelevant processes in
spontaneous activity. See also [19].

6.10. Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity
Inverse inference, or "brain reading", is a recent paradigm for analyzing functional magnetic resonance
imaging (fMRI) data, based on pattern recognition tools. By predicting some cognitive variables related to
brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into account the
multivariate information between voxels and is currently the only way to assess how precisely some cognitive
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information is encoded by the activity of neural populations within the whole brain. However, it relies on a
prediction function that is plagued by the curse of dimensionality, as we have far more features than samples,
i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed. Among
them are univariate feature selection, feature agglomeration and regularization techniques. In this work, we
consider a hierarchical structured regularization. Specifically, the penalization we use is constructed from a
tree that is obtained by spatially constrained agglomerative clustering. This approach encodes the spatial prior
information in the regularization process, which makes the overall prediction procedure more robust to inter-
subject variability. We test our algorithm on a real data acquired for studying the mental representation of
objects, and we show that the proposed algorithm yields better prediction accuracy than reference methods.
See also [29] and Fig. 6.

Figure 6. Principle of structured sparsity: Example of a tree T when p = 5, with three voxels and two parcels. The
parcel 2 is defined as the averaged intensity of the voxels {1, 2}, while the parcel 1 is obtained by averaging the

parcel 2 and voxel 3. In red dashed lines are represented the five groups of variables that compose G. If the group
containing the parcel 2 is set to zero, the voxels {1, 2} are also (and necessarily) zeroed out.

6.11. Detecting Outlying Subjects in High-Dimensional Neuroimaging
Datasets with Regularized Minimum Covariance Determinant
Medical imaging datasets used in clinical studies or basic research often comprise highly variable multi-
subject data. Statistically-controlled inclusion of a subject in a group study, i.e. deciding whether its images
should be considered as samples from a given population or whether they should be rejected as outlier data,
is a challenging issue. While the informal approaches often used do not provide any statistical assessment
that a given dataset is indeed an outlier, traditional statistical procedures are not well-suited to the noisy,
high-dimensional, settings encountered in medical imaging, e.g. with functional brain images. In this work,
we modify the classical Minimum Covariance Determinant approach by adding a regularization term, that
ensures that the estimation is well-posed in high-dimensional settings and in the presence of many outliers.
We show on simulated and real data that outliers can be detected satisfactorily, even in situations where the
number of dimensions of the data exceeds the number of observations. See also [21] and Fig. 7.
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Figure 7. Regularized-MCD-based Mahalanobis distances of a small sample. The higher the Mahalanobis
distance, the higher the probability for an observation to be tagged as outlying. Points in red are outliers subjects

according to the whole population.

6.12. Connectivity-informed fMRI Activation Detection
A growing interest has emerged in studying the correlation structure of spontaneous and task-induced brain
activity to elucidate the functional architecture of the brain. In particular, functional networks estimated from
resting state (RS) data were shown to exhibit high resemblance to those evoked by stimuli. Motivated by
these findings, we propose a novel generative model that integrates RS-connectivity and stimulus-evoked
responses under a unified analytical framework. Our model permits exact closed-form solutions for both the
posterior activation effect estimates and the model evidence. To learn RS networks, graphical LASSO and the
oracle approximating shrinkage technique are deployed. On a cohort of 65 subjects, we demonstrate increased
sensitivity in fMRI activation detection using our connectivity-informed model over the standard univariate
approach. Our results thus provide further evidence for the presence of an intrinsic relationship between brain
activity during rest and task, the exploitation of which enables higher detection power in task-driven studies.
See also [23] and Fig 8.

