
IN PARTNERSHIP WITH:
CNRS

Université Denis Diderot
(Paris 7)

Activity Report 2011

Project-Team PI.R2

Design, study and implementation of
languages for proofs and programs

IN COLLABORATION WITH: Laboratoire Preuves, Programmes et Systèmes

RESEARCH CENTER
Paris - Rocquencourt

THEME
Programs, Verification and Proofs

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Scientific Foundations .2

3.1. Proof theory and the Curry-Howard correspondence 2
3.1.1. Proofs as programs 2
3.1.2. Towards the calculus of constructions 2
3.1.3. The Calculus of Inductive Constructions 2

3.2. The development of Coq 3
3.2.1. The underlying logic and the verification kernel 3
3.2.2. Programming and specification languages 3
3.2.3. Libraries 3
3.2.4. Tactics 4
3.2.5. Extraction 4

3.3. Dependently typed programming languages 4
3.3.1.1. Type-checking and proof automation 4
3.3.1.2. Libraries 5

3.4. Around and beyond the Curry-Howard correspondence 5
3.4.1. Control operators and classical logic 5
3.4.2. Sequent calculus 5
3.4.3. Abstract machines 5
3.4.4. Delimited control 5

4. Application Domains .5
5. Software . 6

5.1. http://coq.inria.frCOQ 6
5.1.1. Version 8.4 6
5.1.2. Graphical user interface 6
5.1.3. Type inference, tactics, unification and type classes 6
5.1.4. Internal architecture of the Coq software 7
5.1.5. Efficiency 7
5.1.6. General maintenance 7
5.1.7. Development Action 7
5.1.8. Formalisation in Coq 7

5.2. Pangolin 7
5.3. Other software developments 7

6. New Results . 8
6.1. Proof-theoretical investigations 8

6.1.1. Sequent calculus and Computational duality 8
6.1.2. Linear dependent types 8
6.1.3. Proving with side-effects 9
6.1.4. Delimited control 9
6.1.5. Interactive Realizability 10
6.1.6. Substitutions and isomorphisms 10
6.1.7. Miscellanea 11

6.2. Metatheory of Coq and beyond 11
6.2.1. Calculus of inductive constructions and typed equality 11
6.2.2. Proofs of higher-order programs 11
6.2.3. Unification 11

6.3. Coq as a functional programming language 11
6.3.1. Type-classes and libraries 11

2 Activity Report INRIA 2011

6.3.2. Equations 12
6.3.3. Recursive definitions in proof assistants 12
6.3.4. Dependent pattern-matching 12
6.3.5. Modularized arithmetical libraries 12
6.3.6. Certified extraction 12
6.3.7. Incrementality in proof languages 12
6.3.8. Proofs of programs in Coq 13

7. Partnerships and Cooperations . 13
7.1. National Initiatives 13
7.2. European Initiatives 13
7.3. International Initiatives 14

7.3.1. INRIA Associate Teams 14
7.3.2. Visits of International Scientists 14
7.3.3. Visits abroad of members of the team 15

8. Dissemination . 15
8.1. Animation of the scientific community 15

8.1.1. Collective responsibilities 15
8.1.2. Editorial activities 15
8.1.3. Program committees and organising committees 15
8.1.4. Jurys 16
8.1.5. Ph.D. and habilitation juries 16

8.1.5.1. Invited talks 16
8.1.5.2. Presentation of papers 16
8.1.5.3. Other presentations 16
8.1.5.4. Attendance to conferences, workshops, schools,... 16
8.1.5.5. Talks in seminars 17
8.1.5.6. Groupe de travail Théorie des types et réalisabilité 17

8.1.6. Other dissemination activities 17
8.2. Teaching 18

8.2.1. Supervision of Ph.D. and internships 18
8.2.2. Courses 18

9. Bibliography .18

Project-Team PI.R2

Keywords: Programming Languages, Interactive Theorem Proving, Type Systems, Proofs Of
Programs, Proof Theory

πr2 is a common project with CNRS and University Paris 7, within the laboratory “Preuves, Programmes
et Systèmes” (which is itself joint between Paris 7 and CNRS – UMR 7126). The team has been created on
January the 1st, 2009 and became an INRIA “équipe-projet” on July the 1st, 2009. Its explicit association
with both University Paris 7 and CNRS is now very close to being finalised.

Beginning of the Team: 01/01/2011.

1. Members
Research Scientists

Pierre-Louis Curien [Team leader, DR CNRS, HdR]
Hugo Herbelin [DR INRIA, HdR]
Alexis Saurin [CR CNRS]
Matthieu Sozeau [CR INRIA]

Faculty Members
Pierre Letouzey [MC Paris 7]
Yann Régis-Gianas [MC Paris 7]

Engineer
Xavier Clerc [Ingénieur Coq]

PhD Students
Pierre Boutillier [Contrat doctoral université Paris 7]
Stéphane Glondu [Allocation couplée, Paris 7, until August 2011]
Lourdes del Carmen Gonzalez Huesca [Funding by the ANR PARAL-ITP, since December 2011]
Guillaume Munch-Maccagnoni [Contrat doctoral université Paris 7]
Pierre-Marie Pédrot [Contrat doctoral université Paris 7]
Matthias Puech [Cotutelle avec l’Université de Bologne, financement Ministère de la Recherche italien
(MIUR)]

Post-Doctoral Fellows
Federico Aschieri [INRIA funding, since September 2011]
Nicolas Ayache [Postdoc of the european project “CerCo”]
Jeffrey Sarnat [INRIA funding, until June 2011]
Arnaud Spiwack [INRIA funding]
Noam Zeilberger [Postdoc of the Foundation SMP until October 2011, now postdoc at IMDEA Software
institute in Madrid]

Administrative Assistant
Marine Meyer

2. Overall Objectives

2.1. Overall Objectives
The research conducted in πr2 is devoted both to the study of foundational aspects of formal proofs and
programs and to the development of the Coq proof assistant software, with a focus on the dependently
typed programming language aspects of Coq. The team acts as one of the strongest teams involved in the
development of Coq as it hosts in particular the current coordinator of the Coq development team.

2 Activity Report INRIA 2011

3. Scientific Foundations

3.1. Proof theory and the Curry-Howard correspondence
3.1.1. Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor to
this field is Gentzen [30] who developed in 1935 two logical formalisms that are now central to the study
of proofs. These are the so-called “natural deduction”, a syntax that is particularly well-suited to simulate the
intuitive notion of reasoning, and the so-called “sequent calculus”, a syntax with deep geometric properties
that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine
observations first by Curry in 1958 [27], then by Howard and de Bruijn at the end of the 60’s [37], [49],
that proofs had the very same structure as programs: for instance, natural deduction proofs can be identified as
typed programs of the ideal programming language known as λ-calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches and
results contributing to deeply connect logic and computer science. In particular, it is from this line of work that
Coquand’s Calculus of Constructions [23] stemmed out – a formalism that is both a logic and a programming
language and that is at the source of the Coq system [48].

3.1.2. Towards the calculus of constructions
The λ-calculus, defined by Church [22], is a remarkably succinct model of computation that is defined via
only three constructions (abstraction of a program with respect to one of its parameters, reference to such
a parameter, application of a program to an argument) and one reduction rule (substitution of the formal
parameter of a program by its effective argument). The λ-calculus, which is Turing-complete, i.e. which has
the same expressiveness as a Turing machine (there is for instance an encoding of numbers as functions in
λ-calculus), comes with two possible semantics referred to as call-by-name and call-by-value evaluations. Of
these two semantics, the first one, which is the simplest to characterise, has been deeply studied in the last
decades [19].

For explaining the Curry-Howard correspondence, it is important to distinguish between intuitionistic and
classical logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that accepts
the use of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard’s observation is
that the proofs of the intuitionistic natural deduction formalism exactly coincide with programs in the (simply
typed) λ-calculus.

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, referred to as
modern type theory, that was both a logical system and a (typed) programming language [44].

In 1985, Coquand and Huet [23], [25] in the Formel team of INRIA-Rocquencourt explored an alternative ap-
proach based on Girard-Reynolds’ system F [31], [47]. This formalism, called the Calculus of Constructions,
served as logical foundation of the first implementation of Coq in 1984. Coq was called CoC at this time.

3.1.3. The Calculus of Inductive Constructions
The first public release of CoC dates back to 1989. The same project-team developed the programming
language Caml (nowadays coordinated by the Gallium team) that provided the expressive and powerful
concept of algebraic data types (a paragon of it being the type of list). In CoC, it was possible to simulate
algebraic data types, but only through a not-so-natural not-so-convenient encoding.

In 1989, Coquand and Paulin [26] designed an extension of the Calculus of Constructions with a generalisation
of algebraic types called inductive types, leading to the Calculus of Inductive Constructions (CIC) that started
to serve as a new foundation for the Coq system. This new system, which got its current definitive name Coq,
was released in 1991.

