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2. Overall Objectives

2.1. Main themes
The aim of the Parsifal team is to develop and exploit proof theory and type theory in the specification and
verification of computational systems.

• Expertise: the team conducts basic research in proof theory and type theory. In particular, the team is
developing results that help with automated deduction and with the manipulation and communication
of formal proofs.

• Design: based on experience with computational systems and theoretical results, the team develops
new logical principles, new proof systems, and new theorem proving environments.

• Implementation: the team builds prototype systems to help validate basic research results.

• Examples: the design and implementation efforts are guided by examples of specification and veri-
fication problems. These examples not only test the success of the tools but also drive investigations
into new principles and new areas of proof theory and type theory.

The foundational work of the team focuses on structural and analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of proof systems as deductive and computational
formalisms. The main focus in recent years has been the study of the sequent calculus and of the deep inference
formalisms.
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An important research question is how to reason about computational specifications that are written in a
relational style. To this end, the team has been developing new approaches to dealing with induction, co-
induction, and generic quantification. A second important question is of canonicity in deductive systems, i.e.,
when are two derivations “essentially the same”? This crucial question is important not only for proof search,
because it gives an insight into the structure and an ability to manipulate the proof search space, but also for
the communication of proof objects between different reasoning agents such as automated theorem provers
and proof checkers.

Important application areas currently include:

• Meta-theoretic reasoning on functional programs, such as terms in the λ-calculus

• Reasoning about behaviors in systems with concurrency and communication, such as the π-calculus,
game semantics, etc.

• Combining interactive and automated reasoning methods for induction and co-induction

• Verification of distributed, reactive, and real-time algorithms that are often specified using modal
and temporal logics

• Representing proofs as documents that can be printed, communicated, and checked by a wide range
of computational logic systems.

2.2. Highlights
• Josh Hodas and Dale Miller won the 2011 LICS Test of Time Award for their 1991 paper titled

“Logic programming in a fragment of intuitionistic linear logic.”

• Dale Miller’s proposal titled “ProofCert: Broad Spectrum Proof Certificates” submitted to the ERC
Advanced Investigator Grant in 2011 was accepted and will be funded for 2012-1016.

3. Scientific Foundations

3.1. General overview
There are two broad approaches for computational specifications. In the computation as model approach,
computations are encoded as mathematical structures containing nodes, transitions, and state. Logic is used
to describe these structures, that is, the computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed
to express propositions about the change in state.

The computation as deduction approach, in contrast, expresses computations logically, using formulas, terms,
types, and proofs as computational elements. Unlike the model approach, general logical apparatus such as cut-
elimination or automated deduction becomes directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical specifications that have been very fruitful:

• Proof normalization, which treats the state of a computation as a proof term and computation
as normalization of the proof terms. General reduction principles such as β-reduction or cut-
elimination are merely particular forms of proof normalization. Functional programming is based on
normalization [44], and normalization in different logics can justify the design of new and different
functional programming languages [27].

• Proof search, which views the state of a computation as a a structured collection of formulas,
known as a sequent, and proof search in a suitable sequent calculus as encoding the dynamics of
the computation. Logic programming is based on proof search [48], and different proof search
strategies can be used to justify the design of new and different logic programming languages [47].
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While the distinction between these two aspects is somewhat informal, it helps to identify and classify different
concerns that arise in computational semantics. For instance, confluence and termination of reductions are
crucial considerations for normalization, while unification and strategies are important for search. A key
challenge of computational logic is to find means of uniting or reorganizing these apparently disjoint concerns.

An important organizational principle is structural proof theory, that is, the study of proofs as syntactic,
algebraic and combinatorial objects. Formal proofs often have equivalences in their syntactic representations,
leading to an important research question about canonicity in proofs – when are two proofs “essentially the
same?” The syntactic equivalences can be used to derive normal forms for proofs that illuminate not only
the proofs of a given formula, but also its entire proof search space. The celebrated focusing theorem of
Andreoli [28] identifies one such normal form for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial structure of proofs can be further
explored with the use of deep inference; in particular, deep inference allows access to simple and manifestly
correct cut-elimination procedures with precise complexity bounds.

Type theory is another important organizational principle, but most popular type systems are generally
designed for either search or for normalization. To give some examples, the Coq system [56] that implements
the Calculus of Inductive Constructions (CIC) is designed to facilitate the expression of computational features
of proofs directly as executable functional programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [52] that is based on the LF type theory (a subsystem of the CIC),
is based on relational specifications in canonical form (i.e., without redexes) for which there are sophisticated
automated reasoning systems such as meta-theoretic analysis tools, logic programming engines, and inductive
theorem provers. In recent years, there has been a push towards combining search and normalization in the
same type-theoretic framework. The Beluga system [53], for example, is an extension of the LF type theory
with a purely computational meta-framework where operations on inductively defined LF objects can be
expressed as functional programs.

The Parsifal team investigates both the search and the normalization aspects of computational specifications
using the concepts, results, and insights from proof theory and type theory.

