
Activity Report 2011

Team PARKAS

Parallélisme de Kahn Synchrone

RESEARCH CENTER
Paris - Rocquencourt

THEME
Embedded and Real Time Systems

Table of contents

1. Members . 1
2. Overall Objectives . 2
3. Scientific Foundations .2

3.1.1. Synchronous functional programming 2
3.1.2. Relaxing synchrony with buffer communication 3
3.1.3. Polyhedral compilation and optimizing compilers 3
3.1.4. Automatic compilation of high performance circuits 4

4. Application Domains .4
5. Software . 6

5.1. Lucid Synchrone 6
5.2. ReactiveML 6
5.3. Heptagon 7
5.4. Lucy-n 7
5.5. ML-Sundials 7
5.6. GCC 8
5.7. isl 8

6. New Results . 8
6.1. Compilation techniques for synchronous languages 8
6.2. Semantics and Implementation of Hybrid System Modelers 9
6.3. N-Synchronous Languages 10
6.4. Synchronous Circuits 10
6.5. Reactive Programming 10
6.6. Polyhedral Compilation 11
6.7. Parallel Data-Flow Programming 11

7. Contracts and Grants with Industry . 12
8. Partnerships and Cooperations . 12

8.1. National Initiatives 12
8.1.1. INRIA Action d’Envergure Synchronics 12
8.1.2. PARTOUT 12
8.1.3. Mediacom Project 13

8.2. European Initiatives 13
8.2.1. HiPEAC network of excellence 13
8.2.2. TERAFLUX integrated project 13
8.2.3. PHARAON specific targeted research project 13
8.2.4. CARP specific targeted research project 13
8.2.5. Collaborations in European Programs, except FP7 14

8.3. International Initiatives 14
8.3.1.1. International guests of the PARKAS seminars 14
8.3.1.2. Other visits 14
8.3.1.3. Supervision of post-docs, theses and Internships 14

9. Dissemination . 15
9.1. Animation of the scientific community 15

9.1.1. Event organization 15
9.1.2. Editorial boards 15
9.1.3. Program committees 15
9.1.4. Participation to Thesis Committees 16
9.1.5. Invited Presentations 16

9.2. Interaction with the scientific community 16
9.2.1. Prizes and distinctions 16

2 Activity Report INRIA 2011

9.2.2. Collective responsibilities within INRIA 16
9.2.3. Collective responsibilities outside INRIA 16

9.3. Industrial Dissemination 17
9.4. Teaching 17

10. Bibliography .17

Team PARKAS

Keywords: Compiling, Embedded Systems, Parallelism, Programming Languages, Syn-
chronous Languages

The PARKAS team was established on April 1st 2011. It is located at École Normale Supérieure. The team is
also a member of the Département d’Informatique of ENS.

1. Members
Research Scientist

Albert Cohen [Senior Researcher INRIA, HdR]
Faculty Members

Marc Pouzet [Team leader, ENS, Professor at UPMC, HdR]
Jean Vuillemin [ENS, Director of DI until August 2011, HdR]
Louis Mandel [Université Paris Sud]

PhD Students
Sean Halle [University of California Santa Cruz, INRIA contract, until June 2011]
Konrad Trifunovic [Université Paris Sud, INRIA contract, until July 2011]
Cedric Auger [Université Paris Sud, MESR scholarship]
Cupertino Miranda [Université Paris Sud, Portuguese FCT grant]
Boubacar Diouf [Université Paris Sud, ATER, until December 2011]
Léonard Gérard [Université Paris Sud, AMN]
Cedric Pasteur [Université Paris Diderot, AMX]
Ramakrishna Upadrasta [Université Paris Sud, MESR scholarship]
Jean-Yves Vet [UPMC, External student, CEA DAM]
Tobias Grosser [Google Doctoral Fellowship, from August 2011]
Riyadh Baghdadi [UPMC, ENS contract, from October 2011]
Adrien Guatto [ENS contract, from October 2011]

Post-Doctoral Fellows
Sven Verdoolaege [Until June 2011]
Timothy Bourke [Until September 2011]
Mehdi Doggi [ENS, From December 2011]
Antoniu Pop [From October 2011]

Others
Camille Gallet [Engineer, September to December 2011]
Ivan Llopard [External engineer, CEA LETI, From August 2011]
Riyadh Baghdadi [UPMC, Master 2 Intern, April to September 2011]
Adrien Guatto [UPMC, Master 2 Intern, April to September 2011]
Brice Gelineau [École Polytechnique, Master 1 Intern, April to July 2011]
Boris Arnoux [École Polytechnique and Telecom ParisTech, Master 2 Intern, July to December 2011]

2 Activity Report INRIA 2011

2. Overall Objectives
2.1. Highlights

• Tobias Grosser has been awarded a Google European Doctoral Fellowship, a highly competitive 3
years scholarship of 120k ¤(14 recipients in 2011).

3. Scientific Foundations
3.1. Presentation and originality of the PARKAS team

Our project is founded on our expertise in three complementary domains: (1) synchronous functional program-
ming and its extensions to deal with features such as communication with bounded buffers and dynamic pro-
cess creation; (2) mathematical models for synchronous circuits; (3) compilation techniques for synchronous
languages and optimizing/parallelizing compilers.

A strong point of the team is its experience and investment in the development of languages and compilers.
Members of the team also have direct collaborations for several years with major industrial companies in the
field and several of our results are integrated in successful products. Our main results are briefly summarized
below.

3.1.1. Synchronous functional programming
In [19], Paul Caspi and Marc Pouzet introduced synchronous Kahn networks as those Kahn networks that
can be statically scheduled and executed with bounded buffers. This was the origin of the language LUCID
SYNCHRONE, 12 an ML extension of the synchronous language LUSTRE with higher-order features, dedicated
type systems (clock calculus as a type system [19], [30], initialization analysis [31] and causality analysis
[33]). The language integrates original features that are not found in other synchronous languages: such as
combinations of data flow, control flow, hierarchical automata and signals [29], [28], and modular code
generation [20], [14].

In 2000, Marc Pouzet started to collaborate with the SCADE team of Esterel-Technologies on the design of a
new version of SCADE. 3 Several features of LUCID SYNCHRONE are now integrated into SCADE 6, which
has been distributed since 2008, including the programming constructs merge, reset, the clock calculus and
the type system. Several results have been developed jointly with Jean-Louis Colaço and Bruno Pagano from
Esterel-Technologies, such as ways of combining data-flow and hierarchical automata, and techniques for their
compilation, initialization analysis, etc.

Dassault-Systèmes (Grenoble R&D center, part of Delmia-automation) developed the language LCM, a
variant of LUCID SYNCHRONE that is used for the simulation of factories. LCM follows closely the principles
and programming constructs of LUCID SYNCHRONE (higher-order, type inference, mix of data-flow and
hierarchical automata). The team in Grenoble is integrating this development into a new compiler for the
language Modelica. 4

In parallel, the goal of REACTIVEML5 was to integrate a synchronous concurrency model into an existing ML
language, with no restrictions on expressiveness, so as to program a large class of reactive systems, including
efficient simulations of millions of communicating processes (e.g., sensor networks), video games with many
interactions, physical simulations, etc. For such applications, the synchronous model simplifies system design
and implementation, but the expressiveness of the algorithmic part of the language is just as essential, as is the
ability to create or stop a process dynamically.

1http://www.di.ens.fr/~pouzet/lucid-synchrone
2The name is a reference to Lustre which stands for “Lucid Synchrone et Temps réel”.
3http://www.esterel-technologies.com/products/scade-suite/
4http://www.3ds.com/products/catia/portfolio/dymola/overview/
5http://rml.lri.fr/

http://www.di.ens.fr/~pouzet/lucid-synchrone
http://www.esterel-technologies.com/products/scade-suite/
http://www.3ds.com/products/catia/portfolio/dymola/overview/
http://rml.lri.fr/

Team PARKAS 3

The development of REACTIVEML was started by Louis Mandel during his PhD thesis [49], [46] and is
ongoing. The language extends OCAML6 with Esterel-like synchronous primitives — synchronous composi-
tion, broadcast communication, pre-emption/suspension — applying the solution of Boussinot [15] to solve
causality issues.

Several open problems have been solved by Louis Mandel: the interaction between ML features (higher-
order) and reactive constructs with a proper type system; efficient simulation that avoids busy waiting. The
latter problem is particularly difficult in synchronous languages because of possible reactions to the absence of
a signal. In the REACTIVEML implementation, there is no busy waiting: inactive processes have no impact on
the overall performance. It turns out that this enables REACTIVEML to simulate millions of (logical) parallel
processes and to compete with the best event-driven simulators [50].

REACTIVEML has been used for simulating routing protocols in ad-hoc networks [45] and large scale
sensor networks [61]. The designer benefits from a real programming language that gives precise control
of the level of simulation (e.g., each network layer up to the MAC layer) and programs can be connected to
models of the physical environment programmed with LUTIN [60]. REACTIVEML is used since 2006 by the
synchronous team at VERIMAG, Grenoble (in collaboration with France-Telecom) for the development of
low-consumption routing protocols in sensor networks.

