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2. Overall Objectives

2.1. Overall Objectives
Many phenomena of interest are analyzed and controlled through graphs or n-dimensional images. Often,
these graphs have an irregular aspect, whether the studied phenomenon is of natural or artificial origin. In the
first class, one may cite natural landscapes, most biological signals and images (EEG, ECG, MR images, ...),
and temperature records. In the second class, prominent examples include financial logs and TCP traces.

Such irregular phenomena are usually not adequately described by purely deterministic models, and a
probabilistic ingredient is often added. Stochastic processes allow to take into account, with a firm theoretical
basis, the numerous microscopic fluctuations that shape the phenomenon.

In general, it is a wrong view to believe that irregularity appears as an epiphenomenon, that is conveniently
dealt with by introducing randomness. In many situations, and in particular in some of the examples mentioned
above, irregularity is a core ingredient that cannot be removed without destroying the phenomenon itself. In
some cases, irregularity is even a necessary condition for proper functioning. A striking example is that of
ECG: an ECG is inherently irregular, and, moreover, in a mathematically precise sense, an increase in its
regularity is strongly correlated with a degradation of its condition.

In fact, in various situations, irregularity is a crucial feature that can be used to assess the behaviour of a given
system. For instance, irregularity may the result of two or more sub-systems that act in a concurrent way to
achieve some kind of equilibrium. Examples of this abound in nature (e.g. the sympathetic and parasympathetic
systems in the regulation of the heart). For artifacts, such as financial logs and TCP traffic, irregularity is in a
sense an unwanted feature, since it typically makes regulations more complex. It is again, however, a necessary
one. For instance, efficiency in financial markets requires a constant flow of information among agents, which
manifests itself through permanent fluctuations of the prices: irregularity just reflects the evolution of this
information.
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The aim of Regularity is a to develop a coherent set of methods allowing to model such “essentially irregular”
phenomena in view of managing the uncertainties entailed by their irregularity.

Indeed, essential irregularity makes it more to difficult to study phenomena in terms of their description,
modeling, prediction and control. It introduces uncertainties both in the measurements and the dynamics. It
is, for instance, obviously easier to predict the short time behaviour of a smooth (e.g. C1) process than of a
nowhere differentiable one. Likewise, sampling rough functions yields less precise information than regular
ones. As a consequence, when dealing with essentially irregular phenomena, uncertainties are fundamental in
the sense that one cannot hope to remove them by a more careful analysis or a more adequate modeling. The
study of such phenomena then requires to develop specific approaches allowing to manage in an efficient way
these inherent uncertainties.

3. Scientific Foundations
3.1. Theoretical aspects: probabilistic modeling of irregularity

The modeling of essentially irregular phenomena is an important challenge, with an emphasis on understand-
ing the sources and functions of this irregularity. Probabilistic tools are well-adapted to this task, provided one
can design stochastic models for which the regularity can be measured and controlled precisely. Two points
deserve special attention:

• first, the study of regularity has to be local. Indeed, in most applications, one will want to act on
a system based on local temporal or spatial information. For instance, detection of arrhythmias in
ECG or of krachs in financial markets should be performed in “real time”, or, even better, ahead of
time. In this sense, regularity is a local indicator of the local health of a system.

• Second, although we have used the term “irregularity” in a generic and somewhat vague sense,
it seems obvious that, in real-world phenomena, regularity comes in many colors, and a rigorous
analysis should distinguish between them. As an example, at least two kinds of irregularities are
present in financial logs: the local “roughness” of the records, and the local density and height
of jumps. These correspond to two different concepts of regularity (in technical terms, HÃ¶lder
exponents and local index of stability), and they both contribute a different manner to financial risk.

In view of the above, the Regularity team focuses on the design of methods that:

1. define and study precisely various relevant measures of local regularity,
2. allow to build stochastic models versatile enough to mimic the rapid variations of the different kinds

of regularities observed in real phenomena,
3. allow to estimate as precisely and rapidly as possible these regularities, so as to alert systems in

charge of control.

Our aim is to address the three items above through the design of mathematical tools in the field of probability
(and, to a lesser extent, statistics), and to apply these tools to uncertainty management as described in the
following section. We note here that we do not intend to address the problem of controlling the phenomena
based on regularity, that would naturally constitute an item 4 in the list above. Indeed, while we strongly
believe that generic tools may be designed to measure and model regularity, and that these tools may be used
to analyze real-world applications, in particular in the field of uncertainty management, it is clear that, when
it comes to control, application-specific tools are required, that we do not wish to address.

The research topics of the Regularity team can be roughly divided into two strongly interacting axes,
corresponding to two complementary ways of studying regularity:

1. developments of tools allowing to characterize, measure and estimate various notions of local
regularity, with a particular emphasis on the stochastic frame,

2. definition and fine analysis of stochastic models for which some aspects of local regularity may be
prescribed.
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These two aspects are detailed in sections 3.2 and 3.3 below.

3.2. Tools for characterizing and measuring regularity
Fractional Dimensions
Although the main focus of our team is on characterizing local regularity, on occasions, it is interesting to
use a global index of regularity. Fractional dimensions provide such an index. In particular, the regularization
dimension, that was defined in [35], is well adapted to the study stochastic processes, as its definition allows
to build robust estimators in an easy way. Since its introduction, regularization dimension has been used
by various teams worldwide in many different applications including the characterization of certain stochastic
processes, statistical estimation, the study of mammographies or galactograms for breast carcinomas detection,
ECG analysis for the study of ventricular arrhythmia, encephalitis diagnosis from EEG, human skin analysis,
discrimination between the nature of radioactive contaminations, analysis of porous media textures, well-
logs data analysis, agro-alimentary image analysis, road profile analysis, remote sensing, mechanical systems
assessment, analysis of video games, ...(see http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim
for a list of works using the regularization dimension).

HÃ¶lder exponents
The simplest and most popular measures of local regularity are the pointwise and local HÃ¶lder exponents.
For a stochastic process {X(t)}t∈R whose trajectories are continuous and nowhere differentiable, these are
defined, at a point t0, as the random variables:

αX(t0, ω) = sup

{
α : limsup

ρ→0
sup

t,u∈B(t0,ρ)

|Xt −Xu|
ρα

<∞

}
, (1)

and

α̃X(t0, ω) = sup

{
α : limsup

ρ→0
sup

t,u∈B(t0,ρ)

|Xt −Xu|
‖t− u‖α

<∞

}
. (2)

Although these quantities are in general random, we will omit as is customary the dependency in ω and X and
write α(t0) and α̃(t0) instead of αX(t0, ω) and α̃X(t0, ω).

The random functions t 7→ αX(t0, ω) and t 7→ α̃X(t0, ω) are called respectively the pointwise and local
Hölder functions of the process X .

The pointwise Hölder exponent is a very versatile tool, in the sense that the set of pointwise Hölder functions
of continuous functions is quite large (it coincides with the set of lower limits of sequences of continuous
functions [7]). In this sense, the pointwise exponent is often a more precise tool (i.e. it varies in a more
rapid way) than the local one, since local Hölder functions are always lower semi-continuous. This is why,
in particular, it is the exponent that is used as a basis ingredient in multifractal analysis (see section 3.2). For
certain classes of stochastic processes, and most notably Gaussian processes, it has the remarkable property
that, at each point, it assumes an almost sure value [19]. SRP, mBm, and processes of this kind (see sections
3.3 and 3.3) rely on the sole use of the pointwise Hölder exponent for prescribing the regularity.

However, αX obviously does not give a complete description of local regularity, even for continuous processes.
It is for instance insensitive to “oscillations”, contrarily to the local exponent. A simple example in the
deterministic frame is provided by the function xγ sin (x−β), where γ, β are positive real numbers. This so-
called “chirp function” exhibits two kinds of irregularities: the first one, due to the term xγ is measured by the
pointwise HÃ¶lder exponent. Indeed, α(0) = γ. The second one is due to the wild oscillations around 0, to
which α is blind. In contrast, the local HÃ¶lder exponent at 0 is equal to γ

1+β , and is thus influenced by the
oscillatory behaviour.

http://regularity.saclay.inria.fr/theory/localregularity/biblioregdim
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Another, related, drawback of the pointwise exponent is that it is not stable under integro-differentiation,
which sometimes makes its use complicated in applications. Again, the local exponent provides here a useful
complement to α, since α̃ is stable under integro-differentiation.

Both exponents have proved useful in various applications, ranging from image denoising and segmentation
to TCP traffic characterization. Applications require precise estimation of these exponents.

Stochastic 2-microlocal analysis
Neither the pointwise nor the local exponents give a complete characterization of the local regularity, and,
although their joint use somewhat improves the situation, it is far from yielding the complete picture.

A fuller description of local regularity is provided by the so-called 2-microlocal analysis, introduced by J.M.
Bony [44]. In this frame, regularity at each point is now specified by two indices, which makes the analysis
and estimation tasks more difficult. More precisely, a function f is said to belong to the 2-microlocal space
Cs,s

′

x0
, where s+ s′ > 0, s′ < 0, if and only if its m = [s+ s′]−th order derivative exists around x0, and if

there exists δ > 0, a polynomial P with degree lower than [s]−m, and a constant C, such that∣∣∣∣∂mf(x)− P (x)

|x−x0|[s]−m
− ∂mf(y)− P (y)

|y−x0|[s]−m

∣∣∣∣ ≤ C|x− y|s+s′−m(|x− y|+ |x−x0|)−s
′−[s]+m

for all x, y such that 0 < |x−x0| < δ, 0 < |y−x0| < δ. This characterization was obtained in [26], [36]. See
[56], [57] for other characterizations and results. These spaces are stable through integro-differentiation, i.e.
f ∈ Cs,s′x if and only if f ′ ∈ Cs−1,s′

x . Knowing to which space f belongs thus allows to predict the evolution
of its regularity after derivation, a useful feature if one uses models based on some kind differential equations.
A lot of work remains to be done in this area, in order to obtain more general characterizations, to develop
robust estimation methods, and to extend the “2-microlocal formalism” : this is a tool allowing to detect which
space a function belongs to, from the computation of the Legendre transform of an auxiliary function known
as its 2-microlocal spectrum. This spectrum provide a wealth of information on the local regularity.

In [19], we have laid some foundations for a stochastic version of 2-microlocal analysis. We believe this
will provide a fine analysis of the local regularity of random processes in a direction different from the one
detailed for instance in [62].We have defined random versions of the 2-microlocal spaces, and given almost
sure conditions for continuous processes to belong to such spaces. More precise results have also been obtained
for Gaussian processes. A preliminary investigation of the 2-microlocal behaviour of Wiener integrals has been
performed.

