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2. Overall Objectives

2.1. Introduction
The main objective of the SALSA project is to solve systems of polynomial equations and inequations. We
emphasize on algebraic methods which are more robust and frequently more efficient than purely numerical
tools.
Polynomial systems have many applications in various scientific - academic as well as industrial - domains.
However much work is yet needed in order to define specifications for the output of the algorithms which are
well adapted to the problems.
The variety of these applications implies that our software needs to be robust. In fact, almost all problems
we are dealing with are highly numerically unstable, and therefore, the correctness of the result needs to be
guaranteed.
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Thus, a key target is to provide software which are competitive in terms of efficiency but preserve certified
outputs. Therefore, we restrict ourselves to algorithms which verify the assumptions made on the input, check
the correctness of possible random choices done during a computation without sacrificing the efficiency.
Theoretical complexity for our algorithms is only a preliminary step of our work which culminates with
efficient implementations which are designed to solve significant applications.
A consequence of our way of working is that many of our contributions are related to applicative topics such
as cryptography, error correcting codes, robotics and signal theory. We have to emphasize that these applied
contributions rely on a long-term and global management of the project with clear and constant objectives
leading to theoretical and deep advances.

2.2. Highlights
• Computer Algebra. Best Poster Award STOC 2011 (San Jose, USA) – PWE : Polynomial with

Errors.

• ANR Grants Two new projects (HPAC and GEOLMI) were accepted (4 years projetcs).

• Maple. Maple 15 release : the contract with Maple was renewed until Dec. 2011.

3. Scientific Foundations

3.1. Introduction
For polynomial system solving, the mathematical specification of the result of a computation, in particular
when the number of solutions is infinite, is itself a difficult problem [1], [58], [57]. Sorting the most frequently
asked questions appearing in the applications, one distinguishes several classes of problems which are different
either by their mathematical structure or by the significance that one can give to the word "solving".

Some of the following questions have a different meaning in the real case or in the complex case, others are
posed only in the real case :

• zero-dimensional systems (with a finite number of complex solutions - which include the particular
case of univariate polynomials); The questions in general are well defined (numerical approximation,
number of solutions, etc) and the handled mathematical objects are relatively simple and well-
known;

• parametric systems: They are generally zero-dimensional for almost all the parameters’ values.
The goal is to characterize the solutions of the system (number of real solutions, existence of a
parameterization, etc.) with respect to parameters’ values.

• positive dimensional systems: For a direct application, the first question is the existence of zeros of a
particular type (for example real, real positive, in a finite field). The resolution of such systems can be
considered as a black box for the study of more general problems (semi-algebraic sets for example)
and information to be extracted is generally the computation of a point per connected component in
the real case.

• constructible and semi-algebraic sets: As opposed to what occurs numerically, the addition of
constraints or inequalities complicates the problem. Even if semi-algebraic sets represent the basic
object of the real geometry, their automatic "and effective study" remains a major challenge. To date,
the state of the art is poor since only two classes of methods are existing :

– the Cylindrical Algebraic Decomposition which basically computes a partition of the
ambient space in cells where the signs of a given set of polynomials are constant;

– deformations based methods that turn the problem into solving algebraic varieties.
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The first solution is limited in terms of performances (maximum 3 or 4 variables) because of a
recursive treatment variable by variable, the second also because of the use of a sophisticated
arithmetic (formal infinitesimals).

• quantified formulas; deciding efficiently if a first order formula is valid or not is certainly one of the
greatest challenges in "effective" real algebraic geometry. However this problem is relatively well
encircled since it can always be rewritten as the conjunction of (supposed to be) simpler problems
like the computation of a point per connected component of a semi-algebraic set.

As explained in some parts of this document, the iniquity of the studied mathematical objects does not imply
the uncut of the related algorithms. The priorities we put on our algorithmic work are generally dictated by the
applications. Thus, above items naturally structure the algorithmic part of our research topics.

For each of these goals, our work is to design the most efficient possible algorithms: there is thus a strong
correlation between implementations and applications, but a significant part of the work is dedicated to the
identification of black-box allowing a modular approach of the problems. For example, the resolution of the
zero-dimensional systems is a prerequisite for the algorithms treating of parametric or positive dimensional
systems.

An essential class of black-box developed in the project does not appear directly in the absolute objectives
counted above : the "algebraic or complex" resolutions. They are mostly reformulations, more algorithmically
usable, of the studied systems. One distinguishes two categories of complementary objects :

• ideals representations: From a computational point of view these are the structures which are used
in the first steps;

• varieties representations: The algebraic variety, or more generally the constructible or semi-algebraic
set is the studied object.