3.1.2. Relaxing synchrony with buffer communication
In the data-flow synchronous model, the clock calculus is a static analysis that ensures execution in bounded
memory. It checks that the values produced by a node are instantaneously consumed by connected nodes
(synchronous constraint). To program Kahn process networks with bounded buffers (as in video applications),
it is thus necessary to explicitly place nodes that implement buffers. The buffers sizes and the clocks at which
data must be read or written have to be computed manually. In practice, it is done with simulation or successive
tries and errors. This task is difficult and error prone. The aim of the n-synchronous model is to automatically
compute at compile time these values while insuring the absence of deadlock.

Technically, it allows processes to be composed whenever they can be synchronized through a bounded buffer
[22], [23]. The new flexibility is obtained by relaxing the clock calculus by replacing the equality of clocks
by a sub-typing rule. The result is a more expressive language which still offers the same guarantees as the
original. The first version of the model was based on clocks represented as ultimately periodic binary words
[67]. It was algorithmically expensive and limited to periodic systems. In [26], an abstraction mechanism
is proposed which permits direct reasoning on sets of clocks that are defined as a rational slope and two
shifts. An implementation of the n-synchronous model, named LUCY-N, was developed in 2009 [47], as
was a formalization of the theory in COQ [27]. We also worked on low-level compiler and runtime support
to parallelize the execution of relaxed synchronous systems, proposing a portable intermediate language and
runtime library called ERBIUM [51].

This work started as a collaboration between Marc Pouzet (LIP6, Paris, then LRI and INRIA Proval,
Orsay), Marc Duranton (Philips Research then NXP, Eindhoven), Albert Cohen (INRIA Alchemy, Orsay)
and Christine Eisenbeis (INRIA Alchemy, Orsay) on the real-time programming of video stream applications
in set-top boxes. It was significantly extended by Louis Mandel and Florence Plateau during her PhD thesis
[54] (supervised by Marc Pouzet and Louis Mandel). Low-level support has been investigated with Cupertino
Miranda, Philippe Dumont (INRIA Alchemy, Orsay) and Antoniu Pop (Mines ParisTech).

3.1.3. Polyhedral compilation and optimizing compilers
Despite decades of progress, the best parallelizing and optimizing compilers still fail to extract parallelism
and to perform the necessary optimizations to harness multi-core processors and their complex memory
hierarchies. Polyhedral compilation aims at facilitating the construction of more effective optimization and
parallelization algorithms. It captures the flow of data between individual instances of statements in a loop nest,
allowing to accurately model the behavior of the program and represent complex parallelizing and optimizing
transformations. Affine multidimensional scheduling is one of the main tools in polyhedral compilation [34].

6More precisely a subset of OCAML without objects or functors.

4 Activity Report INRIA 2011

Albert Cohen, in collaboration with Cédric Bastoul, Sylvain Girbal, Nicolas Vasilache, Louis-Noël Pouchet
and Konrad Trifunovic (LRI and INRIA Alchemy, Orsay) has contributed to a large number of research,
development and transfer activities in this area.

The relation between polyhedral compilation and data-flow synchrony has been identified through data-flow
array languages [43], [37], [62], [35] and the study of the scheduling and mapping algorithms for these
languages. We would like to deepen the exploration of this link, embedding polyhedral techniques into the
compilation flow of data-flow, relaxed synchronous languages.

Our previous work led to the design of a theoretical and algorithmic framework rooted in the polyhedral
model of compilation, and to the implementation of a set of tools based on production compilers (Open64,
GCC) and source-to-source prototypes (PoCC, http://pocc.sourceforge.net). We have shown that not only does
this framework simplify the problem of building complex loop nest optimizations, but also that it scales
to real-world benchmarks [24], [36], [57], [56]. The polyhedral model has finally evolved into a mature,
production-ready approach to solve the challenges of maximizing the scalability and efficiency of loop-based
computations on a variety of high performance and embedded targets.

After an initial experiment with Open64 [25], [24], we ported these techniques to the GCC compiler [55],
[64], [63], applying them to multi-level parallelization and optimization problems, including vectorization and
exploitation of thread-level parallelism. Independently, we made significant progress in the design of effective
optimization heuristics, working on the interactions between the semantics of the compiler’s intermediate
representation and the structure of the optimization space [57], [56], [58], [6]. These results open opportunities
for complex optimizations that target larger problems, such as the scheduling and placement of process
networks, or the offloading of computational kernels to hardware accelerators (such as GPUs).

3.1.4. Automatic compilation of high performance circuits
For both cost and performance reasons, computing systems tightly couple parts realized in hardware with
parts realized in software. The boundary between hardware and software keeps moving with the underlying
technology and the external economic pressure. Moreover, thanks to FPGA technology, hardware itself has
become programmable. There is now a pressing need from industry for hardware/software co-design, and for
tools which automatically turn software code into hardware circuits, or more usually, into hybrid code that
simultaneously targets GPUs, multiple cores, encryption ASICs, and other specialized chips.

Departing from customary C-to-VHDL compilation, we trust that sharper results can be achieved from source
programs that specify bit-wise time/space behavior in a rigorous synchronous language, rather than just the
I/O behavior in some (ill-specified) subset of C. This specification allows the designer to also program the
(asynchronous) environment in which to operate the entire system, and to profile/measure/control each variable
of the design.

At any time, the designer can edit a single specification of the system, from which both the software and
the hardware are automatically compiled, and guaranteed to be compatible. Once correct (functionally and
with respect to the behavioral specification), the application can be automatically deployed (and tested) on a
hard/soft hybrid co-design support.

Key aspects of the advocated methodology were validated by Jean Vuillemin in the design of a PAL2HDTV
video sampler [52], [53]. The circuit was automatically compiled from a synchronous source specification,
decorated and guided by a few key hints to the hardware back-end, that targetted an FPGA running at real-time
video specifications: a tightly-packed highly-efficient design at 240MHz, generated 100% automatically from
the application specification source code, and including all run-time/debug/test/validate ancillary software.
It was subsequently commercialized on FPGA by LetItWave, and then on ASIC by Zoran. This successful
experience underlines our research perspectives on parallel synchronous programming.

4. Application Domains

http://pocc.sourceforge.net

Team PARKAS 5

4.1. Application Domains
The goal of the PARKAS project is the design, semantics and compilation of languages for the implementation
of provably safe and efficient computing systems. We are driven by the ideal of a unique source code used
both to program and simulate a wide variety of systems, including (1) embedded real-time controllers (e.g.,
fly-by-wire, engine control); (2) computationally intensive applications (signal processing, numerical, non-
numerical); (3) the simulation of (a possibly huge number of) embedded systems in close interaction (e.g.,
simulation of factories, electrical or sensor networks, train tracking). All these applications share the need for
formally defined languages used both for simulation and the generation of target code. For that purpose, we
design languages and experiment with compilers that transform mathematical specifications of systems into
target code, that may execute on parallel (multi-core) architectures.

Our research team draws inspiration and focus from the simplicity and complementarity of the data-flow model
of Kahn process networks [39], synchronous concurrency [13], and the expression of the two in functional
languages [18], [49]. To reach our goal, we plan to leverage a large body of formal principles: language
design, semantics, type theory, concurrency models, synchronous circuits and algorithms (code generation,
optimization, polyhedral compilation).

The activity of the project is in the field of formal methods and compilation techniques for the development of
computing and communicating reactive applications.

The project addresses the design, semantics and implementation of programming languages together with
compilation techniques to develop provably safe and efficient computing systems. Traditional applications
can be found in safety critical embedded systems with hard real-time constraints such as avionics (e.g.,
fly-by-wire command), railways (e.g., on board control, engine control), nuclear plants (e.g., emergency
control of the plant). While embedded applications have been centralized, they are now massively parallel
and physically distributed (e.g., sensor networks, train tracking, distributed simulation of factories) and they
integrate computationally intensive algorithms (e.g., video processing) with a mix of hard and soft real-time
constraints. Finally, systems are heterogeneous with discrete devices communicating with physical ones (e.g.,
interface between analog and digital circuits). Programming and simulating a whole system from a unique
source code, with static guarantees on the reproducibility of simulations together with a compiler to generate
target embedded code is a scientific and industrial challenge of great importance.

The theoretical and practical interest of synchronous languages [12] is well established (Airbus A340
and A380 civil airplanes, EDF nuclear plants, railway signaling, system-on-chip for consumer electronics,
etc.). There are also a variety of modeling/programming tools for the development of embedded systems
(Simulink/StateFlow 7 by MathWorks, the academic tools Scilab/Scicos 8 or Ptolemy II 9). These tools allow
to program and simulate both the (discrete) controller and its physical (continuous) environment and are
thus more widely applicable than synchronous languages have been. Nonetheless, they suffer from semantics
issues [17], the non-reproducibility of simulations [21] and inefficiencies in generated code, which precludes
their use in the most critical software applications (e.g., civil avionics and railways) which are controlled by
independent certification authorities. To remedy these problems and to apply synchronous languages to a wider
range of applications, we believe that two main issues must be addressed:

1. The ability to program and simulate, from a single source code both the system (e.g., the discrete
controller) and its environment. The environment can be made of possibly huge numbers of other
processes that are added and removed dynamically, and that possibly evolve in continuous time.
This raises the question of the semantics and efficient simulation of the whole, the interaction with
numerical solvers, and the static isolation of parts of the code which execute in bounded time and
memory.