Figure 8. Real data results. (a) rate of parcels with significant activation differences averaged across contrasts vs.
p-value thresholds. (b) Parcels detected by contrasting computation against sentence processing task, and (c)

auditory against visual task. Red = detected by only OAS- CM. Purple = detected by both OAS-CM and GL-CM.
Blue = detected by all methods.
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6.13. Beyond brain reading: identify and predict with clustering and
randomized sparsity
The prediction of behavioral covariates from functional MRI (fMRI) is known as brain reading. From a
statistical standpoint, this challenge is a supervised learning task. The ability to predict cognitive states from
new data gives a model selection criterion: prediction accuracy. While a good prediction score implies that
some of the voxels used by the classifier are relevant, one cannot state that these voxels form the brain regions
involved in the cognitive task. The best predictive model may have selected by chance non-informative regions,
and neglected relevant regions providing duplicate information. In this contribution, we address the support
identification problem. The proposed approach relies on randomization techniques which have been proved
to be consistent for support recovery. To account for the spatial correlations between voxels, our approach
makes use of a spatially constrained hierarchical clustering algorithm. Results are provided on simulations
and a visual experiment. See Fig. 9.

.
Figure 9. Results on fMRI object recognition task (face vs. house). The selected voxels are in the Fusiform Face

Area. left. Prediction Receiver-Operating Characteristic. right. Scores with Ward Randomized Logistic regression.

6.14. Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons
Non-linear image registration is one of the most challenging tasks in medical image analysis. In this work,
we propose an extension of the well-established diffeomorphic Demons registration algorithm to take into
account geometric constraints. Combining the deformation field induced by the image and the geometry, we
define a mathematically sound framework to jointly register images and geometric descriptors such as fibers
or sulcal lines. We demonstrate this framework by registering simultaneously T1 images and 50 fiber bundles
consistently extracted in 12 subjects. Results show the improvement of fibers alignment while maintaining,
and sometimes improving image registration. Further comparisons with non-linear T1 and tensor registration
demonstrate the superiority of the Geometric Demons over their purely iconic counterparts. See also [28] and
Fig. 10.

7. Contracts and Grants with Industry

7.1. Grants with Industry: Abrain project
Participants : Bertrand Thirion [Correspondant] , Jean-Baptiste Poline.
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Figure 10. Influence of the fiber weighting term on the registration accuracy. Fibers of 11 subjects were
overlapped after registration with the Geometric Demons for three values of the fiber weighting parameter.

Corresponding fibers in different subjects share colors.

Joint acquisition of neuroimaging and genetic data on large cohorts of subjects is a new approach used to
assess and understand the variability that exists between individuals, and that has remained poorly understood
so far. As both neuroimaging- and genetic-domain observations represent a huge amount of variables (of the
order of 106 ), performing statistically rigorous analyses on such amounts of data represents a computational
challenge that cannot be addressed with conventional computational techniques. In this project, we plan to
introduce grid and cloud computing techniques to address the computational challenge using cloud computing
tools developed at INRIA (Kerdata team) and the Microsoft Azure cloud computing environment.

The ABrain project(2010-2013), funded by INRIA-Microsoft common lab.

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Digiteo: Hidinim Project

Participants: Bertrand Thirion [Correspondant], Virgile Fritsch.

High-dimensional Neuroimaging– Statistical Models of Brain Variability observed in Neuroimaging

This is a joint project with Select project team and with SUPELEC Sciences des Systèmes (E3S), Département
Signaux & Systèmes Électroniques (A. Tennenhaus).

Statistical inference in a group of subjects is fundamental to draw valid neuroscientific conclusions that gen-
eralize to the whole population, based on a finite number of experimental observations. Crucially, this gen-
eralization holds under the hypothesis that the population-level distribution of effects is estimated accurately.
However, there is growing evidence that standard models, based on Gaussian distributions, do not fit well
empirical data in neuroimaging studies.

In particular, Hidinim is motivated by the analysis of new databases hosted and analyzed at Neurospin that
contain neuroimaging data from hundreds of subjects, in addition to genetic and behavioral data. We propose
to investigate the statistical structure of large populations observed in neuroimaging. In particular, we will
investigate the use of region-level averages of brain activity, that we plan to co-analyse with genetic and
behavioral information, in order to understand the sources of the observed variability. This entails a series
of modeling problems that we will address in this project: i) Distribution normality assessment and variables
covariance estimation, ii) model selection for mixture models and iii) setting of classification models for
heterogeneous data, in particular for mixed continuous/discrete distributions.
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8.1.2. Digiteo: MMoVNI project
Participants: Bertrand Thirion [Correspondant], Pierre Fillard, Viviana Siless, Stéphanie Allassonnière, Hao
Xu.