3.2. Design of two level-logic systems
The team has spent a number of years in designing a strong new logic that can be used to reason (inductively
and co-inductively) on syntactic expressions containing bindings. This work has been published is a series of
papers by McDowell and Miller [46] [45], Tiu and Miller [50] [57], and Gacek, Miller, and Nadathur [12]
[38]. Besides presenting formal properties of these logic, these papers also documented a number of examples
where this logic demonstrated superior approaches to reasoning about a number of complex formal systems,
ranging from programming languages to the λ-calculus and π-calculus.

The team has also been working on three different prototype theorem proving system that are all related to this
stronger logic. These systems are the following.

• Abella, which is an interactive theorem prover for the full logic.

• Bedwyr, which is a model checker for the “finite” part of the logic.

• Tac, which is a sophisticate tactic for automatically completing simple proofs involving induction
and unfolding.

We are now in the process of attempting to make all of these system communicate properly. Given that these
systems have been authored by different team members at different times and for different reasons, they do
not formally share the same notions of syntax and proof. We are now working to revisit all of these systems
and revise them so that they all work on the same logic and so that they can share their proofs with each other.

Currently, Chaudhuri, Miller, and Accattoli are working with our technical staff member, Heath, to redesign
and restructure these systems so that they can cooperate in building proofs.
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3.3. Making the case for proof certificates
The team has been considering how it might be possible to define a universal format for proofs so that any
existing theorem provers can have its proofs trusted by any other prover. This is a rather ambitious project
and involves a great deal of work at the infrastructure level of computational logic. As a result, we have
put significant energies into considering the high-level objectives and consequences of deploying such proof
certificates.

Our current thinking on this point is roughly the following. Proofs, both formal and informal, are documents
that are intended to circulate within societies of humans and machines distributed across time and space in
order to provide trust. Such trust might lead a mathematician to accept a certain statement as true or it might
help convince a consumer that a certain software system is secure. Using this general definition of proof,
we have re-examined a range of perspectives about proofs and their roles within mathematics and computer
science that often appears contradictory.

Given this view of proofs as both document and object, that need to be communicated and checked, we have
attempted to define a particular approach to a broad spectrum proof certificate format that is intended as a
universal language for communicating formal proofs among computational logic systems. We identify four
desiderata for such proof certificates: they must be

1. checkable by simple proof checkers,

2. flexible enough that existing provers can conveniently produce such certificates from their internal
evidence of proof,

3. directly related to proof formalisms used within the structural proof theory literature, and

4. permit certificates to elide some proof information with the expectation that a proof checker can
reconstruct the missing information using bounded and structured proof search.

We consider various consequences of these desiderata, including how they can mix computation and deduction
and what they mean for the establishment of marketplaces and libraries of proofs. More specifics can be found
in Miller’s papers [20] and [23].

3.4. Combining Classical and Intuitionistic Proof Systems
In order to develop an approach to proof certificates that is as comprehensive as possible, one needs to handle
theorems and proofs in both classical logic and intuitionistic logic. Yet, building two separate libraries, one
for each logic, can be inconvenient and error-prone. An ideal approach would be to design a single proof
system in which both classical and intuitionistic proofs can exist together. Such a proof system should allow
cut-elimination to take place and should have a sensible semantic framework.

Liang and Miller have recently been working on exactly that problem. In their paper [14], they showed how
to describe a general setting for specifying proofs in intuitionistic and classical logic and to achieve one
framework for describing initial-elimination and cut-elimination for such these two logics. That framework
allowed for some mixing of classical and intuitionistic features in one logic. A more ambitious merging of
these logics was provided in their work on “polarized intuitionistic logic” in which classical and intuitionistic
connectives can be used within the same formulas [22].

3.5. Deep inference
Deep inference [40], [42] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counter-intuitive translation.
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The following research problems are investigated by members of the Parsifal team:

• Find deep inference system for richer logics. This is necessary for making the proof theoretic results
of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

3.6. Proof nets and atomic flows
Proof nets and atomic flows are abstract (graph-like) presentations of proofs such that all "trivial rule
permutations" are quotiented away. Ideally the notion of proof net should be independent from any syntactic
formalism, but most notions of proof nets proposed in the past were formulated in terms of their relation to the
sequent calculus. Consequently we could observe features like “boxes” and explicit “contraction links”. The
latter appeared not only in Girard’s proof nets [39] for linear logic but also in Robinson’s proof nets [54] for
classical logic. In this kind of proof nets every link in the net corresponds to a rule application in the sequent
calculus.

Only recently, due to the rise of deep inference, new kinds of proof nets have been introduced that take the
formula trees of the conclusions and add additional “flow-graph” information (see e.g., [6], [5] and [41]. On
one side, this gives new insights in the essence of proofs and their normalization. But on the other side, all the
known correctness criteria are no longer available.