2. The ability to generate efficient parallel code from a synchronous specification, targeting modern
architectures including shared-memory multi-core processors, non-uniform or distributed memory

7http://www.mathworks.com/products/simulink
8http://www-rocq.inria.fr/scicos/
9http://ptolemy.berkeley.edu/ptolemyII/

http://www.mathworks.com/products/simulink
http://www-rocq.inria.fr/scicos/
http://ptolemy.berkeley.edu/ptolemyII/

6 Activity Report INRIA 2011

many-core architectures, tiled processor arrays, and heterogeneous systems with hardware accelera-
tors (like GPUs). This also raises the question of language annotations to describe architecture and
behavioral (e.g., real-time) constraints while preserving modular composition. It requires language
and compiler support for relaxed synchronous models with jittering or buffered communication.

Having these two objectives in mind, we adopt a language-centric approach, focusing our efforts on the
development of languages together with dedicated type systems and compilation techniques. We insist on
concrete implementations as they allow us to validate and experiment with our proposals. This experimental
point of view can be related to the Ptolemy project of Edward Lee in Berkeley [16]. Our technical approach
is distinguished, however, by a focus on the synchronous model and a preference for typed functional
programming.

There is also the observation that the synchronous model is expressive enough to account for other concurrency
models (e.g., discrete-event and continuous [41], asynchronous communication [38]). Basing our study
on the data-flow synchronous model will make it easier to design a sound, common semantics for all the
language features. It will also simplify the remaining test and verification steps; this approach has proved to
be crucial for the industrial success of the synchronous languages. Finding efficient ways to perform the early
simulation of mixed discrete-continuous programs is also essential in the design flow of today’s embedded
systems. The creation of such simulation tools and associated tools for parallel code generation is a central
and distinguishing feature of our proposal.

5. Software

5.1. Lucid Synchrone
Participant: Marc Pouzet [contact].

Lucid Synchrone is a language for the implementation of reactive systems. It is based on the synchronous
model of time as provided by Lustre combined with features from ML languages. It provides powerful
extensions such as type and clock inference, type-based causality and initialization analysis and allows to
arbitrarily mix data-flow systems and hierarchical automata or flows and valued signals.

It is distributed under binary form, at URL http://www.di.ens.fr/~pouzet/lucid-synchrone/.

The language was used, from 1996 to 2006 as a laboratory to experiment various extensions of the lan-
guage Lustre. Several programming constructs (e.g. merge, last, mix of data-flow and control-structures like
automata), type-based program analysis (e.g., typing, clock calculus) and compilation methods, originaly
introduced in Lucid Synchrone are now integrated in the new SCADE 6 compiler developped at Esterel-
Technologies and commercialized since 2008.

Three major release of the language has been done and the current version is V3 (dev. in 2006). The language
is still used for teaching and in our research but we do not develop it anymore. Nonetheless, we have integrated
several features from Lucid Synchrone in new research prototypes described below.

5.2. ReactiveML
Participants: Mehdi Dogguy, Louis Mandel [contact], Cédric Pasteur.

ReactiveML is a programming language dedicated to the implementation of interactive systems as found
in graphical user interfaces, video games or simulation problems. ReactiveML is based on the synchronous
reactive model due to Boussinot, embedded in an ML language (Objective Caml).

The Synchronous reactive model provides synchronous parallel composition and dynamic features like the
dynamic creation of processes. In ReactiveML, the reactive model is integrated at the language level (not as a
library) which leads to a safer and a more natural programming paradigm.

http://www.di.ens.fr/~pouzet/lucid-synchrone/

Team PARKAS 7

ReactiveML is distributed at URL http://www.lri.fr/~mandel/rml. The compiler is distributed under the terms
of the Q Public License and the library is distributed under the terms of the GNU Library General Public
License. The development of ReactiveML started at the University Paris 6 (from 2002 to 2006).

The language was mainly used for the simulation of mobile ad hoc networks at the University Paris 6 and for
the simulation of sensor networks at France Telecom and Verimag (CNRS, Grenoble).

5.3. Heptagon
Participants: Cédric Pasteur [contact], Brice Gelineau, Léonard Gérard, Adrien Guatto, Cédric Pasteur, Marc
Pouzet.

Heptagon is an experimental language for the implementation of embedded real-time reactive systems. It
is developed inside the Synchronics large-scale initiative, in collaboration with INRIA Rhones-Alpes. It is
essentially a subset of Lucid Synchrone, without type inference, type polymorphism and higher-order. It is
thus a Lustre-like language extended with hierchical automata in a form very close to SCADE 6. The intention
for making this new language and compiler is to develop new aggressive optimization techniques for sequential
C code and compilation methods for generating parallel code for different platforms. This explains much of
the simplifications we have made in order to ease the development of compilation techniques.

Some extensions have already been made, most notably automata. It’s currently used to experiment with
linear typing for arrays and also to introduce a concept of asynchronous parallel computations. The compiler
developed in our team generates C, java and VHDL code.

Heptagon is jointly developed by Gwenael Delaval and Alain Girault from the INRIA POP ART team
(Grenoble).

5.4. Lucy-n
Participants: Louis Mandel [contact], Adrien Guatto, Marc Pouzet.

http://www.lri.fr/~mandel/lucy-n

Lucy-n is a language to program in the n-synchronous model. The language is similar to Lustre with a buffer
construct. The Lucy-n compiler ensures that programs can be executed in bounded memory and automatically
computes buffer sizes. Hence this language allows to program Kahn networks, the compiler being able to
statically compute bounds for all FIFOs in the program.

5.5. ML-Sundials
Participants: Timothy Bourke, Marc Pouzet [contact].

ML-Sundials library provides an Ocaml interface to the Sundials numerical suite 10 (version 2.4.0). This
library is used for solving and initial value problem and includes a zero-crossing detection mechanism. Only
the CVODE solver with serial nvectors is currently supported. The structure and naming conventions largely
follow the original libraries, both for ease of reading the existing documentation and for converting existing
source code, but several changes have been made for programming convenience, namely:

• solver sessions are configured through algebraic data types rather than through multiple function
calls,

• error conditions are signalled by exceptions rather than return codes (including in user-supplied
callback routines),

• closures (partial applications of higher-order functions) are used to share user data between callback
routines, and,

• explicit free commands are not necessary nor provided since Ocaml is a garbage-collected language.

10https://computation.llnl.gov/casc/sundials/main.html

http://www.lri.fr/~mandel/rml
http://www.lri.fr/~mandel/lucy-n
https://computation.llnl.gov/casc/sundials/main.html

8 Activity Report INRIA 2011

The library is in use in a new synchronous hybrid language we are currently developping.

5.6. GCC
Participants: Albert Cohen [contact], Tobias Grosser, Antoniu Pop, Konrad Trifunovic, Feng Li, Riyadh
Baghdadi, Cupertino Miranda.

http://gcc.gnu.org

Licence: GPLv3+ and LGPLv3+

The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as
well as libraries for these languages (libstdc++, libgcj,...). GCC was originally written as the compiler for the
GNU operating system. The GNU system was developed to be 100% free software, free in the sense that it
respects the user’s freedom.

PARKAS contributes to the polyhedral compilation framework, also known as Graphite. We also distribute an
experimental branch for a stream-programming extension of OpenMP, parallel data-flow programming, and
automatic parallelization to a data-flow runtime or architecture. This experiment borrows key design elements
to synchronous data-flow languages.

Tobias Grosser is the maintainer of the Graphite optimization pass of GCC.

5.7. isl
Participants: Sven Verdoolaege [contact], Tobias Grosser, Albert Cohen.

http://freshmeat.net/projects/isl

Licence: LGPLv2.1+

isl is a library for manipulating sets and relations of integer points bounded by linear constraints. Supported
operations on sets include intersection, union, set difference, emptiness check, convex hull, (integer) affine
hull, integer projection, transitive closure (and over-approximation), computing the lexicographic minimum
using parametric integer programming. It also includes an ILP solver based on generalized basis reduction. isl
also supports affine transformations for polyhedral compilation.

6. New Results

6.1. Compilation techniques for synchronous languages
• The paper Modular Static Scheduling of Synchronous Data-flow Programs by M. Pouzet and

P. Raymond (VERIMAG Grenoble) has been selected among the two best papers at EMSOFT
2009. An extended version is published in a special issue of the Journal of Design Automation
for Embedded Systems, in 2010. This work solves a 20 years problem raised by P. Raymond in 88
[59].

• Significant extensions have been provided to the Heptagon language. C. Pasteur contributed a
memory optimization pass, combining a static analysis with user-given annotations (a paper on this
subject is submitted to LCTES’2012), and the integration of discrete controller synthesis, developed
and used by the SARDES team at INRIA Rhones-Alpes. Other work-in-progress extensions and
experiments conducted inside the PARKAS team include the generation of VHDL code, parallel
code generation, and n-synchronous code generation from Lucy-n.

http://gcc.gnu.org
http://freshmeat.net/projects/isl

Team PARKAS 9

6.2. Semantics and Implementation of Hybrid System Modelers
Hybrid systems modelers have become the corner stone of embedded system development, with Simulink 11

a de facto standard and Modelica 12 a new player. They allow both discrete controllers and their continuous
environments to be expressed in a single language. Despite the availability of such tools, there remain a
number of issues related to the lack of reproducibility of simulations and to the separation of the continuous
part, which has to be exercised by a numerical solver, from the discrete part, which must be guaranteed not
to evolve during a step. Such tools still raise a number of issues that, we believe, require more fundamental
understanding.