Project-Team PI.R2 3

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic powerful
enough to formalise all common mathematics (as set theory is) and an expressive richly-typed functional
programming language (like ML but with a richer type system, no effects and no non-terminating functions).

3.2. The development of Coq
Since 1984, about 40 persons have contributed to the development of Coq, out of which 7 persons have
contributed to bring the system to the place it is now. First Thierry Coquand through his foundational
theoretical ideas, then Gérard Huet who developed the first prototypes with Thierry Coquand and who headed
the Coq group until 1998, then Christine Paulin who was the main actor of the system based on the CIC and
who headed the development group from 1998 to 2006. On the programming side, important steps were made
by Chet Murthy who raised Coq from the prototypical state to a reasonably scalable system, Jean-Christophe
Filliâtre who turned to concrete the concept of a small trustful certification kernel on which an arbitrary large
system can be set up, Bruno Barras and Hugo Herbelin who, among other extensions, reorganised Coq on a
new smoother and more uniform basis able to support a new round of extensions for the next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a position
in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved to the
University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the part of
Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq. Gérard
Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt and Orsay.
Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles Dowek who
got a position at École Polytechnique, LogiCal globally moved to Futurs with a bilocalisation on Orsay and
Palaiseau. It then split again giving birth to ProVal. At the same time, the Marelle team (formerly Lemme,
formerly Croap) which has been a long partner of the Formel team, invested more and more energy in both the
formalisation of mathematics in Coq and in user interfaces for Coq.

After various other spreadings resulting from where the wind pushed former PhD students, the development
of Coq got definitely multi-site with the development now realised by employees of INRIA, the CNAM and
Paris 7.

We next briefly describe the main components of Coq.

3.2.1. The underlying logic and the verification kernel
The architecture adopts the so-called de Bruijn principle: the relatively small kernel of Coq ensures the
correctness of the proofs validated by the system. The kernel is rather stable with modifications tied to the
evolution of the underlying Calculus of Inductive Constructions formalism. The kernel includes an interpreter
of the programs expressible in the CIC and this interpreter exists in two flavours: a customisable lazy
evaluation machine written in OCaml and a call-by-value bytecode interpreter written in C dedicated to
efficient computations. The kernel also provides a module system.

3.2.2. Programming and specification languages
The concrete user language of Coq, called Gallina, is a high-level language built on top of the CIC. It includes
a type inference algorithm, definitions by complex pattern-matching, implicit arguments, mathematical nota-
tions and various other high-level language features. This high-level language serves both for the development
of programs and for the formalisation of mathematical theories. Coq also provides a large set of commands.
Gallina and the commands together forms the Vernacular language of Coq.

3.2.3. Libraries
Libraries are written in the vernacular language of Coq. There are libraries for various arithmetical structures
and various implementations of numbers (Peano numbers, implementation of N, Z, Q with binary digits,
implementation of N, Z, Q using machine words, axiomatisation of R). There are libraries for lists, list of a
specified length, sorts, and for various implementations of finite maps and finite sets. There are libraries on
relations, sets, orders.

4 Activity Report INRIA 2011

3.2.4. Tactics
The tactics are the methods available to conduct proofs. This includes the basic inference rules of the CIC,
various advanced higher level inference rules and all the automation tactics. Regarding automation, there are
tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary proof search,
for semi-decidability of first-order logic and so on. There is also a powerful and popular untyped scripting
language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a consequence,
possible bugs in proof methods do not hinder the confidence in the correctness of the Coq checker. Note also
that the CIC being a programming language, tactics can be written (and certified) in the own language of Coq
if needed.

3.2.5. Extraction
Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to functional
programs (in OCaml, Scheme or Haskell). Especially, a program certified by Coq can further be extracted to
a program of a full-fledged programming language then benefiting of the efficient compilation, linking tools,
profiling tools, ... of the target software.

3.3. Dependently typed programming languages
Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and broadening
tendency to develop programming languages with type systems able to express program properties finer than
the usual information of simply belonging to specific data-types. The type systems of dependently-typed
programming languages allow to express properties dependent of the input and the output of the program
(for instance that a sorting program returns a list of same size as its argument). Typical examples of such
languages were the Cayenne language, developed in the late 90’s at Chalmers University in Sweden and
the DML language developed at Boston. Since then, various new tools have been proposed, either as typed
programming languages whose types embed equalities (Ωmega at Portland, ATS at Boston, ...) or as hybrid
logic/programming frameworks (Agda at Chalmers University, Twelf at Carnegie, Delphin at Yale, OpTT at
U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq, whose
language is both a logic and a programming language which moreover can be extracted to pure ML code plays
a role in this movement and some frameworks for DTP have been proposed on top of Coq (Concoqtion at Rice
and Colorado, Ynot at Harvard, Why in the ProVal team at INRIA). It also connects to Hoare logic, providing
frameworks where pre- and post-conditions of programs are tied with the programs.

3.3.1. Issues regarding dependently typed programming
DTP approached from the programming language side generally benefits of a full-fledged language (e.g.
supporting effects) with efficient compilation. DTP approached from the logic side generally benefits of an
expressive specification logic and of proof methods so as to certify the specifications. The weakness of the
approach from logic however is generally the weak support for effects or partial functions.

3.3.1.1. Type-checking and proof automation

In between the decidable type systems of conventional data-types based programming languages and the full
expressiveness of logically undecidable formulae an active field of research explores a spectrum of decidable or
semi-decidable type systems for possible use in dependently programming languages. At the beginning of the
spectrum, this includes for instance the system F’s extension MLF of the ML type system or the generalisation
of abstract data types with type constraints (G.A.D.T.) such as found in the Haskell programming language.
At the other side of the spectrum, one finds arbitrary complex type specification languages (e.g. that a sorting
function returns a list of type “sorted list”) for which more or less powerful proof automation tools (generally
first-order ones) exist.

Project-Team PI.R2 5

3.3.1.2. Libraries

Developing libraries for programming languages takes time and generally benefits of a critical mass effect. An
advantage is given to languages that start from well-established existing frameworks for which a large panel
of libraries exist. Coq is such a framework.

3.4. Around and beyond the Curry-Howard correspondence
For two decades, the Curry-Howard correspondence was limited to the intuitionistic case but in 1990, an
important stimulus spurred on the community following the discovery by Griffin that the correspondence
was extensible to classical logic. The community then started to investigate unexplored potential fields of
connection between computer science and logic. One of these fields was the computational understanding of
Gentzen’s sequent calculus while another one was the computational content of the axiom of choice.

3.4.1. Control operators and classical logic
Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning of the
90’s thanks to the seminal observation by Griffin [34] that some operators known as control operators were
typable by the principle of double negation elimination (¬¬A⇒ A), a principle which provides classical
logic.

Control operators are operators used to jump from one place of a program to another place. They were first
considered in the 60’s by Landin [43] and Reynolds [46] and started to be studied in an abstract way in the 80’s
by Felleisen et al [28], culminating in Parigot’s λµ-calculus [45], a reference calculus that is in fine Curry-
Howard correspondence with classical natural deduction. In this respect, control operators are fundamental
pieces of the full connection between proofs and programs.

3.4.2. Sequent calculus
The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of the 90’s.
The main technicality of sequent calculus is the presence of left introduction inference rules and two kinds of
interpretations of these rules are applicable. The first approach interprets left introduction rules as construction
rules for a language of patterns but it does not really address the problem of the interpretation of the implication
connective. The second approach, started in 1994, interprets left introduction rules as evaluation context
formation rule. This line of work culminated in 2000 with the design by Hugo Herbelin and Pierre-Louis
Curien of a symmetric calculus exhibiting deep dualities between the notion of programs and evaluation
contexts and between the standard notions of call-by-name and call-by-value evaluation semantics.

3.4.3. Abstract machines
Abstract machines came as an intermediate evaluation device, between high-level programming languages
and the computer microprocessor. The typical reference for call-by-value evaluation of λ-calculus is Landin’s
SECD machine [42] and Krivine’s abstract machine for call-by-name evaluation [41], [39]. A typical abstract
machine manipulates a state that consists of a program in some environment of bindings and some evaluation
context traditionally encoded into a “stack”.

3.4.4. Delimited control
Delimited control extends the expressiveness of control operators with effects: the fundamental result here is a
completeness result by Filinski [29]: any side-effect expressible in monadic style (and this covers references,
exceptions, states, dynamic bindings, ...) can be simulated in λ-calculus equipped with delimited control.

4. Application Domains
4.1. The impact of Coq

Coq is one of the 8 most used proof assistants in the world. In Europe, its main challengers are Isabelle
(developed in Munich, Germany), HOL (developed in Cambridge, UK) and Mizar (developed in Białystok,
Poland).