This directly leads to the following research questions investigated by members of the parsifal team:

• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for
doing proof search. An important property of deductive proof nets must be that the correctness can
be checked in linear time. For the classical logic proof nets by Lamarche and Straßburger [6] this
takes exponential time (in the size of the net).

• Studying the normalization of proofs in classical logic using atomic flows. Although there is no
correctness criterion they allow to simplify the normalization procedure for proofs in deep inference,
and additionally allow to get new insights in the complexity of the normalization.

4. Application Domains
4.1. Automated theorem proving

Automated theorem proving has traditionally focused on classical first-order logic, but non-classical logics are
increasingly becoming important in the specification and analysis of software. Most type systems are based on
(possibly second-order) propositional intuitionistic logic, for example, while resource-sensitive and concurrent
systems are most naturally expressed in linear logic.

The members of the Parsifal team have a strong expertise in the design and implementation of performant
automated reasoning systems for such non-classical logics. In particular, the Linprover suite of provers [34]
continue to be the fastest automated theorem provers for propositional and first-order linear logic.

Any non-trivial specification, of course, will involve theorems that are simply too complicated to prove
automatically. It is therefore important to design semi-automated systems that allow the user to give high
level guidance, while at the same time not having to write every detail of the formal proofs. High level proof
languages in fact serve a dual function – they are more readily comprehended by human readers, and they tend
to be more robust with respect to maintenance and continued evolution of the systems. Members of the Parsifal
team, in association with other INRIA teams and Microsoft Research, have been building a heterogeneous
semi-automatic proof system for verifying distributed algorithms [36].
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On a more foundational level, the team has been developing many new insights into the structure of proofs
and the proof search spaces. Two directions, in particular, present tantalizing possibilities:

• The concept of multi-focusing [37] can be used to expose concurrency in computational behavior,
which can in turn be exploited to prune areas of the proof search space that explore irrelevant
interleavings of concurrent actions.

• The use of bounded search, where the bounds can be shown to be complete by meta-theoretic
analysis, can be used to circumvent much of the non-determinism inherent in resource-sensitive
logics such as linear logic. The lack of proofs of a certain bound can then be used to justify the
presence or absence of properties of the encoded computations.

Much of the theoretical work on automated reasoning has been motivated by examples and implementations,
and the Parsifal team intends to continue to devote significant effort in these directions.

4.2. Mechanized metatheory
There has been increasing interest in the use of formal methods to provide proofs of properties of programs
and programming languages. Tony Hoare’s Grand Challenge titled “Verified Software: Theories, Tools,
Experiments” has as a goal the construction of “verifying compilers” for a world where programs would
only be produced with machine-verified guarantees of adherence to specified behavior. Guarantees could be
given in a number of ways: proof certificates being one possibility.

The POPLMark challenge [29] envisions “a world in which mechanically verified software is commonplace:
a world in which theorem proving technology is used routinely by both software developers and programming
language researchers alike.” The proposers of this challenge go on to say that a “crucial step towards achieving
these goals is mechanized reasoning about language metatheory.”

The Parsifal team has developed several tools and techniques for reasoning about the meta-theory of program-
ming languages. One of the most important requirements for programming languages is the ability to reason
about data structures with binding constructs up to α-equivalence. The use of higher-order syntax and nom-
inal techniques for such data structures was pioneered by Miller, Nadathur and Tiu. The Abella system (see
Section 3.2) implements a refinement of a number of these ideas and has been used to give full solutions to
sections of the POPLMark challenge in addition to fully formal proofs of a number of other theorems in the
meta-theory of the λ-calculus.

Now that the Abella system has been in circulation among colleagues during the past couple of years, there
are many aspects of the methodology that now need to be addressed. During the summer of 2011, the team
employed three interns Carnegie Mellon University and McGill University to work on different aspects of
Abella. Particular focus was given to better ways to manipulate specification-logic contexts in the reasoning-
logic and with finding ways to have Abella output a proper proof object (different from the scripts that are
used to find a proof).

Our colleague Alwen Tiu from the Australian National University has also been building on our Bedwyr
model checking tool so that we can build on top of it his SPEC system for doing model checking of spi-
calculus expressions. We have adopted his enhancements to Bedwyr and are developing further improvements
within the context of the BATT project (see Section 5.3).

4.3. Proof certificates
Members of the Parsifal team have shown how to specify a large variety of proof systems—including natural
deduction, the sequent calculus, and various tableau and free deduction systems—uniformly using either
focused linear logic [51], [49] or focused intuitionistic logic [43] as the meta-language. In the presence
of induction and co-induction, arbitrary finite computations can be embedded into single synthetic steps [30].
Additional work [20] shows that this same framework can also capture resolution refutations as well as Pratt
primality certificates.
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An important application then of this work in designing synthetic inference systems based on classical and
intuitionistic logic is that of designing a broad spectrum proof certificate. The definition of proof certificates
can be remarkably flexible within the simple setting of focused proofs.