In collaboration with Albert Benveniste and Benoit Caillaud (INRIA Rennes) we have proposed using non
standard analysis as a semantic domain for hybrid systems. Non standard analysis is an extension of classical
analysis in which infinitesimals can be manipulated as first class citizens. This allows us to provide a
denotational semantics and a constructive semantics for hybrid systems, thus establishing simulation engines
on a firm mathematical basis. In passing, we cleanly separate the job of the numerical analyst (solving
differential equations) from that of the computer scientist (generating execution schemes).

• In late 2010, we presented in 49th Conference on Design and Control in 2010 [11] the use of non
standard semantics as a semantical ground for a hybrid synchronous language.

• Since the, we have extended this work in the following directions: 1/ a synchronous Kahn semantics
for hybrid programs. Programs are viewed as synchronous ones running on an infinitely fast
discrete base clock of the form BaseClock(∂) = {n∂ | n ∈ IN}, with infinitesimal step ∂ and
IN the non-standard extension of N. 2/ the definition of a standardization principle that gives
sufficient conditions for a hybrid program to be standardizable. Under these conditions, the semantics
corresponds to the semantics using super-dense time [44], [40], [42] for hybrid systems defined in
[10]. 3/ a large amount of experimentations with Simulink to illustrate some of its pitfalls concerning
in particular the treatment of zero-crosing cascades. This work is detailled in a long paper appearing
in the Journal of Computer Science and Systems [1], in 2011.

• Starting from a minimal, yet full-featured, Lustre-like synchronous language, we have proposed a
conservative extension where data-flow equations can be mixed with ordinary differential equations
(ODEs) with possible reset. A type system is proposed to statically distinguish discrete computations
from continuous ones and to ensure that signals are used in their proper domains. The extended
data-flow language is realized through a source-to-source transformation into a synchronous subset,
which can then be compiled using existing tools into routines that are both efficient and bounded
in their use of memory. These routines are orchestrated with a single off-the-shelf numerical solver
using a simple but precise algorithm which treats causally-related cascades of zero-crossings. We
have validated the viability of the approach through experiments with the SUNDIALS 13 library.
The basis of this work has been presented at the ACM International Conference on Languages,
Compilers, Theory of Embedded Systems, 2011 [3].

• This work shows that it is possible to define a language which combines both the expressiveness of
synchronous a synchronous language and that of ODEs where continuous solvers are approximated
by a black-box solver. The most noticiable result was to recycle several techniques developed for
synchronous languages: Kahn semantics, compilation techniques, static analysis. During year 2011,
we extended the basic language with with hierarchical automata. This work has been presented at
the ACM International Conference on Embedded Software, 2011 [2].

• In parallel with these theoretical works, M. Pouzet and T. Bourke have developed during year 2011
a new synchronous language and its compiler. The language, called ZELUS, extends a synchronous
language with ODEs. It is first-order, functional and which mixes continuous-time and discrete-time
signals. The expressiveness is that of (the first-order subset of) Lucid Synchrone (e.g., type inference

11http://www.mathworks.fr/products/simulink/index.html
12https://modelica.org/
13https://computation.llnl.gov/casc/sundials/main.html

http://www.mathworks.fr/products/simulink/index.html
https://modelica.org/
https://computation.llnl.gov/casc/sundials/main.html

10 Activity Report INRIA 2011

and polymorphism, mix of data-flow and hierarchical automata) and ODEs with possible reset.
Continuous trajectories are computed by a black-box numerical solver and we made our experiments
with SUNDIALS.

6.3. N-Synchronous Languages
The n-synchronous model introduced a way to compose streams which have almost the same clock and can be
synchronized through the use of a finite buffer.

We have designed the language Lucy-n to program in this model of computation [4], [48]. This language
is similar to the first order synchronous data-flow language Lustre in which a buffer operator is added. A
dedicated type system allows to check that programs can be executed in bounded memory and to compute
the buffers sizes needed. Technically it is done through the introduction of a subtyping constraint at each
bufferization point.

To solve the subtyping constraints we have defined an algorithm that uses an improved version of the state-of-
the-art abstraction. We have proved the correctness properties of this new abstraction in Coq.

We also worked on new typing algorithms that do not use clock abstraction and thus allows to model Latency
Insensitive Design [5] in Lucy-n [48].

• A. Guatto, together with L. Mandel and M. Pouzet, worked on the code generation for Lucy-n. They
investigated two approaches. The first one was to use the schedules and buffer sizes computed by
the compiler to generate a classical Lustre program. The second approach was to define a dynamic
scheduling protocol similar to the ones used in latency insensitive designs.

• L. Mandel, in collaboration with F. Plateau (Prove&Run), developed a new resolution constraint
algorithm for the clocking of Lucy-n programs [4]. Even if the new algorithm is less efficient that
the one using abstraction, it has the advantage to be more precise and thus to accept more programs.

• L. Mandel, F. Plateau and M. Pouzet have extended the Lucy-n language with a new operator to be
able to model Latency Insensitive Designs. Thanks to the new resolution constraint algorithm, the
Lucy-n compiler is able to compute static schedules for such designs [5].

6.4. Synchronous Circuits
• Followed up on J. Vuillemin’s result that the XOR variant of non-deterministic automata can be

efficiently minimized [65], we explore this newly opened branch of computational automata theory.
One contribution is a Decision Diagram for Boolean functions which has minimal dimension: this
is appealing for both the verification and synthesis of memory-less circuits. Parts of this recent work
were presented at the Boole ANR cooperation [8] and Synchron 2011.

• An extension of Boolean Decison Diagrams to integer representation and operations is given in [66]:
we pursue software experimentations with arithmetics on such gigantic (yet sparse) numbers.

• The paper [32] was translated to English from the 1974 original and published in honor of Gilles
Kahn.

6.5. Reactive Programming
ReactiveML is an extension of OCaml with synchronous concurrency, based on synchronous parallel compo-
sition and broadcast of signals. The goal is to provide a general model of deterministic concurrency inside a
general purpose functional language to program reactive systems. It is particularly suited to program discrete
simulations, for instance of sensor networks. The current focus of the research is being able to simulate huge
systems, composed of millions of agents, by extending the current purely sequential implementation in order
to be able to take advantage of multi-core and distributed architectures.

Team PARKAS 11

A first experiment consisted in creating a parallel runtime without any modification to the language. As the
OCaml language on which ReactiveML is based (the ReactiveML compiler generates OCaml code) does not
allow to create parallel programs communicating via shared memory, the new runtime was written in the
F# language, part of Microsoft .Net environment. As the language is almost source to source compatible with
OCaml, the ReactiveML compiler was left untouched. Several parallel runtimes were written, using traditional
task scheduling techniques like work stealing or directly using light task mechanisms available in F#. This
experiment demonstrated many speedup opportunities by parallelizing the runtime but also highlighted several
problems and limitations of the language. Although this experiment was very useful in understanding the
stakes of parallelizing ReactiveML, the performance gap between OCaml and F# (OCaml generates sequential
code that is about 10 times slower) makes this version of the runtime of little practical use. We then proposed an
extension of ReactiveML called clock domains. It consists in creating local notions of instants that are invisible
from the outside. This extension should solve most of the problems raised by the previous experiment and
help the parallelization of the language. The sequential runtime was adapted to this extension and a distributed
version, using processes communicating via message passing, is currently being developed.

In collaboration with P. Attar (INRIA), F. Boussinot (INRIA) and J.-F. Susini (CNAM), L. Mandel worked on
the design of DSL [9], a script language for the orchestration of concurrent programs. L .Mandel developed in
ReactiveML and JoCaml an interpreter for the DSL language.

6.6. Polyhedral Compilation
L.-N. Pouchet presented fundamental advances in the construction and linear optimization of multidimensional
affine transformation spaces at the POPL 2011 conference, in collaboration with A. Cohen and colleagues from
Paris Sud University, Louisiana State University and Ohio State University.

Our team is actively integrating the polyhedral optimization framework in two production compilers: the
Graphite framework in GCC and the Polly framework in LLVM. We are also working towards using the
polyhedral framework to target GPGPU and manycore architectures, and to generate aggressively optimized
code starting from high level languages. New isl-based version of Graphite and Polly have been contributed,
enabling state-of-the-art affine transformations in GCC and LLVM, respectively. Dramatic performance
improvements are expected in 2012, impacting the upcoming GCC 4.8 and LLVM 3.1, respectively.

K. Trifunovic, F. Li and A. Cohen, in collaboration with R. Ladelsky from IBM Research Haifa, presented a
paper about some of these progresses at the GROW 2011 workshop [7].

Among the challenges that arise when adapting the polyhedral framework to production compilers, Riyadh
Baghdadi has been working on memory-based dependences. Part of it is a practical compiler construction
issue, where upstream passes such as the transformation to three-address code and PRE/CSE introduce new
scalar variables leading to additional memory-based dependences. The other difficulty is to identify a profitable
tradeoff between memory expansion (privatization, renaming) and parallelism. Memory-based dependences
not only increase the complexity of the optimization but most importantly, they reduce the degree of freedom
available to express effective loop nest transformations, limiting the overall effectiveness of the polyhedral
framework. We designed and implemented a technique that solves this problem by allowing a compiler to
relax the constraint of memory-based dependences on loop nest transformations and that does not incur the
memory footprint overhead of scalar and array expansion. The proposed technique is based on the concept
of polyhedral live range interval interference. While previous polyhedral optimization techniques could not
achieve any speedups in benchmarks with scalar variables. This technique enabled a speedup of up to 16× on
numerical kernels from the Polybench benchmark suite (on a 24-core machine).