This is a joint project with CMAP http://www.cmapx.polytechnique.fr/~allassonniere/, for the 2010-2013
period.

Modelling and understanding brain structure is a great challenge, given the anatomical and functional
complexity of the brain organ. In addition to this, there is a large variability of these characteristics among
the population. To give a possible answer to these issues, medical imaging researchers proposed to construct
a template image. Most of the time, these analysis only focus on one category of signals (called modality),
in particular, the anatomical one was the main focus of research these past years. Moreover, these techniques
are often dedicated to a particular problem and raise the question of their mathematical foundations. The
MMoVNI project aims at building atlases based on multi-modal images (anatomy, diffusion and functional)
data bases for given populations. An atlas is not only a template image but also a set of admissible deformations
which characterize the observed population of images. The estimation of these atlases will be based on a new
generation of deformation and template estimation procedures that builds an explicit statistical generative
model of the observed data. Moreover, they enable to infer all the relevant variables (parameters of the
atlases) thanks to stochastic algorithms. Lastly, this modeling allows also to prove the convergence of both
the estimator and the algorithms which provides a theoretical guarantee to the results. The models will first be
proposed independently for each modality and then merged together to take into account, in a correlated way,
the anatomy, the local connectivity through the cortical fibers and the functional response to a given cognitive
task. This model will then be generalized to enable the non-supervised clustering of a population. This leads
therefore to a finer representation of the population and a better comparison for classification purposes for
example. The Neurospin center, partner of this project, will allow us to have access to databases of images of
high-quality and high-resolution for the three modalities: anatomical, diffusion and functional imaging. This
project is expected to contribute to making neuroimaging a more reliable tool for understanding inter-subject
differences, which will eventually benefit to the understanding and diagnosis of various brain diseases like
Alzheimer’s disease, autism or schizophrenia.

8.2. National Initiatives
8.2.1. ANR IRMGroup

Participants: Bertrand Thirion [Correspondant], Alexandre Gramfort, Michael Eickenberg.

This is a joint project with Polytechnique/CMAP http://www.cmap.polytechnique.fr/ : Stéphanie Allassonnière
and Stéphane Mallat (2010-2013).

Much of the visual cortex is organized into visual field maps, which means that nearby neurons have receptive
fields at nearby locations in the image. The introduction of functional magnetic resonance imaging (fMRI) has
made it possible to identify visual field maps in human cortex, the most important one being the medial
occipital cortex (V1,V2,V3). It is also possible to relate directly the activity of simple cells to an fMRI
activation pattern and Parietal developed some of the most effective methods. However, the simple cell model
is not sufficient to account for high-level information on visual scenes, which requires the introduction of
specific semantic features. While the brain regions related to semantic information processing are now well
understood, little is known on the flow of visual information processing between the primary visual cortex and
the specialized regions in the infero-temporal cortex. A central issue is to better understand the behavior of
intermediate cortex layers.

Our proposition is to use our mathematical approach to formulate explicitly some generative model of
information processing, such as those that characterize complex cells in the visual cortex, and then to identify
the brain substrate of the corresponding processing units from fMRI data. While fMRI resolution is still too
coarse for a very detailed mapping of detailed cortical functional organization, we conjecture that some of the
functional mechanisms that characterize biological vision processes can be captured through fMRI; in parallel
we will push the fMRI resolution to increase our chance to obtain a detailed mapping of visual cortical regions.

http://www.cmapx.polytechnique.fr/~allassonniere/
http://www.cmap.polytechnique.fr/
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8.2.2. ANR Vimagine
Participants: Bertrand Thirion [Correspondant], Alexandre Gramfort, Michael Eickenberg, Fabian Pe-
dregosa.

