
Activity Report 2011

Project-Team PROVAL

Proofs of programs

RESEARCH CENTER
Saclay - Île-de-France

THEME
Programs, Verification and Proofs

Table of contents

1. Members . 1
2. Overall Objectives . 2

2.1. Introduction 2
2.2. Highlights 2

3. Scientific Foundations .3
3.1. Interactive proofs of programs 3

3.1.1. Randomized algorithms 3
3.1.2. Floating-point programs 3
3.1.3. Certification of tools 4

3.2. Proof of Imperative and Object-Oriented programs 4
3.2.1. The Why platform 4
3.2.2. Applications and case studies 6

3.3. Automated deduction 6
3.3.1. Termination 6
3.3.2. Decision Procedures 7

3.3.2.1. Combination 7
3.3.2.2. Polymorphic Logics 7
3.3.2.3. The Alt-Ergo theorem prover 7

3.3.3. Automated proofs and certificates 7
3.3.3.1. Coccinelle and CiME’s traces 8
3.3.3.2. The ergo tactics 8

4. Application Domains .8
5. Software . 9

5.1. The CiME rewrite toolbox 9
5.2. The Why platform 9
5.3. The Why3 system 10
5.4. The Alt-Ergo theorem prover 10
5.5. Bibtex2html 10
5.6. OCamlgraph 10
5.7. Mlpost 11
5.8. Functory 11
5.9. The Flocq library 11
5.10. The Gappa tool 11
5.11. The Interval package for Coq 11
5.12. The Alea library for randomized algorithms 12
5.13. The Coccinelle library for term rewriting 12

6. New Results . 12
6.1. Models of Programming 12
6.2. Proofs of Imperative Programs 13
6.3. Automated Deduction 14
6.4. Floating-Point and Numerical Programs 14

7. Contracts and Grants with Industry . 15
7.1. Systematic: Hi-Lite 15
7.2. CEA-Airbus contract 15
7.3. Airbus contract 16

8. Partnerships and Cooperations . 16
8.1. Regional Initiatives 16

8.1.1. Hisseo 16
8.1.2. Coquelicot 16

2 Activity Report INRIA 2011

8.1.3. Pactole 16
8.2. National initiatives 16

8.2.1. U3CAT 16
8.2.2. INRIA ADT Alt-Ergo 17
8.2.3. FOST 17
8.2.4. SCALP 17
8.2.5. DECERT 17

8.3. European Initiatives 18
8.4. International Initiatives 18

8.4.1. Visits of International Scientists 18
8.4.2. Supervision of Post-docs and Internships 18
8.4.3. Participation In International Programs 19

9. Dissemination . 19
9.1. Animation of the scientific community 19

9.1.1. Event organization 19
9.1.2. Editorial boards 19
9.1.3. Learned societies 19
9.1.4. Program committees 19
9.1.5. Participation to Thesis Committees 20
9.1.6. Invited Presentations 20

9.2. Interaction with the scientific community 20
9.2.1. Prizes and distinctions 20
9.2.2. Collective responsibilities within INRIA 20
9.2.3. Collective responsibilities outside INRIA 21

9.3. Industrial Dissemination 21
9.4. Popularization 22
9.5. Teaching 22

10. Bibliography .24

Project-Team PROVAL

Keywords: Proofs Of Programs, Automated Theorem Proving, Interactive Theorem Proving,
Safety, Floating-Point Numbers

The Proval project-team is a research team common to INRIA - Saclay Île-de-France, CNRS and Université
Paris-Sud. Researchers are also members of the LRI (Laboratoire de Recherche en Informatique, UMR 8623).

1. Members
Research Scientists

Claude Marché [Team Vice-Leader, Senior Researcher, HdR]
Sylvie Boldo [Junior Researcher]
Évelyne Contejean [Junior Researcher CNRS]
Jean-Christophe Filliâtre [Junior Researcher CNRS, HdR]
Guillaume Melquiond [Junior Researcher]

Faculty Members
Christine Paulin-Mohring [Team Leader, Professor Université Paris-Sud, HdR]
Sylvain Conchon [Associate Professor Université Paris-Sud, delegation INRIA]
Andrei Paskevich [Associate Professor Université Paris-Sud]
Xavier Urbain [Associate Professor ENSIIE, Deleg. INRIA until Aug., HdR]

Technical Staff
Alain Mebsout [Junior Engineer, until August]

PhD Students
Romain Bardou [Université Paris-Sud, until Aug.]
François Bobot [Université Paris-Sud]
Claire Dross [CIFRE Adacore]
Paolo Herms [CEA grant]
Mohamed Iguernelala [Université Paris-Sud]
Alain Mebsout [Université Paris-Sud, since Sep.]
Catherine Lelay [INRIA Digiteo grant, since Oct.]
Stéphane Lescuyer [INRIA, on leave from X-Mines, until Jan.]
Thi-Minh-Tuyen Nguyen [INRIA Digiteo grant]
Asma Tafat Bouzid [Université Paris-Sud]
Wendi Urribarrí [ATER Université Paris-Sud 11 until Sep.]

Post-Doctoral Fellows
David Baelde [Post-doc CNRS]
Denis Cousineau [Post-doc FUI Grant Hi-Lite, since Sep.]
Krishnamani Kalyanasundaram [Post-doc ANR grant, until Aug.]
Evgeny Makarov [Post-doc ANR grant, May-October]
Cody Roux [Post-doc ANR grant, since May]

Visiting Scientist
Daisuke Ishii [National Institute of Informatics, Japan, since May]

Administrative Assistant
Régine Bricquet [TR]

Others
Catherine Lelay [Univ Paris 7, Master intern, May to Sep.]
Nuno Gaspar [Univ do Minho, Portugal, Master intern,until Sep.]
Shuai Yuan [Zhejiang University, China, since Oct.]

2 Activity Report INRIA 2011

2. Overall Objectives

2.1. Introduction
Critical software applications in the domain of transportation, telecommunication or electronic transactions
are put on the market within very short delays. In order to guarantee a dependable behavior, it is mandatory
for a large part of the validation of the system to be done in a mechanical way.

The ProVal team addresses this question and consequently participates to the INRIA major scientific priorities:
“Programming: Security and Reliability of Computing Systems”.

Our approach uses Type Theory as a theoretical basis, a formalism which gives a clear semantics for
representing, on a computer, both computation and deduction.

Type theory is a natural formalism for the specification and proof of higher-order functional programs, but we
also use it as the kernel for deductive verification of imperative programs. It serves as a support for modeling
activities (e.g. pointer programs, random computations, floating-point arithmetic, semantics).

Verification conditions (VCs) generated from programs annotated with specifications can often be expressed
in simple formalisms (fragments of first-order logic) and consequently be solved using automated deduction.
Building specialized tools for solving VCs, integrating different proof technologies, in particular interactive
and automated ones, are important activities in our group.

When sophisticated tools are used for analyzing safety-critical code, their reliability is an important question:
in an industrial setting, there is often a certification process. This certification is based on an informal
satisfaction of development rules. We believe that decision procedures, compilers or verification condition
generators (VCGs) should not act as black boxes but should be themselves specified and proved, or should
produce evidence of the correctness of their output. This choice is influential in the design of our tools and is
also a good challenge for them.

The project develops a generic environment (Why) for proving programs. Why generates sufficient conditions
for a program to meet its expected behavior, that can be solved using interactive or automatic provers. On
top of this tool, we have built dedicated environments for proving C (Frama-C/Jessie) or Java (Krakatoa)
programs.

With the arrival of Sylvie Boldo in 2005 and Guillaume Melquiond in 2008 as junior researchers, the team is
developing a strong expertise in the area of formal verification of floating-point arithmetic.

Our research activities are detailed further, following the three themes:

• Interactive proofs of programs,

• Proof of imperative and object-oriented programs,

• Automated deduction for program proof.

Development of tools and applications is an important transversal activity for these four themes.

2.2. Highlights
A new trend emerging in 2010-2011 is the construction of international program verification benchmarks and
program verification competitions. Benchmarks include the VACID0 challenges (http://vacid.codeplex.com/

[76]) and the VerifyThis collection (http://verifythis.cost-ic0701.org/). We took our part in these efforts
by proposing our own gallery of verified programs (http://proval.lri.fr/gallery/index.en.html). Regarding
competitions, we proposed our own solutions to the first (informal) VSTTE competition (http://proval.lri.
fr/gallery/vscomp2010.en.html), we participated to the first FoVeOOS competition (Turin, Italy, Sep. 2011)
and were ranked as first, ex-aequo with two other teams (http://proval.lri.fr/gallery/cost11comp.en.html) and
last but not least, we indeed organized the first formal VSTTE program verification competition (November
2011, https://sites.google.com/site/vstte2012/compet).

http://vacid.codeplex.com/
http://vacid.codeplex.com/
http://verifythis.cost-ic0701.org/
http://proval.lri.fr/gallery/index.en.html
http://proval.lri.fr/gallery/vscomp2010.en.html
http://proval.lri.fr/gallery/vscomp2010.en.html
http://proval.lri.fr/gallery/cost11comp.en.html
https://sites.google.com/site/vstte2012/compet

Project-Team PROVAL 3

A paper by S. Conchon, E. Contejean and M. Iguernelala [24] presenting their work on automated reasoning
modulo associative-commutative theories got the best theoretical paper award of ETAPS Conferences http://
www.eatcs.org/index.php/best-etaps-paper.
BEST PAPER AWARD :
[24] Tools and Algorithms for the Construction and Analysis of Systems. S. CONCHON, É. CONTEJEAN,
M. IGUERNELALA.

3. Scientific Foundations

3.1. Interactive proofs of programs
Participants: Sylvie Boldo, Évelyne Contejean, Jean-Christophe Filliâtre, Guillaume Melquiond, Christine
Paulin-Mohring.

Higher-order strongly typed programming languages such as Objective Caml help improving the quality of
software development. Static typing automatically detects possible execution errors. Higher-order functions,
polymorphism, modules and functors are powerful tools for the development of generic reusable libraries. Our
general goal is to enrich such a software environment with a language of annotations as well as libraries for
datatypes, abstract notions and associated theorems which can express logical properties of programs and ease
the possibility to automatically and interactively develop proofs of correctness of the programs.

In the past, we made contributions to the Coq proof assistant by adding functionalities for improving the
development of formally proved functional programs. A first contribution is a new method to extract OCaml
modular code from Coq proofs (P. Letouzey PhD thesis [80], [81]). This extraction mechanism is an original
feature for the Coq system, and has been used by several teams around the world in order to get efficient
certified code [78]. Another contribution (M. Sozeau PhD thesis [91], [92]) is an extension of the Coq
input language for building programs with strong specifications by writing only the computational part
and generating separately proof obligations (which are usually solved by tactics) and also a mechanism
generalizing Type Classes à la Haskell which gives overloading in programs and proofs and facilitates the
development of generic tactics..

We are using the capability of the Coq system to model both computation and deduction in order to explore
different classes of applications. These examples involve the development of large reusable Coq libraries and
suggest domain-specific specification and proof strategies.

3.1.1. Randomized algorithms
C. Paulin in collaboration with Ph. Audebaud from ENS Lyon, proposed a method for modeling probabilistic
programs in Coq [49]. The method is based on a monadic interpretation of probabilistic programs as
probability measures. A large Coq library has been developed and made publicly available (see also Section
5.12). D. Baelde has been using this library to formally prove the security of Watermarking algorithms (see
also section 6.1).

3.1.2. Floating-point programs
Many industrial programs (weather forecasts, plane trajectories, simulations...) use floating-point computa-
tions, typically double precision floating-point numbers [93]. Even if each computation is as good as it can
be (except for elementary functions like sine, or exponential), the final result may be very wrong with no
warnings, or the program will produce unexpected behaviors (like division by zero). This is the reason why
guarantees should be provided to the user. We mean to guarantee for example that, for all or part of the possible
inputs, the result obtained is correct (or near enough) and that no exceptional behavior will occur [55].

A high level of guarantee is obtained by formal proofs in Coq. We maintain and develop large Coq libraries
for floating-point arithmetic: core definitions, axiomatic and computational rounding operations, high-level
properties. It provides a framework for developers to formally certify numerical applications. A new such
library is described in Section 5.9.

http://www.eatcs.org/index.php/best-etaps-paper
http://www.eatcs.org/index.php/best-etaps-paper

4 Activity Report INRIA 2011

3.1.3. Certification of tools
Certifying the result of tools for analysing programs is a good challenge in the domain of proofs of higher-
order functional programs. We obtained several results concerning formal proofs in Coq corresponding to
automated deduction. These results are described in Section 3.3.

A PhD thesis started in Sep. 2009 has for main objective the development of a certified version the Frama-
C/Jessie/Why verification chain.

3.2. Proof of Imperative and Object-Oriented programs
Participants: Romain Bardou, François Bobot, Sylvie Boldo, Jean-Christophe Filliâtre, Claude Marché,
Tuyen Nguyen, Andrei Paskevich, Christine Paulin-Mohring, Asma Tafat, Wendi Urribarrí.