6.7. Parallel Data-Flow Programming
A. Pop defended his PhD thesis in September at MINES ParisTech, on a data-flow, streaming extension
of OpenMP. Semantical, compilation and runtime system aspects have been covered in depth. Early results
were published at HiPEAC 2011 and presented by A. Pop, in collaboration with A. Cohen. Follow-up work
include the maturation of the proposed semantics and language extensions, with a thorough implementation
and experimentation.

12 Activity Report INRIA 2011

In parallel, F. Li, in collaboration with A. Pop and A. Cohen, explores the automatic compilation of SSA
programs into dynamic data-flow parallelism, and the integration of streaming dependences to extend the
method to non-scalar data flow. A paper has been published at WIR 2011 (workshop associated to CGO
2011), and a comprehensive, modular compilation method for arbitrary control flow, will be presented at
MULTIPROG 2012 (associated with HiPEAC 2012).

Classical compilation techniques, found in Lustre, Scade, Lucid Synchrone, and all the dataflow synchronous
languages, generate very efficient sequential code. Thus our main goal is to allow parallel code generation
without changing the generation of the sequential code. To this matter, we introduced in the dataflow
synchronous setting the famous asynchronous calls bundled with futures, which date back to MultiLisp
designed by R. Halstead in the early 1980. It allows to separate the request of a computation from the actual
use of its result. This approach has two main advantages. First, the compilation of these asynchronous calls is
implemented by a simple wrapper encapsulating the called sequential code. It permits full compatibility with
existing generated code. The futures are treated like usual values, so except for the asynchronous calls, we use
the known sequential code generation. Second, this asynchronous calls and futures are only annotations and
may be fully erased without changing the semantics of the program.

L. Gérard implements this proposition in our Heptagon compiler. The first backend was done in Java, as a proof
of concept, using the threads and futures of the Java language. More efficient back-ends are being explored,
using OpenMP stream-computing extensions and the TStar data-flow primitives.

7. Contracts and Grants with Industry

7.1. Grants with Industry
• Google European Doctoral Fellowship for Tobias Grosser, 120k ¤.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. INRIA Action d’Envergure Synchronics

Participants: Albert Cohen, Marc Pouzet [contact], Louis Mandel.

This project is funded by INRIA for 4 years and started in Jan. 2008. The coordinators are A. Girault (INRIA
Rhône Alpes) and M. Pouzet. http://synchronics.inria.fr/

The goal of the project is to propose new languages for the development of embedded systems allowing from
a unique source to both simulate the system with its environment and generate code. It capitalizes on recent
extensions of data-flow synchronous languages (Lucid Synchrone, ReactiveML), a relaxed form of synchrony,
and means to mix discrete and continous systems inside the synchronous model of time.

The project focuses on language extensions to increase modularity, dedicated type systems to ensure safety
properties, efficient compilation and the mix of discrete and continuous time.

Partners: INRIA Rhône Alpes (Gwenaël Delaval, Alain Girault, Bertrand Jeannet), IRISA (Benoit Caillaud),
VERIMAG (Erwan Jahier, Pascal Raymond), INRIA Rocquencourt (Albert Cohen, Marc Pouzet, Louis
Mandel)

8.1.2. PARTOUT
Participants: Mehdi Dogguy, Louis Mandel [contact], Cédric Pasteur, Marc Pouzet.

This project is funded by ANR (program DEFIS). http://www-sop.inria.fr/mimosa/PARTOUT

It started on january 2009 for 4 years; the coordinator is Frédéric Boussinot from INRIA Indes.

http://synchronics.inria.fr/
http://www-sop.inria.fr/mimosa/PARTOUT

Team PARKAS 13

Partners: INRIA Indes, CNAM, LRI.

The goal of the project PARTOUT is, from a programming language point of view, to study the impact on
programming of the globalization of parallelism which now covers all the spectrum of informatics, ranging
from multicore architectures and distributed systems, up to applications deployed on the Web.

8.1.3. Mediacom Project
Participants: Albert Cohen [contact], Ramakrishna Upadrasta.

Partners: INRIA CompSys, ALF, Arenaire.

Mediacom is one of the projects of the Nano2012 collaboration framework between STMicroelectronics and
INRIA, 09/2009–12/2012. Mediacom is a collaboration between the compilation group of STMicroelectron-
ics HED, led by Christian Bertin, and the INRIA CompSys, ARENAIRE, ALF and PARKAS (formerly
ALCHEMY) groups. We are working on portable concurrent intermediate languages, inspired by data-flow
synchronous languages and polyhedral compilation, and on just-in-time parallelization algorithms.

8.2. European Initiatives
8.2.1. HiPEAC network of excellence

HiPEAC is a network of excellence on High-Performance Embedded Architectures and Compilers. It was first
established as an FP6 network in 2004, and renewed as an FP7 4 years later. INRIA is one of the partners of
the network. Albert Cohen leads the Compiler Platform cluster (9 research clusters in total). 02/2008–01/2012.

8.2.2. TERAFLUX integrated project
The TERAFLUX project is funded under the FP7 FET pro-active program on teradevice computing, 01/2010-
12/2013. Albert Cohen is responsible for WP4. Our work addresses data-flow synchronous parallel program-
ming, polyhedral compilation for data-flow programs, and compiler support for data-driven multi-threaded
architectures with hundreds of computing cores. We contribute compilation algorithms and experimental lan-
guage designs, with prototypes based on LUCID SYNCHRONE and direct contributions to GCC through the
design of data-flow synchronous extensions of OpenMP. One of our goals is to transfer results of the project to
production tools, including GCC and simulation platforms for many-core processors. A standardization effort
(supported by INRIA’s D2T) aims for the adoption of the language extensions by the OpenMP Architecture
Review Board.

8.2.3. PHARAON specific targeted research project
The PHARAON project is funded on the embedded systems strategic objective, 09/2011–08/2014. Albert
Cohen is responsible for WP5. Our work addresses data-flow synchronous programming for multiprocessor
systems-on-chip, with an emphasis on an embedded development methodology and tools to optimize energy
consumption and facilitate the correct-by-construction refinement of a functional specification. The Heptagon
and Streaming OpenMP platforms of the team are used in the project. PHARAON is led by Thales Communi-
cations and Security.

8.2.4. CARP specific targeted research project
The CARP project is funded on the computing systems strategic objective, 12/2011–11/2014. Our work
addresses polyhedral automatic parallelization for vector accelerators, with an emphasis on extending the
scope of polyhedral compilation and integrating vectorization and specialization techniques. isl is an important
component of this work, along with a new source-to-source compilation framework being developed in
the project. CARP is led by Imperial College, and our team collaborates closely with ARM Cambridge
in the specification of a portable parallel intermediate language to facilitate automatic parallelization and
vectorization.

14 Activity Report INRIA 2011

8.2.5. Collaborations in European Programs, except FP7
8.2.5.1. Euro-TM COST action

This new action started in April 2011. It aims at consolidating European research on transactional memory,
by coordinating the research groups working on the development of complementary, interdisciplinary aspects
of Transactional Memories, including theoretical foundations, algorithms, hardware and operating system
support, language integration and development tools, and applications. Our participation is focused on the
interaction between data-flow and transactional memory models.

8.3. International Initiatives
8.3.1. Visits of International Scientists
8.3.1.1. International guests of the PARKAS seminars

• November 2011: Alex Nicolau, UCI. Variability, Accuracy, and Performance evaluation.

• September 2011: Daisuke Ishii, JSPS, National Institute of Informatics (Tokyo) and ProVal team,
INRIA Saclay. An Execution Algorithm for a Hybrid Modeling Language HydLa.

• August 2011: Peter Gammie, the Australian National University and National ICT Australia. Verified
Synthesis of Knowledge-Based Programs in Finite Synchronous Environments.

• June 2011: Jan Vitek, Purdue University. Virtualizing Real-time Embedded Systems with Java.

• May 2011: Walid Najjar, University of California Riverside. Performance, Productivity and Pro-
grammability: The Coming of Age of FPGA Code Accelerators.

• March 2011: Eunjung Park, University of Delaware. Predictive Modeling in a Polyhedral Optimiza-
tion Space.

8.3.1.2. Other visits

• John Cavazos, University of Delaware, visited us in January and July 2011. We have been collab-
orating on statistical methods in polyhedral compilation since John’s postdoc at the University of
Edinburgh. A joint paper was published at CGO 2011. Albert Cohen is on the PhD thesis committee
of his student, Eunjung Park.

• P. Sadayappan, Ohio State University, visited us in December 2011. We collaborate for a long
time on polyhedral compilation methods and tools. A joint paper was published at POPL 2011.
P. Sadayappan has been the Master thesis advisor of Tobias Grosser and he is participating to the
direction of his PhD thesis, and he hosts a former student, Louis-Noël Pouchet for more than 1 year
as a postdoc.

• John Plaice, University of New South Wales, visited us in December 2011. He is a long-time
synchronous programming and functional programming expert. His Translucid language experiment
could be the basis for a collaboration on efficient compilation of array-based computations and
synchronous language expressiveness.

8.3.1.3. Supervision of post-docs, theses and Internships

• Marc Pouzet supervised the 12-month post-doc of Timothy Bourke, from the University of New
South Wales, from September 2010 to October 2011, and funded by the large scale initiative
SYNCHRONICS of INRIA. Timothy worked on the semantics and implementation of hybrid
modelers.