Vimagine is an ANR blanc project (2008-2012), which aims at building a novel view on the retinotopic
organization of the visual cortex, based on MEG and MRI. Vimagine should open the way to understanding
the dynamics of brain processes for low-level vision, with an emphasis on neuropathologies. This project
is leaded by S. Baillet ( MMiXT, CNRS UPR640 LENA, Pitié-Salpêtrière), in collaboration with M.Clerc,
T. Papadopoulos (INRIA Sophia-Antipolis, Odyssée) and J. Lorenceau(LPPA, CNRS, Collège de France).
The fMRI part of the project will be done by PARIETAL, and will consist in a study of spatially resolved
retinotopic maps at the mm scale, the decoding of retinotopic information and the comparison of retinotopy
with sulco-gyral anatomy.

8.2.3. ANR BrainPedia
Participants: Bertrand Thirion [Correspondant], Yannick Schwartz, Virgile Fritsch.

BrainPedia is an ANR JCJC (2011-2015) which addresses the following point:

Neuroimaging produces huge amounts of complex data that are used to better understand the relations between
brain structure and function. While the acquisition and analysis of this data is getting standardized in some
aspects, the neuroimaging community is still largely missing appropriate tools to store and organise the
knowledge related to the data. Taking advantage of common coordinate systems to represent the results
of group studies, coordinate-based meta-analysis approaches associated with repositories of neuroimaging
publications provide a crude solution to this problem, that does not yield reliable outputs and looses most
of the data-related information. In this project, we propose to tackle the problem in a statistically rigorous
framework, thus providing usable information to drive neuroscientific knowledge and questions.

8.3. International Initiatives
8.3.1. INRIA Associate Teams
8.3.1.1. CAPNEONATES

Title: Analysis of structural MR and DTI in neonates

INRIA principal investigator: Pierre Fillard

International Partner:

Institution: University of Southern California (United States)

Laboratory: Image Lab at Children Hospital at Los Angeles

Researcher: Natasha Lepore

International Partner:

Institution: University of Pennsylvania (United States)

Laboratory: Penn Image Computing and Science Laboratory

Researcher: Caroline Brun

Duration: 2011 - 2013

See also: http://www.capneonates.org/

http://www.capneonates.org/
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While survival is possible at increasingly lower gestational ages at birth, premature babies are at
higher risk of developing mental disorders or learning disabilities than babies born at term. A
precise identification of the developmental differences between premature and control neonates is
consequently of utmost importance. Nowadays, the continuously improving quality and availability
of MR systems makes it possible to precisely determine, characterize and compare brain structures
such as cortical regions, or white matter fiber bundles. The objective of this project is to understand
the developmental differences of premature versus normal neonates, using structural and diffusion
MRI. This work will consist in identifying, characterizing and meticulously studying the brain
structures that are different between the two groups. To do so, we propose to join forces between
the Parietal team at INRIA and the University of Southern California. Parietal has a recognized
expertise in medical image registration and in statistical analyses of groups of individuals. USC has
a broad knowledge in MR image processing. In particular, the Children’s Hospital at Los Angeles
(CHLA), which is part of USC, is in the process of collecting a unique database of several hundreds
of premature and normal neonates MR scans. This joint collaboration is consequently a unique
chance of addressing key questions pertaining to neonatal and premature development. It will make
it possible to elaborate new tools to analyze neonate MR images while tremendously increasing our
knowledge of neuroanatomy at such an early stage in life.

8.3.2. INRIA International Partners

• LIAMA http://www.nlpr.ia.ac.cn/jiangtz/: B.Thirion visited LIAMA (contact person: Shan Yu) in
May and gave a presentation. We plan to develop come collaborations on fMRI data analysis and
functional connectivity in the future.

• Donders institute https://sites.google.com/a/distrep.org/distrep/marcel-van-gerven: We share with
M. van Gerven some interest on biological vision and on the use of fMRI to probe specific hypotheses
related to computational models of vision. We hope to have a student in common in the future.