6 Activity Report INRIA 2011

Coq is used in various research contexts and in a few industrial contexts. It is used in the context of formal
mathematics at the University of Nijmegen (constructive algebra and analysis), INRIA Sophia-Antipolis
(number theory and algebra), INRIA-MSR joint lab (group theory), the University of Nice (algebra). It is used
in France in the context of computer science at INRIA-Rocquencourt (certified compilation), INRIA-Saclay
(certification of imperative programs), LORIA, Strasbourg (certification of geometry algorithms). Outside
France, it is used in the context of computer science e.g. at U. Penn (formalisation of programming languages
semantics), Yale, Ottawa and Berkeley Universities (building of a certified platform for proof-carrying code),
University of Princeton (certified compilation), AIST at Tokyo (certification of cryptographic protocols),
Microsoft Research Cambridge (proof of imperative programs), ... In the industry, it is used by Gemalto and
Trusted Logic (JavaCard formal model and commercial applets certification).

All in all, it is difficult to evaluate how much Coq is used. Two indicators are the readership of the textbook on
Coq by Yves Bertot and Pierre Castéran [21] and the number of subscribers to the Coq-club mailing list. More
than 1200 copies of the book have been sold. There has been a second printing , and a Chinese translation
of the book has been published. There are around 600 subscribers to the mailing list. Coq is taught or used
for teaching in many universities: Paris, Bordeaux, Lyon, Nice, Strasbourg, CNAM, Nottingham, Ottawa, U.
Penn, Warsaw, Krakow, Princeton, Yale, Berkeley, Rosario in Argentina, ...

5. Software
5.1. http://coq.inria.frCOQ

Participants: Bruno Barras [TypiCal team, Saclay], Yves Bertot [Marelle team, Sophia], Frédéric Besson
[Lande team, Rennes], Pierre Boutillier, Xavier Clerc [SED team], Pierre Corbineau [University Joseph
Fourier, Grenoble], Pierre Courtieu [CNAM], Julien Forest [CNAM], Stéphane Glondu, Benjamin Grégoire
[Marelle team, Sophia], Vincent Gross, Hugo Herbelin [correspondant], Stéphane Lescuyer [ProVal team,
Saclay], Pierre Letouzey, Assia Mahboubi [TypiCal team, Saclay], Julien Narboux [University of Strasbourg],
Jean-Marc Notin [TypiCal team, Saclay], Christine Paulin [Proval team, Saclay], Loïc Pottier [Marelle team,
Sophia], Matthias Puech, Yann Régis-Gianas, Vincent Siles, Élie Soubiran, Matthieu Sozeau, Arnaud Spiwack,
Pierre-Yves Strub [Formes team, Beijing], Laurent Théry [Marelle team, Sophia], Benjamin Werner [TypiCal
team, Saclay].

5.1.1. Version 8.4
Version 8.4 beta was released in December 2011. It introduces a new proof engine designed and implemented
by Arnaud Spiwack and a new extensive modular library of arithmetic contributed by Pierre Letouzey. It also
includes an extension of the underlying logic with “η-conversion” by Hugo Herbelin and “commutative-cuts
compliant guard condition” by Pierre Boutillier, an extension of the pattern-matching compilation algorithm
by Hugo Herbelin, an extension of the procedure of simplication of polynomial expressions by Loïc Pottier, a
refinement of the type classes mechanism by Matthieu Sozeau, a new communication model by Vincent Gross
for the graphical user interface CoqIDE, that Pierre Letouzey, Pierre Boutillier and Pierre-Marie Pédrot further
extended.

Several users gracefully contributed improvements of various features (Tom Prince, Enrico Tassi, Daniel
Grayson, Hendrik Tews, ...).

5.1.2. Graphical user interface
Pierre Letouzey has finalized the work initiated by Vincent Gross (former ADT engineer) concerning the
CoqIDE user interface : CoqIDE and Coq are now separate unix processes, enhancing the reliability and
improving the user experience.

5.1.3. Type inference, tactics, unification and type classes
Matthieu Sozeau corrected important issues with the unification algorithm and enhanced it to support
universes. He improved the type-class implementation, adding support for forward-reasoning instances.

Project-Team PI.R2 7

To improve the power of induction tactics, Hugo Herbelin added new heuristics for second-order pattern-
matching based on ideas from Chung-Kil Hur’s Heq plugin.

Pierre Letouzey extended the pattern-matching feature of the tactic language.

5.1.4. Internal architecture of the Coq software
Pierre Letouzey also initiated a large reorganization of the internal components of Coq, since these components
are currently too much interdependent. This work aims at better isolating components and explicitating the
interfaces between them. In addition to the initial goal of simplifying the compilation of Coq, having a clearer
architecture is also expected to help new contributors when they discover and interact with this large and
complex code-base. It also brings new prospects in direct communications between tools developed around
Coq. This is a long-term effort that extends beyond the Coq 8.4 release.

Pierre Boutillier worked on the build system generator for Coq users contributions. It now handles correctly
developments involving ML files. Files to build developments are also used by CoqIDE to infer the required
arguments when it opens a file of a development.

5.1.5. Efficiency
Pierre Letouzey has pursued his effort concerning the improvement of many aspects of the internals of Coq.
In particular, with Yann Régis-Gianas, he enabled a faster load of libraries by default, thanks to laziness, and
also a better sharing of structures in memory (via better hash-consing), with lower memory footprint and some
speedup as visible result. Many bugs have also been addressed.

Starting from September, Xavier Clerc has worked on the codebase in order to profile typical executions.
Some hotspots were identified, most notably in comparison functions: some minor modifications led to a gain
of a few percents on average. Some tests led to envision the use of a Coq-specialized version of comparison
functions, superseding the generic OCaml ones.

5.1.6. General maintenance
Hugo Herbelin, Pierre Letouzey, Pierre Boutillier, Stéphane Glondu and Matthieu Sozeau worked on the
general maintenance of the system.

5.1.7. Development Action
A new “Action de Développement Technologique” about Coq has started September 2011. It gathers the
πr2 team, the Marelle team and the CPR team from CNAM, Hugo Herbelin acting as the coordinator. It
supports visits and meetings between developers and aims at strengthening the community of Coq users and
contributors.

5.1.8. Formalisation in Coq
Stéphane Glondu is working with Mehdi Dogguy on the formalisation in Coq of a type system for a timed
asynchronous π-calculus that guarantees confluence.

5.2. Pangolin
Participant: Yann Régis-Gianas.

Yann Régis-Gianas maintained a prototype version of Pangolin. He used it to prove concrete complexity
bounds for a set of functional programs using the method described in his FOPARA 2011 paper [16].

5.3. Other software developments
Stéphane Glondu is involved in the maintenance of OCaml-related packages in Debian, which include OCaml
itself, Coq, Ssreflect (an extension of Coq developed at INRIA-MSR joint center) and Ocsigen (a web
framework developed at PPS). The Ubuntu distribution naturally benefits from this work.

8 Activity Report INRIA 2011

In collaboration with François Pottier (INRIA Gallium), Yann Régis-Gianas maintained Menhir, an LR parser
generator for OCaml.

6. New Results

6.1. Proof-theoretical investigations
Participants: Federico Aschieri, Pierre Boutillier, Pierre-Louis Curien, Hugo Herbelin, Danko Ilik, Guillaume
Munch-Maccagnoni, Pierre-Marie Pédrot, Alexis Saurin, Arnaud Spiwack, Noam Zeilberger.

6.1.1. Sequent calculus and Computational duality
Thunks and duality. Guillaume Munch-Maccagnoni investigated a notion dual to the thunks of call-by-value
lambda-calculus which allows to simulate call-by-value in call-by-name. He started to investigate how this
structure arises in many models of call-by-name lambda-calculus, how it could explain various phenomena
such as storage operators, and how it could relate to features of actual programming languages.

Categorical semantics. Guillaume Munch-Maccagnoni started a collaboration with Marcelo Fiore with the
aim of understanding structures behind sequent calculus (of system L in particular) and polarisation (as found
in Girard’s classical logic). The goal is to draw links with algebraic and/or computing structures in the unifying
language of category theory. This work is also in collaboration with Pierre-Louis Curien.

Noam Zeilberger has continued to work with Paul-André Melliès (PPS) on developing a categorical framework
for better understanding contexts and inference rules in proof theory and type theory, with the aim of achieving
an integration with the theory of side-effects in programmming languages. He presented some results from this
work in March at the European Workshop on Computational Effects.

Polarised Peano arithmetic. Guillaume Munch-Maccagnoni extended polarised classical logic and polarised
classical realisability to predicate calculus and to Peano arithmetic. This decomposes and simplifies technical
artefacts found in call-by-name classical realisability, and sheds a new light on witness extraction from proofs
of Σ formulae.

(Co)Inductive Types in Sequent Calculus. Hugo Herbelin and Jeffrey Sarnat continued their work towards a
sequent calculus presentation of a simply-typed fragment of CIC that has inductive and coinductive types, as
formalized using recursion operators and a guard condition. Some progress was made on the formalization of
the guard condition and normalization proof, but both remained unfinished as of the end of Sarnat’s postdoc
in June.