A foundation step of the project is the PhD thesis of Jean-Christophe Filliâtre [6] that proposes to establish
soundness of a program with imperative features (assignments, while loops, but also exceptions and exception
handlers) by means of a translation into an equivalent purely functional program with logical annotations.
Such an annotated functional program is very well-suited to be expressed in Coq’s type theory, hence this
approach allowed for the first time to prove imperative programs with Coq [68].

Following this thesis, a new tool called Why was developed. It takes as input an imperative program and a
specification that this program is expected to fulfil. It produces on one hand a set of verification conditions
(VCs): logical formulas which have to be proved in the Coq system ; and on the other hand a Coq-term which
contains a functional translation of the imperative program and a proof of correctness of this program based
on the VCs. It was early remarked that this tool was independent of Coq, because the VCs can be validated in
other interactive tools or with automatic provers. This multi-prover architecture is a powerful feature of Why:
it spreads this technology well beyond the Coq community.

3.2.1. The Why platform
Since 2002, we tackle programs written in mainstream programming languages. We first considered Java
source code annotated with JML (Java Modeling Language). This method was implemented in a new tool
called Krakatoa [10]. The approach is based on a translation from annotated Java programs into the specific
language of Why, we then can reuse Why’s VCG mechanism and choose between different provers for
establishing these VCs. From 2003, we followed the same approach for programs written in ANSI C [7].

The combination of the Why VC generator and the front-ends dealing with C or Java form a tool box for
program verification, called the Why platform. Its overall architecture is shown on Figure 1. Nowadays, the
front-end for C is in fact integrated in the Frama-C environment for static analysis of C programs (http://
www.frama-c.cea.fr/), which was developed by the CEA-List in collaboration with us. Frama-C has an open
architecture, structured as plugins around a shared kernel, and deductive verification of C code can be done
using Why via the Jessie plugin. The annotation language for C source is also designed in collaboration with
CEA, and called ACSL [54].

The central issue for the design of our platform is the modeling of memory heap for Java and C programs,
handling possible aliasing (two different pointer or object expressions representing the same memory location):
the Why VC generator does not handle aliasing by itself, indeed it does not support any form of complex data
structures like objects, structures, pointers. On the other hand, it supports declaration of a kind of algebraic
specifications: abstract data types specified by first-order functions, predicates and axioms. As a consequence,
there is a general approach for using Why as a target language for programming the semantics of higher-level
programming languages [85]. The Krakatoa and the Jessie memory models are inspired by the ‘component-
as-array’ representation due to Bornat, following an old idea from Burstall, and commonly used to verify
pointers programs [58]. Each field declaration f in a Java class or a C structure introduces a Why variable Mf

in the model, which is a map (or an array) indexed by addresses. We extended this idea to handle Java arrays
and JML annotations [10] and pointer arithmetic in C [7].

http://www.frama-c.cea.fr/
http://www.frama-c.cea.fr/

Project-Team PROVAL 5

Figure 1. Architecture of certification chains: Frama-C, Why, Why3 and back-end provers

6 Activity Report INRIA 2011

An important difficulty with programs handling pointers is to specify side-effects of a function or a method.
The annotation languages offer the assigns clauses in specifications in order to delimitate the part of memory
which is modified by a function or a method. We proposed an original modeling for such clauses [82] [7].

This kind of memory model does not scale up well for large programs. We designed an improved modeling of
memory heap incorporating ideas from static analysis of memory separation, and from Reynolds’ separation
logic. Experiments on a C code proposed by Dassault Aviation were successful [74], [73].

The use of Why as intermediate language opens interesting new approaches for reasoning on programs. We
studied the specification of global properties, by reuse of the validation term of Why in order to define a
model of each function, and then express and prove properties of functions composition. Such an approach
was investigated by J. Andronick in the framework of proofs of security properties on smart cards [47], [46].
We also proposed a way to handle the Java Card transaction mechanism (a specificity of Java Card memory
with both persistent and volatile parts), by indeed generating a Why model on-the-fly for each Java Card applet
[83], thanks again to the flexibility of the approach using Why as an intermediate language.

3.2.2. Applications and case studies
The techniques we are developing can be naturally applied in domains which require to develop critical
software for which there is a high need of certification.

The Krakatoa tool was successfully used for the formal verification of a commercial smart card applet [75]
proposed by Gemalto. This case study have been conducted in collaboration with LOOP and Jive groups.
Banking applications are concerned with security problems that can be the confidentiality and protection of
data, authentication, etc. The translation of such specifications into assertions in the source code of the program
is an essential problem. We have been working on a Java Card applet for an electronic purse Demoney [59]
developed by the company Trusted Logic for experimental purpose. Other Java Card case studies have been
conducted in collaboration with Gemalto by J. Andronick and N. Rousset, in particular on global properties
and Java Card transactions [47], [83].

To illustrate the effectiveness of the approach on C programs, T. Hubert and C. Marché performed a full
verification of a C implementation of the Schorr-Waite algorithm [8], using Coq for the proofs. This is an
allocation-free graph-marking algorithm used in garbage collectors, which is considered as a benchmark for
verification tools. Other industrial case studies have been investigated by T. Hubert (with Dassault Aviation)
[73] and by Y. Moy (with France Telecom) [88], [87].

Since the beginning of 2011, we propose on the web a Gallery of Verified programs (http://proval.lri.fr/gallery/
index.en.html) which provides a large set of examples of programs that we proved correct, using various
techniques. The gallery can be browsed using different criteria: by topics, by reference to benchmarks, by
tools.

3.3. Automated deduction
Participants: Sylvain Conchon, Évelyne Contejean, Claire Dross, Mohamed Iguernelala, Stéphane Lescuyer,
Claude Marché, Alain Mebsout, Andrei Paskevich, Xavier Urbain.

Our group has a long tradition of research on automated reasoning, in particular on equational logic, rewriting,
and constraint solving. The main topics that have been under study in recent years are termination proofs
techniques, the issue of combination of decision procedures, and generation of proof traces. Our theoretical
results are mainly materialized inside our two automated provers CiME and Alt-Ergo.

3.3.1. Termination
On the termination topic, we have studied new techniques which can be automated. A fundamental result of
ours is a criterion for checking termination modularly and incrementally [94], and further generalizations
[84]. These criteria and methods have been implemented into the CiME2 rewrite toolbox [63]. Around 2002,
several projects of development of termination tools arose in the world. We believe we have been pioneer in
this growth, and indeed we organized in 2004 the first competition of such tools.

http://proval.lri.fr/gallery/index.en.html
http://proval.lri.fr/gallery/index.en.html

Project-Team PROVAL 7

A direction of research on termination techniques was also to apply our new approaches (for rewriting) to
other computing formalisms, first to Prolog programs [89] and then to membership equational programs [67],
a paradigm used in the Maude system [45].

3.3.2. Decision Procedures
3.3.2.1. Combination

Our research related to combination of decision procedures was initiated by a result [70] obtained in
collaboration with Shankar’s group at SRI-international who develops the PVS environment, showing how
decision procedures for disjoint theories can be combined as soon as each of them provides a so-called
“canonizer” and a “solver”. Existing combination methods in the literature are generally not very well
understood, and S. Conchon had a major contribution, in collaboration with Sava Krstić from OGI School
of Science and Engineering (Oregon Health and Science University, USA), which is a uniform description of
combination of decision procedures, by means of a system of inference rules, clearly distinguished from their
strategy of application, allowing much clearer proofs of soundness and completeness [9], [60].

3.3.2.2. Polymorphic Logics

In the specific domain of program verification, the goals to be proved are given as formulae in a polymorphic
multi-sorted first-order logic. Some of the sorts, such as integers and arrays, are built-in as they come from the
usual data-types of programming languages. Polymorphism is used as a convenience for defining the memory
models of C and Java programs and is handled at the level of the Why tool.

In order to be able to use all the available automated theorem provers (Simplify, SMT provers), including those
which handle only untyped formulae (Simplify), one has to provide a way to get rid of polymorphism.

S. Conchon and É. Contejean have proposed an encoding of polymorphic multi-sorted logic (PSL) into
unsorted logic based on term transformation, rather than addition of sort predicates which was used till then.
This approach was extended further by S. Lescuyer [79], J.-F. Couchot [65], N. Stouls [64].

3.3.2.3. The Alt-Ergo theorem prover

It would be more convenient to deal with polymorphism directly in the theorem prover. There was no such
prover available at the beginning of 2006, that is why S. Conchon and É. Contejean decided to develop a new
tool called Alt-Ergo which is dedicated to the resolution of polymorphic and multi-sorted proof obligations
and takes as input the Why syntax. In 2011, Alt-Ergo is still the only existing prover dealing with parametric
polymorphism.

Alt-Ergo is based on CC(X) [3], a generic congruence closure algorithm developed in the team, for deciding
ground formulas in the combination of the theory of equality with uninterpreted symbols and an arbitrary
built-in solvable theory X . Currently, CC(X) can be instantiated by the empty equational theory, by the linear
arithmetics and the theory of constructors.

Alt-Ergo contains also a Fourier-Motzkin decision procedure for linear arithmetics inequalities, a home-made
SAT-solver and an instantiation mechanism.

The architecture of Alt-Ergo is modular: each part is described by a small set of inference rules and is
implemented as an OCaml functor. Moreover, the code is short (∼ 10000 lines).

3.3.3. Automated proofs and certificates
A common issue to both termination techniques and decision procedures is that automatic provers use complex
algorithms for checking validity of formula or termination of a computation, but when they answer that the
problem is solved, they do not give any more useful information. It is highly desirable that they give a proof
trace, that is some kind of certificate that could be double-checked by a third party, such as an interactive proof
assistant like Coq. Indeed Coq is based on a relatively small and stable kernel, so that when it checks that a
proof is valid, it can be trusted. Morevoer, a subpart of Coq has been proven correct in Coq [52].

8 Activity Report INRIA 2011

3.3.3.1. Coccinelle and CiME’s traces

In addition to efficient termination techniques, CiME implements in particular a semi-decision procedure for
the equality modulo a set of axioms, based on ordered completion. In 2005, the former human readable proof
traces have been replaced by Coq certificates, based on reified proof objects for a FOL logic modelled inside
Coq [61].

É. Contejean, A. Paskevich, X. Urbain and the Cédric participants of the A3PAT project, Pierre Courtieu,
Olivier Pons (CNAM), and Julien Forest, (ENSIIE) develop the new version of the CiME tool, CiME 3,
associated with a Coq library called Coccinelle developed by É. Contejean. A trace generator outputs a
trace for Coq in the unified framework provided by the Coccinelle library [62][4]. Coccinelle contains the
corresponding modelling of terms algebras and rewriting statements, and also some generic theorems which
are needed for establishing a rewriting property from a trace. For example, in order to produce a certificate of
termination for a rewriting system, one may provide as a trace an ordering that contains the rewrite system,
but it is also needed to have a proof that this ordering is well-founded. Such a proof (for RPO for instance) is
part of Coccinelle as a generic property. Coccinelle also contains as generic theorems some powerful criteria
of termination: dependency pairs [48], the main modularity theorem for termination presented in the thesis
of Urbain [94] as well as innermost termination, dependency pairs for it and its equivalence with standard
termination in some specific cases [72].

The main improvement over the previous approach [61] is that the Coq development is parameterized with
respect to the equality predicate (instead of using the Coq native equality). This allows to deal uniformly with
equality modulo a set of axioms, with termination of a set of rewrite rules, and with rewriting modulo a set of
equations, such as associativity-commutativity.

Certifying termination proofs gained interest in the term rewriting community. Groups are either developing
their own certifier, or producing traces for other’s, thanks to a shared XML format. Since 2007, the termination
competition has a category for certified termination proofs.

Further note that our efforts are not limited to termination proofs, and to date CiME 3 is the only tool able to
prove and to certify confluence of term rewriting systems [25].

3.3.3.2. The ergo tactics

In his thesis [14], S. Lescuyer proposed new automation capabilities for the Coq proof assistant. He obtains this
mechanization via an integration into Coq of decision procedures for propositional logic, equality reasoning
and linear arithmetic which make up the core of the Alt-Ergo SMT solver. This integration is achieved through
the reflection technique, which consists in implementing and formally proving these algorithms in Coq in order
to execute them directly in the proof assistant. Because the algorithms formalized in Coq are exactly those in
use in Alt-Ergo’s kernel, this work significantly increases our trust in the solver. In particular, it embeds an
original algorithm for combining equality modulo theory reasoning, called CC(X) and inspired by the Shostak
combination algorithm, and whose justification is quite complex.

The Coq implementation of S. Lescuyer is available in the form of tactics which allow one to automatically
solve formulae combining propositional logic, equality and arithmetic. In order to make these tactics as
efficient as may be, he has taken special care with performance in his implementation, in particular through
the use of classical efficient data structures, which we provide as a separate library.