Multifractal analysis of stochastic processes
A direct use of the local regularity is often fruitful in applications. This is for instance the case in RR analysis
or terrain modeling. However, in some situations, it is interesting to supplement or replace it by a more global
approach known as multifractal analysis (MA). The idea behind MA is to group together all points with same
regularity (as measured by the pointwise HÃ¶lder exponent) and to measure the “size” of the sets thus obtained
[32], [45], [52]. There are mainly two ways to do so, a geometrical and a statistical one.

In the geometrical approach, one defines the Hausdorff multifractal spectrum of a process or function X as
the function: α 7→ fh(α) = dim {t : αX(t) = α}, where dimE denotes the Hausdorff dimension of the set
E. This gives a fine measure-theoretic information, but is often difficult to compute theoretically, and almost
impossible to estimate on numerical data.

The statistical path to MA is based on the so-called large deviation multifractal spectrum:

fg(α) = lim
ε→0

liminf
n→∞

log Nε
n(α)

log n
,

where:
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Nε
n(α) = #{k : α− ε ≤ αkn ≤ α+ ε},

and αkn is the “coarse grained exponent” corresponding to the interval Ikn =
[
k
n ,

k+1
n

]
, i.e.:

αkn =
log |Y kn |
− log n

.

Here, Y kn is some quantity that measures the variation of X in the interval Ikn , such as the increment, the
oscillation or a wavelet coefficient.

The large deviation spectrum is typically easier to compute and to estimate than the Hausdorff one. In addition,
it often gives more relevant information in applications.

Under very mild conditions (e.g. for instance, if the support of fg is bounded, [41]) the concave envelope of fg
can be computed easily from an auxiliary function, called the Legendre multifractal spectrum. To do so, one
basically interprets the spectrum fg as a rate function in a large deviation principle (LDP): define, for q ∈ R,

Sn(q) =

n−1∑
k=0

|Y kn |
q
, (3)

with the convention 0q := 0 for all q ∈ R. Let:

τ(q) = liminf
n→∞

logSn(q)

− log(n)
.

The Legendre multifractal spectrum of X is defined as the Legendre transform τ∗ of τ :

fl(α) := τ∗(α) := inf
q∈R

(qα− τ(q)).

To see the relation between fg and fl, define the sequence of random variables Zn := log |Y kn | where
the randomness is through a choice of k uniformly in {0, ..., n− 1}. Consider the corresponding moment
generating functions:

cn(q) := − logEn[exp (qZn)]

log(n)

where En denotes expectation with respect to Pn, the uniform distribution on {0, ..., n− 1}. A version of
Gärtner-Ellis theorem ensures that if lim cn(q) exists (in which case it equals 1 + τ(q)), and is differentiable,
then c∗ = fg − 1. In this case, one says that the weak multifractal formalism holds, i.e. fg = fl. In favorable
cases, this also coincides with fh, a situation referred to as the strong multifractal formalism.

Multifractal spectra subsume a lot of information about the distribution of the regularity, that has proved
useful in various situations. A most notable example is the strong correlation reported recently in several
works between the narrowing of the multifractal spectrum of ECG and certain pathologies of the heart [53],
[55]. Let us also mention the multifractality of TCP traffic, that has been both observed experimentally and
proved on simplified models of TCP [2], [42].

Another colour in local regularity: jumps
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As noted above, apart from HÃ¶lder exponents and their generalizations, at least another type of irregularity
may sometimes be observed on certain real phenomena: discontinuities, which occur for instance on financial
logs and certain biomedical signals. In this frame, it is of interest to supplement HÃ¶lder exponents and their
extensions with (at least) an additional index that measures the local intensity and size of jumps. This is a
topic we intend to pursue in full generality in the near future. So far, we have developed an approach in the
particular frame of multistable processes. We refer to section 3.3 for more details.

3.3. Stochastic models
The second axis in the theoretical developments of the Regularity team aims at defining and studying stochastic
processes for which various aspects of the local regularity may be prescribed.

Multifractional Brownian motion
One of the simplest stochastic process for which some kind of control over the HÃ¶lder exponents is possible
is probably fractional Brownian motion (fBm). This process was defined by Kolmogorov and further studied
by Mandelbrot and Van Ness, followed by many authors. The so-called “moving average” definition of fBm
reads as follows:

Yt =

∫ 0

−∞

[
(t− u)

H− 1
2 − (−u)

H− 1
2

]
.W(du) +

∫ t

0

(t− u)
H− 1

2 .W(du),

where W denotes the real white noise. The parameter H ranges in (0, 1), and it governs the pointwise
regularity: indeed, almost surely, at each point, both the local and pointwise HÃ¶lder exponents are equal
to H .

Although varying H yields processes with different regularity, the fact that the exponents are constant along
any single path is often a major drawback for the modeling of real world phenomena. For instance, fBm has
often been used for the synthesis natural terrains. This is not satisfactory since it yields images lacking crucial
features of real mountains, where some parts are smoother than others, due, for instance, to erosion.

It is possible to generalize fBm to obtain a Gaussian process for which the pointwise Hölder exponent may be
tuned at each point: the multifractional Brownian motion (mBm) is such an extension, obtained by substituting
the constant parameter H ∈ (0, 1) with a regularity function H : R+ → (0, 1).

mBm was introduced independently by two groups of authors: on the one hand, Peltier and Levy-Vehel [33]
defined the mBm {Xt; t ∈ R+} from the moving average definition of the fractional Brownian motion, and
set:

Xt =

∫ 0

−∞

[
(t− u)

H(t)− 1
2 − (−u)

H(t)− 1
2

]
.W(du) +

∫ t

0

(t− u)
H(t)− 1

2 .W(du),

On the other hand, Benassi, Jaffard and Roux [43] defined the mBm from the harmonizable representation of
the fBm, i.e.:

Xt =

∫
R

eitξ − 1

|ξ|H(t)+ 1
2

.Ŵ(dξ),

where Ŵ denotes the complex white noise.

The Hölder exponents of the mBm are prescribed almost surely: the pointwise Hölder exponent is
αX(t) = H(t) ∧ αH(t) a.s., and the local Hölder exponent is α̃X(t) = H(t) ∧ α̃H(t) a.s. Consequently,
the regularity of the sample paths of the mBm are determined by the function H or by its regularity. The
multifractional Brownian motion is our prime example of a stochastic process with prescribed local regularity.
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The fact that the local regularity of mBm may be tuned via a functional parameter has made it a useful model
in various areas such as finance, biomedicine, geophysics, image analysis, .... A large number of studies have
been devoted worldwide to its mathematical properties, including in particular its local time. In addition, there
is now a rather strong body of work dealing the estimation of its functional parameter, i.e. its local regularity.
See http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm for a partial list of works, applied or
theoretical, that deal with mBm.

Self-regulating processes
We have recently introduced another class of stochastic models, inspired by mBm, but where the local
regularity, instead of being tuned “exogenously”, is a function of the amplitude. In other words, at each
point t, the Hölder exponent of the process X verifies almost surely αX(t) = g(X(t)), where g is a fixed
deterministic function verifying certain conditions. A process satisfying such an equation is generically
termed a self-regulating process (SRP). The particular process obtained by adapting adequately mBm is
called the self-regulating multifractional process [3]. Another instance is given by modifying the LÃ©vy
construction of Brownian motion [39]. The motivation for introducing self-regulating processes is based on
the following general fact: in nature, the local regularity of a phenomenon is often related to its amplitude. An
intuitive example is provided by natural terrains: in young mountains, regions at higher altitudes are typically
more irregular than regions at lower altitudes. We have verified this fact experimentally on several digital
elevation models [9]. Other natural phenomena displaying a relation between amplitude and exponent include
temperatures records and RR intervals extracted from ECG [39].

To build the SRMP, one starts from a field of fractional Brownian motions B(t,H), where (t,H) span
[0, 1]× [a, b] and 0 < a < b < 1. For each fixed H , B(t,H) is a fractional Brownian motion with exponent
H . Denote:

X
β′

α′ = α′ + (β′ − α′) X−minK(X)
maxK(X)−minK(X)

the affine rescaling between α′ and β′ of an arbitrary continuous random field over a compact set K. One
considers the following (stochastic) operator, defined almost surely:

Λα′,β′ : C ([0, 1] , [α, β]) → C ([0, 1] , [α, β])

Z(.) 7→ B(., g (Z(.))
β′

α′

where α ≤ α′ < β′ ≤ β, α and β are two real numbers, and α′, β′ are random variables adequately chosen.
One may show that this operator is contractive with respect to the sup-norm. Its unique fixed point is the
SRMP. Additional arguments allow to prove that, indeed, the HÃ¶lder exponent at each point is almost surely
g(t).

An example of a two dimensional SRMP with function g(x) = 1− x2 is displayed on figure 1.

We believe that SRP open a whole new and very promising area of research.

Multistable processes
Non-continuous phenomena are commonly encountered in real-world applications, e.g. financial records or
EEG traces. For such processes, the information brought by the HÃ¶lder exponent must be supplemented by
some measure of the density and size of jumps. Stochastic processes with jumps, and in particular LÃ©vy
processes, are currently an active area of research.

The simplest class of non-continuous LÃ©vy processes is maybe the one of stable processes [64]. These are
mainly characterized by a parameter α ∈ (0, 2], the stability index (α = 2 corresponds to the Gaussian case,
that we do not consider here). This index measures in some precise sense the intensity of jumps. Paths of stable
processes with α close to 2 tend to display “small jumps”, while, when α is near 0, their aspect is governed by
large ones.

http://regularity.saclay.inria.fr/theory/stochasticmodels/bibliombm
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Figure 1. Self-regulating miltifractional process with g(x) = 1− x2

In line with our quest for the characterization and modeling of various notions of local regularity, we have
defined multistable processes. These are processes which are “locally” stable, but where the stability index α
is now a function of time. This allows to model phenomena which, at times, are “almost continuous”, and at
others display large discontinuities. Such a behaviour is for instance obvious on almost any sufficiently long
financial record.

More formally, a multistable process is a process which is, at each time u, tangent to a stable process [51].
Recall that a process Y is said to be tangent at u to the process Y ′u if:

lim
r→0

Y (u+ rt)− Y (u)

rh
= Y ′u(t), (4)

where the limit is understood either in finite dimensional distributions or in the stronger sense of distributions.
Note Y ′u may and in general will vary with u.

One approach to defining multistable processes is similar to the one developed for constructing mBm [33]:
we consider fields of stochastic processes X(t, u), where t is time and u is an independent parameter that
controls the variation of α. We then consider a “diagonal” process Y (t) = X(t, t), which will be, under certain
conditions, “tangent” at each point t to a process t 7→ X(t, u).