Classical call-by-need and the duality of computation. In a collaboration with Zena Ariola (and especially after
a 3-week visit by Alexis Saurin in Oregon early 2011), Zena Ariola, Hugo Herbelin and Alexis Saurin have
presented the call-by-need strategy in the framework of the duality of computation, that is a sequent calculus
approach to call-by-need, and they extended call-by-need from minimal logic to classical logic which allowed
to integrate smoothly control operators, resulting in particular in a call-by-need λµ-calculus. Moreover, the
duality principles involved in such a framework unveiled a new calculus, dual to the usual call-by-need
but which is distinct from call-by-name, call-by-value as well as the usual call-by-need. These results were
presented at TLCA 2011.

Pursuing the previous collaboration, the three previous authors, together with Paul Downen and Keiko Nakata,
studied abstract amchines for this classical call-by-need calculus.

6.1.2. Linear dependent types
Arnaud Spiwack started investigating dependent types variants of linear sequent calculus based on Curien
& Herbelin’s µµ̃. The goal is to study what kind of set theory arises from such a linear type theory when
following the tradition of intuitionistic type theory of defining a set as a type equipped with a relation (this
construction is also known as setoid). Sets defined in this manner in Coq gives rise to a quasitopos (as proved
in Arnaud Spiwack’s PhD thesis) which makes for a reasonable approximation of usual mathematics, however

Project-Team PI.R2 9

“linear sets” should be quite different and may support some unorthodox mathematics. To have an appropriate
theory of linear sets seems to require a fairly rich linear type theory in particular one that supports so called
strong elimination (the type theoretic equivalent to induction). So far, if extending µµ̃ to dependently typed
linear logic has been achieved, strong elimination proves to be harder to coin.

Pierre-Marie Pédrot just started his PhD on this same general topic. While linear logic appeared as an
operational decomposition of intuitionistic logic, dependent types are conversely an essential enrichment of the
latter, as they permit to constructively formalize important parts of mathematics. Even though it is nowadays
pervasively thought that we should mix them, actually it does seem that nobody seriously tried hitherto. This
subject is quite vast, and both sides may mutually enhance the understanding of one another. From the linear
side, linear logic is seriously lacking any satisfying syntax at all; and worse, it seems more prone to solely
describe computational behavior instead of truly formalizing mathematics, for its very lack of richer types.
From the dependent side, usual dependent type systems are based upon PTS, which, being a plain enrichment
of basic lambda-calculus, are intrinsically call-by-name structures. Hence, a linear decomposition inspired
from polarization techniques may permit a better analysis of the inner, yet-to-be discovered gears of PTS. One
may even hope to include non-intuitionistic effects therein. Furthermore, practical systems used today (Coq,
for example) come bundled with additional constructs, such as inductives, whose understanding with respect
to models is still highly incomplete. One could expect linear logic to shed a new light upon these issues. This
thesis stems from preliminary work of Pierre-Marie Pédrot (during his M2 internship) inspired by models of
GoI and other closely related results from Girard, which suggest a natural way to integrate dependency into
them.

6.1.3. Proving with side-effects
Axiom of dependent choice. Hugo Herbelin showed that classical arithmetic in finite types extended with strong
elimination of existential quantification proves the axiom of dependent choice. To get classical logic and choice
together without being inconsistent is made possible first by constraining strong elimination of existential
quantification to proofs that are essentially intuitionistic and second to turn countable universal quantification
into an infinite conjunction of classical proofs evaluated along a call-by-need evaluation strategy so as to
extract of them intuitionistic contents that complies to the intuitionistic constraint put on strong elimination of
existential quantification. This work has been presented at the TYPES conference.

Memory assignment, forcing and delimited control. Hugo Herbelin investigated how to extend his work on
intuitionistically proving Markov’s principle [35] and the work of Danko Ilik on intuitionistically proving
the double negation shift (i.e. ∀x¬¬A→ ¬¬∀xA) [38] to other kind of effects. In particular, memory
assignment is related to Cohen’s forcing as emphasized by Krivine [40] and as the observation that Cohen’s
translation of formula P into ∀y ≤ x∃z ≤ y P (z) is similar to a state-passing-style transformation of type P
into S → S × P .

Hugo Herbelin then designed a logical formalism with memory assignment that allows to prove in direct-style
any statement provable using the forcing method, the same way as logic extended with control operators allows
to support direct-style classical reasoning. Thanks to the use of delimiters over “small” formulas similar to the
notation of Σ0

1-formulas in arithmetic, the whole framework remains intuitionistic, in the sense that it satisfies
the disjunction and existence property.

Two typical applications of proving with side-effects are global-memory proofs of the axiom of countable
choice and an enumeration-free proof of Gödel’s completeness theorem.

The main ideas of this research program have been presented at the Geocal-Lac meeting of the GDR IM.

6.1.4. Delimited control
Delimited control and infinitary/stream calculi

During his summer intership, Paul Downen studied with Alexis Saurin some infinitary λ-calculi and infinitary
rewriting and in particular a proposal by Ketema, Blom, Aoto and Simonsen which allowes to consider
transfinitely deep terms. The proposed calculus presented several defects on which Paul Downen studies
focused. Some of these defects were corrected but the work is still on-going.

10 Activity Report INRIA 2011

In a collaboration with Marco Gaboardi and Koji Nakazawa, Alexis Saurin has been studying how to turn the
Λµ-calculus into a truly stream-based calculus. This involed enlarging the syntactical catergory for streams,
defining a type system and comparing with other proposals for computing on streams.

Alexis Saurin also developed previous results on Λµ-calculus in a paper currently under final revision for
publication in TCS.

PTS and delimited control Following Danvy-Filinski’ simply-typed system for a λ-calculus with delimited
control, Hugo Herbelin and Pierre Boutillier have defined a set of rules for pure type systems with control
operator. The work relies on the CPS used to encode them in standard Pure Type Systems and involves extra
type annotations. Nevertheless, it seems to be more general than previous attempts to build classical PTS [20].
It has been presented at the workshop TPDC (Theory and Practice of Delimited Continuations) in Novi Sad
and an article is under preparation.

6.1.5. Interactive Realizability
Thanks to the Curry-Howard correspondence for classical logic, it is possible to extract programs from
classical proofs. These programs use control operators as a way to implement backtracking and processes
of intelligent learning by trial and error. Unfortunately, such programs are often hard to write, difficult to
understand and are very inefficient: every time a program backtracks, it forgets way too much information.
This state of thing is due to a poor understanding and control of the backtracking mechanism that interprets
classical proofs. In order to write down more efficient programs, it is necessary to describe exactly: a) what
the programs learn, b) how the knowledge of programs varies during the execution.

A first step towards this goal is the theory of Interactive Realizability, a semantics for intuitionistic Arithmetic
with excluded middle over semi-decidable predicates. It is based on a notion of state, which describes the
knowledge of programs coming from a classical proof, and explains how the knowledge evolves during
computation.

Federico Aschieri is working in two directions. First he is extending this realizability semantics to second-
order intuitionistic Arithmetic with the same excluded middle over semi-decidable predicates. He has also
discovered a new state passing style transformation, which allows to implement in System F efficient programs,
which backtrack at the right point and do not forget anything when backtracking. He is also investigating
an interesting relation with the forcing semantics: it seems that his transformation is a very direct, new
constructive formulation of forcing.

Secondly, in collaboration with Berardi, he is also extending Interactive Realizability to first-order Arithmetic,
with full excluded middle. This work promises to provide a significantly finer description of the learning
mechanism that interprets classical proofs.

6.1.6. Substitutions and isomorphisms
Pierre-Louis Curien extended his collaboration with Martin Hofmann (Univ. of Munich) and Richard Garner
(MacQuarie University, Sydney), started in 2010, to the point where the picture sought and announced in
the report of last year turned out to be a bit less idyllic than expected. Let us recall the question addressed.
We wanted to compare precisely two ways of giving a categorical interpretations of Martin-Löf type theory,
both overcoming the following mismatch: syntax has exact substitutions, while their categorical interpretation,
in terms of pullbacks or fibrations, “implements” substitutions only up to isomorphism. One can then either
change the model (strictification) [36], or modify the syntax (by introducing explicit substitutions and more
importantly explicit coercions between types that are now only isomorphic) [2]. These approaches turn out to
be related through adjunctions in a suitable 2-categorical framework that has a conceptual interest of its own.
But these adjunction do not fit entirely together, as we found out early 2011: One is base-dependent, and the
other not. So we cannot put them directly aside to get the nice conceptual picture we hoped for. Still, our initial
goal of expressing the interpretations in terms of on another can be attained, but this remains to be worked out
in detail.

Project-Team PI.R2 11

6.1.7. Miscellanea
During his three months visit in Beijing, Pierre-Louis Curien worked on the relations between Rewriting theory
and the theory of Gröbner bases and other bases like Janet bases or involutive bases that have been introduced
in computer algebra. These comparisons shed some light on the classification of various completion techniques
for rewriting systems (a completion turns a rewriting system into an equivalent locally confluent one). This is
work in progress.