4. Application Domains

4.1. Panorama
Many systems in telecommunication, banking or transportation involve sophisticated software for controlling
critical operations. One major problem is to get a high-level of confidence in the algorithms or protocols that
have been developed inside the companies or by partners.

Project-Team PROVAL 9

Many smartcards in mobile phones are based on a (small) Java virtual machine. The card is supposed to
execute applets that are loaded dynamically. The operating system itself is written in C, it implements security
functions in order to preserve the integrity of data on the card or to offer authentication mechanisms. Applets
are developed in Java, compiled, and then the byte-code is loaded and executed on the card. Applets or the
operating systems are relatively small programs but they need to behave correctly and to be certified by an
independent entity.

If the user expresses the expected behavior of the program as a formal specification, it is possible for a tool to
check whether the program actually behaves according to the requirements.

Avionics or more generally transportation systems are another area were there are critical algorithms involved,
for instance in Air Traffic control. We have collaborations in this domain with Dassault-Aviation and National
Institute of Aerospace (NIA, Hampton, USA). Since 2011, we started a new collaboration with Mitsubishi
Electric R&D Centre Europe (Rennes), on the construction of certified software for railroad transportation.
We also recently started a collaboration with Adacore for a new environment for proving Ada source code,
which has applications in transportation systems including aerospace.

5. Software

5.1. The CiME rewrite toolbox
Participants: Évelyne Contejean [contact], Claude Marché, Andrei Paskevich, Xavier Urbain.

CiME is a rewriting toolbox. Distributed since 1996 as open source, at URL http://cime.lri.fr. Beyond a few
dozens of users, CiME is used as back-end for other tools such as the TALP tool developed by Enno Ohlebusch
at Bielefeld university for termination of logic programs; the MU-TERM tool (http://www.dsic.upv.es/~slucas/
csr/termination/muterm/) for termination of context-sensitive rewriting; the CARIBOO tool (developed at
INRIA Nancy Grand-Est) for termination of rewriting under strategies; and the MTT tool (http://www.lcc.
uma.es/~duran/MTT/) for termination of Maude programs. CiME2 is no longer maintained, and the currently
developed version is CiME3, available at http://a3pat.ensiie.fr/pub. The main new feature of CiME3 is the
production of traces for Coq. CiME3 is also developed by the participants of the A3PAT project at the CNAM,
and is distributed under the Cecill-C license.

5.2. The Why platform
Participants: Claude Marché [contact], Romain Bardou, François Bobot, Jean-Christophe Filliâtre, Guil-
laume Melquiond, Andrei Paskevich.

Criteria for Software Self-Assessment 1: A-3, SO-4, SM-3, EM-2, SDL-5-down, OC-4.

The Why platform is a set of tools for deductive verification of Java and C source code. In both cases, the
requirements are specified as annotations in the source, in a special style of comments. For Java (and Java
Card), these specifications are given in JML and are interpreted by the Krakatoa tool. Analysis of C code must
be done using the external Frama-C environment, and its Jessie plugin which is distributed in Why.

The platform is distributed as open source, under GPL license, at http://why.lri.fr/. The internal VC generator
and the translators to external provers are no longer under active development, as superseded by the Why3
system described below.

The Krakatoa and Jessie front-ends are still maintained, although using now by default the Why3 VC generator.
These front-ends are described in a specific web page http://krakatoa.lri.fr/. They are used for teaching
(University of Evry, Ecole Polytechnique, etc.), used by several research groups in the world, e.g at Fraunhofer
Institute in Berlin [71], and at Universidade do Minho in Portugal [50].

1self-evaluation following the guidelines (http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.
pdf) of the Software Working Group of INRIA Evaluation Committee(http://www.inria.fr/institut/organisation/instances/commission-d-
evaluation)

http://cime.lri.fr
http://www.dsic.upv.es/~slucas/csr/termination/muterm/
http://www.dsic.upv.es/~slucas/csr/termination/muterm/
http://www.lcc.uma.es/~duran/MTT/
http://www.lcc.uma.es/~duran/MTT/
http://a3pat.ensiie.fr/pub
http://why.lri.fr/
http://krakatoa.lri.fr/
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation

10 Activity Report INRIA 2011

5.3. The Why3 system
Participants: Jean-Christophe Filliâtre [contact], François Bobot, Claude Marché, Guillaume Melquiond,
Andrei Paskevich.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4, EM-4, SDL-4, OC-4.

Why3 is the next generation of Why. Why3 clearly separates the purely logical specification part from
generation of verification conditions for programs. It features a rich library of proof task transformations
that can be chained to produce a suitable input for a large set of theorem provers, including SMT solvers,
TPTP provers, as well as interactive proof assistants.

It is distributed as open source, under GPL license, at http://why3.lri.fr/.

Why3 is used as back-end of our own tools Krakatoa and Jessie, but also as back-end of the GNATprove tool
(Adacore company), and in a near future of the WP plugin of Frama-C. Why3 has been used to develop and
prove a significant part of the programs of our team gallery http://proval.lri.fr/gallery/index.en.html, and will
be used soon for teaching (Master Parisien de Recherche en Informatique).

5.4. The Alt-Ergo theorem prover
Participants: Sylvain Conchon [contact], Évelyne Contejean, Stéphane Lescuyer, Alain Mebsout, Mohamed
Iguernelala.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4-up, EM-4, SDL-5, OC-4.

Alt-Ergo is an automatic, little engine of proof dedicated to program verification, whose development started
in 2006. It is fully integrated in the program verification tool chain developed in our team. It solves goals
that are directly written in the Why’s annotation language; this means that Alt-Ergo fully supports first order
polymorphic logic with quantifiers. Alt-Ergo also supports the standard [90] defined by the SMT-lib initiative.

It is currently used in our team to prove correctness of C and Java programs as part of the Why platform and
the new Why3 system. Alt-Ergo is also called as an external prover by the Pangolin tool developed by Y. Regis
Gianas, INRIA project-team Gallium http://code.google.com/p/pangolin-programming-language/. Alt-Ergo is
usable as a back-end prover in the SPARK verifier for ADA programs, since Oct 2010. It is planed to be
integrated in next generation of Airbus development process.

Alt-Ergo is distributed as open source, under the CeCILL-C license, at URL http://alt-ergo.lri.fr/.

5.5. Bibtex2html
Participants: Jean-Christophe Filliâtre [contact], Claude Marché.

Criteria for Software Self-Assessment: A-5, SO-3, SM-3, EM-3, SDL-5, OC-4.

Bibtex2html is a generator of HTML pages of bibliographic references. Distributed as open source since 1997,
under the GPL license, at http://www.lri.fr/~filliatr/bibtex2html/. We estimate that between 10000 and 100000
web pages have been generated using Bibtex2html.

Bibtex2html is also distributed as a package in most Linux distributions. Package popularity contests show
that it is among the 20% most often installed packages.

5.6. OCamlgraph
Participants: Jean-Christophe Filliâtre [contact], Sylvain Conchon.

OCamlgraph is a graph library for Objective Caml. It features many graph data structures, together with many
graph algorithms. Data structures and algorithms are provided independently of each other, thanks to OCaml
module system. OCamlgraph is distributed as open source, under the LGPL license, at http://ocamlgraph.lri.fr/.
It is also distributed as a package in several Linux distributions. OCamlgraph is now widely spread among the
community of OCaml developers.

http://why3.lri.fr/
http://proval.lri.fr/gallery/index.en.html
http://code.google.com/p/pangolin-programming-language/
http://alt-ergo.lri.fr/
http://www.lri.fr/~filliatr/bibtex2html/
http://ocamlgraph.lri.fr/

Project-Team PROVAL 11

5.7. Mlpost
Participants: Jean-Christophe Filliâtre [contact], Stéphane Lescuyer, Romain Bardou, François Bobot.

Mlpost is a tool to draw scientific figures to be integrated in LaTeX documents. Contrary to other tools such
as TikZ or MetaPost, it does not introduce a new programming language; it is instead designed as a library of
an existing programming language, namely Objective Caml. Yet it is based on MetaPost internally and thus
provides high-quality PostScript figures and powerful features such as intersection points or clipping. Mlpost
is distributed as open source, under the LGPL license, at http://mlpost.lri.fr/. Mlpost was presented at JFLA’09
[51].

5.8. Functory
Participants: Jean-Christophe Filliâtre [contact], Kalyan Krishnamani.

Functory is a distributed computing library for Objective Caml. The main features of this library include (1) a
polymorphic API, (2) several implementations to adapt to different deployment scenarios such as sequential,
multi-core or network, and (3) a reliable fault-tolerance mechanism. Functory was presented at JFLA 2011 [31]
and at TFP 2011 [27].

5.9. The Flocq library
Participants: Sylvie Boldo [contact], Guillaume Melquiond.

Criteria for Software Self-Assessment: A-2, SO-3, SM-3, EM-3, SDL-4, OC-4.

The Flocq library for the Coq proof assistant is a comprehensive formalization of floating-point arithmetic:
core definitions, axiomatic and computational rounding operations, high-level properties [23]. It provides a
framework for developers to formally certify numerical applications.

It is distributed as open source, under a LGPL license, at http://flocq.gforge.inria.fr/. It was first released in
2010.

5.10. The Gappa tool
Participant: Guillaume Melquiond [contact].

Criteria for Software Self-Assessment: A-3, SO-4, SM-4, EM-3, SDL-4, OC-4.

Given a logical property involving interval enclosures of mathematical expressions, Gappa tries to verify
this property and generates a formal proof of its validity. This formal proof can be machine-checked by an
independent tool like the Coq proof-checker, so as to reach a high level of confidence in the certification
[66] [19].

Since these mathematical expressions can contain rounding operators in addition to usual arithmetic operators,
Gappa is especially well suited to prove properties that arise when certifying a numerical application, be it
floating-point or fixed-point. Gappa makes it easy to compute ranges of variables and bounds on absolute or
relative roundoff errors.

Gappa is being used to certify parts of the mathematical libraries of several projects, including CRlibm, FLIP,
and CGAL. It is distributed as open source, under a Cecill-B / GPL dual-license, at http://gappa.gforge.inria.fr/.
Part of the work on this tool was done while in the Arénaire team (INRIA Rhône-Alpes), until 2008.

5.11. The Interval package for Coq
Participant: Guillaume Melquiond [contact].

Criteria for Software Self-Assessment: A-3, SO-4, SM-3, EM-3, SDL-4, OC-4.

The Interval package provides several tactics for helping a Coq user to prove theorems on enclosures of real-
valued expressions. The proofs are performed by an interval kernel which relies on a computable formalization
of floating-point arithmetic in Coq.

http://mlpost.lri.fr/
http://flocq.gforge.inria.fr/
http://gappa.gforge.inria.fr/

12 Activity Report INRIA 2011

It is distributed as open source, under a LGPL license, at http://www.lri.fr/~melquion/soft/coq-interval/. Part
of the work on this library was done while in the Mathematical Components team (Microsoft Research–INRIA
Joint Research Center).

In 2010, the Flocq library was used to straighten and fill the floating-point proofs of the Interval package.

5.12. The Alea library for randomized algorithms
Participants: Christine Paulin-Mohring [contact], David Baelde.

Criteria for Software Self-Assessment: A-2, SO-3, SM-2, EM-3, SDL-4, OC-4.

The ALEA library is a Coq development for modeling randomized functional programs as distributions using
a monadic transformation. It contains an axiomatisation of the real interval [0, 1] and its extension to positive
real numbers. It introduces definition of distributions and general rules for approximating the probability that
a program satisfies a given property.

It is distributed as open source, at http://www.lri.fr/~paulin/ALEA. It is currently used as a basis of the
Certicrypt environment (MSR-INRIA joint research center, Imdea Madrid, INRIA Sophia-Antipolis) for
formal proofs for computational cryptography [53]. It is also experimented in LABRI as a basis to study
formal proofs of probabilistic distributed algorithms.

5.13. The Coccinelle library for term rewriting
Participant: Évelyne Contejean [contact].

Coccinelle is a Coq library for term rewriting. Besides the usual definitions and theorems of term algebras,
term rewriting and term ordering, it also models some of the algorithms implemented in the CiME toolbox,
such a matching, matching modulo associativity-commutativity, computation of the one-step reducts of a term,
RPO comparison between two terms, etc. The RPO algorithm can effectively be run inside Coq, and is used
in the Color developement (http://color.inria.fr/) as well as for certifying Spike implicit induction theorems in
Coq (Sorin Stratulat).

Coccinelle is developed by Évelyne Contejean, available at (http://www.lri.fr/~contejea/Coccinelle), and is
distributed under the Cecill-C license.

6. New Results

6.1. Models of Programming
• P. Herms, together with C. Marché and B. Monate (CEA List), developed a certified VC generator,

using Coq. The program for VC calculus and its specifications are both written in Coq, but the code
is crafted so that it can be extracted automatically into a stand-alone executable. It is also designed
in a way that allows the use of arbitrary first-order theorem provers to discharge the generated
obligations [37]. This is a first step towards a certified VC generator for C programs annotated
with ACSL [54].