A particular class of multistable processes, termed “linear multistable multifractional motions” (lmmm) takes
the following form [11], [10]. Let (E,E,m) be a σ-finite measure space, and Π be a Poisson process onE × R
with mean measure m× L (L denotes the Lebesgue measure). An lmmm is defined as:

Y (t) = a(t)
∑

(X,Y)∈Π

Y<−1/α(t)>
(
|t− X|h(t)−1/α(t) − |X|h(t)−1/α(t)

)
(t ∈ R). (5)
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where x<y> := sign(x)|x|y , a : R→ R+ is a C1 function and α : R→ (0, 2) and h : R→ (0, 1) are C2

functions.

In fact, lmmm are somewhat more general than said above: indeed, the couple (h, α) allows to prescribe at
each point, under certain conditions, both the pointwise HÃ¶lder exponent and the local intensity of jumps. In
this sense, they generalize both the mBm and the linear multifractional stable motion [65]. From a broader
perspective, such multistable multifractional processes are expected to provide relevant models for TCP
traces, financial logs, EEG and other phenomena displaying time-varying regularity both in terms of HÃ¶lder
exponents and discontinuity structure.

Figure 2 displays a graph of an lmmm with linearly increasing α and linearly decreasing H . One sees that
the path has large jumps at the beginning, and almost no jumps at the end. Conversely, it is smooth (between
jumps) at the beginning, but becomes jaggier and jaggier as time evolves.

Figure 2. Linear multistable multifractional motion with linearly increasing α and linearly decreasing H

Multiparameter processes
In order to use stochastic processes to represent the variability of multidimensional phenomena, it is necessary
to define extensions for indices in RN (N ≥ 2) (see [58] for an introduction to the theory of multiparameter
processes). Two different kinds of extensions of multifractional Brownian motion have already been con-
sidered: an isotropic extension using the Euclidean norm of RN and a tensor product of one-dimensional
processes on each axis. We refer to [16] for a comprehensive survey.

These works have highlighted the difficulty of giving satisfactory definitions for increment stationarity, Hölder
continuity and covariance structure which are not closely dependent on the structure of RN . For example, the
Euclidean structure can be unadapted to represent natural phenomena.

A promising improvement in the definition of multiparameter extensions is the concept of set-indexed
processes. A set-indexed process is a process whose indices are no longer “times” or “locations” but may
be some compact connected subsets of a metric measure space. In the simplest case, this framework is a
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generalization of the classical multiparameter processes [54]: usual multiparameter processes are set-indexed
processes where the indexing subsets are simply the rectangles [0, t], with t ∈ RN+ .

Set-indexed processes allow for greater flexibility, and should in particular be useful for the modeling of
censored data. This situation occurs frequently in biology and medicine, since, for instance, data may not
be constantly monitored. Censored data also appear in natural terrain modeling when data are acquired from
sensors in presence of hidden areas. In these contexts, set-indexed models should constitute a relevant frame.

A set-indexed extension of fBm is the first step toward the modeling of irregular phenomena within this more
general frame. In [21], the so-called set-indexed fractional Brownian motion (sifBm) was defined as the mean-
zero Gaussian process {BH

U ; U ∈ A} such that

∀U, V ∈ A; E[BH
U BH

V ] =
1

2

[
m(U)

2H
+m(V )

2H −m(U
i
V )

2H
]

where A is a collection of connected compact subsets of a measure metric space and 0 < H ≤ 1
2 .

This process appears to be the only set-indexed process whose projection on increasing paths is a one-
parameter fractional Brownian motion [20]. The construction also provides a way to define fBm’s extensions
on non-euclidean spaces, e.g. indices can belong to the unit hyper-sphere of RN . The study of fractal properties
needs specific definitions for increment stationarity and self-similarity of set-indexed processes [23]. We have
proved that the sifBm is the only Gaussian set-indexed process satisfying these two (extended) properties.

In the specific case of the indexing collection A = {[0, t], t ∈ RN+} ∪ {∅}, the sifBm can be seen as a
multiparameter extension of fBm which is called multiparameter fractional Brownian motion (MpfBm). This
process differs from the Lévy fractional Brownian motion and the fractional Brownian sheet, which are also
multiparameter extensions of fBm (but do not derive from set-indexed processes). The local behaviour of the
sample paths of the MpfBm has been studied in [14]. The self-similarity index H is proved to be the almost
sure value of the local Hölder exponent at any point, and the Hausdorff dimension of the graph is determined
in function of H .

The increment stationarity property for set-indexed processes, previously defined in the study of the sifBm,
allows to consider set-indexed processes whose increments are independent and stationary. This generalizes
the definition of Bass-Pyke and Adler-Feigin for Lévy processes indexed by subsets of RN , to a more general
indexing collection. We have obtained a Lévy-Khintchine representation for these set-indexed Lévy processes
and we also characterized this class of Markov processes.

4. Application Domains

4.1. Application: uncertainties management
Our theoretical works are motivated by and find natural applications to real-world problems in a general frame
generally referred to as uncertainty management, that we describe now.

Since a few decades, modeling has gained an increasing part in complex systems design in various fields of
industry such as automobile, aeronautics, energy, etc. Industrial design involves several levels of modeling:
from behavioural models in preliminary design to finite-elements models aiming at representing sharply
physical phenomena. Nowadays, the fundamental challenge of numerical simulation is in designing physical
systems while saving the experimentation steps.

As an example, at the early stage of conception in aeronautics, numerical simulation aims at exploring the
design parameters space and setting the global variables such that target performances are satisfied. This
iterative procedure needs fast multiphysical models. These simplified models are usually calibrated using
high-fidelity models or experiments. At each of these levels, modeling requires control of uncertainties due to
simplifications of models, numerical errors, data imprecisions, variability of surrounding conditions, etc.
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One dilemma in the design by numerical simulation is that many crucial choices are made very early, and thus
when uncertainties are maximum, and that these choices have a fundamental impact on the final performances.

Classically, coping with this variability is achieved through model registration by experimenting and adding
fixed margins to the model response. In view of technical and economical performance, it appears judicious
to replace these fixed margins by a rigorous analysis and control of risk. This may be achieved through
a probabilistic approach to uncertainties, that provides decision criteria adapted to the management of
unpredictability inherent to design issues.

From the particular case of aircraft design emerge several general aspects of management of uncertainties
in simulation. Probabilistic decision criteria, that translate decision making into mathematical/probabilistic
terms, require the following three steps to be considered [50]:

1. build a probabilistic description of the fluctuations of the model’s parameters (Quantification of
uncertainty sources),

2. deduce the implication of these distribution laws on the model’s response (Propagation of uncertain-
ties),

3. and determine the specific influence of each uncertainty source on the model’s response variability
(Sensitivity Analysis).

The previous analysis now constitutes the framework of a general study of uncertainties. It is used in industrial
contexts where uncertainties can be represented by random variables (unknown temperature of an external
surface, physical quantities of a given material, ... at a given fixed time). However, in order for the numerical
models to describe with high fidelity a phenomenon, the relevant uncertainties must generally depend on time
or space variables. Consequently, one has to tackle the following issues:

• How to capture the distribution law of time (or space) dependent parameters, without directly
accessible data? The distribution of probability of the continuous time (or space) uncertainty sources
must describe the links between variations at neighbor times (or points). The local and global
regularity are important parameters of these laws, since it describes how the fluctuations at some
time (or point) induce fluctuations at close times (or points). The continuous equations representing
the studied phenomena should help to propose models for the law of the random fields. Let us notice
that interactions between various levels of modeling might also be used to derive distributions of
probability at the lowest one.

• The navigation between the various natures of models needs a kind of metric which could mathe-
matically describe the notion of granularity or fineness of the models. Of course, the local regularity
will not be totally absent of this mathematical definition.

• All the various levels of conception, preliminary design or high-fidelity modelling, require regis-
trations by experimentation to reduce model errors. This calibration issue has been present in this
frame since a long time, especially in a deterministic optimization context. The random modeling
of uncertainty requires the definition of a systematic approach. The difficulty in this specific context
is: statistical estimation with few data and estimation of a function with continuous variables using
only discrete setting of values.

Moreover, a multi-physical context must be added to these questions. The complex system design is most
often located at the interface between several disciplines. In that case, modeling relies on a coupling between
several models for the various phenomena and design becomes a multidisciplinary optimization problem. In
this uncertainty context, the real challenge turns robust optimization to manage technical and economical risks
(risk for non-satisfaction of technical specifications, cost control).

We participate in the uncertainties community through several collaborative research projects (ANR and Pôle
SYSTEM@TIC), and also through our involvement in the MASCOT-NUM research group (GDR of CNRS).
In addition, we are considering probabilistic models as phenomenological models to cope with uncertainties in
the DIGITEO ANIFRAC project. As explained above, we focus on essentially irregular phenomena, for which
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irregularity is a relevant quantity to capture the variability (e.g. certain biomedical signals, terrain modeling,
financial data, etc.). These will be modeled through stochastic processes with prescribed regularity.

4.2. Design of complex systems

Figure 3. Coupling uncertainty between heterogeneous models

The design of a complex (mechanical) system such as aircraft, automobile or nuclear plant involves numerical
simulation of several interacting physical phenomena: CFD and structural dynamics, thermal evolution of
a fluid circulation, ... For instance, they can represent the resolution of coupled partial differential equations
using finite element method. In the framework of uncertainty treatment, the studied “phenomenological model"
is a chaining of different models representing the various involved physical phenomena. As an example, the
pressure field on an aircraft wing is the result of both aerodynamic and structural mechanical phenomena.
Let us consider the particular case of two models of partial differential equations coupled by limit conditions.
The direct propagation of uncertainties is impossible since it requires an exploration and then, many calls to
costly models. As a solution, engineers use to build reduced-order models: the complex high-fidelity model is
substituted with a CPU less costly model. The uncertainty propagation is then realized through the simplified
model, taking into account the approximation error (see [46]).

Interactions between the various models are usually explicited at the finest level (cf. Fig. 3). How may this
coupling be formulated when the fine structures of exchange have disappeared during model reduction? How
can be expressed the interactions between models at different levels (in a multi-level modeling)? The ultimate
question would be: how to choose the right level of modeling with respect to performance requirements?

In the multi-physical numerical simulation, two kinds of uncertainties then coexist: the uncertainty due to
substitution of high-fidelity models with approximated reduced-order models, and the uncertainty due to the
new coupling structure between reduced-order models.
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According to the previous discussion, the uncertainty treatment in a multi-physical and multi-level modeling
implies a large range of issues, for instance numerical resolutions of PDE (which do not enter into the research
topics of Regularity ). Our goal is to contribute to the theoretical arsenal that allows to fly among the different
levels of modeling (and then, among the existing numerical simulations). We will focus on the following three
axes:

• In the case of a phenomenon represented by two coupled partial differential equations whose
resolution is represented by reduced-order models, how to define a probabilistic model of the
coupling errors? In connection with our theoretical development, we plan to characterize the
regularity of this error in order to quantify its distribution. This research axis is supported by an
ANR grant (OPUS project).