• Biomedical Image analysis group, Imperial College, London http://www.doc.ic.ac.uk/~dr/: We have
started some joint work on the comparison of functional and anatomical connectivity using machine
learning tools. We showed preliminary common contributions at IPMI and MLINI 2011.

• MIT, CSAIL http://www.csail.mit.edu/, P.Golland’s group : we regularly visit each other and share
common interests in the use of machine learning for neuroimaging, in the introduction of functional
information into co-registration procedures, and in the study and comparison of anatomical and
functional connectivity. We plan a common project and more visits for next year.

8.3.3. Visits of International Scientists
Bernard Ng, from Biomedical Image and Signal Computing Laboratory, British Columbia University http://
bisicl.ece.ubc.ca/, has visited Parietal from Sept 1st, 2010 to March 1st, 2011. The collaboration is about the
introduction of functional connectivity into the analysis of fMRI activation data.

8.3.4. Participation In International Programs
Parietal has taken part to the program INRIA@SiliconValley, and had a 18-months post-doc funded to work
on the comparison of anatomical and fuctional connectivity (18 months, 2011-2013):

In this project, we would like to build probabilistic models that relates quantitatively the observations in
anatomical and functional connectivity. For instance given a set of brain regions, the level of functional
integration might be predicted by the anatomical connectivity measurement derived from the fibers in a given
population of subjects. More generally, we will seek to extract latent factors explaining both connectivity
measures across the population. Such models require specifically that a generative model is proposed to explain
the observations in either domain, so that a meaningful and testable link is built between the two modalities.
The inference problem can then be formulated as learning the coupling parameters that are necessary to
model the association between modalities, and tested e.g. by assessing the ability of the learned model to
generalize to new subjects. The aim is then to provide the mathematical and algorithmic tools necessary to

http://www.nlpr.ia.ac.cn/jiangtz/
https://sites.google.com/a/distrep.org/distrep/marcel-van-gerven
http://www.doc.ic.ac.uk/~dr/
http://www.csail.mit.edu/
http://bisicl.ece.ubc.ca/
http://bisicl.ece.ubc.ca/
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build a standardized model of brain connectivity informed by both modalities, associated with confidence
intervals to take into account between subject variability. Such an atlas is a long-term project, that requires
adequate validation on high-resolution data, but it will probably be tightly linked to this project.

9. Dissemination

9.1. Animation of the scientific community
• Organization of the euroscipy conference (August 25–28, G. Varoquaux): http://www.euroscipy.org/

conference/euroscipy2011.

• Organisation of the Python in neuroscience workshop of the Euroscipy conference on August 29–30
(B.Thirion, G. Varoquaux): http://pythonneuro.sciencesconf.org

• Organization of the Machine learning in Neuroscience workshop in Marseille on November 8–9
(B.Thirion), http://mlni2011.sciencesconf.org/.

• Organization of a Workshop on Neuroimaging and genetics data analysis, November 30, Paris,
is conjunction with ITMO Neurosciences, ITMO génétique and ITMO Technology pour la Santé
(B.Thirion) https://itneuro.aviesan.fr.

• Co-organization of NIPS 2011 workshop on machine learning and interpretation in neuroimaging,
Dec. 17–18 https://sites.google.com/site/mlini2011/

• Worskshops at the OHBM 2011 conference (J.B. Poline, B. Thirion, G. Varoquaux):

– Group Inference for On-Going Activity: How to Compare Intrinsic Functional Connectiv-
ity

– Imaging Genetics: Multivariate Analyses for Neural and Genetic Circuitry

– Neuroimaging data sharing

• Course at scipy and scipy India by G. Varoquaux.

9.2. Teaching
Master MVA: Imagerie fonctionnelle cérébrale et interface cerveau machine, 12h, M2, ENS Cachan,
France

Master biostatistiques: cours de biostatistique computationnelle, 6h, M2, Paris XI, France

CogMaster : Imagerie fonctionnelle, 24h, M2, ENS Ulm, France
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