The most important implications of such a certificate format would be that most of the worlds theorem provers
should be able to print out their proofs and communication them to other provers: these other provers could
then check such certificates by expanding the synthetic connectives they contain down into a small and fixed
set of “micro” inference rules.

5. Software

5.1. Profound
Participants: Kaustuv Chaudhuri [correspondant], Nicolas Guenot, Lutz Straßburger.

Profound is an interactive proof-development tool based on the focused calculus of structures [19]. It allows the
user to build proofs using direct manipulation of the current proof state using the cursor keys and the mouse,
instead of learning a formal textual proof interaction language. The tool checks all user actions dynamically
with the aid of a theorem prover.

We plan to investigate adaptations of a tool such as Profound for proof development in other interactive proof
development systems such as Abella or Coq. We also plan to use the high degree of proof compression that is
enabled by the calculus of structures to create efficient proof certificates for exchange between different proof
development systems.

The first public release of Profound is expected in December 2011. The development can be followed on
INRIA GForge.

5.2. Abella
Participants: Andrew Gacek, Dale Miller.

The earliest versions of the Abella theorem prover was written while Gacek was a PhD student at the University
of Minnesota. Two years ago, Gacek was a post doc in the Parsifal team and more features were added to
this prover. During 2011, Chaudhuri and three interns (Andrew Cave from McGill and Salil Joshi and Chris
Martens from CMU) developed some news designs and new prototypes of needed features for Abella. These
features will provide this prover with better ways to manipulate specification-logic contexts in the reasoning-
logic and a means for outputting proper proof object (different from the scripts that are used to find a proof).

For more information, see the Abella home page: http://abella.cs.umn.edu/.

5.3. Bedwyr
Participants: Kaustuv Chaudhuri, Quentin Heath, Dale Miller [correspondant].

During 2011, our close colleagues Alwen Tui (Australian National University) and David Baelde (INRIA team
Proval) have made some improvements to the Bedwyr system. In the case of Tui, he made these changes in
order to build SPEC, a model checker for the spi-calculus, on top of Bedwyr.

Starting in September, Quentin Heath has joined the team as a technical staff member. He is currently working
on the Bedwyr code so that it can share files with the Abella system. These two provers work within a logic
that is essentially the same: Heath is working to ensure that the concrete syntax and static semantics for the
logical expressions on which they work is also the same. Thus, we expect to have our model checker (Bedwyr)
and interactive theorem prover (Abella) share theories and proofs.

The work of Heath is being done in the context of the BATT ADJ project funded by INRIA. The boarder goals
of the BATT project is to get four software systems (Bedwyr, Abella, Tac, and Teyjus) to inter-operate.

http://abella.cs.umn.edu/
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See also the web page http://slimmer.gforge.inria.fr/bedwyr/.

6. New Results

6.1. The Focused Calculus of Structures
Participants: Kaustuv Chaudhuri, Nicolas Guenot, Lutz Straßburger.

The sequent calculus is a proof system for logic that has many nice properties from a proof search perspective,
the most famous being the subformula property that is essential to tame the search space. In recent years,
the focusing property of sequent systems has become another useful property, both for shrinking the search
space and to improve the representation of proofs. However, the sequent calculus does have some limitations.
Primarily, not all logics have analytic (i.e., cut-free) proof systems, which are the sine qua non of proof search.
A less obvious but equally bothersome limitation is that cut-free sequent proofs tend to contain large repeated
sub-proofs.

To remedy these deficiencies, one can use the calculus of structures, a proof system that allows inferences
anywhere inside a formula. This system can represent many more logics than the sequent calculus and can
produce better (i.e., usually smaller) proofs because it can avoid sharing large subformulas. Nevertheless,
because the rules of the calculus of structures have finer granularity than sequent rules, it has more non-
determinism during search.

In this work, we show how to transplant the focusing result from the sequent calculus to the calculus of
structures [19]. We thus improve the search capabilities of the calculus of structures, including the ability to
go back and forth between focused sequent proofs and focused calculus of structures proofs, but we retain all
the distinguishing features of the calculus of structures.

In particular, we preserve the ability to permute contractions below all other rules (first observed for the
calculus of structures in [55], [31]). This permutation enables a two-stage normal form of proofs. The first
stage contains only contractions, which increases the complexity of the formulas and is therefore a potential
source of unbounded search; this phase needs to be recorded in order to reconstruct proofs by bounded
search. The second stage that contains the remaining logical rules (except contraction) is strictly bounded
and finite—hence decidable—and can be reconstructed if omitted from the proof object. Thus, we have the
potential of obtaining very simple proof objects, recording only the first phase, for focused proofs; moreover,
because of the bidirectional link, we can reconstruct focused sequent proofs from such proof objects.

Both the search and the representational aspects of focused calculus of structures proofs are being investigated
in the Profound tool (see section 5.1).