• The multi-level modeling assumes the ability to choose the right level of details for the models
in adequacy to the goals of the study. In order to do that, a rigorous mathematical definition of
the notion of model fineness/granularity would be very helpful. Again, a precise analysis of the fine
regularity of stochastic models is expected to give elements toward a precise definition of granularity.
This research axis is supported by a a PÃ´le SYSTEM@TIC grant (EHPOC project), and also by a
collaboration with EADS.

• Some fine characteristics of the phenomenological model may be used to define the probabilistic
behaviour of its variability. The action of modeling a phenomena can be seen as an interpolation
issue between given observations. This interpolation can be driven by physical evolution equations
or fine analytical description of the physical quantities. We are convinced that Hölder regularity is an
essential parameter in that context, since it captures how variations at a given point induce variations
at its neighbors. Stochastic processes with prescribed regularity (see section 3.3) have already been
used to represent various fluctuating phenomena: Internet traffic, financial data, ocean floor. We
believe that these models should be relevant to describe solutions of PDE perturbed by uncertain
(random) coefficients or limit conditions. This research axis is supported by a PÃ´le SYSTEM@TIC
grant (CSDL project).

4.3. Biomedical Applications
ECG analysis and modeling
ECG and signals derived from them are an important source of information in the detection of various
pathologies, including e.g. congestive heart failure, arrhythmia and sleep apnea. The fact that the irregularity
of ECG bears some information on the condition of the heart is well documented (see e.g. the web resource
http://www.physionet.org). The regularity parameters that have been studied so far are mainly the box and
regularization dimensions, the local HÃ¶lder exponent and the multifractal spectrum [53], [55]. These have
been found to correlate well with certain pathologies in some situations. From a general point of view, we
participate in this research area in two ways.

• First, we use refined regularity characterizations, such as the regularization dimension, 2-microlocal
analysis and advanced multifractal spectra for a more precise analysis of ECG data. This requires in
particular to test current estimation procedures and to develop new ones.

• Second, we build stochastic processes that mimic in a faithful way some features of the dynamics
of ECG. For instance, the local regularity of RR intervals, estimated in a parametric way based
on a modeling by an mBm, displays correlations with the amplitude of the signal, a feature that
seems to have remained unobserved so far [3]. In other words, RR intervals behave as SRP. We
believe that modeling in a simplified way some aspects of the interplay between the sympathetic and
parasympathetic systems might lead to an SRP, and to explain both this self-regulating property and
the reasons behind the observed multifractality of records. This will open the way to understanding
how these properties evolve under abnormal behaviour.

Pharmacodynamics and patient drug compliance

http://www.physionet.org
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Poor adherence to treatment is a worldwide problem that threatens efficacy of therapy, particularly in the case
of chronic diseases. Compliance to pharmacotherapy can range from 5% to 90%. This fact renders clinical
tested therapies less effective in ambulatory settings. Increasing the effectiveness of adherence interventions
has been placed by the World Health Organization at the top list of the most urgent needs for the health system.
A large number of studies have appeared on this new topic in recent years [67], [66]. In collaboration with
the pharmacy faculty of MontrÃ©al university, we consider the problem of compliance within the context
of multiple dosing. Analysis of multiple dosing drug concentrations, with common deterministic models, is
usually based on patient full compliance assumption, i.e., drugs are administered at a fixed dosage. However,
the drug concentration-time curve is often influenced by the random drug input generated by patient poor
adherence behaviour, inducing erratic therapeutic outcomes. Following work already started in MontrÃ©al
[60], [61], we consider stochastic processes induced by taking into account the random drug intake induced
by various compliance patterns. Such studies have been made possible by technological progress, such as the
“medication event monitoring system”, which allows to obtain data describing the behaviour of patients.

We use different approaches to study this problem: statistical methods where enough data are available,
model-based ones in presence of qualitative description of the patient behaviour. In this latter case, piecewise
deterministic Markov processes (PDP) seem a promising path. PDP are non-diffusion processes whose
evolution follows a deterministic trajectory governed by a flow between random time instants, where it
undergoes a jump according to some probability measure [49]. There is a well-developed theory for PDP,
which studies stochastic properties such as extended generator, Dynkin formula, long time behaviour. It is
easy to cast a simplified model of non-compliance in terms of PDP. This has allowed us already to obtain
certain properties of interest of the random concentration of drug [40]. In the simplest case of a Poisson
distribution, we have obtained rather precise results that also point to a surprising connection with infinite
Bernouilli convolutions [29], [13], [12]. Statistical aspects remain to be investigated in the general case.

5. Software

5.1. FracLab
Participants: Paul BalanÃ§a, Jacques LÃ©vy VÃ©hel [correspondant].

FracLab was developed for two main purposes:

1. propose a general platform allowing research teams to avoid the need to re-code basic and advanced
techniques in the processing of signals based on (local) regularity.

2. provide state of the art algorithms allowing both to disseminate new methods in this area and to
compare results on a common basis.

FracLab is a general purpose signal and image processing toolbox based on fractal, multifractal and local
regularity methods. FracLab can be approached from two different perspectives:

• (multi-) fractal and local regularity analysis: A large number of procedures allow to compute various
quantities associated with 1D or 2D signals, such as dimensions, Hölder and 2-microlocal exponents
or multifractal spectra.

• Signal/Image processing: Alternatively, one can use FracLab directly to perform many basic tasks in
signal processing, including estimation, detection, denoising, modeling, segmentation, classification,
and synthesis.

A graphical interface makes FracLab easy to use and intuitive. In addition, various wavelet-related tools are
available in FracLab.

FracLab is a free software. It mainly consists of routines developed in MatLab or C-code interfaced with
MatLab. It runs under Linux, MacOS and Windows environments. In addition, a “stand-alone” version (i.e.
which does not require MatLab to run) is available.
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Fraclab has been downloaded several thousands of times in the last years by users all around the world. A few
dozens laboratories seem to use it regularly, with more than two hundreds registered users. Our ambition is to
make it the standard in fractal softwares for signal and image processing applications. We have signs that this is
starting to become the case. To date, its use has been acknowledged in more than two hundreds research papers
in various areas such as astrophysics, chemical engineering, financial modeling, fluid dynamics, internet and
road traffic analysis, image and signal processing, geophysics, biomedical applications, computer science, as
well as in mathematical studies in analysis and statistics (see http://fraclab.saclay.inria.fr/ for a partial list
with papers). In addition, we have opened the development of FracLab so that other teams worldwide may
contribute. Additions have been made by groups in Australia, England, the USA, and Serbia.

6. New Results

6.1. White Noise-based Stochastic Calculus with respect to Multifractional
Brownian Motion
Participants: Joachim Lebovits, Jacques LÃ©vy VÃ©hel.

The purpose of this work is to build a stochastic calculus with respect to (mBm) with a view to applications in
finance and particularly to stochastic volatility models. We use an approach based on white noise theory.

6.1.1. White Noise-based Stochastic Calculus with respect to multifractional Brownian motion
The following results may be found in [28]. Integration with respect to mBm requires stochastic spaces
in which we can differentiate or integrate stochastic processes. Considering the probability space
(S′(R),B(S′(R)), µ) where µ is probability measure given by BÃ¶chner Minlos theorem, one can
build to spaces, noted (S) and (S∗) which will play an analogous role to the spaces S(R) and S′(R) for
tempered distributions. We recall that S(R) is the Schwartz space of rapidly decreasing functions which
are infinitely differentiable and S′(R) is the space of tempered distributions. Let us moreover note (L2) the
space of random variables defined on the probability space (S′(R),B(S′(R)), µ) which admit a second order
moment. The mBm B(h) has the following Wiener-ItÃ´ chaos decomposition in (L2):

B(h)(t) =

+∞∑
k=0

< [0;t],Mh(t)(ek) >
L2(R)

< .,Mh(t)(d
(t)
k )︸ ︷︷ ︸

=ek

> =

+∞∑
k=0

(∫ t

0

Mh(t)(ek)(s)ds

)
< ., ek > (6)

where (ek)k∈N denotes the family of Hermite functions, defined for every integer k in N, by

ek(x) := π−1/4(2kk!)
−1/2

e−x
2/2hk(x) and where (hk)k∈N is the family of Hermite polynomial, de-

fined for every integer k in N, by hk(x) := (−1)
k
ex

2 dk

dxk (e−x
2

). Note moreover that MH is an operator from
S(R) to L2(R) for every real H in (0, 1) and < ., ek > is a centered random Gaussian variable with variance
equal to 1 for all k in N. We can now define a process, noted W (h), from R to (S∗), which is the derivative of
B(h) in sense of (S∗) by

W (h)(t) =

+∞∑
k=0

[
d

dt

(∫ t

0

Mh(t)(ek)(s) ds

)
] < ., ek > . (7)

Hence we define integral with respect to mBm of any process Φ : R→ (S∗) as being the element of (S∗) given
by:

http://fraclab.saclay.inria.fr/
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∫
R

Φ(s, ω)dB(h)(s) =

∫
R

Φ(s) �W (h)(s)ds (ω), (8)

where � denotes the Wick product on (S∗). It is then possible to get ItÃ´ formulas and Tanaka formula such as

∫ T

0

∂f

∂x
(t, B(h)(t)) dB(h)(t) = f(T,B(h)(T ))− f(0, 0)−

∫ T

0

∂f

∂t
(t, B(h)(t)) dt

−1

2

∫ T

0

(
d

dt
[Rh(t, t)]

)
∂2f

∂x2
(t, B(h)(t)) dt.

(9)

for functions with sub exponential growth and where the last equality holds in L2.

Once this stochastic calculus with respect to mBm is defined, we can solve differential equations arising in
mathematical finance.

6.1.2. Multifractional stochastic volatility
Multifractional stochastic volatility

The results of this part may be found in [6]. We assume that, under the risk-neutral measure, the forward price
of a risky asset is the solution of the S.D.E.{

dFt = FtσtdWt,

d ln (σt) = θ (µ− ln(σt)) dt+ γhd
�Bht + γσdW

σ
t , σ0 > 0, θ > 0,

(10)

where W and Wσ are two standard Brownian motions and Bh is a multifractional Brownian motion
independent of W and Wσ with functional parameter h, which is assumed to be continuously differentiable.
We assume thatW is decomposed into ρdWσ

t +
√

1− ρ2dWF
t , whereWF is a Brownian motion independent

ofWσ . Note that d�Bht denotes differentiation in the sense of white Noise theory. The solution of the volatility
process (σt)t∈[0,T ] is

σt
a.s.
= exp

(
ln (σ0)e−θt + µ

(
1− e−θt

)
+ γσ

∫ t

0

eθ(s−t)dWσ
s + γh e

−θtIt
(
Bh
))

, (11)

where It
(
Bh
)

:
a.s
= eθtBht − θ

∫ t
0
eθs Bhs ds.