• Until now, we only considered the proof of sequential programs. However the rely/guarantee
approach give a natural way to extend deductive verification to concurrent programs. During his
internship supervised by C. Paulin, N. Gaspar explored this idea. He formalised in Coq the axiomatic
semantics of a simple concurrent language using the rely-guarranty approach [43] and proposed
a translation of this language into Why programs in order to automatically generate the proof
obligations.

• W. Urribarrí, together with C. Paulin, proposed an extension of the Why language with modules and
functors together with a refinement calculus in order to organise large developments in a structured
and abstract way. She built a prototype implementation of this calculus.

http://www.lri.fr/~melquion/soft/coq-interval/
http://www.lri.fr/~paulin/ALEA
http://color.inria.fr/
http://www.lri.fr/~contejea/Coccinelle

Project-Team PROVAL 13

• D. Baelde, in cooperation with P. Courtieu (CNAM), D. Gross-Amblard (U. Bourgogne and Rennes),
C. Paulin and X. Urbain proposed a formal proof of security for two watermarking algorithms. The
proof uses a reduction of an arbitrary attack unmarking the data to the discovery of a secret key.
It has been fully formalized in Coq using the ALEA library. This work has been presented at the
conference TYPES 2011 and a paper is in preparation.

• Generating multimedia streams, such as in a netradio, is a task which is complex and difficult to
adapt to every users’ needs. D. Baelde, in cooperation with R. Beauxis (Tulane University, LA,
USA) and S. Mimram (CEA List) introduce a novel approach, based on a dedicated high-level
functional programming language, called Liquidsoap, for generating, manipulating and broadcasting
multimedia streams [20]. Unlike traditional approaches, which are based on configuration files or
static graphical interfaces, it also allows the user to build complex and highly customized systems.
This language is based on a model for streams and contains operators and constructions, which make
it adapted to the generation of streams. The interpreter of the language also ensures many properties
concerning the good execution of the stream generation.

6.2. Proofs of Imperative Programs
• The Why3 reimplementation of the Why platform, started in 2010, was publicly released in

2011 [35]. The main developers are A. Paskevich, J.-C. Filliâtre, F. Bobot, and C. Marché. The
language of Why, both programming and annotation parts, was significantly extended: algebraic
types, records, pattern matching, recursive logical definitions are now supported. These logical dec-
larations are structured in modules (a.k.a. theories). The module language comes with an original
mechanism for reusing theories in specialized contexts using partial instantiations. These new fea-
tures have been presented at the first international workshop on intermediate verification languages
(BOOGIE 2011) [21] and will be presented at VSTTE 2012 [69].

• A. Tafat and C. Marché used the Why3 system to perform a complete proof of the “Binary Heaps”
challenge [41] from the VACID-0 international collection [76]. Solving this challenge is a case
study for a general approach of abstract interfaces for C programs, currently under development by
A. Tafat, based on initial ideas described together with S. Boulmé which were published in a 2011
in a special issue [29].

• In 2011, we set up a web gallery to publicly expose the programs that we specified and proved.
This is the so-called ProVal collection of verified programs, and available at URL http://proval.lri.fr/
gallery/index.en.html.

• K. Krishnamani and C. Marché proposed a technique for automatically generating loop invariants in
C programs. It is based on the well-known predicate abstraction approach, which is adapted to take
into account pre-existing specifications, and to proceed modularly, that is each function of a program
is processed independently, with its own sets of predicates. The approach is also extended in order
to generate universally quantified invariants [38]. The prototype is available as a Frama-C plugin at
URL http://proval.lri.fr/agen.

• C. Dross, together with Y. Moy (Adacore) and J.-C. Filliâtre, addressed the problem of verifying
programs involving containers. Containers such as lists, vectors, sets or maps are an attractive
alternative to ad-hoc data structures based on pointers. C. Dross gave a definition of containers
whose aim is to facilitate their use in certified software, using modern proof technology and novel
specification languages. Correct usage of containers and user-provided correctness properties can
be checked either by execution during testing or by formal proof with an automatic prover. It relies
on a formal semantics for containers and an axiomatization of this semantics targeted at automatic
provers. C. Dross proved in Coq that the formal semantics is consistent and that the axiomatization
thereof is correct. This work was presented at TAP 2011 [26].

• Proving that pointer programs preserve data invariants, in a modular way, is known to be a challenge.
R. Bardou and C. Marché designed a new approach based on advanced static typing systems (based

http://proval.lri.fr/gallery/index.en.html
http://proval.lri.fr/gallery/index.en.html
http://proval.lri.fr/agen

14 Activity Report INRIA 2011

on memory regions and permissions) to control memory updates and ownership of data [11]. A
prototype implementation is built, called Capucine, available for download at http://romain.bardou.
fr/capucine. To demonstrate the ability of this approach, the challenge “sparse arrays” of the VACID-
0 benchmarks [76] has been certified [30].

• Separation logic has shown to be an elegant way to deal with programs which use data-structures
with pointers. However it requires a specific logical language, provers, and specific reasoning tech-
niques. In his PhD. F. Bobot introduced a technique to express ideas from separation logic in the
traditional framework of deductive verification [12]. He proposed to derive “separation predicates”
from user-supplied inductive definitions. These predicates come with suitable axiomatization, in-
cluding frame rules, expressed in usual first-order logic. This translation takes special care to ensure
the best use of automated theorem provers.

6.3. Automated Deduction
• In his thesis [14], S. Lescuyer formalized and designed purely reflexive tactics for automated

deduction in Coq.

• É. Contejean, together with Pierre Courtieu, Julien Forest, Olivier Pons and Xavier Urbain (Cedric
Laboratory, CNAM & ENSIIE) presented the last version of the rewriting toolkit CiME3 at RTA
2011 [25]. Amongst other original features, this version enjoys two kinds of engines: to handle
and discover proofs of various properties of rewriting systems, and to generate Coq scripts from
proof traces given in certification problem format in order to certify them with a skeptical proof
assistant like Coq. Thus, these features open the way for using CiME3 to add automation to proofs
of termination or confluence in a formal development in the Coq proof assistant.

• In their TACAS paper [24], S. Conchon, É. Contejean and M. Iguernelala present a modular
extension of ground AC-completion for deciding formulas in the combination of the theory of
equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint
Shostak theory X.

• F. Bobot and A. Paskevich studied translation from a first-order logic with polymorphic types à la ML
(which is the base logic of the Why platform and the Alt-Ergo theorem prover) to a many-sorted or
one-sorted logic implemented in mainstream automated theorem provers. They devised a three-stage
scheme where the last stage eliminates polymorphic types while adding the necessary “annotations”
to preserve soundness, and the first two stages serve to protect certain terms so that they can keep
their original types and unannotated form. Such protection allows to make use of provers’ built-in
theories and operations. This work generalizes the previous study by S. Lescuyer and J.-F. Couchot
[65] onto arbitrary monomorphic types, e.g. array types. It was presented at FroCoS 2011 [22] (see
also an extended version with full proofs [42]). These results are part of F. Bobot’s PhD thesis [12].

6.4. Floating-Point and Numerical Programs
• T. Nguyen and C. Marché have worked on how to prove floating-point programs while taking into

account architecture- and compiler-dependent features such as the use of the x87 stack in Intel micro-
processors. This is done by analyzing the assembly code generated by the compiler [40], [28]

• S. Boldo and C. Marché published a survey article on the proofs of numerical C programs using both
automatic provers and Coq [15].

• S. Boldo and T. Nguyen have worked on how to prove numerical programs on multiple architectures
and compilers [17]. More precisely, it covers all the compiler choices about the use of extended
registers, FMA, and reorganization of additions.

• S. Boldo and J.-M. Muller (CNRS, Arénaire, LIP, ÉNS Lyon) have worked on new floating-point
algorithms for computing the exact and approximated errors of the FMA (fused multiply-and-
add) [16].

http://romain.bardou.fr/capucine
http://romain.bardou.fr/capucine

Project-Team PROVAL 15

• S. Boldo and G. Melquiond have developed in Coq a comprehensive formalization of floating-
point arithmetic: core definitions, axiomatic and computational rounding operations, high-level
properties [23]. It provides a framework for developers to formally certify numerical applications.

• G. Melquiond, in collaboration with F. de Dinechin (Arénaire, LIP, ÉNS Lyon) and C. Lauter
(Intel Hillsboro), has improved the methodology for formally proving floating-point mathematical
functions when their correctness depends on relative errors [19].

• S. Boldo, J.-C. Filliâtre and G. Melquiond, in collaboration with F. Clément (Estime, INRIA Paris-
Rocquencourt) and M. Mayero (University Paris 13) have finished a full formal proof of a program
solving a partial differential equation (the wave equation) using a finite difference scheme [36]. This
proof includes both the mathematical convergence proof (method error) [57], a tricky floating-point
proof [56] and proofs of the absence of runtime errors.

• C. Lelay, under the supervision of S. Boldo and G. Melquiond, has worked on differentiability in
Coq. The goal was to prove the existence of a solution to the wave equation thanks to D’Alembert’s
formula and to automatize the process as much as possible [44] [77].

• G. Melquiond, in collaboration with W. G. Nowak (Institute of Mathmatics, Austria) and
P. Zimmermann (Caramel, INRIA Nancy-Lorraine), has designed new methods for computing
guaranteed enclosures of the Masser-Gramain constant, a two-dimensional analogue of the
Euler-Mascheroni constant [86].

• G. Melquiond, in collaboration with J-M. Muller (CNRS, Arénaire, LIP, ÉNS Lyon) and E. Martin-
Dorel (Arénaire, LIP, ÉNS Lyon), has worked on weakening the assumptions floating-point error-
free transformations rely on [39].

7. Contracts and Grants with Industry

7.1. Systematic: Hi-Lite
Participants: Claude Marché [contact], Jean-Christophe Filliâtre, Sylvain Conchon, Evelyne Contejean,
Andrei Paskevich, Alain Mebsout, Mohamed Iguernelala, Denis Cousineau.

The Hi-Lite project (http://www.open-do.org/projects/hi-lite/) is a project in the SYSTEMATIC Paris Region
French cluster in complex systems design and management http://www.systematic-paris-region.org.

Hi-Lite is a project aiming at popularizing formal methods for the development of high-integrity software. It
targets ease of adoption through a loose integration of formal proofs with testing and static analysis, that allows
combining techniques around a common expression of specifications. Its technical focus is on modularity,
that allows a divide-and-conquer approach to large software systems, as well as an early adoption by all
programmers in the software life cycle.

Our involvements in that project include the use of the Alt-Ergo prover as back-end to already existing tools
for SPARK/ADA, and the design of a verification chain for an extended SPARK/ADA language to verification
conditions, via the Why VC generator.

This project is funded by the french ministry of industry (FUI), the Île-de-France region and the Essonne
general council for 36 months from September 2010.

7.2. CEA-Airbus contract
Participants: Sylvain Conchon [contact], Évelyne Contejean, Claude Marché.

In conjunction with the INRIA funding of ADT Alt-Ergo, a specific support contract has started in Sep 09,
between INRIA, CEA Saclay and Airbus France at Toulouse. This is to support our efforts for the maintainance
and to feature updates of Alt-Ergo, for its use at Airbus software development and certification of avionics
critical code.

http://www.open-do.org/projects/hi-lite/
http://www.systematic-paris-region.org

16 Activity Report INRIA 2011

7.3. Airbus contract
Participant: Sylvain Conchon [contact].

This 2 years support contract has started in Sep 10, between INRIA and Airbus France at Toulouse. This is to
support our efforts for the DO-178B qualification of Alt-Ergo.

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Hisseo

Participants: Sylvie Boldo [contact], Claude Marché, Guillaume Melquiond, Thi-Minh-Tuyen Nguyen.

Hisseo is a 3 years Digiteo project that started in September 2008. http://hisseo.saclay.inria.fr

The Hisseo project focuses on the problems related to the treatment of floating-point computations in the
compilation process, especially in the case of the compilation of critical C code.

Partners: CEA List (Saclay), INRIA Paris-Rocquencourt (Team Gallium).

8.1.2. Coquelicot
Participants: Sylvie Boldo [contact], Catherine Lelay, Guillaume Melquiond.

Coquelicot is a 3 years Digiteo project that started in September 2011. http://coquelicot.saclay.inria.fr.
S. Boldo is the principal investigator of this project.

The Coquelicot project aims at creating a modern formalization of the real numbers in Coq, with a focus on
practicality. This is sorely needed to ease the verification of numerical applications, especially those involving
advanced mathematics.

Partners: LIX (Palaiseau), University Paris 13

8.1.3. Pactole
Participants: Évelyne Contejean, Jean-Christophe Filliâtre, Xavier Urbain [contact].

Pactole is a 3 year Digiteo project which started in October 2009.

The Pactole project focuses on automation and formal verification for ubiquitous, large scale environments.
Tasks include proof automation techniques for distributed systems, verification conditions for fault tolerant
distributed systems, specification and design of fundamental services for mobile sensor networks. The
principal investigator of Pactole is Xavier Urbain.