• Albert Cohen co-advised the PhD thesis of Sean Halle, from the University of California Santa
Cruz, defended in June 2011. Sean Halle worked on parallel programming models and analytical
performance models.

Team PARKAS 15

9. Dissemination

9.1. Animation of the scientific community
9.1.1. Event organization

• Albert Cohen is the General Chair of the 7th HiPEAC conference, January 2012. Louis Mandel is
member of the local arrangements committee.

The conference is pionneering a new “journal first” publication model, and has been completely
reorganized into a large networking event with 27 parallel events, an industry exhibit with 50
companies booths and posters, and a European project exhibit with 46 projects from the computing
systems, embedded systems strategic objectives of the FP7 and from the FET programme.

475 registered participants, 34 ACM TACO journal papers will be presented (the record number for
previous HiPEAC conferences was 210 participants).

• Albert Cohen co-organized the 9th Symposium on Code Generation and Optimization, as a finance
chair, April 2011. CGO is co-sponsored by ACM and IEEE, in Chamonix http://www.cgo.org/
cgo2011. 240 participants and 120 paper submissions, an increase of 10% and 30% over the record
numbers for the conference.

• Marc Pouzet organised the 18th annual edition of the international workshop SYNCHRON http://
synchron2011.di.ens.fr/, located in Damarie-les-lys, Nov. 28 - Dec. 2, 2011. This annual workshop
is devoted to recent development in synchronous languages and its applications.

This year, we have invited collegues from IRCAM (Paris) and GRAME (Lyon) for a half day
presentation of their work on programming languages for music.

The workshop has been a great success with 80 participant whereas the workshop usually have 50.

9.1.2. Editorial boards

• Jean Vuillemin is on the board of 5 international journals.

• Marc Pouzet is associate editor of the EURASIP Journal on Embedded systems (http://www.
hindawi.com/journals/es/.

• Marc Pouzet is “directeur de collection” for Hermes publisher.

• Albert Cohen is on the editorial board of the International Journal on Parallel Programming (IJPP,
http://www.springer.com/computer/theoretical+computer+science/journal/10766).

9.1.3. Program committees

• M. Pouzet is a member of the program committee of the following conferences: Design, Automation
& Test in Europe (DATE 2011 and DATE 2012); Approches Formelles dans l’Assistance au
Développement de Logiciels (AFADL 2011 and AFADL 2012); Conference on Real-Time and
Network Systems (RTNS 2011); Modélisation des systèmes Réactifs (MSR 2011); ACM Conf. on
the Principles and Applications of Declarative Programming (PADL 2012), located with POPL;

• M. Pouzet is an expert reviewer for the Design Automation Conference (DAC) in 2011 and 2012.

• A. Cohen is a co-chair of the DAC 2012 ESS1&2 TPC.

• A. Cohen is a member of the program committee of the following conferences: PLDI 2011, LCTES
2011, PPOPP 2011, ICS 2012, CC 2013.

• A. Cohen is a member of the program committee of the following workshops: IMPACT 2011,
GROW 2011, WIR 2011, IMPACT 2012, INTERACT 2012, GPGPU 2012.

• L. Mandel, member of the program committee of the Journées Francophones des Langages Appli-
catifs (JFLA 2012).

http://www.cgo.org/cgo2011
http://www.cgo.org/cgo2011
http://synchron2011.di.ens.fr/
http://synchron2011.di.ens.fr/
http://www.hindawi.com/journals/es/
http://www.hindawi.com/journals/es/
http://www.springer.com/computer/theoretical+computer+science/journal/10766

16 Activity Report INRIA 2011

9.1.4. Participation to Thesis Committees

• M. Pouzet was a reviewer of the following PhD theses: Tayeb Bouhadiba (Université de Grenoble;
dir: Florence Maraninchi; September 16th, 2010); Daniel Reynaud (INPL, Nancy; dir: Jean-Yves
Marion; October 15th, 2010); Antony Coadou (Université de Nice; dir: Robert de Simone; December
3th, 2010).

• M. Pouzet was president of the PhD jury of Nicolas Vallée (July 12, 2011), Univ. Paris-Diderot;
Nicolas Pouillon (Sept. 26, 2011), Université Pierre et Marie Curie.

• A. Cohen was a reviewer of the following PhD theses: Per Larsen (August 2011, DTU, Copenhagen);
Paul Carpenter, (September 2011, UPC Barcelona); Serge Guelton (September 2011, UBO and
Telecom Bretagne); Benoît Pradelle (December 2011, Université Louis Pasteur, Strasbourg); Nicolas
Benoît (January 2012, Université de Versailles St-Quentin).

• A. Cohen was a committee member of the following PhD theses: Matthias Eriksson (May 2011,
Linköping U.); Antoniu Pop (September 2011, MINES ParisTech); Asma Charfi (December 2011,
Université Paris Sud);

• A. Cohen was on the Prelim committee of Eunjung Park (December 2011, University of Delaware).

9.1.5. Invited Presentations

• L. Mandel and M. Pouzet, were invited to give a lecture at IRCAM in the Master of “Acoustique,
Traitement du signal, Informatique, Appliqués à la Musique”. Nov. 2010 and Nov. 2011.

• M. Pouzet was invited speaker at Complex Systems Design & Management (CSDM), Paris, in Dec.
2011. The title of the talk was: Programming hybrid systems with synchronous languages.

• M. Pouzet was invited speaker by Hilding Elmquist, CTO at Dassault-Systèmes and the founder
of the Modelica Language, at the 69th Modelica Design Meeting, Munich, Germany, in Jan. 2011.
M. Pouzet gave two one-hour talks. The titles were Lucid Synchrone, a Functional Synchronous
Language and Design, Semantics and Compilation for a Hybrid Synchronous Language.

• A. Cohen was a keynote speaker at the CTHPC 2011 workshop in Tai Chung, Taiwan, titled
“Polyhedral Compilation Runs Out of (Static) Control!”, July 2011.

• A. Cohen gave an invited presentation at the National Tsing Hua University, Hsin Chu, Taiwan,
titled “Work-Streaming: a Combined Language, Compiler and Runtime Approach to Deterministic,
Scalable and Efficient Parallel Computing”, July 2011.

9.2. Interaction with the scientific community
9.2.1. Prizes and distinctions

Since 2007, Marc Pouzet is a junior member of the IUF (“Institut Universitaire de France”), that distinguishes
each year a few French university professors for the high quality of their research activities.

9.2.2. Collective responsibilities within INRIA

• M. Pouzet is an elected member of the INRIA Evaluation Committee.

• A. Cohen is an elected member of the INRIA Scientific Council.

• A. Cohen is a member of the BCP of INRIA Rocquencourt.

• A. Cohen is the scientific representative for the International Relations of INRIA for INRIA
Rocquencourt, and a member of the COST GTRI committee.

• J. Vuillemin was head of Computer Science at ENS from 2007 to 2011.

9.2.3. Collective responsibilities outside INRIA

Team PARKAS 17

• J. Vuillemin is a 2011 member of the International Scientific Advisory Board, National ICT
Australia.

• J. Vuillemin chairs the 2011 Scientific Advisory Board of I2R in Singapore.
• J. Vuillemin received the “Grand prix 2008 des sciences de l’Informatique et de leurs applications”,

from the French Academy of Sciences and foundation EADS.
• J. Vuillemin was "Directeur Scientifique" at INRIA from 2005 to 2007.
• L. Mandel is in charge of the International Selection of ENS with J. Bertrane (ENS) for the computer

science department.
• M. Pouzet was president of the hiring committee for a Chaire position funded by CNRS and École

Polytechnique, in the computer science department of École Polytechnique, in january 2011.
• M. Pouzet was a member of the hiring committee for an Assistant Professor position at École

Nationale Supérieure des Techniques Avancées (ENSTA), in May 2011; a Full Professor position
in Université de Nice, in May 2011.

• A. Cohen was a member of two hiring committees for Associate Professor positions at UPMC in
May and September 2011.

• A. Cohen jointly created and operates the Electrical Engineering multidisciplinary program at at
École Polytechnique (Master 1 level), with Yvan Bonnassieu (physics department) and Frédéric
Bonnans (applied mathematics department).

9.3. Industrial Dissemination
• M. Pouzet is scientific advisor for the compagny Esterel-Technology on the evolution of SCADE

(start in nov. 2011).
• A. Cohen initiated and manages a 20 man-year R&D project in production-ready polyhedral

compilation within GCC (Graphite project, since GCC 4.5), in collaboration with AMD, IBM
Research, and several GCC developers.

9.4. Teaching
Licence: “Projet de programmation” (L3), L. Mandel (23h), Université Paris-Sud 11, France
Licence: “Systèmes et réseaux” (L3), M. Pouzet (24h), L. Mandel (24h), École Normale Supérieure,
France
Licence: “Langages de programmation et compilation” (L3), L. Mandel (24h), École Normale
Supérieure, France
Licence: “Components of a Computing System Introduction to Computer Architecture and Operat-
ing Systems” (L3), A. Cohen (44h), École Polytechnique, France
Master 1 École Polytechnique: “Operating Systems Principles and Programming” (M1),
A. Cohen (38h), École Polytechnique, France
Master Parisien de Recherche en Informatique (MPRI): “Synchronous systems” (M2),
M. Pouzet (12h), J. Vuillemin (12h), L. Mandel (6h), A. Cohen (6h), École Normale Supérieure and
Université Paris Diderot, France
Master sur les Systèmes Industriels Complexes (COMASIC): Univ. Paris-Sud, École Polytechnique,
INSTN. Synchronous Languages (24h), M. Pouzet.