Since the solution the previous S.D.E. is not explicit for (Ft)t∈[0,T ] we use preconditioning and then cubature
methods in order to get an approximation of it. This model allows to take into account the well-known "smile"
effect of volatility, as well as its evolution at various maturities.

6.1.3. Approximation of mBm by fBms
In [18], we establish that a sequence of well-chosen lumped fractional Brownian motions converges in law
to a multifractional Brownian motion. This allows to define stochastic integrals with respect to mBm by
"transporting" corresponding stochastic integrals with respect to fBm.

6.2. Sample paths properties of the set-indexed Lévy process
Participant: Erick Herbin.

In collaboration with Prof. Ely Merzbach (Bar Ilan University, Israel).
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In [24], the class of set-indexed Lévy processes is considered using the stationarity property defined for the
set-indexed fractional Brownian motion in [23]. Following Ivanoff-Merzbach’s definitions of an indexing
collection A and its extensions C0 = {U r V ; U, V ∈ A} and

C =

U r
⋃

1≤i≤n

Vi; n ∈ N;U, V1, · · · , Vn ∈ A

 ,

a set-indexed processX = {XU ; U ∈ A} is called a set-indexed Lévy process if the following conditions hold

1. X∅′ = 0 almost surely, where ∅′ =
⋂
U∈A U .

2. the increments of X are independent: for all pairwise disjoint C1, · · · , Cn in C, the random variables
∆XC1 , · · · ,∆XCn are independent.

3. X has m-stationary C0-increments, i.e. for all integer n, all V ∈ A and for all increasing sequences
(Ui)i and (Ai)i in A, we have

[∀i, m(Ui r V ) = m(Ai)]⇒ (∆XU1rV , · · · ,∆XUnrV )
(d)
= (∆XA1

, · · · ,∆XAn
)

4. X is continuous in probability.

On the contrary to previous works of Adler and Feigin (1984) on one hand, and Bass and Pyke (1984) one the
other hand, the increment stationarity property allows to obtain explicit expressions for the finite-dimensional
distributions of a set-indexed LÃ©vy process. From these, we obtained a complete characterization in terms
of Markov properties.

The question of continuity is more complex in the set-indexed setting than for real-parameter stochastic
processes. For instance, the set-indexed Brownian motion can be not continuous for some indexing collection.
We consider a weaker form of continuity, which studies the possibility of point jumps.

The point mass jump of a set-indexed function x : A→ R at t ∈ T is defined by

Jt(x) = lim
n→∞

∆xCn(t), where Cn(t) =
⋂

C∈Cn
t∈C

C (12)

and for each n ≥ 1, Cn denotes the collection of subsets U r V with U ∈ An (a finite sub-semilattice which
generates A as n→∞) and V ∈ An(u). A set-indexed function x : A→ R is said pointwise-continuous if
Jt(x) = 0, for all t ∈ T.
Theorem Let {XU ; U ∈ A} be a set-indexed Lévy process with Gaussian increments. Then for any
Umax ∈ A such that m(Umax) < +∞, the sample paths of X are almost surely pointwise-continuous inside
Umax, i.e.

P (∀t ∈ Umax, Jt(X) = 0) = 1.

In the general case, for all ε > 0, For all U ∈ A with U ⊂ Umax, we define

NU (B) = # {t ∈ U : Jt(X) ∈ B} ,

XB
U =

∫
B

x.NU (dx),
(13)

for all B ∈ Bε, the σ-field generated by the opened subsets of {x ∈ R : |x| > ε}. The sample paths of the
set-indexed Lévy processes can be derived from the following Lévy-Ito decomposition proved in [24].
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Theorem Let (σ, γ, ν) the generating triplet of the SI Lévy process X .
Then X can be decomposed as

∀ω ∈ Ω,∀U ∈ A, XU (ω) = X
(0)
U (ω) +X

(1)
U (ω),

where

1. X(0) = {X(0)
U ; U ∈ A} is a set-indexed Lévy process with Gaussian increments, with generating

triplet (σ, γ, 0),

2. X(1) = {X(1)
U ; U ∈ A} is the set-indexed Lévy process with generating triplet (0, 0, σ), defined for

some Ω1 ∈ F with P (Ω1) = 1 by

∀ω ∈ Ω1, ∀U ∈ A,

X
(1)
U (ω) =

∫
|x|>1

x NU (dx, ω) + lim
ε↓0

∫
ε<|x|≤1

x [NU (dx, ω)−m(U)] ν(dx),
(14)

where NU is defined in (13) and the last term of (14) converges uniformly in U ⊂ Umax (for any
given Umax ∈ A) as ε ↓ 0,

3. and the processes X(0) and X(1) are independent.

6.3. Hölder regularity of Set-Indexed processes
Participants: Erick Herbin, Alexandre Richard.

In collaboration with Prof. Ely Merzbach (Bar Ilan University, Israel).

In the set-indexed framework of Ivanoff and Merzbach ( [54]), stochastic processes can be indexed not only
by R but by a collection A of subsets of a measure and metric space (T, d,m), with some assumptions on
A. In [25], we introduce and study some assumptions on the metric indexing collection (A, dA) in order to
obtain a Kolmogorov criterion for continuous modifications of SI stochastic processes. Under this assumption,
the collection is totally bounded and a set-indexed process with good incremental moments will have a
modification whose sample paths are almost surely Hölder continuous, for the distance dA.

Once this condition is established, we investigate the definition of Hölder coefficients for SI processes. From
the real-parameter case, the most straightforward are the local (and pointwise) Hölder exponents around
U0 ∈ A:

α̃X(U0) = sup

{
α : limsup

ρ→0
sup

U,V ∈BdA
(U0,ρ)

|XU −XV |
dA(U, V )

α <∞

}
.

When the processes are Gaussian, a deterministic counterpart to this exponent is defined as it is in the
real-parameter framework. For all U0 ∈ A, we proved that almost surely, the random and the deterministic
exponents are equal. Also, we proved that for the local exponents, this result holds almost surely, uniformly
on A.

Given the particular structure of A, other coefficients of Hölder regularity were studied on C:

C =

{
Ar

n⋃
k=1

Bk : A,B1, · · · , Bn ∈ A, n ∈ N

}
. (15)
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On specific subclasses Cl of C (satisfying ∪l≥1C
l = C), the local (and pointwise) Cl-Hölder exponents are

defined:

α̃X,Cl(U0) = sup


α : limsup

ρ→0
sup

U ∈ BdA(U0, ρ)

V ∈ Bl(U0, ρ)

|∆XUrV |
dA(U, V )

α <∞


, (16)

and this definition is proved to be independent of l, leading to the definition of α̃X,C(U0). It is compared to
α̃X(U0) and related to the Hölder exponent of the process projected on flows (a flow is a continuous increasing
path in A). This last technique permits to show that the pointwise Hölder exponent of the SIfBm is almost
surely uniformly equal to H , the Hurst parameter of the SIfBm. This completes some previous results on the
multiparameter fractional Brownian motion.

The last exponent which is studied is the exponent of pointwise continuity:

αpcX (t) = sup

{
α : limsup

n→∞

|∆XCn(t)|
m(Cn(t))

α <∞
}

(17)

for all t ∈ T, where Cn(t) is the smaller set of Cn containing t. Almost sure results are also obtained in that
case. For instance, the coefficient of pointwise continuity of a SI Brownian motion equals 1/2 a.s.

All these results are finally applied to the SIfBm and the SI Ornstein-Ühlenbeck process ([1]).

6.4. Stochastic 2-microlocal analysis
Participants: Erick Herbin, Paul Balança.

Stochastic 2-microlocal analysis has been introduced in [19] to study the local regularity of stochastic
processes. If X = (Xt)t∈R+

is a stochastic process, then for all t0 ∈ R+, a function s′ 7→ σX,t0(s′) called
the 2-microlocal frontier is defined to characterize entirely the local regularity of X at t0. In particular, for all
s′ ∈ R such that σX,t0(s′) ∈ (0, 1), it is defined as

σX,t0(s′) = sup

{
σ : limsup

ρ→0
sup

u,v∈B(t0,ρ)

|Xu −Xv|
|u− v|σρ−s′

<∞

}
.

The 2-microlocal frontier gives a more complete picture of the regularity than classical pointwise and local
Hölder exponents, which are widely used in the literature. Furthermore, it is stable under the action of (pseudo-
)differential operators.

[19] mainly focused on Gaussian processes, and in particular obtained a characterization of the regularity for
Wiener integrals Xt =

∫ t
0
ηudWu, with η ∈ L2(R).

Our main goal was therefore to extend this result to any stochastic integral

Xt =

∫ t

0

HudMu,

where M is a local martingale and H an adapted continuous process.

In fact, in [15], we first reduced this problem to the study of local martingales, and we have shown that almost
surely for all t ∈ R+, the 2-microlocal frontier of a local martingaleM , with quadratic variation 〈M〉, satisfies
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∀s′ ≥ −αM,t; σM,t(s
′) = ΣM,t(s

′) =
1

2
Σ〈M〉,t (2s′) ,

where for any process X , ΣX,t denotes the pseudo 2-microlocal frontier which is characterized as following

∀s′ ∈ R; ΣX,t(s
′) = σX,t(s

′) ∧ (s′ + pX,t) ∧ 1,

where pX,t corresponds to

pX,t = inf
{
n ≥ 1 : X(n)(t) exists and X(n)(t) 6= 0

}
,

with the usual convention inf{∅} = +∞.

As the previous result is based on Dubins-Schwarz representation theorem, it can be easily extended to
characterize the regularity of time-changed multifractional Brownian motions. In this case, we obtain a similar
equation where 1

2 is replaced by H(t), the value of the Hurst function at t.

Using this last equality, we can obtain the regularity of the stochastic integral X previously defined: almost
surely for all t ∈ R+

∀s′ ≥ −αX,t; σX,t(s
′) = ΣX,t(s

′) =
1

2
Σ∫ •

0 H2
ud〈M〉u,t

(2s′) .

In the particular case of an integration with respect to a Brownian motion B, the result can be simplified using
the stability under differential operators: for almost all ω ∈ Ω and for all t ∈ R+, the 2-microlocal frontier
satisfies

1. if Ht(ω) 6= 0:

∀s′ ∈ R; σX,t(s
′) = σB,t(s

′) =

(
1

2
+ s′

)
∧ 1

2
;

2. if Ht(ω) = 0:

∀s′ ≥ −αX,t; σX,t(s
′) =

(
1

2
+

ΣH2,t(2s
′)

2

)
∧ 1

2
,

unless H is locally equal to zero at t, which induces in that case: σX,t = +∞.

Based on this last characterization, we were able to study the regularity of stochastic diffusions. In particular,
we illustrated our purpose with the square of δ-dimensional Bessel processes which verify the following
equation

Zt = x+ 2

∫ t

0

√
Zsdβs + δt.