6.2. Metatheory of Coq and beyond
Participants: Pierre Boutillier, Hugo Herbelin, Yann Régis-Gianas, Jeffrey Sarnat, Vincent Siles, Matthieu
Sozeau, Noam Zeilberger.

From the work he has done last year on the Coq termination checker. Pierre Boutillier wrote an article to
describe formally the exact new Coq implementation of a structural guard condition that handles commutative
cuts.

6.2.1. Calculus of inductive constructions and typed equality
The work of Hugo Herbelin and Vincent Siles on the equivalence of Pure Type Systems with typed or untyped
equality has been accepted for publication [11].

6.2.2. Proofs of higher-order programs
Jeffrey Sarnat and Noam Zeilberger continued to investigate the classical program transformations of
continuation-passing-style translation and defunctionalisation [46], from the point-of-view of their effect on
the termination proofs of higher-order programs. The practical aim of these investigations is to develop a
more systematic understanding of termination proofs, which eventually could result in a compiler from proof
assistants with higher-order reasoning (such as Coq) to ones with only first-order reasoning (such as Twelf)

6.2.3. Unification
Matthieu Sozeau and Hugo Herbelin worked on improving the unification algorithm of Coq, making it
more predictable and resolving important soundness issues (e.g. type-checking, dealing with universes). In
collaboration with Beta Ziliani at (PhD student at MPI Sarbrucken) and Aleksandar Nanevski (Resarcher
at IMDEA Madrid), Matthieu Sozeau started a project to formalize (on paper) the improved unification
algorithm, taking into account advanced features such as canonical structures and type classes. This will give
a detailed view of the system to power users like [33] and improve the system to handle the delicate usage
patterns developed in the Mathematical Components team at MSR to scale Coq to large formalizations.

6.3. Coq as a functional programming language
Participants: Stéphane Glondu, Pierre Letouzey, Matthias Puech, Matthieu Sozeau.

6.3.1. Type-classes and libraries
Matthieu Sozeau has worked with members of the Foundations team at Nijmegen on enhancing the imple-
mentation of type-classes to suit the needs of the development of the MathClasses formalization of abstract
algebra (part of the ForMath EU project). This gave rise to an experimental implementation of forward rea-
soning for instance resolution. Concurrently, he started a collaboration with Jael Kriener (Univ. of Canterbury,
who visited for a week in November) to adapt techniques from logic programming to the system, including a
determinacy analysis that would give better control of the system when building large hierarchies of structures
(as in the MathClasses library).

Pierre Castéran from INRIA Bordeaux and Matthieu Sozeau are developing a tutorial on the use of type-
classes that will be the basis of an invited tutorial given by M. Sozeau at the JFLA conference in February
2012. It will be published as part of the new version of the Coq’Art book.

12 Activity Report INRIA 2011

6.3.2. Equations
Matthieu Sozeau has continued the development of the Equations package to build and reason on dependently-
typed programs. He reworked the internals of the tool for a more efficient implementation and extended it to
handle recursion on arbitrary inductive families. He developed a sizable example of the use of the tool for
proving the metatheory of the LF system. The plugin will be relased with the upcoming 8.4 version of Coq. A
journal article presenting the tool and its usage is in preparation.

6.3.3. Recursive definitions in proof assistants
Together with Ana Bove and Alexander Krauss, Matthieu Sozeau has written a survey article on tools and
methods to build and reason on recursive functions in proof assistants based on type theory. The survey
compares the relative strenghts and weaknesses of various formalization methods available in constructive
type theories like Agda or Coq and classical systems like HOL. The article is still under review.

6.3.4. Dependent pattern-matching
Hugo Herbelin and Pierre Boutillier worked on a new simulation of Agda’s style dependent pattern-matching
[24] in the Calculus of Inductive Constructions which, on the contrary of Goguen et al’s simulation [32], does
not rely on any explicit notion of dependent equality. The simulation relies on a systematic re-generalization of
a given matching over the next pattern to matching and over a notion of matching narrowed by type constraints
formalized by Pierre Boutillier [14]. The former itself relies on Pierre Boutillier’s master thesis on making the
guard condition traversing blocked commutative cuts. The simulation has been implemented in Coq 8.4 but
without narrowing on subpatterns yet.

6.3.5. Modularized arithmetical libraries
Pierre Letouzey has integrated in Coq a deep reform of some parts of its Standard Library, mainly the Numbers
library of generic / efficient arithmetic. This reform is part of the the version Coq 8.4. The idea is to take
advantage of recent improvements of the Coq system in terms of modularity (Type Classes by Sozeau and
better Modules by Soubiran) for providing more uniformity in the functions and properties about integers
provided in the Standard Library. We now have a base of functions and lemmas which is statically guaranteed
to be coherent from one numerical datatype representation to the other, allowing the user to choose more
easily between these representations, according to the user’s need in term of simplicity or efficiency. These
modernized libraries are also one of the first large-scale experimentations with many recent features of modules
and type-classes, and have helped maturing them and established new usage guidelines. The transition from
previous versions of these libraries should be relatively transparent thanks to a compatibility layer.

6.3.6. Certified extraction
Stéphane Glondu continued his work on extraction in the Coq-in-Coq formalisation. He proved that reductions
in the source language can be simulated in the target language (the converse had been proven two years
before). This proof highlighted a critical bug in the actual implementation of Coq that has been solved by
Pierre Letouzey.

The formalised extraction is only a step of the actual implementation of Coq: replacing logical subterms by
an inert constant. Stéphane Glondu considers this work done, even though some parts have been admitted.
He worked on how the formalisation could be redesigned in order to avoid currently admitted lemmas and to
allow a better integration with the existing Coq system.

6.3.7. Incrementality in proof languages
Matthias Puech and Yann Régis-Gianas worked on incremental type checking. This preliminary work will be
presented during a contributed talk at TLDI 2012 [15]. It sets the grounds of an incremental proof development
and checking system, by means of a representation language for repositories of proofs and proof changes.

Project-Team PI.R2 13

The traditional interaction with a proof-checker is a batch process. Coq (among others) refines this model by
providing a read-eval print loop with a global undo system, implemented in an ad-hoc way. A more general
approach to incrementality is being developed by means of a finer-grained analysis of dependencies. The
approach developed is adaptable to any typed formal language: the language is specified in a meta-language
close to the Edimburgh Logical Framework, in which subsequent versions of a development can be type-
checked incrementally. Applications of this framework are: proof language for proof assistants, integrated
development environments for proof or programming languages, typed version control systems.

6.3.8. Proofs of programs in Coq
As part of the CerCo european project, in collaboration with Roberto Amadio (PPS, Paris Diderot University),
Nicolas Ayache and Yann Régis-Gianas maintained a prototype compiler for a large subset of the C language
whose specificity is to annotate input source programs with information about the worst-case execution cost
of their machine code. Yann Régis-Gianas started a mechanized version of the proof technique used to prove
the correctness of such an annotating compiler.

Yann Régis-Gianas developed another compiler for Core ML that uses a generalization of CerCo technique
in order to obtain certified worst case execution time bounds on functional programs. This compiler produces
proof obligations in Coq. The corresponding paper will be published in january 2012 in the proceedings of
FOPARA 2011. It is available as a technical report [16].

7. Partnerships and Cooperations

7.1. National Initiatives
Matthieu Sozeau is member of the ANR Typex project (Types and certification for XML) and is coordinator
of one of the tasks of the project on formalization and certification of XML tools. The project will kick-off on
January 8th, 2012 and is a joint project with LRI, PPS and INRIA Grenoble.

Matthieu Sozeau, Hugo Herbelin and Yann Régis-Gianas are members of the ANR Paral-ITP started Novem-
ber 2011. Paral-ITP is about preparing the Coq and Isabelle interactive theorem provers to a new generation
of user interfaces thanks to massive parallelism and incremental type-checking.

Hugo Herbelin is the coordinator of the PPS site for the ANR Récré accepted in 2011 and starting January
2012. Pierre Letouzey is member of the ANR Récré. Récré is about realisability and rewriting, with applica-
tions to proving with side-effects and concurrency.

7.2. European Initiatives
Yann Régis-Gianas is a participant of the EU-FP7 Certified Complexity project (CerCo). This European project
started in February 2010 as a collaboration between Bologna university (Asperti, Coen), Edinburgh university
(Pollack) and Paris Diderot university (Amadio, Régis-Gianas). The CerCo project aims at the construction
of a formally verified complexity preserving compiler from a large subset of the C programming language to
some typical micro-controller assembly language, of the kind traditionally used in embedded systems. Nicolas
Ayache’s postdoc is funded by this project.

Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau submitted a proposal for a PHC Van Gogh with the
university of Nijmegen in the Netherlands. This proposal is about the mathematical libraries of Coq, type
classes, and the homotopic interpretation of equality in the Calculus of Inductive Constructions.

Hugo Herbelin is the participant of a submitted proposal for a PHC Pavle Savić with the university of Novi
Sad in Serbia, the mathematical institute of Belgrade, ENS Lyon and the university of Turin. This proposal
is on a general thematic logic and types. Hugo Herbelin is also the participant of a submitted proposal for
another PHC Pavle Savić with the university of Belgrade and the university of Strasbourg. This proposal is
about automated deduction and formal geometry.