10. Bibliography
Publications of the year

Articles in International Peer-Reviewed Journal

[1] A. BENVENISTE, T. BOURKE, B. CAILLAUD, M. POUZET. Non-Standard Semantics of Hybrid Systems
Modelers, in "Journal of Computer and System Sciences (JCSS)", 2011, vol. Special issue in honor of Amir
Pnueli, Accepted for publication., http://www.di.ens.fr/~pouzet/bib/modelica_JCSS_revised.pdf.

http://www.di.ens.fr/~pouzet/bib/modelica_JCSS_revised.pdf

18 Activity Report INRIA 2011

International Conferences with Proceedings

[2] A. BENVENISTE, T. BOURKE, B. CAILLAUD, M. POUZET. A Hybrid Synchronous Language with Hierar-
chical Automata: Static Typing and Translation to Synchronous Code, in "ACM SIGPLAN/SIGBED Con-
ference on Embedded Software (EMSOFT’11)", Taipei, Taiwan, October 2011, http://www.di.ens.fr/~pouzet/
bib/emsoft11.pdf.

[3] A. BENVENISTE, T. BOURKE, B. CAILLAUD, M. POUZET. Divide and recycle: types and compilation for a
hybrid synchronous language, in "ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and
Theory for Embedded Systems (LCTES’11)", Chicago, USA, April 2011, http://www.di.ens.fr/~pouzet/bib/
lctes11.pdf.

[4] L. MANDEL, F. PLATEAU. Typage des horloges périodiques en Lucy-n, in "Vingt deuxièmes Journées
Francophones des Langages Applicatifs (JFLA 2011)", La Bresse, France, January 2011, http://www.lri.fr/
~mandel/papiers/MandelPlateau-JFLA-2011.pdf.

[5] L. MANDEL, F. PLATEAU, M. POUZET. Static Scheduling of Latency Insensitive Designs with Lucy-n, in
"Formal Methods in Computer Aided Design (FMCAD 2011)", Austin, TX, USA, October 2011, http://www.
lri.fr/~mandel/lucy-n/fmcad11/.

[6] L.-N. POUCHET, U. BONDHUGULA, C. BASTOUL, A. COHEN, J. RAMANUJAM, P. SADAYAPPAN, N.
VASILACHE. Loop Transformations: Convexity, Pruning and Optimization, in "38þ Symp. on Principles of
Programming Languages (POPL’11)", Austin, Texas, January 2011.

[7] K. TRIFUNOVIĆ, A. COHEN, R. LADELSKI, F. LI. Elimination of Memory-Based Dependences for Loop-Nest
Optimization and Parallelization: Evaluation of a Revised Violated Dependence Analysis Method on a Three-
Address Code Polyhedral Compiler, in "3 rd GCC Research Opportunities Workshop (GROW’11, associated
with CGO)", Chamonix, France, April 2011.

[8] J. VUILLEMIN. The dimension of Boolean Functions, in "Boole Conference 2011", Luminy, ANR, 2011, vol.
3.

Other Publications

[9] P. ATTAR, F. BOUSSINOT, L. MANDEL, J.-F. SUSINI. Proposal for a Dynamic Synchronous Language, May
2011, http://hal.archives-ouvertes.fr/hal-00590420.

References in notes

[10] R. ALUR, C. COURCOUBETIS, N. HALBWACHS, T. A. HENZINGER, P.-H. HO, X. NICOLLIN, A.
OLIVERO, J. SIFAKIS, S. YOVINE. The Algorithmic Analysis of Hybrid Systems, in "Theor. Comput. Sci.",
1995, vol. 138, no 1, p. 3-34.

[11] A. BENVENISTE, B. CAILLAUD, M. POUZET. The Fundamentals of Hybrid Systems Modelers, in "49th
IEEE International Conference on Decision and Control (CDC)", Atlanta, Georgia, USA, December 15-17
2010, http://www.di.ens.fr/~pouzet/bib/cdc10.pdf.

[12] A. BENVENISTE, P. CASPI, S. EDWARDS, N. HALBWACHS, P. LE GUERNIC, R. DE SIMONE. The
synchronous languages 12 years later, in "Proceedings of the IEEE", January 2003, vol. 91, no 1.

http://www.di.ens.fr/~pouzet/bib/emsoft11.pdf
http://www.di.ens.fr/~pouzet/bib/emsoft11.pdf
http://www.di.ens.fr/~pouzet/bib/lctes11.pdf
http://www.di.ens.fr/~pouzet/bib/lctes11.pdf
http://www.lri.fr/~mandel/papiers/MandelPlateau-JFLA-2011.pdf
http://www.lri.fr/~mandel/papiers/MandelPlateau-JFLA-2011.pdf
http://www.lri.fr/~mandel/lucy-n/fmcad11/
http://www.lri.fr/~mandel/lucy-n/fmcad11/
http://hal.archives-ouvertes.fr/hal-00590420
http://www.di.ens.fr/~pouzet/bib/cdc10.pdf

Team PARKAS 19

[13] G. BERRY. Real time programming: Special purpose or general purpose languages, in "Information Process-
ing", 1989, vol. 89, p. 11-17.

[14] D. BIERNACKI, J.-L. COLAÇO, G. HAMON, M. POUZET. Clock-directed Modular Code Generation of
Synchronous Data-flow Languages, in "ACM International Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES)", Tucson, Arizona, June 2008.

[15] F. BOUSSINOT, R. DE SIMONE. The SL synchronous language, in "IEEE Transaction on Software Engineer-
ing", 1996.

[16] C. BROOKS, E. A. LEE, X. LIU, S. NEUENDORFFER, Y. ZHAO, H. ZHENG. Heterogeneous Concurrent
Modeling and Design in Java, Memorandum UCB/ERL M04/27, EECS, University of California, Berkeley,
CA USA 94720, July 2004.

[17] P. CASPI, A. CURIC, A. MAIGNAN, C. SOFRONIS, S. TRIPAKIS. Translating Discrete-Time Simulink
to Lustre, in "ACM Transactions on Embedded Computing Systems", 2005, Special Issue on Embedded
Software.

[18] P. CASPI, G. HAMON, M. POUZET. Synchronous Functional Programming with Lucid Synchrone, in
"Real-Time Systems: Models and verification — Theory and tools", ISTE, 2007, English version of Lucid
Synchrone. Published during year 2007.

[19] P. CASPI, M. POUZET. Synchronous Kahn Networks, in "ACM SIGPLAN International Conference on
Functional Programming (ICFP)", Philadelphia, Pensylvania, May 1996.

[20] P. CASPI, M. POUZET. A Co-iterative Characterization of Synchronous Stream Functions, in "Coalgebraic
Methods in Computer Science (CMCS’98)", Electronic Notes in Theoretical Computer Science, March 1998,
Extended version available as a VERIMAG tech. report no. 97–07 at www.lri.fr/∼pouzet.

[21] A. CHAPOUTOT. Simulation abstraite : une analyse statique de modèles Simulink, École Polytechnique,
December 2008.

[22] A. COHEN, M. DURANTON, C. EISENBEIS, C. PAGETTI, F. PLATEAU, M. POUZET. Synchroning Periodic
Clocks, in "ACM International Conference on Embedded Software (EMSOFT’05)", Jersey city, New Jersey,
USA, September 2005.

[23] A. COHEN, M. DURANTON, C. EISENBEIS, C. PAGETTI, F. PLATEAU, M. POUZET. N -Synchronous Kahn
Networks: a Relaxed Model of Synchrony for Real-Time Systems, in "ACM International Conference on
Principles of Programming Languages (POPL’06)", Charleston, South Carolina, USA, January 2006.

[24] A. COHEN, S. GIRBAL, D. PARELLO, M. SIGLER, O. TEMAM, N. VASILACHE. Facilitating the Search
for Compositions of Program Transformations, in "Intl. Conf. on Supercomputing (ICS’05)", Boston, Mas-
sachusetts, June 2005, p. 151–160.

[25] A. COHEN, S. GIRBAL, O. TEMAM. A Polyhedral Approach to Ease the Composition of Program Transfor-
mations, in "Euro-Par’04", Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, p. 292–303.

20 Activity Report INRIA 2011

[26] A. COHEN, L. MANDEL, F. PLATEAU, M. POUZET. Abstraction of Clocks in Synchronous Data-flow Systems,
in "The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS)", Bangalore, India,
December 2008.

[27] A. COHEN, L. MANDEL, F. PLATEAU, M. POUZET. Relaxing Synchronous Composition with Clock
Abstraction, 2009, Workshop on Hardware Design using Functional languages (HFL 09) - ETAPS, http://
www.lri.fr/~plateau/hfl09/.

[28] J.-L. COLAÇO, G. HAMON, M. POUZET. Mixing Signals and Modes in Synchronous Data-flow Systems, in
"ACM International Conference on Embedded Software (EMSOFT’06)", Seoul, South Korea, October 2006.

[29] J.-L. COLAÇO, B. PAGANO, M. POUZET. A Conservative Extension of Synchronous Data-flow with State
Machines, in "ACM International Conference on Embedded Software (EMSOFT’05)", Jersey city, New Jersey,
USA, September 2005.