6.5. Tempered multistable measures and processes
Participants: Jacques LÃ©vy VÃ©hel, Lining Liu.
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This year, we concentrated on the following points:

• Define a new type of multistable processes called tempered multistable processes.

• Study the short time and long time behaviors of tempered multistable processes.

• Compare the multistable Lévy processes defined by finite-dimensional distributions (characteristic
functions), Poisson representation and series representation.

The idea of the construction of tempered multistable measure and processes comes from the paper [63].
The interest of such processes is that they may be chosen to have moments of all orders. In addition, they
are martingales. This will allow to construct stochastic (partial) differential equation driven by tempered
multistable measures, which may be used to describe certain physical phenomena.

The characteristic function of a termpered multistable process X(t) is

E(exp iyX(t)) = exp

{
1

2

∫ t

0

Γ(−α(x))

[(
1− iy

θ

)α(x)

+

(
1 +

iy

θ

)α(x)

− 2

]
θα(x)dx

}
.

We have investigated the long time and short time behaviors this process:

Short time behavior:
Let α: R→ [a, b] ⊆ (0, 2) be continuous. Let u ∈ R and suppose that as v → u,

|α(u)− α(v)| = o

(
1

| log |u− v||

)
. (18)

Then when h→ 0,

h−1/α(t)[X(t+ hu)−X(t)]→ Yα(t)(u) (19)

in finite-dimentional-distributions, where

Yα(t)(u) =

∫
1[0,u](z)dMα(t)(z),

and Mα(t) is an α(t) stable measure. In an other word, X(t) = M [0, t] is 1/α(t)-localisable at t with local
form Yα(t).

Long time behavior:
Let α: R→ [a, b] ⊆ (0, 2) be continuous and lims→∞ α(s)→ α. Then for h→∞

h−1/2[X(t+ hu)−X(t)]→ Γ(2− α)B(u) (20)

in finite-dimensional-distributions, where B is standard Brownian motion.

Let us now describe our work on the multistable LÃ©vy motion. For 0 < a ≤ b < 2 and α : R→ [a, b],
the multistable Lévy motion Mc defined by finite-dimensional distributions (characteristics function) is the
process such that

E(exp (i

d∑
j=1

θjMc(tj))) = exp

−∫ | d∑
j=1

θj1[0,tj ](s)|
α(s)

ds

 ; (21)
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There also exist a Poisson representation of multistable LÃ©vy process Mp:

Mp(t) =
∑

(X,Y )∈Π

Cα(X)1[0,t](X)Y <−1/α(X)>, (22)

where (X,Y ) be the random point of the Poisson process Π, t > 0, Y <−1/α(X)> =sign(Y )|Y |−1/α(X) and

Cα(X) =

(
1

Γ(1− α(X)) cos (π2α(X))

)1/α(X)

; (23)

Finally, the series representation of multistable LÃ©vy motion Ms is

Ms(t) =

∞∑
i=1

Cα(Ui)γiΓ
−1/α(Ui)
i 1(Ui≤t), (24)

where {Γ}i≥1 is a sequence of arrival times of a Poisson process with unit arrival time, {U}i≥1 is a
sequence of i.i.d random variables with uniform distribution on [0, t], {γ}i≥1 is a sequence of i.i.d random
variables with distribution P(γi = 1) = P(γi = −1) = 1/2. All three sequences {Γ}i≥1, {U}i≥1 and {γ}i≥1

are independent, and

Cα(Ui) =

(
1

Γ(1− α(Ui)) cos (π2α(Ui))

)1/α(Ui)

. (25)

We have proved that these three definitions yield the same process in law.

6.6. Local strings and the CH set
Participant: Jacques LÃ©vy VÃ©hel.

In collaboration with Prof. Franklin Mendivil (Acadia University, Canada).

We have extended the definition of fractal strings originally proposed in [59] and modified in [37] to deal
with the local behaviour of fractal sets. This allows to analyze the pointwise oscillatory properties of locally
self-similar sets ([38]).

We have also analyzed in details the structure of a set build by "stacking" Cantor sets with continuously
varying dimensions (see figure 4). The resulting set, called "Christiane’s hair" set or CH set, displays a number
of interesting properties. Each "strand of hair" is a C∞ curve. Its Hausdorf dimension is 2. Furthermore, it is
Minkowski measurable in dimension 2 with vanishing Minkowski content.

6.7. General models for drug concentration in multi-dosing administration
Participants: Lisandro Fermin, Jacques LÃ©vy VÃ©hel.

In collaboration with P.E Lévy Véhel (University of Nice-Sophia-Antipolis and Banque Postale).
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Figure 4. The CH set.

In the past two years, we have developed models for investigating the probability distribution of drug
concentration in the case of non-compliance. We have focused on two aspects of practical relevance: the
variability of the concentration and the regularity of its probability distribution. In a first article [29], in a
series of three, is considered the case of multi-intravenous dosing using the simplest possible law to model
random drug intake, i.e. a homogeneous Poisson distribution. In a second article [13], we consider the more
realistic multi-oral model, and deal with the complications brought by the first-order kinetics, which are
essentially technical. Finally, in [12], we put ourselves in a powerful mathematical frame, known as Piecewise
Deterministic Markov process (PDMP), that allows us to deal with general drug intake schedules, going
beyond the homogeneous Poisson case. We use a PDMP to model the drug concentration in the case of
multiple intravenous doses. In this particular model, we consider that the doses administration regimen is
modeled by a non-homogeneous Poisson process whose jump rate is controlled by mean of a Markov chain.
In this sense our PDMP model is a generalization to the continuos-models studied in [29]. In the following we
detail our PDM model and the results obtained in the multi-IV case, see [12].
The model setting
Inspired by the PDMP model given in [47], [48], we consider a drug dosing stochastic regimen defined as
follows.

Let us consider (Jn)n∈N an irreducible Markov chain taking values in the state space K = {1, ..., k} with
initial law αi = P(J0 = i) for all i ∈ K and transition probability matrix Q = (qij)i,j∈K . We denote by
(Tn)n∈N the sequence of the random time doses and (Sn)n∈N the time dose intervals; i.e. Sn = Tn+1 − Tn.
We consider that the doses administration regimen is modeled by mean of the Markov process (Jn)n∈N
considering the following assumptions:

• The patient takes a dose DJn ∈ {Di, i ∈ K} at the time Tn, where the doses Di are all different
and different of zero.

• The time dose Sn is a random variable with exponential law of parameter λJn ∈ {λi, i ∈ K}, where
the jump rate λi of state i is a positive constant.

We consider that these doses translate into immediate increases of the concentration by the value di = Di

Vd
if

Jn = i, where Vd is the apparent volume of distribution . After that, the effect of the dose taken at time Tn
decreases exponentially fast with an exponential rate of elimination ke.

We define (νt)t∈R by νt =
∑
n≥0 Jn1l[Tn,Tn+1[(t). We denote by (Ct)t∈R the drug concentration stochastic

process which take values on R∗+ = ]0,∞[, we suppose that P(C0 = x) = 1. Between the jumps, the
dynamical evolution of the continuous time process (Ct) is modeled by the flow φ(t, x) = x exp {−ket}.
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Thus, the sample path of the stochastic process (Ct)t∈R+
with values in R∗+ starting from a fixed point x is

given by

Ct = xe−ket +
∑
i≥1

dJie
−ke(t−Ti)1l(t≥Ti). (26)

The process (Ct, νt)t∈R+
is a PDMP. From [49], we have that the infinitesimal generator U of (Ct, νt)t∈R+

is given by

Uf(x, i) = −kex
d

dx
f(x, i) + λi

∑
j∈K

qij (f(x+ dj , j)− f(x, i)) , (27)

with (x, i) ∈ E = R∗+ ×K and f ∈ D(U) the set of measurable and differentiable on the first argument.
The characteristic function of the concentration
The characteristic function ϕθ(t, x, i) of Ct, given the starting point (x, i), is the unique solution of the
following system

∂ϕθ
∂t

(t, x, i)=−kex
∂ϕθ
∂x

(t, x, i) + λi
∑
j∈K

qij

(
eiθdje−ket

ϕθ(t, x, j)−ϕθ(t, x, i)
)
,

ϕθ(0, x, i) = eiθx.

(28)

Variability of the concentration
From (28) we have that the expectation m(t, x, i) = E(x,i)[Ct] of Ct, given the starting point (x, i), is given
by

m(t, x, i) = xe−ket +
∑
ν,j∈K

λνqνjdj

∫ t

0

e−ke(t−s)Piν(s)ds, (29)

where Piν(t) = P(νt = ν|ν0 = i). The variance V ar(t, i) of Ct, given the initial state i, is given by

V ar(t, i) =
∑
ν,j∈K

λνqνjd
2
j

∫ t

0

e−2ke(t−s)Piν(s)ds−

 ∑
ν,j∈K

λνqνjdj

∫ t

0

e−ke(t−s)Piν(s)ds

2

+2
∑
ν,j∈K

∑
ν′,j′∈K

λνqνjdjλν′qν′j′dj′

∫ t

0

∫ t−s

0

e−ke(t−s)Piν(s)e−ke(t−s−τ)Pjν′(τ)dτds.

(30)

The distribution of limit concentration
The characteristic function ϕ(θ, i) of the limit concentration C, given the starting state i, satisfies

−keθ
d

dθ
ϕ(θ, i) +

∑
j∈K

λjqjie
iθdiϕ(θ, j)− λiϕ(θ, i) = 0.

Thus, the random variables C(t) converge in distribution, when t tends to infinity, to a well defined random
variable C whose characteristic function is
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ϕ(θ) =
∑
j∈K

ϕ(θ, j).

Variability of the limit concentration
We denote by mi the mean of the limit concentration C in the state ν = i and m =

∑
i∈K mi the mean of C

and V ar its variance. Then,

m = 1
ke

∑
i,j∈K

πiλiqijdj .

mi = 1
ke

∑
j∈K

πjλjqjidi + 1
ke

( ∑
j∈K

λjqjimj − λimi

)
.

V ar = 1
2ke

∑
i,j∈K

πiλiqijd
2
j + 1

ke

∑
i,j∈K

λiqijdj(mi − πim).

Regularity of the limit concentration
The characteristic function ϕ satisfies

|ϕ(θ)| ∼ K|θ|−µmax , θ →∞, (31)

where K is a positive constant and µmax = max{i∈K}
λi

ke
.

This result will allow us to describe in detail aspects of the limit distribution that are important for assessing
the efficacy of therapy.

6.8. Complex systems design
Participant: Erick Herbin.

In collaboration with Dassault Aviation, EADS, EDF.

The preliminary design of complex systems can be described as an exploration process of a so-called design
space, generated by the global parameters. An interactive exploration, with a decisional visualization goal,
needs reduced-order models of the involved physical phenomena. We are convinced that the local regularity
of phenomena is a relevant quantity to drive these approximated models. Roughly speaking, in order to
be representative, a model needs more informations where the fluctuations are the more important (and
consequently, where irregularity is the more important).