14 Activity Report INRIA 2011

7.3. International Initiatives
7.3.1. INRIA Associate Teams
7.3.1.1. SEMACODE

Title: Proof theory and functional programming languages

INRIA principal investigator: Alexis SAURIN

International Partner:

Institution: University of Oregon (United States)

Laboratory: Computer and Information Science Department

Researcher: Zena ARIOLA

International Partner:

Institution: University of Novi Sad

Laboratory: Faculty of Engineering

Researcher: Silvia GHILEZAN

Duration: 2011 - 2013

See also: http://www.pps.jussieu.fr/~saurin/EA-SEMACODE

Cross-fertilization between logic and programming languages theory is at the root of many striking
developments in programming concepts as well as tools for formal analysis of programs. Our
associated team project aims at gathering senior and young researchers from both sites in order to put
a joint research effort on the following research themes:formalizing particular evaluation strategies
of functional languages based logical techniques coming from sequent calculi. More specifically,
we shall be interested in incorporating control operator directly in call-by-need and in developing
a uniform framework for call-by-value and call-by-name calculi with delimited controlinvestigating
(delimited) control operators, in particular to unveil the logical interpretation of delimited control
(that is its logical counter-part with respect to Curry-Howard correspondence), and developing;
connections between delimited control and stream calculi;developing the logical content of realistic
abstract machines and associated formal analysis tools for realistic abstract machines building on
Curien-Herbelin lambda-bar calculi. The project will gather PiR2 expertise in proof theory and in
the logical foundations of functional programming languages, the expertise of the oregonian group
on call-by-need evaluation and delimited control as well as respective crucial inputs of Gaboardi
and Ghilezan on stream calculi, delimited control, semantics and type theory. The project will in
particular allow to have the INRIA and American students and post-docs involved in the project (7
out of 13 people involved) to travel between both sites and to organize joint workshops (one such
workshop is planned in June 2011).

7.3.2. Visits of International Scientists
Olivier Danvy (University of Aarhus) visited πr2 and PPS for one month and gave a talk on call-by-need
abstract machines.

Beta Ziliani (MPI, Sarbrucken) visited πr2 and PPS for a week in november and gave a talk on ad-hoc proof
automation.

Danko Ilik visited πr2 and PPS for one week and gave a talk on normalization by evaluation for delimited
control.

Silvia Ghilezan (University of Novi Sad) visited πr2 and PPS for one week and worked with Alexis Saurin
and Hugo Herbelin on the classification of several calculi of delimited control.

Zerna Ariola (University of Oregon) visited πr2 for one week and worked with Alexis Saurin and Hugo
Herbelin on the definition of abstract amchines for classical call-by-need.

http://www.pps.jussieu.fr/~saurin/EA-SEMACODE

Project-Team PI.R2 15

Keiko Nakata (University of Tallin) visited πr2 and worked with Hugo Herbelin on recursive definitions and
control operators in call-by-need λ-calculus.

Gyesik Lee visited πr2 for one week and worked with Hugo Herbelin on the formal representation of binders
in Coq and on representing primitive recursive arithmetic in Coq.

7.3.2.1. Internship

Paul Downen and Luke Maurer (University of Oregon) spent two months in the team during the summer,
working with Alexis Saurin and Hugo Herbelin. Paul Downen studied calculi for multi-prompt, the derivation
of abstract machines as well as infinitary λ-calculi. Luke Maurer studied Coq and did some formalization in
Coq and studied Zeilberger’s polarized approach to delimited control as well as connections with Λµ-calculus.

7.3.3. Visits abroad of members of the team
Matthieu Sozeau visited Ana Bove in Gothenburg for a week in January and gave a talk on Equations and
dependent pattern-matching. They worked on a joint paper on tools and methods for recursion in type theory.

Matthieu Sozeau visited Alexandar Nanvesky at IMDEA Madrid from 19th to 23rd october and gave a talk on
Type Classes and unification. They worked on the unification algorithm of Coq.

Guillaume Munch-Maccagnoni visited the Programming, Logic, and Semantics Group at the University of
Cambridge from March to June. He is grateful to the Fondation Sciences Mathematiques de Paris which
provided the funding.

Pierre-Louis Curien visited the University of Tsinghua in Beijing for three months, from March to May (funded
by the Professor Group Chair of the Software School of this university). He was hosted by Gu Ming and Jean-
Pierre- Jouannaud.

8. Dissemination

8.1. Animation of the scientific community
8.1.1. Collective responsibilities

Pierre-Louis Curien was deputy director of the Foundation “Sciences Mathématiques de Paris” until Septem-
ber 2011.

Hugo Herbelin coordinated the ADT Coq and the development of Coq.

8.1.2. Editorial activities
Pierre-Louis Curien is co-editor in chief of Mathematical Structures in Computer Science, and is an editor of
Theoretical Computer Science and of Higher-Order and Symbolic Computation.

Pierre-Louis Curien is guest editor for a special issue of Logical Methods in Computer Science in connection
with the conference TLCA 2009 (about 9/10 of the issue is already published online).

8.1.3. Program committees and organising committees
Yann Régis-Gianas served on the program committee for the conference “Journees Francophones des Lan-
gages Applicatifs”.

Yann Régis-Gianas organized a joint workshop regrouping members of the CerCo european project and the
Eternal ARC.

Matthieu Sozeau organised a Coq workshop on type-classes and reification in February in Paris, with around
20 attendees. This was funded by the ADT Coq. He was on the organising committee of DTP’11, a satellite
workshop of ITP’11 in Nijmegen.

Pierre-Louis Curien coorganised with Paul-André Melliiès the anniversary workshop GGJJ2011, in honour of
Gérard Berry and Jean-Jacques Lévy, Gérardmer, February 2011.

16 Activity Report INRIA 2011

Hugo Herbelin was in the Program Committee of the conference TLCA 2011 and of the workshop Coq 2011.
He will be in the Program Committee of ITP 2012 and MFPS 2012.

Hugo Herbelin, Alexis Saurin, and Noam Zeilberger organized a satellite workshop of RDP 2011 on “Theory
and Practice of Delimited Control” (May).

Hugo Herbelin is organizing the “Automation in Proof Assistant” satellite workshop of ETAPS 2012 which
will be partly shared with the organization of the first COST 0901 meeting of year 2012.

Alexis Saurin was in the Program Committee of ICFP 2011 and he organized, together with Marine Meyer,
the PC meeting which took place in INRIA offices, gathering the PC members (about 20 PC members) for 3
days in may 2011.

Alexis Saurin was in the Program Committee of the workshop GaLoP 2011.

Alexis Saurin is in the scientific committee of the Logic and Interaction weeks 2011, more specifically in
charge of the week on proofs and programs.

8.1.4. Jurys
In June and July 2011, Alexis Saurin has been member of the Jury for entrance exams at Ens Paris and
examined the candidates for the three ENS for the “Informatique Fondamentale” Oral exam.

8.1.5. Ph.D. and habilitation juries
Hugo Herbelin (reviewer) and Matthieu Sozeau (member) participated to the PhD committee of François
Garillot (École Polytechnique) on December 5th. Hugo Herbelin participated to the PhD committee of Barbara
Petit (ENS Lyon) on July 13th.

8.1.5.1. Invited talks

Matthieu Sozeau was invited to the DTP seminar at the Shonan Village Center in Japan, September 2011, and
gave a talk on dependent pattern-matching compilation.

Alexis Saurin has been invited to give a talk at a special session on Structural Proof Theory and Computing
as part of the 2012 ASL (Association of Symbolic Logic) Annual meeting which will take place in Madison,
Wisconsin from March 31-to April 3, 2012.

8.1.5.2. Presentation of papers

Matthias Puech will present his paper [15] at the TLDI 2012 workshop.

Alexis Saurin gave a communication at TLCA 2011 on his work with Zena Ariola and Hugo Herbelin [12]
8.1.5.3. Other presentations

Sozeau and Letouzey presented the developers talk at the Coq’3 workshop in Nijmegen,

Pierre Boutillier, Hugo Herbelin and Noam Zeilberger gave each one a talk at the TPDC workshop in Novi
Sad (June).

Arnaud Spiwack and Hugo Herbelin gave a talk at the TYPES conference in Bergen (September).

Matthieu Sozeau and Pierre Letouzey gave a presentation at the Coq workshop 2011 at Nijmegen (August).

Letouzey gave two of the lessons in the one-week CEA-INRIA-EDF School about Coq (November, Paris).

Guillaume Munch-Maccagnoni gave a talk at the Linear Logic workshop (November, Kyoto).

Noam Zeilberger gave a talk at the European Workshop on Computational Effects in Ljubljana, Slovenia
(March).