[30] J.-L. COLAÇO, M. POUZET. Clocks as First Class Abstract Types, in "Third International Conference on
Embedded Software (EMSOFT’03)", Philadelphia, Pennsylvania, USA, october 2003.

[31] J.-L. COLAÇO, M. POUZET. Type-based Initialization Analysis of a Synchronous Data-flow Language, in
"International Journal on Software Tools for Technology Transfer (STTT)", August 2004, vol. 6, no 3, p.
245–255.

[32] B. COURCELLE, G. KAHN, J. VUILLEMIN. Algorithms for equivalence and reduction to minimal form for
a class of simple recursive equations, in "From Semantics to Computer Science, Essays in Honour of Gilles
Kahn", 2009, p. 169 – 184.

[33] P. CUOQ, M. POUZET. Modular Causality in a Synchronous Stream Language, in "European Symposium on
Programming (ESOP’01)", Genova, Italy, April 2001.

[34] P. FEAUTRIER. Some Efficient Solutions to the Affine Scheduling Problem, Part II, multidimensional time, in
"Intl. J. of Parallel Programming", December 1992, vol. 21, no 6, p. 389-420, See also Part I, one dimensional
time, 21(5):315–348.

[35] A. GAMATIÉ, E. RUTTEN, H. YU, P. BOULET, J.-L. DEKEYSER. Synchronous Modeling and Analysis of
Data Intensive Applications, in "EURASIP Journal on Embedded Systems", 2008.

[36] S. GIRBAL, N. VASILACHE, C. BASTOUL, A. COHEN, D. PARELLO, M. SIGLER, O. TEMAM. Semi-
Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in "Intl.
J. of Parallel Programming", June 2006, vol. 34, no 3, p. 261–317, Special issue on Microgrids..

[37] A.-C. GUILLOU, F. QUILLERÉ, P. QUINTON, S. RAJOPADHYE, T. RISSET. Hardware Design Methodology
with the Alpha Language, in "FDL’01", Lyon, France, September 2001.

[38] N. HALBWACHS, S. BAGHDADI. Synchronous modeling of asynchronous systems, in "EMSOFT’02", Greno-
ble, LNCS 2491, Springer Verlag, October 2002.

[39] G. KAHN. The semantics of a simple language for parallel programming, in "IFIP 74 Congress", North
Holland, Amsterdam, 1974.

http://www.lri.fr/~plateau/hfl09/
http://www.lri.fr/~plateau/hfl09/

Team PARKAS 21

[40] E. A. LEE, H. ZHENG. Operational Semantics of Hybrid Systems, in "HSCC", 2005, p. 25-53.

[41] E. A. LEE, H. ZHENG. Leveraging Synchronous Language Principles for Heterogeneous Modeling and
Design of Embedded Systems, in "EMSOFT", Salzburg, Austria, September 30-October 3 2007.

[42] E. A. LEE, H. ZHENG. Leveraging synchronous language principles for heterogeneous modeling and design
of embedded systems, in "EMSOFT", 2007, p. 114-123.

[43] H. LEVERGE, C. MAURAS, P. QUINTON. The ALPHA language and its use for the design of systolic arrays,
in "J. of VLSI Signal Processing", 1991, vol. 3, p. 173–182.

[44] O. MALER, Z. MANNA, A. PNUELI. From timed to hybrid systems, in "Real-Time: Theory in Practice",
LNCS, Springer, 1992, vol. 600, eds. J.W. de Bakker and C. Huizing and W.-P. de Roever and G. Rozemberg.

[45] L. MANDEL, F. BENBADIS. Simulation of Mobile Ad hoc Network Protocols in ReactiveML, in "Proceedings
of Synchronous Languages, Applications, and Programming (SLAP’05)", Edinburgh, Scotland, Electronic
Notes in Theoretical Computer Science, April 2005, Workshop ETAPS 2005.

[46] L. MANDEL. Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la
programmation réactive, Université Paris 6, 2006.

[47] L. MANDEL, F. PLATEAU, M. POUZET. Lucy-n: a n-Synchronous Extension of Lustre, in "10th Interna-
tional Conference on Mathematics of Program Construction (MPC’10)", Manoir St-Castin, Québec, Canada,
Springer LNCS, June 2010.

[48] L. MANDEL, F. PLATEAU, M. POUZET. Lucy-n: a n-Synchronous Extension of Lustre, in "Tenth International
Conference on Mathematics of Program Construction (MPC 2010)", Québec, Canada, June 2010, http://www.
lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf.

[49] L. MANDEL, M. POUZET. ReactiveML, a Reactive Extension to ML, in "ACM International Conference on
Principles and Practice of Declarative Programming (PPDP)", Lisboa, July 2005.

[50] F. MARANINCHI, N. BERTHIER, O. BEZET, G. FUNCHAL. Writing Simulators with Synchronous Languages,
2008, Synchron 2008: International Open Workshop on Synchronous Programming.

[51] C. MIRANDA, A. POP, P. DUMONT, A. COHEN, M. DURANTON. Erbium: A Deterministic, Concurrent
Intermediate Representation to Map Data-Flow Tasks to Scalable, Persistent Streaming Processes, in "Intl.
Conf. on Compilers Architectures and Synthesis for Embedded Systems (CASES’10)", October 2010.

[52] J.-B. NOTE, M. SHAND, J. VUILLEMIN. Realtime video pixel matching, in "International Conference on
Field Programmable Logic and Applications", 2006, p. 507 – 512.

[53] J.-B. NOTE, J. VUILLEMIN. Towards automatically compiling efficient FPGA hardware, in "International
Workshop on Design and Functional Languages", IEEE, 2007, p. 115 – 124.

[54] F. PLATEAU. Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée, Université
Paris-Sud 11, Orsay, France, 6 janvier 2010, http://www.lri.fr/~plateau.

http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf
http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf
http://www.lri.fr/~plateau

22 Activity Report INRIA 2011

[55] S. POP, A. COHEN, C. BASTOUL, S. GIRBAL, G.-A. SILBER, N. VASILACHE. GRAPHITE: Loop Opti-
mizations Based on the Polyhedral Model for GCC, in "Proc. of the 4þ GCC Developper’s Summit", Ottawa,
Canada, June 2006.

[56] L.-N. POUCHET, C. BASTOUL, A. COHEN, J. CAVAZOS. Iterative Optimization in the Polyhedral Model:
Part II, Multidimensional Time, in "ACM Conf. on Programming Language Design and Implementation
(PLDI’08)", Tucson, Arizona, June 2008.

[57] L.-N. POUCHET, C. BASTOUL, A. COHEN, N. VASILACHE. Iterative Optimization in the Polyhedral Model:
Part I, One-Dimensional Time, in "Intl. Symp. on Code Generation and Optimization (CGO’07)", San Jose,
California, March 2007.

[58] L.-N. POUCHET, U. BONDHUGULA, C. BASTOUL, A. COHEN, J. RAMANUJAM, P. SADAYAPPAN. Com-
bined Iterative and Model-driven Optimization in an Automatic Parallelization Framework, in "ACM Super-
computing Conf. (SC’10)", New Orleans, Lousiana, November 2010, 11 pages.

[59] P. RAYMOND. Compilation séparée de programmes Lustre, Projet SPECTRE, IMAG, juillet 1988.

[60] P. RAYMOND, Y. ROUX, E. JAHIER. Lutin: a language for specifying and executing reactive scenarios, in
"EURASIP Journal on Embedded Systems", 2008, vol. 2008, Article ID 753821.

[61] L. SAMPER, F. MARANINCHI, L. MOUNIER, L. MANDEL. GLONEMO: Global and Accurate Formal Models
for the Analysis of Ad hoc Sensor Networks, in "Proceedings of the First International Conference on Integrated
Internet Ad hoc and Sensor Networks (InterSense’06)", Nice, France, May 2006.

[62] J. SOULA, P. MARQUET, J.-L. DEKEYSER, A. DEMEURE. Compilation principle of a specification language
dedicated to signal processing, in "Intl. Conf. on Parallel Computing Technologies", Novosibirsk, Russia,
LNCS, Springer-Verlag, September 2001, vol. 2127, p. 358–370.

[63] K. TRIFUNOVIĆ, A. COHEN, D. EDELSOHN, F. LI, T. GROSSER, H. JAGASIA, R. LADELSKI, S. POP, J.
SJÖDIN, R. UPADRASTA. GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral
Compilation, in "GCC Research Opportunities Workshop (GROW’10)", Pisa, Italy, January 2010.

[64] K. TRIFUNOVIĆ, D. NUZMAN, A. COHEN, A. ZAKS, I. ROSEN. Polyhedral-Model Guided Loop-Nest Auto-
Vectorization, in "Parallel Architectures and Compilation Techniques (PACT’09)", Raleigh, North Carolina,
September 2009.

[65] J. VUILLEMIN, N. GAMA. Compact normal form for regular languages as xor automata, in "14th Interna-
tional Conference, CIAA 2009", Sydney, Australia, LLNCS, Springer-Verlag, 2009, vol. 5642, p. 24 – 33.

[66] J. VUILLEMIN. Efficient data structure and algorithms for sparse integers, sets and predicates, in "19th IEEE
Symposium on Computer Arithmetic", IEEE, 2009, p. 7 – 14.

[67] J. VUILLEMIN. On Circuits and Numbers, Digital, Paris Research Laboratory, 1993.