In collaboration with Dassault Aviation, EDF and EADS, we study how the local regularity can provide a good
quantification of the concept of granularity of a model, in order to select the good level of fidelity adapted to
a required precision.

Our works in that field can be expressed into:

• The definition and the study of stochastic partial differential equations driven by processes with
prescribed regularity (that do not enter into the classical theory of stochastic integration).

• The study of the evolution of the local regularity inside stochastic partial differential equations
(SPDE). Stochastic 2-microlocal analysis should provide informations about the local regularity of
the solutions, in function of the coefficients of the equations. The knowledge of the fine behaviour of
the solution of the SPDE will provide important informations in the view of numerical simulations.
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7. Contracts and Grants with Industry

7.1. Grants with Industry
Academic and industrial collaborations are supported by CSDL (Complex Systems Design Lab) project of the
Pôle de Compétitivité SYSTEM@TIC PARIS-REGION (11/2009-10/2012). Among the involved industrial
partners, we can mention Dassault Aviation, EADS, EDF, MBDA and Renault. The goal of the project is the
development of a scientific platform of decisional visualization for preliminary design of complex systems.

8. Partnerships and Cooperations

8.1. Regional Initiatives
The Regularity team collaborates with Supelec (Hana Baili) and with the Department of Mathematics at the
University of Nantes (Anne Philippe) in the frame of the DIGITEO ANIFRAC project

8.2. National Initiatives
Regularity participates in the CSDL project of the Pôle de Compétitivité SYSTEM@TIC PARIS-REGION.
The academic partners involved are ECP, Ecole des Mines de Paris, ENS Cachan, INRIA, Supelec.

8.3. International Initiatives
8.3.1. INRIA International Partners

• The Regularity team collaborates with Bar Ilan university on theoretical developments around set-
indexed fractional Brownian motion and set-indexed Lévy processes (invitations of Erick Herbin in
IsraÃ«l during five months in 2006, 2007, 2008, 2009 and 2011 and invitation of Prof. Ely Merzbach
at Ecole Centrale Paris in 2008, 2009, 2010 and 2011). The PhD thesis of Alexandre Richard is
supervised in collaboration by Erick Herbin and Ely Merzbach.

• The Regularity team collaborates with Michigan State University (Prof. Yimin Xiao) on the study
of fine regularity of multiparameter fractional Brownian motion (invitation of Erick Herbin at East
Lansing in 2010).

• The Regularity team collaborates with St Andrews University (Prof. Kenneth Falconer) on the study
of multistable processes.

• The Regularity team collaborates with Acadia University (Prof. Franklin Mendivil) on the study of
fractal strings.

8.3.2. Visits of International Scientists
Ely Merzbach, from Bar Ilan university (Israel) visited the team for one month. Franklin Mendivil, from
Acadia University (Canada), visited the team for one month.
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9. Dissemination

9.1. Animation of the scientific community
• Paul Balança attended to the conference Journées de Probabilités 2011 at Nancy and made a

presentation on 2-microlocal analysis, mainly focused on results from [15].

• Alexandre Richard attended to the conference Journées de Probabilités 2011 at Nancy and made a
presentation on HÃ¶lder regularity for set indexed-processes, mainly focused on results from [25].

• Joachim Lebovits was invited to give a lecture in the mathematical department of University of
Vienna (Austria). He made a presentation at the 35th Stochastic Process and their Applications
congress in Oaxaca (Mexico).

• Jacques Lévy Véhel gave an invited lecture at EPFL (Swizterland).

• Erick Herbin was invited to the Israel Mathematical Union 2011 Annual Meeting (Bar-Ilan Uni-
versity, Israel). Talk: "Some recent advances on stochastic 2-microlocal analysis for stochastic pro-
cesses".

• Erick Herbin was invited to the Geometric Functional Analysis & Probability Seminar (Weizmann
Institute of Science, Israel) in July, 2011. Talk: "Several characterisations of the set-indexed LÃ©vy
processes".

9.1.1. Organisation committees
Erick Herbin is member of the IMdR Work Group "Uncertainty and industry".

Erick Herbin is member of the CNRS Research Group GDR Mascot Num, devoted to stochastic analysis
methods for codes and numerical treatment.

9.1.2. Editorial board
Erick Herbin is reviewer for Mathematical Reviews (AMS).

Jacques Lévy Véhel is associate editor of the journal Fractals.

9.2. Teaching
• Erick Herbin is Director of the Mathematics Department at Ecole Centrale Paris.

• Erick Herbin is in charge of the Probability Course at Ecole Centrale Paris (20h).

• Erick Herbin is in charge of the Random Modeling Course at Ecole Centrale Paris (30h).

• Erick Herbin and Jacques LÃ©vy VÃ©hel are in charge of the Brownian Motion and Stochastic
Calculus Course at Ecole Centrale Paris (30h).

• Jacques LÃ©vy VÃ©hel gives a course on wavelets and fractals at Ecole Centrale Nantes (8h).

• Erick Herbin gives travaux dirigés on Real and Complex Analysis at Ecole Centrale Paris (10h).

• Erick Herbin is in charge of the Numerical Simulation Program in the Applied Mathematics option
of Ecole Centrale Paris.

• Erick Herbin is supervisor of several student’s research projects in the field of Mathematics at Ecole
Centrale Paris.

• Paul Balança gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).

• Paul Balança gives travaux dirigés on Real and Complex Analysis (L3) at Ecole Centrale Paris (9h)

• Paul Balança gives travaux dirigés on Random Modeling (M1) at Ecole Centrale Paris (20).

• Joachim Lebovits gives travaux dirigÃ©s on Real and Complex Analysis (L3) at Ecole Centrale
Paris (9h).
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• Joachim Lebovits gives travaux dirigÃ©s on Probability (L3) at Ecole Centrale Paris (9h).

• Joachim Lebovits gives travaux dirigÃ©s on financial mathematics (M1) at Ecole Centrale Paris
(15h).

• Joachim Lebovits gives travaux dirigÃ©s on stochastic calculus (M2) at Ecole Centrale Paris (15h).

• Joachim Lebovits supervises students research projects on financial mathematics at Ecole Centrale
Paris.

• Alexandre Richard gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).

• Alexandre Richard gives travaux dirigés on Statistics (L3) at Ecole Centrale Paris (9h).

• Alexandre Richard gives travaux dirigés on Random Modeling (M1) at Ecole Centrale Paris (20h).

• Alexandre Richard supervises students research projects on probability at Ecole Centrale Paris
(approx. 10h).

• Alexandre Richard supervises students research projects on economic modelling of the cost and
efficiency of a technique of hips resurfacing at Ecole Centrale Paris (approx. 15h).

• Benjamin Arras gives travaux dirigés on Probability (L3) at Ecole Centrale Paris (9h).

• Benjamin Arras gives travaux dirigés on Real and Complex Analysis (L3) at Ecole Centrale Paris
(9h)

• Benjamin Arras gives travaux dirigés on stochastic calculus (M2) at Ecole Centrale Paris (15h).

10. Bibliography
Major publications by the team in recent years

[1] P. BALANÇA, E. HERBIN. An increment-type set-indexed Markov property, in "Preprint", 2011.

[2] J. BARRAL, J. LÉVY VÉHEL. Multifractal Analysis of a Class of Additive Processes with Correlated Non-
Stationary Increments, in "Electronic Journal of Probability", 2004, vol. 9, p. 508–543.

[3] O. BARRIÈRE, J. LÉVY VÉHEL. Application of the Self Regulating Multifractional Process to cardiac
interbeats intervals, in "J. Soc. Fr. Stat.", 2009, vol. 150, no 1, p. 54–72.

[4] F. CHALOT, Q. V. DINH, E. HERBIN, L. MARTIN, M. RAVACHOL, G. ROGÉ. Estimation of the impact
of geometrical uncertainties on aerodynamic coefficients using CFD, in "10th AIAA Non-Deterministic
Approaches", Schaumburg, USA, April 2008.

[5] F. CHALOT, Q. V. DINH, E. HERBIN, L. MARTIN, M. RAVACHOL, G. ROGÉ. Estimation of the impact
of geometrical uncertainties on aerodynamic coefficients using CFD, in "10th AIAA Non-Deterministic
Approaches Conference", 2008, Schaumburg.

[6] S. CORLAY, J. LEBOVITS, J. LÉVY VÉHEL. Multifractional volatility models, in "preprint", 2011.

[7] K. DAOUDI, J. LÉVY VÉHEL, Y. MEYER. Construction of continuous functions with prescribed local
regularity, in "Journal of Constructive Approximation", 1998, vol. 014, no 03, p. 349–385.

[8] Y. DEREMAUX, J. NÉGRIER, N. PIÉTREMONT, E. HERBIN, M. RAVACHOL. Environmental MDO and
uncertainty hybrid approach applied to a supersonic business jet, in "12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization conference", 2008, Victoria.



Team REGULARITY 29

[9] A. ECHELARD, O. BARRIÈRE, J. LÉVY VÉHEL. Terrain modelling with multifractional Brownian motion and
self-regulating processes, in "ICCVG 2010", Warsaw, Poland, Lecture Notes in Computer Science, Springer,
2010, vol. 6374, p. 342-351, http://hal.inria.fr/inria-00538907/en.

[10] K. FALCONER, R. LE GUÈVEL, J. LÉVY VÉHEL. Localisable moving average stable and multistable
processes, in "Stoch. Models", 2009, vol. 25, p. 648–672.

[11] K. FALCONER, J. LÉVY VÉHEL. Multifractional, multistable, and other processes with prescribed local form,
in "J. Theoret. Probab.", 2008, vol. 119, p. 2277–2311, DOI 10.1007/s10959-008-0147-9.

[12] L. FERMIN, J. LÉVY VÉHEL. Modeling patient poor compliance in in the multi-IV administration case with
Piecewise Deterministic Markov Models, 2011, preprint.

[13] L. FERMIN, J. LÉVY VÉHEL. Variability and singularity arising from poor compliance in a pharmacodynam-
ical model II: the multi-oral case, 2011, preprint.

[14] E. HERBIN, B. ARRAS, G. BARRUEL. From almost sure local regularity to almost sure Hausdorff dimension
for Gaussian fields, 2010, preprint.

[15] E. HERBIN, P. BALANÇA. 2-microlocal analysis of martingales and stochastic integrals., in "Preprint
available at http://arxiv.org/abs/1107.6016", 2011.

[16] E. HERBIN. From n parameter fractional brownian motions to n parameter multifractional brownian motions,
in "Rocky Mountain Journal of Mathematics", 2006, vol. 36, no 4, p. 1249–1284.