8.1.5.4. Attendance to conferences, workshops, schools,...

Oregon Programming Languages Summer School (Puech, Sozeau). Journées Francophones des Langages
Applicatifs, February, La Bresse (Boutillier).

Final meeting of the ANR project CHOCO (Curry-Howard for concurrency) at Lyon (Munch-Maccagnoni),
April.

Project-Team PI.R2 17

Hugo Herbelin gave a talk at the FATPA 2011 workshop at Belgrade (February).

Pierre Boutillier and Hugo Herbelin attended TLCA 2011 in Novi Sad.

Hugo Herbelin and Matthieu Sozeau attended ITP 2011 at Nijmegen (August).

Hugo Herbelin attended the Coq workshop 2011 at Nijmegen (August).

Arnaud Spiwack attended CSL 2011.

Matthieu Sozeau and Arnaud Spiwack attended the MAP 2011 conference in Leiden (November).

DTP meeting in Shonan, Japan (Sozeau).

ICFP 2011 in Tokyo (Sozeau).

Hugo Herbelin attended the COST 0901 meeting in Torino.

Noam Zeilberger attended the 13th Agda Implementors’ Meeting (AIM XIII) at Chalmers University (Göte-
borg, Sweden, April).

8.1.5.5. Talks in seminars

Munch-Maccagnoni: "Semantics Lunch", Cambridge Computer Lab (June); Séminaire Théorie des Types et
Réalisabilité (PPS, Paris).

Sozeau: Chalmers Programming Languages seminar (Gothenburg, January). IMDEA Seminar (Madrid, Octo-
ber), University of Kent programming languages and systems seminar (Canterbury, November).

Letouzey: talk in a local seminar at University of Nijmegen (April).

Herbelin: talk at the Geocal-Lac meeting of the GDR IM at École Polytechnique (November). Curien and
Spiwack attended the meeting.

Herbelin and Sozeau: talks at the Journées PPS, September 2011 (Boutillier, Curien, Glondu, Munch-
Maccagnoni, Zeilberger attended the Journées).

Zeilberger: invited speaker at the Paris 7 PhilMaths seminar session on “Proof-theoretic semantics and the
justification of logical laws” (March).

Pierre-Louis Curien organised, jointly with Jean-Pierre Jouannaud and Lihong Zhi, a seminar on Rewriting
and Algebra at the university of Tsignhua during his three-months visit in China (March-May): he gave two
talks, one on Gröbner bases and Rewriting, and another one on Janet bases.

8.1.5.6. Groupe de travail Théorie des types et réalisabilité

This is one of the working groups of PPS, jointly organised by Hugo Herbelin and Paul-André Melliès, since
September 2009. It is held weekly at the Antenne INRIA.

8.1.6. Other dissemination activities
Yann Régis-Gianas organised the "Fête de la Science" event for the computer science department of the
Paris Diderot university, with some financial support of INRIA Paris-Rocquencourt communication services.
Nicolas Ayache and Guillaume Munch-Maccagnoni also took part in the animation.

Yann Régis-Gianas co-organised the “Journée Francilienne de Programmation”, a programming contest
between undergraduate students of three universities of Paris (UPD, UPMC, UPS).

Yann Régis-Gianas gave several conferences about computer science in the high-schools Camille Sée (Paris)
and Albert Einstein (Sainte Genevieve des Bois). He also trained four high-school students to be able to explain
the first principles of programming to the other students of the high-school.

Yann Régis-Gianas gave short presentations to high-school teachers in order to present the programming part
of the new high-school teaching module “Informatique et Science du Numérique” (ISN)

Pierre Letouzey participates in a training period of high-school teachers for the computer science courses that
will be introduced next year in the last grade of French high-schools (ISN).

18 Activity Report INRIA 2011

8.2. Teaching
8.2.1. Supervision of Ph.D. and internships

PhD in progress : Pierre Boutillier, Représentation des effets et inférence de type dans le cadre du
développement d’un langage de programmation à types riches, September 2010, Hugo Herbelin.
PhD in progress : Stéphane Glondu, Vers une certification de l’extraction de Coq, September 2007,
Pierre Letouzey.
PhD in progress : Lourdes del Carmen Gonzalez Huesca, Un langage de tactiques typés pour Coq,
December 2011, Hugo Herbelin and Yann-Régis Gianas.
PhD in progress : Guillaume Munch-Maccagnoni, Polarités, réalisabilité classique, contrôle délimité,
September 2009, Pierre-Louis Curien and Thomas Ehrhard.
PhD in progress: Pierre-Marie Pédrot,
PhD in progress : Matthias Puech, Incremental proof development, September 2008, Hugo Herbelin,
Andrea Asperti, and Yann-Régis Gianas.

Yann Régis-Gianas supervised the master internship of Guillaume Claret.

8.2.2. Courses
Licence : Initiation aux systèmes d’exploitation, (Boutillier) 1/4, L1 sciences exactes, Université
Paris Diderot, France
Licence : Algorithmique, (Boutillier) 1/4, L3 BioInfo, Université Paris Diderot, France
Licence : Principes de fonctionnement des machines binaires, (Letouzey) 1/6, L1, Université Paris
Diderot, France
Licence : Programmation fonctionnelle, (Letouzey) 1/6, L2 Math-Info, Université Paris Diderot,
France
Master : Circuits et architectures, (Letouzey) 1/6, M1, Université Paris Diderot, France
Master : Typage, (Letouzey) 1/6, M2 Pro, Université Paris Diderot, France
Master : Preuves assistées par ordinateur, (Glondu) 1/6, M1, Université Paris Diderot, France
Doctorat : Pierre-Louis Curien and Hugo Herbelin gave lectures at the 10th Oregond Summer School
on Programming Languages (June).

Matthias Puech is a teaching assistant (A.T.E.R) at University Paris Diderot – Paris 7 for the academic year
2011–2012. He teaches Java programming and Binary machines (beginner).

Yann Régis-Gianas took part in the MPRI course entitled “Type systems”. He gave a 12 hours course about
generalised algebraic data types, higher-order Hoare logic and dependently typed programming.

9. Bibliography
Major publications by the team in recent years

[1] Z. ARIOLA, H. HERBELIN, A. SABRY. A Type-Theoretic Foundation of Delimited Continuations, in "Higher
Order and Symbolic Computation", 2007, http://dx.doi.org/10.1007/s10990-007-9006-0.

[2] P.-L. CURIEN. Substitution up to isomorphism, in "Fundamenta Informaticae", 1993, vol. 19, p. 51-85.

[3] P.-L. CURIEN, H. HERBELIN. The duality of computation, in "Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00)", Montreal, Canada, SIGPLAN Notices
35(9), ACM, September 18-21 2000, p. 233–243 [DOI : 10.1145/351240.351262], http://hal.archives-
ouvertes.fr/inria-00156377/en/.

http://dx.doi.org/10.1007/s10990-007-9006-0
http://hal.archives-ouvertes.fr/inria-00156377/en/
http://hal.archives-ouvertes.fr/inria-00156377/en/

Project-Team PI.R2 19

[4] H. HERBELIN, S. GHILEZAN. An Approach to Call-by-Name Delimited Continuations, in "Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008", San
Francisco, California, USA, G. C. NECULA, P. WADLER (editors), ACM, January 7-12 2008, p. 383-394.

[5] H. HERBELIN. An intuitionistic logic that proves Markov’s principle, in "Logic In Computer Science",
Edinburgh, Royaume-Uni, IEEE Computer Society, 2010, http://hal.inria.fr/inria-00481815/en/.

[6] G. MUNCH-MACCAGNONI. Focalisation and Classical Realisability, in "Computer Science Logic ’09", E.
GRÄDEL, R. KAHLE (editors), Lecture Notes in Computer Science, Springer-Verlag, 2009, vol. 5771, p.
409–423.

[7] Y. RÉGIS-GIANAS, F. POTTIER. A Hoare Logic for Call-by-Value Functional Programs, in "Proceedings of
the Ninth International Conference on Mathematics of Program Construction (MPC’08)", Lecture Notes in
Computer Science, Springer, July 2008, vol. 5133, p. 305–335, http://gallium.inria.fr/~fpottier/publis/regis-
gianas-pottier-hoarefp.ps.gz.

[8] A. SAURIN. Separation with Streams in the Λµ-calculus, in "Symposium on Logic in Computer Science (LICS
2005)", Chicago, IL, USA, Proceedings, IEEE Computer Society, 26-29 June 2005, p. 356-365.

[9] A. SAURIN. On the Relations between the Syntactic Theories of λµ-Calculi, in "17th Annual Conference of the
EACSL 17th EACSL Annual Conference on Computer Science Logic - CSL 2008", Bertinoro Italie, Lecture
notes in computer science, Springer, 2008, vol. 5213, p. 154-168 [DOI : 10.1007/978-3-540-87531-4_13],
http://hal.archives-ouvertes.fr/hal-00527930/en/.

[10] M. SOZEAU, N. OURY. First-Class Type Classes, in "Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings", O. A.
MOHAMED, C. MUÑOZ, S. TAHAR (editors), Lecture Notes in Computer Science, Springer, 2008, vol.
5170, p. 278-293.