6.2. Nested Sequents for Intuitionistic Modal Logics
Participant: Lutz Straßburger.

We show how the recent results for treating classical modal logics in the modal cube under S5 via nested
sequents [32], [33] can be carried to intuitionistic modal logics. Thus, we present cut-free nested sequent
systems for all intuitionistic modal logics in the modal cube up to IS5, and we show how this can be done in a
modular way, i.e., to each of the axioms d, t, b, 4, and 5, we assign a set of inference rules, such that for each
subset of d,t,b,4,5 the corresponding set of rules is sound and complete for the defined logic. This work has
been presented in an invited talk at the IMLA workshop in Nancy [25].

6.3. The logic of nominal abstraction
Participant: Dale Miller.

http://slimmer.gforge.inria.fr/bedwyr/


Project-Team PARSIFAL 9

In the paper [12], Gacek, Miller, and Nadathur have developed a strong logic that allows strong forms of
induction and co-induction in the presence of the∇ quantifier. This quantifier was introduced in earlier work by
Miller and Tiu [50] where it was shown to provide declarative and flexible operational semantic specifications
for a number of systems such as the λ-calculus and the π-calculus. The paper In the paper [12] introduces a
generalization form of equality, called nominal abstraction, that permits natural specifications of predicates
such as freshness. This paper provides the necessary meta theory (cut-elimination) for this new logic.

6.4. A framework for focusing and cut-elimination
Participant: Dale Miller.

Liang and Miller provide in [14] a general setting for specifying proofs in intuitionistic and classical logic. In
this setting, it is possible to guarantee cut-elimination and initial elimination results simply by checking how
certain simple side-conditions are used within a focused proof system. This setting treats both intuitionistic
and classical logics as well allowing certain hybridizations of these two logics. This work helped lead the
authors to finding a way to truly mix in one logic and one proof system both classical and intuitionistic logic,
as described in [22].

6.5. Synthetic connectives and their proof system
Participant: Dale Miller.

In recent years, focused proof systems have being used to expand our understanding of how introduction rules
and structural rule relate to each other. In these proof systems, inference rules and logical connectives are
polarized as negative or positive in such a way that the invertible inference rules all belong to the negative
polarity. Groups of negative connectives can then be grouped into one negative synthetic connective: similarly,
positive connectives can be grouped into a positive synthetic connective. Such synthetic connectives admit
cut-elimination. Remarkably, focused proof systems for classical and intuitionistic logics can be organized so
that negative formulas are, in fact, treated linearly. That is, if weakening or contraction is applied to a formula,
that formula is positive.

Focused proof systems can be used to design richly varying collections of synthetic connectives. These proof
systems also provide for new means of describing parallelism within proofs and mixing computation and
deduction. The ability to treat negative formulas linearly provides important information for the design of
automated theorem provers. Synthetic connectives and their associated inference rules will also allow for the
design of broad spectrum proof certificates that theorem provers will be able to print and simple proof checkers
will be able to validate. Miller’s conference paper [20] develops this approach to proof certificates.

6.6. Automated reasoning and SMT solving
Participants: Mahfuza Farooque, Stéphane Lengrand.

Automated reasoning uses a broad range of techniques whose soundness and completeness relate to the
existence of proofs. The research programme of the ANR PSI project at Parsifal is to build a finer-grained
connection by specifying automated reasoning techniques as the step-by-step construction of proofs, as we
know it from proof theory and logic programming. The goal is to do this in a unifying framework, namely
proof-search in a classical polarized sequent calculus. One of the advantages of this is to combine those
techniques more easily. Another one is to envisage extending those techniques.

For instance, the algorithm at the heart of SMT-solving (SAT-modulo-Theory) is DPLL(T), whose theory does
not treat existential variables (although SMT-provers often implement incomplete ad hoc techniques for them).
We have first encoded DPLL(T) as the step-by-step construction of a proof tree in a classical polarized sequent
calculus extended with calls to a decision procedure for T (to be published). This proof-theoretic view now
allows us to envisage how to extend the algorithm with existential variables.

Another range of techniques that we are addressing is the handling of equality (superposition / paramodulation
calculi).
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6.7. Towards a Stochastic Linear Logic for Biological Computation
Participants: Kaustuv Chaudhuri, Joëlle Despeyroux.

In previous work [35], Joëlle Despeyroux and Kaustuv Chaudhuri have given an encoding of the synchronous
stochastic π-calculus in a hybrid extension of intuitionistic linear logic (called HyLL). Precisely, they have
shown that focused partial sequent derivations in the encoding are in bijection with stochastic traces. The
modal worlds are used to represent the rates of stochastic interactions, and the connectives of hybrid logic are
used to represent the constraints in the stochastic transition rules.

One of the most successful applications of the stochastic π-calculus has been in representing signal trans-
duction networks in cellular biology. An interesting application of this work would therefore be the direct
representations of biological processes in HyLL, the original motivation for this line of investigation.

This year, we have worked on specifying some simple examples of regulatory gene networks, together with
basic properties of them—such as stability or oscillation—in HyLL. This is ongoing work in collaboration
with Gilles Bernot’s team at Nice-Sophia university.