[17] E. HERBIN, J. JAKUBOWSKI, M. RAVACHOL, Q. V. DINH. Management of uncertainties at the level of
global design, in "Symposium "Computational Uncertainties", RTO AVT-147", 2007, Athens.

[18] E. HERBIN, J. LEBOVITS, J. LÉVY VÉHEL. Stochastic integration with respect to multifractional Brownian
motion via tangent fractional Brownian motion, in "preprint", 2011.

[19] E. HERBIN, J. LÉVY VÉHEL. Stochastic 2-microlocal analysis, in "Stochastic Proc. Appl.", 2009, vol. 119,
no 7, p. 2277–2311, http://arxiv.org/abs/math.PR/0504551.

[20] E. HERBIN, E. MERZBACH. A characterization of the set-indexed fractional Brownian motion, in "C. R. Acad.
Sci. Paris", 2006, vol. Ser. I 343, p. 767–772.

[21] E. HERBIN, E. MERZBACH. A set-indexed fractional brownian motion, in "J. of theor. probab.", 2006, vol.
19, no 2, p. 337–364.

[22] E. HERBIN, E. MERZBACH. The multiparameter fractional Brownian motion, in "Math everywhere", Berlin,
Springer, Berlin, 2007, p. 93–101, http://dx.doi.org/10.1007/978-3-540-44446-6_8.

[23] E. HERBIN, E. MERZBACH. Stationarity and self-similarity characterization of the set-indexed fractional
Brownian motion, in "J. of theor. probab.", 2009, vol. 22, no 4, p. 1010–1029.

[24] E. HERBIN, E. MERZBACH. The set-indexed Lévy process: Stationarity, Markov and sample paths properties,
2010, preprint.

http://hal.inria.fr/inria-00538907/en
http://arxiv.org/abs/math.PR/0504551
http://dx.doi.org/10.1007/978-3-540-44446-6_8


30 Activity Report INRIA 2011

[25] E. HERBIN, A. RICHARD. Hölder regularity for set-indexed processes, in "Submitted", 2011, submitted.

[26] K. KOLWANKAR, J. LÉVY VÉHEL. A time domain characterization of the fine local regularity of functions,
in "J. Fourier Anal. Appl.", 2002, vol. 8, no 4, p. 319–334.

[27] R. LE GUÈVEL, J. LÉVY VÉHEL. A series representation of multistable and other processes, 2008, Submitted
to an international journal.

[28] J. LEBOVITS, J. LÉVY VÉHEL. Stochastic Calculus with respect to multifractional Brownian motion,
submitted, http://hal.inria.fr/inria-00580196/en.

[29] P.-E. LÉVY VÉHEL, J. LÉVY VÉHEL. Variability and singularity arising from poor compliance in a
pharmacodynamical model I: the multi-IV case, 2011, preprint.

[30] J. LÉVY VÉHEL, M. RAMS. Large Deviation Multifractal Analysis of a Class of Additive Processes with
Correlated Non-Stationary Increments, submitted, http://hal.inria.fr/inria-00633195/en.

[31] J. LÉVY VÉHEL, C. TRICOT. On various multifractal spectra, in "Fractal Geometry and Stochastics III,
Progress in Probability", Birkhäuser, ISBN 376437070X, 9783764370701, 2004, vol. 57, p. 23-42, C. Bandt,
U. Mosco and M. Zähle (Eds), Birkhäuser Verlag.

[32] J. LÉVY VÉHEL, R. VOJAK. Multifractal Analysis of Choquet Capacities: Preliminary Results, in "Advances
in Applied Mathematics", January 1998, vol. 20, p. 1–43.

[33] R. PELTIER, J. LÉVY VÉHEL. Multifractional Brownian Motion, INRIA, 1995, no 2645, http://hal.inria.fr/
inria-00074045.

[34] M. RAVACHOL, Y. DEREMAUX, Q. V. DINH, E. HERBIN. Uncertainties at the conceptual stage: Multilevel
multidisciplinary design and optimization approach, in "26th International Congress of the Aeronautical
Sciences", 2008, Anchorage.

[35] F. ROUEFF, J. LÉVY VÉHEL. A Regularization Approach to Fractional Dimension Estimation, in "Frac-
tals’98", 1998, Malta.

[36] S. SEURET, J. LÉVY VÉHEL. A time domain characterization of of 2-microlocal Spaces, in "J. Fourier Anal.
Appl.", 2003, vol. 9, no 5, p. 472–495.

Publications of the year
Articles in International Peer-Reviewed Journal

[37] J. LÉVY VÉHEL, F. MENDIVIL. Multifractal and higher dimensional zeta functions, in "Nonlinearity", 2011,
vol. 24, no 1, p. 259-276 [DOI : 10.1088/0951-7715/24/1/013], http://hal.inria.fr/inria-00538956/en.

[38] J. LÉVY VÉHEL, F. MENDIVIL. Local complex dimensions of a fractal string, in "International Journal of
mathematical modelling and numerical optimisation", June 2012, http://hal.inria.fr/inria-00614665/en.

http://hal.inria.fr/inria-00580196/en
http://hal.inria.fr/inria-00633195/en
http://hal.inria.fr/inria-00074045
http://hal.inria.fr/inria-00074045
http://hal.inria.fr/inria-00538956/en
http://hal.inria.fr/inria-00614665/en


Team REGULARITY 31

Research Reports

[39] A. ECHELARD, J. LÉVY VÉHEL. Digital Modelling of ECG with multifractional Brownian motion and some
of its extensions, Digiteo Anifrac Technical Report, 2011.

[40] L. FERMIN, J. LÉVY VÉHEL. Pharmacodynamical analysis of non-compliance, Digiteo Anifrac Technical
Report, 2011.

Other Publications

[41] A. ECHELARD, J. LÉVY VÉHEL, C. TRICOT. A Unified Framework for the Study of the 2-microlocal and
Large Deviation Multifractal Spectra, 2011, To appear in "Séminaires et Congrès", SMF., http://hal.inria.fr/
inria-00612342/en.

References in notes

[42] F. BACCELLI, D. HONG. AIMD, Fairness and Fractal Scaling of TCP Traffic, in "INFOCOM’02", June 2002.

[43] A. BENASSI, S. JAFFARD, D. ROUX. Elliptic Gaussian random processes, in "Rev. Mathemàtica Iberoamer-
icana", 1997, vol. 13, no 1, p. 19–90.

[44] J. BONY. Second microlocalization and propagation of singularities for semilinear hyperbolic equations, in
"Conf. on Hyperbolic Equations and Related Topics", 1984, p. 11–49, Kata/Kyoto,Academic Press, Boston.

[45] G. BROWN, G. MICHON, J. PEYRIÈRE. On the multifractal analysis of measures, in "J. Statist. Phys.", 1992,
vol. 66, no 3, p. 775–790.

[46] D. CACUCI. Sensitivity and Uncertainty Analysis, Volume 1: Theory., Chapman & Hall/CRC, 2003.

[47] J. CHIQUET, N. LIMNIOS. A method to compute the transition function of a piecewise deterministic Markov
process with application to reliability, in "Statistics & Probability Letters", 2008, vol. 78, no 12, p. 1397–1403.

[48] J. CHIQUET, N. LIMNIOS, M. EID. Piecewise deterministic Markov processes applied to fatigue crack growth
modelling, in "Journal of Statistical Planning and Inference", 2009, vol. 139, no 5, p. 1657–1667.

[49] M. DAVIS. Markov Models and Optimization, Chapman & Hall, London, 1993.

[50] ESREDA. Uncertainty in Industrial Practice, a Guide to Quantitative Uncertainty Management, Wiley,
2009.

[51] K. FALCONER. The local structure of random processes, in "J. London Math. Soc.", 2003, vol. 2, no 67, p.
657–672.

[52] K. FALCONER. The multifractal spectrum of statistically self-similar measures, in "J. Theor. Prob.", 1994,
vol. 7, p. 681–702.

[53] A. GOLDBERGER, L. A. N. AMARAL, J. HAUSDORFF, P. IVANOV, C. PENG, H. STANLEY. Fractal
dynamics in physiology: Alterations with disease and aging, in "PNAS", 2002, vol. 99, p. 2466–2472.

http://hal.inria.fr/inria-00612342/en
http://hal.inria.fr/inria-00612342/en


32 Activity Report INRIA 2011

[54] G. IVANOFF, E. MERZBACH. Set-Indexed Martingales, Chapman & Hall/CRC, 2000.

[55] P. IVANOV, L. A. N. AMARAL, A. GOLDBERGER, S. HAVLIN, M. ROSENBLUM, Z. STRUZIK, H. STANLEY.
Multifractality in human heartbeat dynamics, in "Nature", June 1999, vol. 399.

[56] S. JAFFARD. Pointwise smoothness, two-microlocalization and wavelet coefficients, in "Publ. Mat.", 1991,
vol. 35, no 1, p. 155–168.

[57] H. KEMPKA. 2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability, in "Rev. Mat.
Complut.", 2009, vol. 22, no 1, p. 227–251.

[58] D. KHOSHNEVISAN. Multiparameter Processes: an introduction to random fields, Springer, 2002.

[59] M. LAPIDUS, M. VAN FRANKENHUIJSEN. Fractal Geometry and Number Theory (Complex dimensions of
fractal strings and zeros of zeta functions), Birkhauser, Boston, 2000.

[60] J. LI, F. NEKKA. A Pharmacokinetic Formalism Explicitly Integrating the Patient Drug Compliance, in "J.
Pharmacokinet. Pharmacodyn.", 2007, vol. 34, no 1, p. 115–139.

[61] J. LI, F. NEKKA. A probabilistic approach for the evaluation of pharmacological effect induced by patient
irregular drug intake, in "J. Pharmacokinet. Pharmacodyn.", 2009, vol. 36, no 3, p. 221–238.

[62] M. B. MARCUS, J. ROSEN. Markov Processes, Gaussian Processes and Local Times, Cambridge University
Press, 2006.

[63] J. ROSINSKI. Tempering stable processes, in "Stochastic Processes and Their Applications", 2007, vol. 117,
no 6, p. 677–707.

[64] G. SAMORODNITSKY, M. TAQQU. Stable Non-Gaussian Random Processes, Chapman and Hall, 1994.

[65] S. STOEV, M. TAQQU. Stochastic properties of the linear multifractional stable motion, in "Adv. Appl.
Probab.", 2004, vol. 36, p. 1085–1115.

[66] B. VRIJENS, J. URQUHART. New findings about patient adherence to prescribed drug dosing regimens: an
introduction to pharmionics, in "Eur. J. Hosp. Pharm. Sci.", 2005, vol. 11, no 5, p. 103–106.

[67] B. VRIJENS, J. URQUHART. Patient adherence to prescribed antimicrobial drug dosing regimens, in "J.
Antimicrob. Chemother.", 2005, vol. 55, p. 616–627.