Partners: CÉDRIC (CNAM/ENSIIE), LIP6 (UPMC).

8.2. National initiatives
8.2.1. U3CAT

Participants: Jean-Christophe Filliâtre, Claude Marché [contact], Guillaume Melquiond, Kalyan Krishna-
mani, Asma Tafat, Paolo Herms.

U3CAT (Unification of Critical C Code Analysis Techniques) is a project funded by ANR within its
programme “Systèmes Embarqués et Grandes Infrastructures - ARPEGE”. It aims at verification techniques
of C programs, and is partly a follow-up of the former CAT project. It started in January 2009 and will end in
2012.

http://hisseo.saclay.inria.fr
http://coquelicot.saclay.inria.fr

Project-Team PROVAL 17

The main goal of the project is to integrate various analysis techniques in a single framework, and make them
cooperate in a sound way. We address the following general issues:

• Verification techniques for floating-point programs;

• Specification and verification of dynamic or temporal properties;

• Combination of static analysis techniques;

• Management of verification sessions and activities;

• Certification of the tools chains for compilation and for verification.

Partners: CEA-List (Saclay, project leader), Lande team (INRIA Rennes), Gallium team (INRIA Rocquen-
court), Dassault Aviation (Saint-Cloud), Airbus France (Toulouse), ATOS Origin (Toulouse), CNAM Cedric
laboratory (Evry), CS Communication & Systems (Toulouse), Hispano-Suiza/Safran (Moissy-Cramayel).

8.2.2. INRIA ADT Alt-Ergo
Participants: Sylvain Conchon [contact], Evelyne Contejean, Claude Marché, Alain Mebsout, Mohamed
Iguernelala.

The ADT (Action de Développement Technologique) Alt-Ergo is a 2-years project funded by INRIA, started
in September 2009.

The goal is the maturation of the Alt-Ergo prover towards its use in an industrial context in particular for
avionics. The expected outcomes of this ADT are the following:

• improving the efficiency of Alt-Ergo;

• fine tuning of Alt-Ergo for the SMT competition;

• generation of counter-examples;

• the qualification of Alt-Ergo for the norm DO-178B.

External Collaborators: Airbus France (Toulouse), Dassault Aviation (Saint-Cloud), team Typical (INRIA,
École Polytechnique).

8.2.3. FOST
Participants: Sylvie Boldo [contact], Jean-Christophe Filliâtre, Guillaume Melquiond.

FOST (Formal prOofs of Scientific compuTation programs) is a 3 years ANR “Blanc” project started in
January 2009. S. Boldo is the principal investigator of this project. http://fost.saclay.inria.fr

The FOST project follows CerPAN’s footprints as it aims at developing new methods to bound the global
error of a numerical program. These methods will be very generic in order to prove a large range of numerical
analysis programs. Moreover, FOST aims at providing reusable methods that are understandable by non-
specialists of formal methods.

Partners: University Paris 13, INRIA Paris - Rocquencourt (Estime).

8.2.4. SCALP
Participants: Christine Paulin-Mohring [contact], David Baelde, Xavier Urbain.

This project is funded by ANR (program SESUR). http://scalp.gforge.inria.fr/

It started on january 2008 for 4 years; the coordinator is Yassine Lakhnech from VERIMAG.

The SCALP project (Security of Cryptographic Algorithms with Probabilities) aims at developing automated
tools for the verification of cryptographic systems.

Partners: Verimag, INRIA Sophia-Antipolis(Everest then Marelle team), ENS Lyon, LRI, CNAM.

8.2.5. DECERT
Participants: Sylvain Conchon, Évelyne Contejean, Stéphane Lescuyer.

http://fost.saclay.inria.fr
http://scalp.gforge.inria.fr/

18 Activity Report INRIA 2011

DECERT (DEduction and CERTification) is an ANR “Domaines Emergents” project. It started on January
2009 for 3 years; the coordinator is Thomas Jensen from the Lande team of IRISA/INRIA Rennes.

The goal of the project DECERT is to design and implement new efficient cooperating decision procedures
(in particular for fragments of arithmetics), to standardize output interfaces based on certificates proof objects
and to integrate SMT provers with skeptical proof assistants and larger verification contexts such as the Rodin
tool for B and the Frama-C/Jessie tool chain for verifying C programs.

The partners are: CEA List, LORIA/INRIA Nancy - Grand Est, IRISA/INRIA Rennes - Bretagne Atlantique,
INRIA Sophia Antipolis - Méditerranée, Systerel

8.3. European Initiatives
8.3.1. Collaborations in European Programs, except FP7
8.3.1.1. FoVeOOS

Participants: Claude Marché [contact], Romain Bardou, François Bobot, Asma Tafat.

Program: COST (European Cooperation in the field of Scientific and Technical Research, http://
www.cost.esf.org/)
Project acronym: FoVeOOS (IC-0701, http://www.cost-ic0701.org/)
Project title: Formal Verification of Object-Oriented Software
Duration: May 2008 - April 2012
Coordinator: B. Beckert, University Karlsruhe, Germany
Other partners: 40 academic groups among 18 countries in Belgium, Denmark, Estonia, France,
Germany, Ireland, Israel, Italy, The Netherlands, New Zealand, Norway, Poland, Portugal, Romania,
Spain, Sweden, Switzerland and United Kingdom.
Abstract: The aim of this action is to develop verification technology with the reach and power to
assure dependability of object-oriented programs on industrial scale.

8.4. International Initiatives
8.4.1. Visits of International Scientists

• D. Ishii (National Institute of Informatics, Japan) visited the team for 8 months to work on applying
program verification methods to hybrid systems.

8.4.2. Supervision of Post-docs and Internships

• S. Boldo supervised the 6-month post-doc intern of E. Makarov (from University of Vermont, USA)
about numerical analysis proofs in higher dimensions.

• C. Marché supervised the post-doc intern of K. Krishnamani (from University of Trento, Italy) until
August: predicate abstraction techniques for critical C programs ([38] http://proval.lri.fr/agen).

• S. Conchon and G. Melquiond supervise the post-doc intern of Cody Roux since May 2011:
integration of the Gappa theorem prover in the Alt-Ergo SMT solver.

• S. Conchon supervises the post-doc intern of D. Cousineau since October 2011: interpretation of
Alt-Ergo’s proof traces in the Coq proof assistant.

• C. Paulin supervised the internship of N. Gaspar (Universidade da Beira Interior, Portugal) from
January to September 2011. He studied the formal proof of concurrent programs using a rely-
guarantee approach.

• E. Contejean, together with V. Benzaken (LRI), supervise the internship of S. Yuan (Zhejiang
University, China) from October 2011 to March 2012: Automated constraints verification for
databases with SMT solvers.

http://www.cost.esf.org/
http://www.cost.esf.org/
http://www.cost-ic0701.org/
http://proval.lri.fr/agen

Project-Team PROVAL 19

8.4.3. Participation In International Programs
C. Paulin is the representative of Univ. Paris-Sud for the education part of the EIT KIC ICT Labs. She
contributed to the proposition of two master programs as well as the action on weaving Innovation and
Entrepreneurship in Doctoral programs and the preparation of the SummerSchool “Imagine the future in ICT”.

9. Dissemination
9.1. Animation of the scientific community
9.1.1. Event organization

• At the VSTTE 2010 conference was organized a first and informal program verification competition
(http://www.macs.hw.ac.uk/vstte10/Competition.html), as a prelude to more formal competitions in
the future. It lasted for 2 hours, and participants had to submit solutions to five simple verification
problems. There were 11 participants, and most of them solved only 2 problems.

On behalf of the VSTTE 2012 conference (Philadelphia, USA, January 2012), A. Paskevich and J.-
C. Filliâtre organized the first formal VSTTE program verification competition (https://sites.google.
com/site/vstte2012/compet). This time it lasted for 48 hours, from November 8 to November 10.
A set of five verification problems was proposed to the participants. The problems to solve were
significantly harder than those of 2010. Each problem consisted of an algorithm given in pseudocode,
together with a set of properties to be mechanically proved. A total of 29 teams (79 participants) sent
solutions, which is considered an excellent success. These solutions are currently under examination.
Results will be announced at the conference.

9.1.2. Editorial boards

• S. Boldo is member of the editorial committee of the popular science web site interstices, http://
interstices.info/.

• J.-C. Filliâtre is member of the editorial board of the Journal of Functional Programming.
• C. Marché co-edited with B. Beckert a special issue of Elsevier Lectures Notes in Computer Science

devoted to selected papers of the conference FoVeOOS’10 [34].
• C. Paulin is member of the editorial board of the Journal of Formalized Reasoning.
• J.-C. Filliâtre edited a special issue of Software Tools for Technology Transfer devoted to selected

papers of the workshop VSTTE 2009. This includes an introduction paper on deductive software
verification [18].

9.1.3. Learned societies

• J.-C. Filliâtre is a member of IFIP Working Group 1.9/2.15 (Verified Software)

9.1.4. Program committees

• S. Conchon, program chair of the Journées Francophones des Langages Applicatifs (JFLA 2011),
La Bresse, France, January 2011.

• S. Boldo, member of the program committee of JFLA 2011, and the Fourth International Workshop
on Numerical Software Verification (NSV 2011, affiliated to CAV).

• D. Baelde, G. Melquiond, members of the program committee of JFLA 2012.
• É. Contejean is a member of program committees of the ACM SIGPLAN 2011 Workshop on Partial

Evaluation and Program Manipulation (PEPM 2011, co-located with POPL, Austin, Texas), the
International Workshop on Proof Search in Axiomatic Theories and Type Theories (PSATTT 20011,
affiliated to CADE, Wroclaw, Poland).

http://www.macs.hw.ac.uk/vstte10/Competition.html
https://sites.google.com/site/vstte2012/compet
https://sites.google.com/site/vstte2012/compet
http://interstices.info/
http://interstices.info/

20 Activity Report INRIA 2011

• C. Marché, member of program committees of the 2nd International Conference on Formal Verifica-
tion of Object-Oriented Software (FoVeOOS 2011, Turin, Italy), the 23rd International Conference
on Automated Deduction (CADE 2011, Wroclaw, Poland), and the the first International Workshop
on Intermediate Verification Languages (BOOGIE 2011, affiliated to CADE).

• C. Paulin, member of the program committee of the second and third conference on Interactive
Theorem Proving (ITP 2011 & 2012), and the Fifth ACM SIGPLAN Workshop on Programming
Languages meets Program Verification (PLPV 2011), affiliated to POPL.

• J.-C. Filliâtre, member of the program committee of the second conference on Interactive Theorem
Proving (ITP 2011), the workshop “Analyze to Compile, Compile to Analyze” (ACCA 2011), and
the conference Verified Software: Theories, Tools and Experiments (VSTTE 2012).

9.1.5. Participation to Thesis Committees

• C. Marché: president of PhD committee of Diego Caminha Barbosa de Oliveira (University Nancy
2, March 14th, 2011)

• C. Marché: reviewer, PhD of Beatriz Alarcón (University of Valencia, Spain, May 26th, 2011)

• C. Marché: reviewer, PhD of Mauricio Alba Castro (University of Valencia, Spain, Nov 25th, 2011)

• C. Marché: reviewer, PhD of Séverine Maingaud (University Paris 7, Dec 13th, 2011)

• C. Paulin: examinator, PhD of Mathias Krieger (University Paris-Sud 11, Dec 9th, 2011)

9.1.6. Invited Presentations

• S. Boldo, “Contours de la communauté”, invited talk at the 4es Rencontres Arithmétique de
l’Informatique Mathématique (RAIM’11) in Perpignan. (Collected data about the outline of the
computer arithmetic community in France: sites, themes, fundings...).

• J.-C. Filliâtre, “Memo Tables”, invited at the IFIP Working Group 2.8 Functional Programming
(Marble Falls, Texas, USA, March 7–11, 2011).

• P. Herms, “Certification of a Verification Condition Generator in Coq”, seminar of the Gallium-
Moscova teams, Rocquencourt, June 20th.

• C. Marché, “Verifying Behavioral Specifications of Programs: the Why Approach”, seminar of the
ELP team, Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de
Valencia, Spain, March 25th.

• T. Nguyen, “Hardware-independent proofs of numerical programs ”, seminar of the Arenaire team,
Lyon, January 20th.

• C. Paulin, “About Inductive-Recursive Definitions in Coq”, invited speaker at the workshop on
Proofs and Programs, Gothenburg, Sweden, Oct. 22th.

9.2. Interaction with the scientific community
9.2.1. Prizes and distinctions

• S. Conchon, E. Contejean and M. Iguernelala got the award 2011 of the European Association for
Theoretical Computer Science http://www.eatcs.org/index.php/best-etaps-paper for the best theoret-
ical paper of all ETAPS Conferences [24].

• C. Paulin received an honorary doctorate from the University of Gothenburg in Sweden on October
21, 2011.