7. Partnerships and Cooperations
7.1. National Initiatives
7.1.1. CPP: ANR on Confidence, Proofs, and Probabilities

Participants: Ivan Gazeau, Dale Miller.

The ANR Blanc titled “CPP: Confidence, Proofs, and Probabilities” has started 1 October 2009. This
grant brings together the following institutions and individuals: LSV (Jean Goubault-Larrecq), CEA LIST
(Eric Goubault, Olivier Bouissou, and Sylvie Putot), INRIA Saclay (Catuscia Palamidessi, Dale Miller, and
Stephane Gaubert), Supelec L2S (Michel Kieffer and Eric Walter), and Supelec SSE (Gilles Fleury and Daniel
Poulton). This project proposes to study the joint use of probabilistic and formal (deterministic) semantics and
analysis methods, in a way to improve the applicability and precision of static analysis methods on numerical
programs. The specific long-term focus is on control programs, e.g., PID (proportional-integral-derivative)
controllers or possibly more sophisticated controllers, which are heavy users of floating-point arithmetic and
present challenges of their own. To this end, we shall benefit from case studies and counsel from Hispano-Suiza
and Dassault Aviation, who will participate in this project, but preferred to remain formally non-members, for
administrative reasons.

7.1.2. Panda: ANR on Parallelism and Distribution Analysis
Participant: Dale Miller.

The ANR Blanc titled “Panda: Parallelism and Distribution Analysis” has started 1 October 2009. This project
brings together researchers from INRIA Saclay (Comète and Parsifal), CEA LIST, MeASI as well labs in Paris
(LIPN, PPS, LSV, LIP, LAMA), and on the Mediterranean (LIF, IML, Airbus). Scientifically, this proposal
deals with the validation of concurrent and distributed programs, which is difficult because the number of its
accessible states is too large to be enumerated, and even the number of control points, on which any abstract
collecting semantics is based, explodes. This is due to the great number of distinct scheduling of actions in
legal executions. This adds up to the important size of the codes, which, because they are less critical, are
more often bigger. The objective of this project is to develop theories and tools for tackling this combinatorial
explosion, in order to validate concurrent and distributed programs by static analysis, in an efficient manner.
Our primary interest lies in multithreaded shared memory systems. But we want to consider a number of
other paradigms of computations, encompassing most of the classical ones (message-passing for instance as
in POSIX or VXWORKS) as well as more recent ones.

7.1.3. PSI: ANR on Proof Search in Interaction with Domain-specific methods
Participants: Stéphane Lengrand, Mahfuza Farooque.
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The ANR Jeune Chercheuse / Jeune chercheur titled “PSI: Proof Search in Interaction with Domain-specific
methods” has started 1 September 2009. This project investigates how proof-search can be performed in
a framework where reasoning is subject to highly specific inference rules or axioms. This encompasses
reasoning modulo a theory for which we may have a decision procedure (linear arithmetic, etc), or reasoning
in a particular type theory (e.g. in a Pure Type system). The field of automated reasoning offers a variety of
techniques (SAT-modulo-Theory, etc) which we like to see in terms of proof search. The project represent 192
000 euros of funding over four years, and is in collaboration with Assia Mahboubi at the TypiCal team.

7.2. International Initiatives
7.2.1. STRUCTURAL: ANR blanc International

Participants: Kaustuv Chaudhuri, Nicolas Guenot, Willem Heijltjes, Clément Houtmann, Dale Miller, Lutz
Straßburger.

• Title: Structural and computational proof theory
• Duration: 01/01/2011 – 31/12/2013
• Partners:

– University Paris VII, PPS (PI: Michel Parigot)
– INRIA Saclay–IdF, EPI Parsifal (PI: Lutz Straßburger)
– University of Innsbruck, Computational Logic Group (PI: Georg Moser)
– Vienna University of Technology, Theory and Logic Group (PI: Matthias Baaz)

• Total funding by the ANR: 242 390,00 EUR (including 12 000 EUR pôle de compétivité: SYS-
TEMTIC Paris région)

This project is a consortium of four partners, two French and two Austrian, all being internationally recognized
for their work on structural proof theory, but each coming from a different tradition. One of the objective of
the project is build a bridge between these traditions and develop new proof-theoretic tools and techniques of
structural proof theory having a strong potential of applications in computer science, in particular at the level
of the models of computation and the extraction of programs and effective bounds from proofs.

On one side, there is the tradition coming from mathematics, which is mainly concerned with first-order
logic, and studies, e.g., Herbrand’s theorem, Hilbert’s epsilon-calculus, and Goedel’s Dialectica interpretation.
On the other side, there is the tradition coming from computer science, which is mainly concerned with
propositional systems, and studies, e.g., Curry-Howard isomorphism, algebraic semantics, linear logic, proof
nets, and deep inference. A common ground of both traditions is the paramount role played by analytic proofs
and the notion of cut elimination. We will study the inter-connections of these different traditions, in particular
we focus on different aspects and developments in deep inference, the Curry-Howard correspondence, term-
rewriting, and Hilbert’s epsilon calculus. As a byproduct this project will yield a mutual exchange between the
two communities starting from this common ground, and investigate, for example, the relationship between
Herbrand expansions and the computational interpretations of proofs, or the impact of the epsilon calculus on
proof complexity.