Publications of the year
Articles in International Peer-Reviewed Journal

[11] V. SILES, H. HERBELIN. Pure Type System conversion is always typable, in "Journal of Functional Program-
ming", 2011, to be published, http://hal.inria.fr/inria-00497177/en/.

International Conferences with Proceedings

[12] Z. ARIOLA, H. HERBELIN, A. SAURIN. Classical Call-by-need and duality, in "TLCA 2011 - Typed Lambda
Calculi and Applications", Novi Sad, Serbia, C.-H. L. ONG (editor), Lecture Notes in Computer Science,
Springer, June 2011, vol. 6690, p. 27-44 [DOI : 10.1007/978-3-642-21691-6_6], http://hal.inria.fr/inria-
00630156/en.

[13] A. SAURIN, M. BASALDELLA, K. TERUI. On the Meaning of Focalization, in "workshop on Games, Dialog
and Interaction", Paris, France, A. LECOMTE, S. TRONÇON (editors), LNAI, Springer-Verlag, 2011, vol.
6505, p. 78-87, http://hal.inria.fr/hal-00552209/en.

National Conferences with Proceeding

http://hal.inria.fr/inria-00481815/en/
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://gallium.inria.fr/~fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://hal.archives-ouvertes.fr/hal-00527930/en/
http://hal.inria.fr/inria-00497177/en/
http://hal.inria.fr/inria-00630156/en
http://hal.inria.fr/inria-00630156/en
http://hal.inria.fr/hal-00552209/en

20 Activity Report INRIA 2011

[14] P. BOUTILLIER. A relaxation of Coq’s guard condition, in "Actes des Journées Francophones des langages
Applicatifs", Carnac, France, February 2012, http://hal.archives-ouvertes.fr/hal-00651780/en/.

Conferences without Proceedings

[15] M. PUECH, Y. RÉGIS-GIANAS. Safe Incremental Type Checking, in "TLDI 2012 - Seventh ACM SIGPLAN
Workshop on Types in Language Design and Implementation", Philadelphia, United States, January 2012, 2
pages, http://hal.inria.fr/hal-00650341/en.

Research Reports

[16] R. M. AMADIO, Y. RÉGIS-GIANAS. Certifying and reasoning on cost annotations of functional programs,
Inria, October 2011, http://hal.inria.fr/inria-00629473/en.

Other Publications

[17] H. HERBELIN. A constructive proof of the axiom of dependent choice, compatible with classical logic, 2011.

[18] H. HERBELIN. An intuitionistic logic that proves Markov’s principle (long version), 2011.

References in notes

[19] H. P. BARENDREGT. The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984.

[20] G. BARTHE, J. HATCLIFF, M. H. SØRENSEN. A notion of classical pure type system, in "Electr. Notes Theor.
Comput. Sci.", 1997, vol. 6, p. 4-59.

[21] Y. BERTOT, P. CASTÉRAN. Interactive Theorem Proving and Program Development Coq’Art: The Calculus
of Inductive Constructions, Springer, 2004.

[22] A. CHURCH. A set of Postulates for the foundation of Logic, in "Annals of Mathematics", 1932, vol. 2, p. 33,
346-366.

[23] T. COQUAND. Une théorie des Constructions, University Paris 7, January 1985.

[24] T. COQUAND. Pattern Matching with Dependent Types, in "Electronic Proceedings of the Third Annual BRA
Workshop on Logical Frameworks (Båstad, Sweden)", 1992.

[25] T. COQUAND, G. HUET. Constructions : A Higher Order Proof System for Mechanizing Mathematics, in
"EUROCAL’85", Linz, Lecture Notes in Computer Science, Springer Verlag, 1985, vol. 203.

[26] T. COQUAND, C. PAULIN-MOHRING. Inductively defined types, in "Proceedings of Colog’88", P. MARTIN-
LÖF, G. MINTS (editors), Lecture Notes in Computer Science, Springer Verlag, 1990, vol. 417.

[27] H. B. CURRY, R. FEYS, W. CRAIG. Combinatory Logic, North-Holland, 1958, vol. 1, §9E.

[28] M. FELLEISEN, D. P. FRIEDMAN, E. KOHLBECKER, B. F. DUBA. Reasoning with continuations, in "First
Symposium on Logic and Computer Science", 1986, p. 131-141.

http://hal.archives-ouvertes.fr/hal-00651780/en/
http://hal.inria.fr/hal-00650341/en
http://hal.inria.fr/inria-00629473/en

Project-Team PI.R2 21

[29] A. FILINSKI. Representing Monads, in "Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL’94", Portland, OR, USA, ACM Press, 17-21 Jan 1994, p. 446-457.

[30] G. GENTZEN. Untersuchungen über das logische Schließen, in "Mathematische Zeitschrift", 1935, vol. 39,
p. 176–210,405–431.

[31] J.-Y. GIRARD. Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination des
coupures dans l’analyse et la théorie des types, in "Second Scandinavian Logic Symposium", J. FENSTAD
(editor), Studies in Logic and the Foundations of Mathematics, North Holland, 1971, no 63, p. 63-92.

[32] H. GOGUEN, C. MCBRIDE, J. MCKINNA. Eliminating Dependent Pattern Matching, in "Algebra, Meaning,
and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday", K.
FUTATSUGI, J.-P. JOUANNAUD, J. MESEGUER (editors), Lecture Notes in Computer Science, Springer,
2006, vol. 4060, p. 521-540.

[33] G. GONTHIER, B. ZILIANI, A. NANEVSKI, D. DREYER. How to make ad hoc proof automation less ad hoc,
in "ICFP", M. M. T. CHAKRAVARTY, Z. HU, O. DANVY (editors), ACM, 2011, p. 163-175.

[34] T. G. GRIFFIN. The Formulae-as-Types Notion of Control, in "Conf. Record 17th Annual ACM Symp. on
Principles of Programming Languages, POPL ’90", San Francisco, CA, USA, 17-19 Jan 1990, ACM Press,
1990, p. 47–57.

[35] H. HERBELIN. An intuitionistic logic that proves Markov’s principle, in "Logic In Computer Science", United
Kingdom Edinburgh, IEEE Computer Society, 2010, http://hal.inria.fr/inria-00481815/en.

[36] M. HOFMANN. On the Interpretation of Type Theory in Locally Cartesian Closed Categories, in "Computer
Science Logic (CSL’94)", Springer Lecture Notes in Computer Science 933, 1994, p. 427-441.

[37] W. A. HOWARD. The formulae-as-types notion of constructions, in "to H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism", Academic Press, 1980, Unpublished manuscript of 1969.

[38] D. ILIK. Delimited control operators prove Double-negation Shift, 2010, http://hal.inria.fr/hal-00647389/en/.

[39] J.-L. KRIVINE. A call-by-name lambda-calculus machine, in "Higher Order and Symbolic Computation",
2005.

[40] J.-L. KRIVINE. Structures de réalisabilité, RAM et ultrafiltre sur N, in "CoRR", 2008, vol. abs/0809.2394.

[41] J.-L. KRIVINE. Un interpréteur du lambda-calcul, 1986, Unpublished.

[42] P. LANDIN. The mechanical evaluation of expressions, in "The Computer Journal", January 1964, vol. 6, no

4, p. 308–320.

[43] P. LANDIN. A generalisation of jumps and labels, UNIVAC Systems Programming Research, August 1965,
no ECS-LFCS-88-66, Reprinted in Higher Order and Symbolic Computation, 11(2), 1998.

[44] P. MARTIN-LÖF. A theory of types, University of Stockholm, 1971, no 71-3.

http://hal.inria.fr/inria-00481815/en
http://hal.inria.fr/hal-00647389/en/

22 Activity Report INRIA 2011

[45] M. PARIGOT. Free Deduction: An Analysis of "Computations" in Classical Logic., in "Logic Programming,
Second Russian Conference on Logic Programming", St. Petersburg, Russia, A. VORONKOV (editor), Lecture
Notes in Computer Science, Springer, September 11-16 1991, vol. 592, p. 361-380, http://dblp.uni-trier.de.

[46] J. C. REYNOLDS. Definitional interpreters for higher-order programming languages, in "ACM ’72: Proceed-
ings of the ACM annual conference", New York, NY, USA, ACM Press, 1972, p. 717–740.

[47] J. C. REYNOLDS. Towards a theory of type structure, in "Symposium on Programming", B. ROBINET (editor),
Lecture Notes in Computer Science, Springer, 1974, vol. 19, p. 408-423.

[48] THE COQ DEVELOPMENT TEAM. The Coq Reference Manual, version 8.2, September 2008, http://coq.inria.
fr/doc.

[49] N. DE BRUIJN. AUTOMATH, a language for mathematics, Technological University Eindhoven, November
1968, no 66-WSK-05.

http://dblp.uni-trier.de
http://coq.inria.fr/doc
http://coq.inria.fr/doc