9.2.2. Collective responsibilities within INRIA

• S. Boldo, elected member of the Inria Evaluation Committee.

http://www.eatcs.org/index.php/best-etaps-paper

Project-Team PROVAL 21

• S. Boldo, member of the CLHS ,comité local hygiène et sécurité and member of the CLFP, comité
local de formation permanente.

• S. Boldo, member of the committee for the monitoring of PhD students (commission de suivi des
doctorants).

• S. Boldo, member of the MECSI group for networking about computer science popularization inside
INRIA.

• C. Paulin participates to the board of INRIA Saclay - Île-de-France Comité des Projets (assembly of
Team leaders).

• C. Paulin is a member of the “Commission Scientifique” (in charge of selecting PhD students, post-
doc, invited researchers funded by INRIA Saclay - Île-de-France).

9.2.3. Collective responsibilities outside INRIA

• E. Contejean and C. Marché, nominated members of the “conseil du laboratoire” of LRI since April
2010.

• C. Marché, French National Coordinator for the COST action “Formal Verification of Object-
Oriented Programs” (2008-2012).

• C. Marché (since April 2007) and C. Paulin (since Sep. 2010) , members of the program committee
of Digiteo Labs, the world-class research park in Île-de-France region dedicated to information and
communication science and technology, http://www.digiteo.fr/.

• C. Marché, member of the selection committee of the “DIM Logiciels et Systèmes Complexes”,
providing grants to research projects, funded by Île-de-France regional council and Digiteo cluster,
http://www.dimlsc.fr/.

• G. Melquiond, elected officer of the IEEE-1788 standardization committee on interval arithmetic
since 2008.

• G. Melquiond, C. Paulin, members of the “commission consultative de spécialistes de l’université”,
Section 27, University Paris-Sud since April 2010.

• G. Melquiond is an examiner for the computer science entrance exam to École Normale Supérieure
since 2010.

• C. Paulin, director of the Graduate school in Computer Science at University Paris Sud http://edips.
lri.fr/.

• C. Paulin is deputy director of the LRI.

• C. Paulin was the president of an hiring committee for a professor position at University Paris-Sud.
She participated to two hiring commitees (professor position at ENSEEIHT Toulouse and assistant
professor for the PPS laboratory at University Paris Diderot)

• C. Paulin participated to the review panels for the German Excellence Initiative proposals for
Graduate Schools in informatics.

• J.-C. Filliâtre is correcteur au concours d’entrée à l’École Polytechnique (computer science exam-
iner for the entrance exam at École Polytechnique) since 2008.

• X. Urbain, hiring committee for an assistant professor position at École Centrale, Paris (Spring
2011).

• X. Urbain is an elected member of the board (“conseil d’administration”) of École Nationale
Supérieure d’Informatique pour l’Industrie et l’Entreprise (ENSIIE). Since July he is head of the
teaching departement of ENSIIE.

9.3. Industrial Dissemination

http://www.digiteo.fr/
http://www.dimlsc.fr/
http://edips.lri.fr/
http://edips.lri.fr/

22 Activity Report INRIA 2011

• Alt-Ergo is now used in the Spark Pro toolset, developed by Altran-Praxis, for the engineering of
high-assurance software. Alt-Ergo can be used by customers as an alternate prover for automatically
proving verification conditions.

• As part of the qualification process of Alt-Ergo with Airbus industry (DO-178B), the technical
documents (functional specifications and benchmark suite) have been accepted by Airbus. These
documents will be submitted by Airbus to the certification authorities in 2012.

• S. Conchon has started a collaboration with S. Krstic and A. Goel (Intel Strategic Cad Labs
in Hillsboro, OR, USA) that aims in the development of an SMT-based model checker. With
A. Mebsout and F. Zaidi (ForTesSe, LRI), they implement the Cubicle model checker which uses
the Alt-Ergo theorem prover to discharge its proof obligations.

• The Adacore company (Paris) implements a new tool GnatProve which aims at formal verification of
Ada programs. They translate annotated Ada code into the Why3 intermediate language and then use
the Why3 system to generate proof obligations and discharge them with available back-end provers.

• J.-C. Filliâtre and C. Marché have started a collaboration with D. Mentré at Mitsubishi Electric
R&D Centre Europe (Rennes), about the use of the Why3 environment and its back-end provers as
an alternative to the built-in prover of Atelier B.

9.4. Popularization
Since April 2008, S. Boldo is member of the editorial committee of the popular science web site)i(: http://
interstices.info/.

Since July 2009, S. Boldo is elected member of the board of the Animath association that promotes
mathematics among young people.

S. Boldo, in collaboration with T. Viéville (INRIA Nancy Grand-Est) wrote two chapters of the book
“Introduction à la science informatique”, edited by G. Dowek [32], [33]. This book aims at helping the
secondary school teachers for the incoming computer science teaching.

9.5. Teaching
Licence (DUT): “Programmation Java” (L2), “Projet professionnel et Personnel” (L1), “Architec-
ture” (L1), “Bases de données” (L2), A. Tafat (64h, “moniteur” position), Université Paris-Sud (IUT
d’Orsay), France

Licence (DUT): “Systèmes d’exploitation” (L1), “Architecture des ordinateurs” (L1), M. Iguernelala
(64h, “moniteur” position), Université Paris-Sud (IUT d’Orsay), France

Licence (DUT): “Systèmes d’exploitation” (L1 and L2), “Réseaux” (L2), A. Paskevich (156h),
Université Paris-Sud (IUT d’Orsay), France

Licence : “Mathématiques pour l’Informatique” (L2), C. Paulin (50h), D. Baelde (20h), Université
Paris-Sud, France

Licence professionnelle: “Programmation concurrente” (L3), A. Paskevich (36h), Université Paris-
Sud (IUT d’Orsay), France

Licence: “Langages de programmation et compilation” (L3), J.-C. Filliâtre (24h), École Normale
Supérieure, France

Licence: “INF421” (L3) et “INF431” (L3), J.-C. Filliâtre (70h), École Polytechnique, France

Licence: “Programmation fonctionnelle” (L3), S. Conchon (50h), Université Paris-Sud, France

Licence: “Programmation fonctionnelle” (L3), “Projet de programmation” (L3), F. Bobot (64h,
“moniteur” position), Université Paris-Sud, France

Master: “Compilation” (M1), C. Paulin (50h), D. Baelde (28h), Université Paris-Sud, France

http://interstices.info/
http://interstices.info/

Project-Team PROVAL 23

Master: “Projet de compilation” (M1), R. .Bardou (64h, “moniteur” position), Université Paris-Sud,
France

Master Parisien de Recherche en Informatique (MPRI) http://mpri.master.univ-paris7.fr/: “Proof
assistants” (M2), G. Melquiond (9h), C. Paulin (6h), Université Paris 7, France

Master Parisien de Recherche en Informatique (MPRI) http://mpri.master.univ-paris7.fr/: “Auto-
mated deduction” (M2), É. Contejean (12h), X. Urbain (12h), Université Paris 7, France

Master Parisien de Recherche en Informatique (MPRI) http://mpri.master.univ-paris7.fr/: “Founda-
tions of proof system” (M2), S. Boldo (2h), Université Paris 7, France

8th LASER Summer School on Software Engineering http://laser.inf.ethz.ch/2011/: “Tools for
Practical Software Verification”, C. Paulin (4h)

Supervision of internships

S. Boldo and G. Melquiond supervised the internship of C. Lelay about differentiability in Coq [44]
(Master Logique Mathématique et Fondements de l’Informatique, Univ. Paris Diderot).

PhD & HdR:

HDR: J.-C. Filliâtre, Deductive Program Verification [13], Université Paris-Sud, Dec. 2nd 2011

PhD: S. Lescuyer, Formalizing and Implementing a Reflexive Tactic for Automated Deduction in
Coq [14], Université Paris-Sud, Jan. 4th 2011, S. Conchon and É. Contejean

PhD: R. Bardou, Verification of Pointer Programs Using Regions and Permissions [11], Université
Paris-Sud, Oct. 14th 2011, C. Marché

PhD: F. Bobot, Logique de séparation et vérification déductive [12], Université Paris-Sud, Dec. 12
2011, J.-C. Filliâtre

PhD in progress: T. Nguyen, Formal Proof of Numerical Programs with respect to Architecture and
Compiler, since February 2009, S. Boldo, C. Marché

PhD in progress: M. Iguernelala, Forward and Backward Strategies in SMT solvers, since September
2009, S. Conchon, É. Contejean

PhD in progress: A. Tafat, Modular Verification of Pointer Programs, since September 2009,
C. Marché

PhD in progress: P. Herms, Certification of a Tool Chain for Verification of C programs, since
October 2009, C. Marché, B. Monate (CEA List)

PhD in progress: C. Dross, Theories and Techniques for Automated Proof of programs, since January
2011, S. Conchon, C. Marché, A. Paskevich, and industrial supervisors Y. Moy and J. Kanig from
AdaCore company.

PhD in progress: Alain Mebsout, SMT-based Model-Checking, since September 2011, F. Zaidi, S.
Conchon

PhD in progress: C. Lelay, Real numbers for the Coq proof assistant, since October 2011, S. Boldo,
G. Melquiond.

PhD in progress: A. J. Compaore, Rewriting Techniques for (Space and Time) Simulation of
Biological Processes, since November 2007, defence in Feb. 2012, X. Urbain and P. Le Gall (ECP
& Université Évry).

PhD in progress: Z. Bouzid, Models and Algorithms for Emerging Systems, since October 2009, X.
Urbain and S. Tixeuil, M. Gradinariu Potop-Butucaru (Université Paris 6).

PhD stopped: W. Urribarrí, Towards certified libraries, from Nov. 2006 to Sep. 2011. W. Urribarrí is
now an engineer “development of secure software” at ClearSy.

http://mpri.master.univ-paris7.fr/
http://mpri.master.univ-paris7.fr/
http://mpri.master.univ-paris7.fr/
http://laser.inf.ethz.ch/2011/

24 Activity Report INRIA 2011

10. Bibliography
Major publications by the team in recent years

[1] S. BOLDO. Floats & Ropes: a case study for formal numerical program verification, in "36th International
Colloquium on Automata, Languages and Programming", Rhodos, Greece, Lecture Notes in Computer
Science - ARCoSS, Springer, July 2009, vol. 5556, p. 91–102.

[2] S. BOLDO, J.-C. FILLIÂTRE. Formal Verification of Floating-Point Programs, in "18th IEEE International
Symposium on Computer Arithmetic", Montpellier, France, June 2007, p. 187-194, http://www.lri.fr/~filliatr/
ftp/publis/caduceus-floats.pdf.

[3] S. CONCHON, É. CONTEJEAN, J. KANIG, S. LESCUYER. CC(X): Semantical Combination of Congruence
Closure with Solvable Theories, in "Post-proceedings of the 5th International Workshop on Satisfiability
Modulo Theories (SMT 2007)", Electronic Notes in Computer Science, Elsevier Science Publishers, 2008,
vol. 198-2, p. 51–69.

[4] É. CONTEJEAN, P. COURTIEU, J. FOREST, O. PONS, X. URBAIN. Certification of automated termination
proofs, in "6th International Symposium on Frontiers of Combining Systems (FroCos 07)", Liverpool,UK, B.
KONEV, F. WOLTER (editors), Lecture Notes in Artificial Intelligence, Springer, September 2007, vol. 4720,
p. 148–162.

[5] É. CONTEJEAN, C. MARCHÉ, A. P. TOMÁS, X. URBAIN. Mechanically proving termination using polynomial
interpretations, in "Journal of Automated Reasoning", 2005, vol. 34, no 4, p. 325–363, http://dx.doi.org/10.
1007/s10817-005-9022-x.

[6] J.-C. FILLIÂTRE. Verification of Non-Functional Programs using Interpretations in Type Theory, in "Journal of
Functional Programming", July 2003, vol. 13, no 4, p. 709–745, http://www.lri.fr/~filliatr/ftp/publis/jphd.pdf.

[7] J.-C. FILLIÂTRE, C. MARCHÉ. Multi-Prover Verification of C Programs, in "6th International Conference
on Formal Engineering Methods", Seattle, WA, USA, J. DAVIES, W. SCHULTE, M. BARNETT (editors),
Lecture Notes in Computer Science, Springer, November 2004, vol. 3308, p. 15–29, http://www.lri.fr/~filliatr/
ftp/publis/caduceus.ps.gz.

[8] T. HUBERT, C. MARCHÉ. A case study of C source code verification: the Schorr-Waite algorithm, in "3rd IEEE
International Conference on Software Engineering and Formal Methods (SEFM’05)", Koblenz, Germany, B.
K. AICHERNIG, B. BECKERT (editors), IEEE Comp. Soc. Press, September 2005, http://www.lri.fr/~marche/
hubert05sefm.ps.

[9] S. KRSTIĆ, S. CONCHON. Canonization for disjoint unions of theories, in "Information and Computation",
May 2005, vol. 199, no 1-2, p. 87–106.