Besides the old, but not fully exploited, tools of proof theory, like the epsilon-calculus or Dialectica interpre-
tation, the main tool for our research will be deep inference. Deep inference means that inference rules are
allowed to modify formulas deep inside an arbitrary context. This change in the application of inference rules
has drastic effects on the most basic proof theoretical properties of the systems, like cut elimination. Thus,
much of the early research on deep inference went into reestablishing these fundamental results of logical
systems. Now, deep inference is a mature paradigm, and enough theoretical tools are available to think to
applications. Deep inference provides new properties, not available in shallow deduction systems, namely full
symmetry and atomicity, which open new possibilities at the computing level that we intend to investigate
in this project. We intend to investigate the precise relation between deep inference and term rewriting, and
hope to develop a general theory of analytic calculi in deep inference. In this way, this project is a natural
continuation of the ANR project INFER which ended in May 2010.
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7.2.2. Eternal: INRIA ARC
Participants: Kaustuv Chaudhuri, Dale Miller, Lutz Straßburger.

Title: Interactive Resource Analysis

webpage: http://eternal.cs.unibo.it/

INRIA principal investigator: Dale Miller

INRIA Partner:

Institution: INRIA

Team: FOCUS

Researcher: Ugo Dal Lago

INRIA Partner:

Institution: INRIA

Team: pi.r2

Researcher: Pierre-Louis Curien

Duration: 2011 - 2013

This project aims at putting together ideas from Implicit Computational Complexity and Interactive
Theorem Proving, in order to develop new methodologies for handling quantitative properties related
to program resource consumption, like execution time and space. The task of verifying and certifying
quantitative properties is undecidable as soon as the considered programming language gets close
to a general purpose language. So, full-automatic techniques in general cannot help in classifying
programs in a precise way with respect to the amount of resources used and moreover in several
cases the programmer will not gain any relevant information on his programs. In particular, this
is the case for all the techniques based on the study of structural constraints on the shape of
programs, like many of those actually proposed in the field of implicit computational complexity.
To overcome these limitations, we aim at combining the ideas developed in the linear logic approach
to implicit computational complexity with the ones of interactive theorem proving, getting rid of
the intrinsic limitations of the automatic techniques. In the obtained framework, undecidability
will be handled through the system’s user, who is asked not only to write the code, but also to
drive the semi-automatic system in finding a proof for the quantitative properties of interest. In
order to reduce the user effort and allow him to focus only on the critical points of the analysis,
our framework will integrate implicit computational complexity techniques as automatic decision
procedures for particular scenarios. Moreover, in order to be widely applicable, the modularity of the
framework will permit to deal with programs written in different languages and to consider different
computational resources. The kind of study proposed by this project has been almost neglected so
far. Here, we aim at providing such a framework for both theoretic investigations and for testing in
practice the effectiveness of the approach.

7.2.3. INRIA Associate Teams
7.2.3.1. RAPT

Participants: Beniamino Accattoli, Kaustuv Chaudhuri, Quentin Heath, Clément Houtmann, Dale Miller.

Title: Computational logic systems

INRIA principal investigator: Kaustuv Chaudhuri

International Partner:

Institution: McGill University (Canada)

http://eternal.cs.unibo.it/
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Laboratory: School of Computer Science

Researcher: Brigitte Pientka

International Partner:

Institution: Carnegie Mellon University (United States)

Laboratory: Department of Computer Science

Researcher: Frank Pfenning

Duration: 2011 - 2013

See also: http://www.lix.polytechnique.fr/~kaustuv/rapt/

Many aspects of computation systems, ranging from operational semantics, interaction, and various
forms of static analysis, are commonly specified using inference rules, which themselves are formal-
ized as theories in a logical framework. While such a use of logic can yield sophisticated, compact,
and elegant specifications, formal reasoning about these logic specifications presents a number of
difficulties. The RAPT project will address the problem of reasoning about logic specifications by
bringing together three different research teams, combining their backgrounds in type theory, proof
theory, and the building of computational logic systems. We plan to develop new methods for spec-
ifying computation that allow for a range of specification logics (eg, intuitionistic, linear, ordered)
as well as new means to reason inductively and co-inductively with such specifications. New imple-
mentations of reasoning systems are planned that use interactive techniques for deep meta-theoretic
reasoning and fully automated procedures for a range of useful theorems.

7.2.4. Visits of International Scientists
7.2.4.1. Invited Researchers

• Alberto Momigliano, Associate Professor, University of Milan
24 - 28 January and 30 - 31 August.