[10] C. MARCHÉ, C. PAULIN-MOHRING, X. URBAIN. The KRAKATOA Tool for Certification of JAVA/JAVACARD
Programs annotated in JML, in "Journal of Logic and Algebraic Programming", 2004, vol. 58, no 1–2, p.
89–106, http://krakatoa.lri.fr.

Publications of the year
Doctoral Dissertations and Habilitation Theses

http://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
http://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
http://dx.doi.org/10.1007/s10817-005-9022-x
http://dx.doi.org/10.1007/s10817-005-9022-x
http://www.lri.fr/~filliatr/ftp/publis/jphd.pdf
http://www.lri.fr/~filliatr/ftp/publis/caduceus.ps.gz
http://www.lri.fr/~filliatr/ftp/publis/caduceus.ps.gz
http://www.lri.fr/~marche/hubert05sefm.ps
http://www.lri.fr/~marche/hubert05sefm.ps
http://krakatoa.lri.fr

Project-Team PROVAL 25

[11] R. BARDOU. Verification of Pointer Programs Using Regions and Permissions, Université Paris-Sud, October
2011, http://romain.bardou.fr/thesis/bardou11phd.pdf.

[12] F. BOBOT. Logique de séparation et vérification déductive, Université Paris-Sud, December 2011.

[13] J.-C. FILLIÂTRE. Deductive Program Verification, Université Paris-Sud, December 2011, Thèse
d’habilitation.

[14] S. LESCUYER. Formalisation et développement d’une tactique réflexive pour la démonstration automatique
en Coq, Université Paris-Sud, January 2011.

Articles in International Peer-Reviewed Journal

[15] S. BOLDO, C. MARCHÉ. Formal verification of numerical programs: from C annotated programs to
mechanical proofs, in "Mathematics in Computer Science", 2011.

[16] S. BOLDO, J.-M. MULLER. Exact and Approximated error of the FMA, in "IEEE Transactions on Computers",
February 2011, vol. 60, no 2, p. 157–164, http://hal.inria.fr/inria-00429617/en/.

[17] S. BOLDO, T. M. T. NGUYEN. Proofs of numerical programs when the compiler optimizes, in "Innovations
in Systems and Software Engineering", 2011, vol. 7, p. 151-160.

[18] J.-C. FILLIÂTRE. Deductive Software Verification, in "International Journal on Software Tools for Technology
Transfer (STTT)", August 2011, vol. 13, no 5, p. 397-403, http://dx.doi.org/10.1007/s10009-011-0211-0.

[19] F. DE DINECHIN, C. LAUTER, G. MELQUIOND. Certifying the floating-point implementation of an elemen-
tary function using Gappa, in "IEEE Transactions on Computers", 2011, vol. 60, no 2, p. 242–253, http://hal.
inria.fr/inria-00533968/en/.

International Conferences with Proceedings

[20] D. BAELDE, R. BEAUXIS, S. MIMRAM. Liquidsoap: A High-Level Programming Language for Multime-
dia Streaming, in "37th Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM’11)", Nový Smokovec, Slovakia, I. CERNÁ, T. GYIMÓTHY, J. HROMKOVIC, K. G. JEFFERY, R.
KRÁLOVIC, M. VUKOLIC, S. WOLF (editors), Lecture Notes in Computer Science, Springer, January 2011,
vol. 6543.

[21] F. BOBOT, J.-C. FILLIÂTRE, C. MARCHÉ, A. PASKEVICH. Why3: Shepherd Your Herd of Provers, in "Boogie
2011: First International Workshop on Intermediate Verification Languages", Wrocław, Poland, August 2011,
http://proval.lri.fr/submissions/boogie11.pdf.

[22] F. BOBOT, A. PASKEVICH. Expressing Polymorphic Types in a Many-Sorted Language, in "Frontiers of
Combining Systems, 8th International Symposium, Proceedings", Saarbrücken, Germany, C. TINELLI, V.
SOFRONIE-STOKKERMANS (editors), Lecture Notes in Computer Science, October 2011, vol. 6989.

[23] S. BOLDO, G. MELQUIOND. Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in
"Proceedings of the 20th IEEE Symposium on Computer Arithmetic", Tübingen, Germany, E. ANTELO, D.
HOUGH, P. IENNE (editors), 2011, p. 243–252, http://www.lri.fr/~melquion/doc/11-arith20-article.pdf.

http://romain.bardou.fr/thesis/bardou11phd.pdf
http://hal.inria.fr/inria-00429617/en/
http://dx.doi.org/10.1007/s10009-011-0211-0
http://hal.inria.fr/inria-00533968/en/
http://hal.inria.fr/inria-00533968/en/
http://proval.lri.fr/submissions/boogie11.pdf
http://www.lri.fr/~melquion/doc/11-arith20-article.pdf

26 Activity Report INRIA 2011

[24] Best Paper
S. CONCHON, É. CONTEJEAN, M. IGUERNELALA. Canonized Rewriting and Ground AC Completion Mod-
ulo Shostak Theories, in "Tools and Algorithms for the Construction and Analysis of Systems", Saarbrücken,
Germany, P. A. ABDULLA, K. R. M. LEINO (editors), Lecture Notes in Computer Science, Springer, April
2011.

[25] É. CONTEJEAN, P. COURTIEU, J. FOREST, O. PONS, X. URBAIN. Automated Certified Proofs with
CiME3, in "22nd International Conference on Rewriting Techniques and Applications (RTA 11)", Novi Sad,
Serbia, M. SCHMIDT-SCHAUSS (editor), Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, vol. 10, p. 21–30, http://drops.dagstuhl.de/opus/volltexte/
2011/3119.

[26] C. DROSS, J.-C. FILLIÂTRE, Y. MOY. Correct Code Containing Containers, in "5th International Conference
on Tests and Proofs (TAP’11)", Zurich, June 2011.

[27] J.-C. FILLIÂTRE, K. KALYANASUNDARAM. Functory: A Distributed Computing Library for Objective Caml,
in "Trends in Functional Programming", Madrid, Spain, May 2011.

[28] T. M. T. NGUYEN, C. MARCHÉ. Hardware-Dependent Proofs of Numerical Programs, in "Certified Programs
and Proofs", J.-P. JOUANNAUD, Z. SHAO (editors), Lecture Notes in Computer Science, Springer, December
2011.

[29] A. TAFAT, S. BOULMÉ, C. MARCHÉ. A Refinement Methodology for Object-Oriented Programs, in "Formal
Verification of Object-Oriented Software, Revised Selected Papers Presented at the International Conference,
FoVeOOS 2010", B. BECKERT, C. MARCHÉ (editors), Lecture Notes in Computer Science, Springer, January
2011, vol. 6528, p. 153–167.

National Conferences with Proceeding

[30] R. BARDOU, C. MARCHÉ. Perle de preuve: les tableaux creux, in "Vingt-deuxièmes Journées Francophones
des Langages Applicatifs", La Bresse, France, S. CONCHON (editor), INRIA, January 2011.

[31] J.-C. FILLIÂTRE, K. KALYANASUNDARAM. Une bibliothèque de calcul distribué pour Objective Caml,
in "Vingt-deuxièmes Journées Francophones des Langages Applicatifs", La Bresse, France, S. CONCHON
(editor), INRIA, January 2011, http://www.lri.fr/~filliatr/publis/jfla-2011.pdf.

Scientific Books (or Scientific Book chapters)

[32] S. BOLDO, T. VIÉVILLE. Représentation numérique de l’information, in "Introduction à la science informa-
tique", G. DOWEK (editor), Repères pour agir, CRDP Académie de Paris, July 2011, p. 23–72, http://crdp.
ac-paris.fr/Introduction-a-la-science.

[33] S. BOLDO, T. VIÉVILLE. Structuration et contrôle de l’information, in "Introduction à la science informa-
tique", G. DOWEK (editor), Repères pour agir, CRDP Académie de Paris, July 2011, p. 281–308, http://crdp.
ac-paris.fr/Introduction-a-la-science.

http://drops.dagstuhl.de/opus/volltexte/2011/3119
http://drops.dagstuhl.de/opus/volltexte/2011/3119
http://www.lri.fr/~filliatr/publis/jfla-2011.pdf
http://crdp.ac-paris.fr/Introduction-a-la-science
http://crdp.ac-paris.fr/Introduction-a-la-science
http://crdp.ac-paris.fr/Introduction-a-la-science
http://crdp.ac-paris.fr/Introduction-a-la-science

Project-Team PROVAL 27

Books or Proceedings Editing

[34] B. BECKERT, C. MARCHÉ (editors). Formal Verification of Object-Oriented Software, Revised Selected
Papers Presented at the International Conference, FoVeOOS 2010, Lecture Notes in Computer Science,
Springer, January 2011, vol. 6528.

Research Reports

[35] F. BOBOT, J.-C. FILLIÂTRE, C. MARCHÉ, A. PASKEVICH. The Why3 platform, version 0.64, LRI, CNRS &
Univ. Paris-Sud & INRIA Saclay, February 2011.

[36] S. BOLDO, F. CLEMENT, J.-C. FILLIÂTRE, M. MAYERO, G. MELQUIOND, P. WEIS. Wave Equation
Numerical Resolution: Mathematics and Program, INRIA, December 2011, no RR-7826, http://hal.inria.fr/
hal-00649240/en/.

[37] P. HERMS, C. MARCHÉ, B. MONATE. A Certified Multi-prover Verification Condition Generator, INRIA,
2011, no 7793, http://hal.inria.fr/hal-00639977/en/.

[38] K. KALYANASUNDARAM, C. MARCHÉ. Automated Generation of Loop Invariants using Predicate Abstrac-
tion, INRIA, August 2011, no 7714, http://hal.inria.fr/inria-00615623/en/.

[39] É. MARTIN-DOREL, G. MELQUIOND, J.-M. MULLER. Some issues related to double roundings, 2011,
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00644408/en/.

[40] T. M. T. NGUYEN, C. MARCHÉ. Proving Floating-Point Numerical Programs by Analysis of their Assembly
Code, INRIA, 2011, no 7655, http://hal.inria.fr/inria-00602266/en/.

[41] A. TAFAT, C. MARCHÉ. Binary Heaps Formally Verified in Why3, INRIA, October 2011, no 7780, http://hal.
inria.fr/inria-00636083/en/.

Other Publications

[42] F. BOBOT, A. PASKEVICH. Expressing Polymorphic Types in a Many-Sorted Language, 2011.

[43] N. GASPAR. Mechanized Semantics into Concurrent Program verification, September 2011,
http://www.lri.fr/~gaspar/rgcoq.html.

[44] C. LELAY. Étude de la différentiabilité et de l’intégrabilité en Coq : Application à la formule de d’Alembert
pour l’équation des ondes, Université Paris 7, 2011.

References in notes

[45] The MAUDE System.

[46] J. ANDRONICK. Modélisation et vérification formelles de systèmes embarqués dans les cartes à microproces-
sur. Plateforme Java Card et Système d’exploitation, Université Paris-Sud, March 2006, http://ssrg.nicta.com.
au/publications/papers/Andronick:phd.abstract?bib=login.

http://hal.inria.fr/hal-00649240/en/
http://hal.inria.fr/hal-00649240/en/
http://hal.inria.fr/hal-00639977/en/
http://hal.inria.fr/inria-00615623/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00644408/en/
http://hal.inria.fr/inria-00602266/en/
http://hal.inria.fr/inria-00636083/en/
http://hal.inria.fr/inria-00636083/en/
http://ssrg.nicta.com.au/publications/papers/Andronick:phd.abstract?bib=login
http://ssrg.nicta.com.au/publications/papers/Andronick:phd.abstract?bib=login

28 Activity Report INRIA 2011

[47] J. ANDRONICK, B. CHETALI, C. PAULIN-MOHRING. Formal Verification of Security Properties of Smart
Card Embedded Source Code, in "International Symposium of Formal Methods Europe (FM’05)", Newcas-
tle,UK, J. FITZGERALD, I. J. HAYES, A. TARLECKI (editors), Lecture Notes in Computer Science, Springer,
July 2005, vol. 3582, http://www.springerlink.com/content/eulj9pbgm2875cer/.

[48] T. ARTS, J. GIESL. Termination of term rewriting using dependency pairs, in "Theoretical Computer Science",
2000, vol. 236, p. 133–178.

[49] P. AUDEBAUD, C. PAULIN-MOHRING. Proofs of Randomized Algorithms in Coq, in "Science of Computer
Programming", 2009, vol. 74, no 8, p. 568–589, http://hal.inria.fr/inria-00431771/en/.

[50] M. BARBOSA, J.-C. FILLIÂTRE, J. S. PINTO, B. VIEIRA. A Deductive Verification Platform for Crypto-
graphic Software, in "4th International Workshop on Foundations and Techniques for Open Source Software
Certification (OpenCert 2010)", Pisa, Italy, Electronic Communications of the EASST, September 2010, vol.
33, http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/461.

[51] R. BARDOU, J.-C. FILLIÂTRE, J. KANIG, S. LESCUYER. Faire bonne figure avec Mlpost, in "Vingtièmes
Journées Francophones des Langages Applicatifs", Saint-Quentin sur Isère, INRIA, January 2009, http://www.
lri.fr/~filliatr/ftp/publis/mlpost-fra.pdf.

[52] B. BARRAS. Verification of the Interface of a Small Proof System in Coq, in "Types for Proofs and Programs,
International Workshop TYPES’96, Aussois, France, December 15-19, 1996, Selected Papers", E. GIMÉNEZ,
C. PAULIN-MOHRING (editors), Lecture Notes in Computer Science, Springer, 1998, vol. 1512, p. 28-45.

[53] G. BARTHE, B. GRÉGOIRE, S. Z. BÉGUELIN. Formal certification of code-based cryptographic proofs, in
"POPL", Savannah, GA, USA, Z. SHAO, B. C. PIERCE (editors), ACM Press, January 2009, p. 90-101.

[54] P. BAUDIN, J.-C. FILLIÂTRE, C. MARCHÉ, B. MONATE, Y. MOY, V. PREVOSTO. ACSL: ANSI/ISO C
Specification Language, version 1.4, 2009, http://frama-c.cea.fr/acsl.html.

[55] S. BOLDO. Pitfalls of a full floating-point proof: example on the formal proof of the Veltkamp/Dekker
algorithms, in "Third International Joint Conference on Automated Reasoning", Seattle, USA, U. FURBACH,
N. SHANKAR (editors), Lecture Notes in Computer Science, Springer, August 2006, vol. 4130, p. 52-66,
http://www.springerlink.com/content/524v5246177t0877/.

[56] S. BOLDO. Floats & Ropes: a case study for formal numerical program verification, in "36th International
Colloquium on Automata, Languages and Programming", Rhodos, Greece, Lecture Notes in Computer
Science - ARCoSS, Springer, July 2009, vol. 5556, p. 91–102.

[57] S. BOLDO, F. CLÉMENT, J.-C. FILLIÂTRE, M. MAYERO, G. MELQUIOND, P. WEIS. Formal Proof of a
Wave Equation Resolution Scheme: the Method Error, in "Proceedings of the first Interactive Theorem Proving
Conference", Edinburgh, Scotland, M. KAUFMANN, L. C. PAULSON (editors), LNCS, Springer, July 2010,
vol. 6172, p. 147–162, http://hal.inria.fr/inria-00450789/en/.

[58] R. BORNAT. Proving Pointer Programs in Hoare Logic, in "Mathematics of Program Construction", 2000, p.
102–126.

[59] V. CHAUDHARY. The Krakatoa tool for certification of Java/JavaCard programs annotated in JML : A Case
Study, IIT internship report, July 2004.

http://www.springerlink.com/content/eulj9pbgm2875cer/
http://hal.inria.fr/inria-00431771/en/
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/461
http://www.lri.fr/~filliatr/ftp/publis/mlpost-fra.pdf
http://www.lri.fr/~filliatr/ftp/publis/mlpost-fra.pdf
http://frama-c.cea.fr/acsl.html
http://www.springerlink.com/content/524v5246177t0877/
http://hal.inria.fr/inria-00450789/en/

Project-Team PROVAL 29

[60] S. CONCHON, S. KRSTIĆ. Strategies for Combining Decision Procedures, in "Theoretical Computer Science",
2006, vol. 354, no 2, p. 187–210.

[61] É. CONTEJEAN, P. CORBINEAU. Reflecting Proofs in First-Order Logic with Equality, in "20th International
Conference on Automated Deduction (CADE-20)", Tallinn, Estonia, R. NIEUWENHUIS (editor), Lecture
Notes in Artificial Intelligence, Springer, July 2005, vol. 3632, p. 7–22.

[62] É. CONTEJEAN, P. COURTIEU, J. FOREST, O. PONS, X. URBAIN. Certification of automated termination
proofs, CEDRIC, May 2007, no 1185.

[63] É. CONTEJEAN, C. MARCHÉ, A. P. TOMÁS, X. URBAIN. Mechanically proving termination using polyno-
mial interpretations, in "Journal of Automated Reasoning", 2005, vol. 34, no 4, p. 325–363, http://dx.doi.org/
10.1007/s10817-005-9022-x.

[64] J.-F. COUCHOT, A. GIORGETTI, N. STOULS. Graph-based Reduction of Program Verification Conditions,
INRIA Saclay – Île-de-France, October 2008, no 6702, http://hal.inria.fr/inria-00339847/en/.

[65] J.-F. COUCHOT, S. LESCUYER. Handling Polymorphism in Automated Deduction, in "21th International
Conference on Automated Deduction (CADE-21)", Bremen, Germany, LNCS (LNAI), July 2007, vol. 4603,
p. 263–278.

[66] M. DAUMAS, G. MELQUIOND. Certification of bounds on expressions involving rounded operators, in
"Transactions on Mathematical Software", 2010, vol. 37, no 1, http://hal.archives-ouvertes.fr/inria-00534350/
fr/.

[67] F. DURÁN, S. LUCAS, J. MESEGUER, C. MARCHÉ, X. URBAIN. Proving Termination of Membership Equa-
tional Programs, in "ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program Manipulation",
Verona, Italy, ACM Press, August 2004.

[68] J.-C. FILLIÂTRE. Formal Proof of a Program: Find, in "Science of Computer Programming", 2006, vol. 64,
p. 332–240, http://www.lri.fr/~filliatr/ftp/publis/find.pdf.

[69] J.-C. FILLIÂTRE. Verifying Two Lines of C with Why3: an Exercise in Program Verification, in "Verified
Software: Theories, Tools and Experiments (VSTTE)", Philadelphia, USA, January 2012, http://why3.lri.fr/
queens/queens.pdf.

[70] J.-C. FILLIÂTRE, S. OWRE, H. RUESS, N. SHANKAR. ICS: Integrated Canonization and Solving (Tool
presentation), in "Proceedings of CAV’2001", G. BERRY, H. COMON, A. FINKEL (editors), Lecture Notes in
Computer Science, Springer, 2001, vol. 2102, p. 246–249.

[71] J. GERLACH, J. BURGHARDT. An Experience Report on the Verification of Algorithms in the C++ Standard
Library using Frama-C, in "Formal Verification of Object-Oriented Software, Papers Presented at the Inter-
national Conference", Paris, France, B. BECKERT, C. MARCHÉ (editors), Karlsruhe Reports in Informatics,
June 2010, p. 191–204.

[72] B. GRAMLICH. On Proving Termination by Innermost Termination, in "7th International Conference on
Rewriting Techniques and Applications", New Brunswick, NJ, USA, H. GANZINGER (editor), Lecture Notes
in Computer Science, Springer, July 1996, vol. 1103, p. 93–107.

http://dx.doi.org/10.1007/s10817-005-9022-x
http://dx.doi.org/10.1007/s10817-005-9022-x
http://hal.inria.fr/inria-00339847/en/
http://hal.archives-ouvertes.fr/inria-00534350/fr/
http://hal.archives-ouvertes.fr/inria-00534350/fr/
http://www.lri.fr/~filliatr/ftp/publis/find.pdf
http://why3.lri.fr/queens/queens.pdf
http://why3.lri.fr/queens/queens.pdf

30 Activity Report INRIA 2011

[73] T. HUBERT. Analyse Statique et preuve de Programmes Industriels Critiques, Université Paris-Sud, June 2008,
http://www.lri.fr/~marche/hubert08these.pdf.

[74] T. HUBERT, C. MARCHÉ. Separation Analysis for Deductive Verification, in "Heap Analysis and Verification
(HAV’07)", Braga, Portugal, March 2007, p. 81–93, http://www.lri.fr/~marche/hubert07hav.pdf.

[75] B. JACOBS, C. MARCHÉ, N. RAUCH. Formal Verification of a Commercial Smart Card Applet with Multiple
Tools, in "Algebraic Methodology and Software Technology", Stirling, UK, Lecture Notes in Computer
Science, Springer, July 2004, vol. 3116.

[76] K. R. M. LEINO, M. MOSKAL. VACID-0: Verification of Ample Correctness of Invariants of Data-structures,
Edition 0, in "Proceedings of Tools and Experiments Workshop at VSTTE", 2010.

[77] C. LELAY, G. MELQUIOND. Différentiabilité et intégrabilité en Coq. Application à la formule de d’Alembert,
in "Vingt-troisièmes Journées Francophones des Langages Applicatifs", Carnac, France, February 2012, http://
hal.inria.fr/hal-00642206/fr/.

[78] X. LEROY. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant,
in "Conference Record of the 33rd Symposium on Principles of Programming Languages", Charleston, South
Carolina, ACM Press, January 2006.

[79] S. LESCUYER. Codage de la logique du premier ordre polymorphe multi-sortée dans la logique sans sortes,
Master Parisien de Recherche en Informatique, 2006.

[80] P. LETOUZEY. A New Extraction for Coq, in "TYPES 2002", H. GEUVERS, F. WIEDIJK (editors), Lecture
Notes in Computer Science, Springer, 2003, vol. 2646.

[81] P. LETOUZEY. Programmation fonctionnelle certifiée: l’extraction de programmes dans l’assistant Coq,
Université Paris-Sud, July 2004.

[82] C. MARCHÉ, C. PAULIN-MOHRING. Reasoning about Java Programs with Aliasing and Frame Conditions,
in "18th International Conference on Theorem Proving in Higher Order Logics", J. HURD, T. MELHAM
(editors), Lecture Notes in Computer Science, Springer, August 2005, vol. 3603, p. 179–194, http://www.lri.
fr/~marche/marche05tphols.ps.

[83] C. MARCHÉ, N. ROUSSET. Verification of Java Card Applets Behavior with respect to Transactions and Card
Tears, in "4th IEEE International Conference on Software Engineering and Formal Methods (SEFM’06)",
Pune, India, D. V. HUNG, P. PANDYA (editors), IEEE Comp. Soc. Press, September 2006.

[84] C. MARCHÉ, X. URBAIN. Modular and Incremental Proofs of AC-Termination, in "Journal of Symbolic
Computation", 2004, vol. 38, p. 873–897, http://authors.elsevier.com/sd/article/S074771710400029X.

[85] C. MARCHÉ. Preuves mécanisées de Propriétés de Programmes, Université Paris 11, December 2005, Thèse
d’habilitation.

[86] G. MELQUIOND, W. G. NOWAK, P. ZIMMERMANN. Numerical Approximation of the Masser-Gramain
Constant to Four Decimal Digits: delta=1.819..., in "Mathematics of Computation", 2012, http://hal.inria.
fr/hal-00644166/en/.

http://www.lri.fr/~marche/hubert08these.pdf
http://www.lri.fr/~marche/hubert07hav.pdf
http://hal.inria.fr/hal-00642206/fr/
http://hal.inria.fr/hal-00642206/fr/
http://www.lri.fr/~marche/marche05tphols.ps
http://www.lri.fr/~marche/marche05tphols.ps
http://authors.elsevier.com/sd/article/S074771710400029X
http://hal.inria.fr/hal-00644166/en/
http://hal.inria.fr/hal-00644166/en/

Project-Team PROVAL 31

[87] Y. MOY, C. MARCHÉ. Modular Inference of Subprogram Contracts for Safety Checking, in "Journal of
Symbolic Computation", 2010, vol. 45, p. 1184-1211, http://hal.inria.fr/inria-00534331/en/.

[88] Y. MOY. Automatic Modular Static Safety Checking for C Programs, Université Paris-Sud, January 2009,
http://www.lri.fr/~marche/moy09phd.pdf.

[89] E. OHLEBUSCH, C. CLAVES, C. MARCHÉ. TALP: A Tool for the Termination Analysis of Logic Programs,
in "11th International Conference on Rewriting Techniques and Applications", Norwich, UK, L. BACHMAIR
(editor), Lecture Notes in Computer Science, Springer, July 2000, vol. 1833, p. 270–273.

[90] S. RANISE, C. TINELLI. The Satisfiability Modulo Theories Library (SMT-LIB), 2006,
http://www.smtcomp.org.

[91] M. SOZEAU. Program-ing Finger Trees in Coq, in "12th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2007", Freiburg, Germany, R. HINZE, N. RAMSEY (editors), ACM Press,
2007, p. 13–24.

[92] M. SOZEAU. Un environnement pour la programmation avec types dépendants, Université Paris-Sud, Decem-
ber 2008.

[93] D. STEVENSON. A proposed standard for binary floating point arithmetic, in "IEEE Computer", 1981, vol.
14, no 3, p. 51-62.

[94] X. URBAIN. Approche incrémentale des preuves automatiques de terminaison, Université Paris-Sud, Orsay,
France, October 2001, http://www.lri.fr/~urbain/textes/these.ps.gz.

http://hal.inria.fr/inria-00534331/en/
http://www.lri.fr/~marche/moy09phd.pdf
http://www.lri.fr/~urbain/textes/these.ps.gz