• Vivek Nigam, Research Scientist, LMU, Munich, Germany.
26 April - 6 May.

• Chuck Liang, Professor, Hofstra University, NY, USA.
2 June - 1 July

• Gopalan Nadathur, Professor, University of Minnesota, MN, USA.
6 -10 June and 3 - 28 October.

• Elaine Pimentel, Associate Professor, Universidade Federal de Minas Gerais.
13 - 24 June.

• Brigitte Pientka, Associate Professor, McGill University, Montreal, Canada.
16 - 20 May.

• Alwen Tiu, Research Scientist, Australian National University.
22 - 26 August.

• Anupam Das, PhD Student, University of Bath, UK.
21 - 25 November 2011

7.2.4.2. Internships

• Andrew Cave, PhD student at McGill Univ., Montreal, Canada.
Internship during May – July 2011

• Salil Joshi, PhD student at Carnegie Mellon Univ., USA.
Internship during June – August 2011

http://www.lix.polytechnique.fr/~kaustuv/rapt/
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• Chris Martens, PhD student at Carnegie Mellon Univ., USA.
Internship during June – August 2011

7.2.5. Participation In International Programs
The team has travel funds within the following international programs.

• PHC Germaine de Staël 2011: funding travel between Bern, Switzerland and INRIA.

• 63.123 - 63ème CPCFQ: Commission permanente de coopération franco-québécoise: funding
exchanges between the McGill and INRIA.

• INRIA-FAPEMIG: funding between INRIA and the Brazilian funding agency FAPEMIG located in
the state of Minas Gerais.

8. Dissemination

8.1. Scientific Co-ordination
• During 2011, Dale Miller has served on the programme committees for LAM 2011 (Fourth Inter-

national Workshop on Logics, Agents, and Mobility), 10 September, Aachen, Germany; MLPA-11
(Modules and Libraries for Proof Assistants), 26 August, Nijmegen; LICS 2011 (Logic in Computer
Science), 21-24 June, Toronto; and Tableaux 2011 (20th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods), July 4-8, Bern, Switzerland.

• Stéphane Lengrand organized the 2011 workshop on “Proof Search in Type Theories and Axiomatic
Theories”, affiliated to CADE’23, on 1st August, Wroclaw, Poland, and the Computational Logic
workshop in honour of Roy Dyckhoff on 18th and 19th November, St Andrews, Scotland.

• Lutz Straßburger has served on the programme committee for the ESSLLI’11 student session, and
has reviewed papers for the following journals: TCS, LMCS, RSL, and the following conferences:
LICS’11, TLCA’11, TABLEAUX’11, APLAS’11, STACS’11.

• Stéphane Lengrand and Lutz Straßburger organized the joint meeting of the GdT Geocal and the
GdT LAC of the GDR Informatique Mathématique from November 25 to November 26, 2011 at
Ecole Polytechnique.

• Kaustuv Chaudhuri was the local chair of the first STRUCTURAL workshop held at LIX, École
Polytechnique, in March 2011. He has reviewed papers for: JAR and ACM ToCL (journals) and
CADE 2011, LICS 2011, CSL 2011, and LPAR 2012.

8.2. Evaluation
• Lutz Straßburger served as rapporteur on the PhD-jury for Novak Novakovic, Institut National

Polytechnique de Lorraine (INPL), Nancy, November 8, 2011

• Dale Miller served as a rapporteur on the PhD jury for Anders Starcke-Henriksen, University of
Copenhagen, 22 December, 2011.

• Miller was member of the PhD juries for François Garillot (Ecole Polytechnique, December 2011)
and Daniel Weller (Technische Universität Wien, 12 January, 2011)

8.3. Teaching
Master : Dale Miller taught 12 hours at MPRI (Master Parisien de Recherche en Informatique) in
the Course 2-1: Logique linéaire et paradigmes logiques du calcul.

Master : Dale Miller taught 20 hours in a graduate course at the University of Pisa for two weeks, 12
- 23 September.
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Master : Dale Miller taught 6 hours in a graduate course at the ISCL: International School on
Computational Logic, Bertinoro, 10-15 April 2011.

PhD & HdR :

HdR : Lutz Straßburger, “Towards a Theory of Proofs of Classical Logic” [11], Université Paris VII,
January 7, 2011

PhD in progress :

1. Ivan Gazeau, since October 2009, co-supervisor: Dale Miller

2. Nicolas Guenot, “Nested Deduction as Foundation for Computation”, since September
2008, supervisor: Lutz Straßburger

3. Mahfuza Farooque, since October 2010, co-supervisor: Stéphane Lengrand

4. Anne-Laure Schneider, since September 2010, supervisor: Dale Miller

5. Hernán Vanzetto, since March 2011, co-supervisor: Kaustuv Chaudhuri

8.4. Popularization
• Lutz Straßburger gave a talk on “C’est quoi, une preuve ?” within the “Unité ou café” series at

INRIA Saclay–IdF, March 11, 2011
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