To give a simple example, in C2 the variety {(0, 0)} can be seen like the zeros set of more or less complicated
ideals (for example, ideal(X,Y ), ideal(X2, Y ), ideal(X2, X, Y, Y 3), etc). The entry which is given to us is a
system of equations, i.e. an ideal. It is essential, in many cases, to understand the structure of this object to
be able to correctly treat the degenerated cases. A striking example is certainly the study of the singularities.
To take again the preceding example, the variety is not singular, but this cannot be detected by the blind
application of the Jacobian criterion (one could wrongfully think that all the points are singular, contradicting,
for example, Sard’s lemma).

The basic tools that we develop and use to understand in an automatic way the algebraic and geometrical
structures are on the one hand Gröbner bases (the most known object used to represent an ideal without loss
of information) and on the other hand triangular sets (effective way to represent the varieties).

3.2. Gröbner basis and triangular sets
Participants: J.C. Faugère, G. Renault, M. Safey El Din, P.J. Spaenlehauer, D. Wang, C. Mou, J. Svartz.

Let us denote by K[X1, ..., Xn] the ring of polynomials with coefficients in a field K and indetermi-
nates X1, ..., Xn and S = {P1, ..., Ps} any subset of K[X1, ..., Xn]. A point x ∈ Cn is a zero of S if
Pi(x) = 0 i ∈ [1...s].

The ideal I = 〈P1, ..., Ps〉 generated by P1, ..., Ps is the set of polynomials in K[X1, ..., Xn] constituted by

all the combinations
R∑

k=1

PkUk with Uk ∈ Q[X1, ..., Xn]. Since every element of I vanishes at each zero of

S, we denote by VC(S) = VC(I) = {x ∈ Cn | p(x) = 0 ∀p ∈ I} (resp. VR(S) = VR(I) = VC(I)
⋂
Rn), the

set of complex (resp. real) zeros of S, where R is a real closed field containing K and C its algebraic closure.

One Gröbner basis’ main property is to provide an algorithmic method for deciding if a polynomial belongs
or not to an ideal through a reduction function denoted "Reduce" from now.
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If G is a Gröbner basis of an ideal I ⊂ Q[X1, ..., Xn] for any monomial ordering <.

(i) a polynomial p ∈ Q[X1, ..., Xn] belongs to I if and only if Reduce(p,G,<) = 0,

(ii) Reduce(p,G,<) does not depend on the order of the polynomials in the listG, thus, this is a canonical
reduced expression modulus I, and the Reduce function can be used as a simplification function.

Gröbner bases are computable objects. The most popular method for computing them is Buchberger’s
algorithm ( [47], [46]). It has several variants and it is implemented in most of general computer algebra
systems like Maple or Mathematica. The computation of Gröbner bases using Buchberger’s original strategies
has to face to two kind of problems :

• (A) arbitrary choices : the order in which are done the computations has a dramatic influence on the
computation time;

• (B) useless computations : the original algorithm spends most of its time in computing 0.

For problem (A), J.C. Faugère proposed ([4] - algorithm F4) a new generation of powerful algorithms ([4])
based on the intensive use of linear algebra technics. In short, the arbitrary choices are left to computational
strategies related to classical linear algebra problems (matrix inversions, linear systems, etc.).

For problem (B), J.C. Faugère proposed ([3]) a new criterion for detecting useless computations. Under some
regularity conditions on the system, it is now proved that the algorithm do never perform useless computations.

A new algorithm named F5 was built using these two key results. Even if it still computes a Gröbner basis,
the gap with existing other strategies is consequent. In particular, due to the range of examples that become
computable, Gröbner basis can be considered as a reasonable computable object in large applications.

We pay a particular attention to Gröbner bases computed for elimination orderings since they provide a way of
"simplifying" the system (equivalent system with a structured shape). A well known property is that the zeros
of the first non null polynomial define the Zariski closure (classical closure in the case of complex coefficients)
of the projection on the coordinate’s space associated with the smallest variables.

Such kinds of systems are algorithmically easy to use, for computing numerical approximations of the
solutions in the zero-dimensional case or for the study of the singularities of the associated variety (triangular
minors in the Jacobian matrices).

Triangular sets have a simplier structure, but, except if they are linear, algebraic systems cannot, in general, be
rewritten as a single triangular set, one speaks then of decomposition of the systems in several triangular sets.
Lexicographic Gröbner bases Triangular sets

f(X1) = 0

f2(X1, X2) = 0

...
fk2(X1, X2) = 0

fk2+1(X1, X2, X3) = 0

...
fkn−1+1(X1, ..., Xn) = 0

...
fkn

(X1, ..., Xn) = 0


t1(X1) = 0

t2(X1, X2) = 0

...
tn(X1, ..., Xn) = 0

Triangular sets appear under various names in the field of algebraic systems. J.F. Ritt ( [64]) introduced them
as characteristic sets for prime ideals in differential algebra. His constructive algebraic tools were adapted by
W.T. Wu in the late seventies for geometric applications. The concept of regular chain (see [56] and [74]) is
adapted for recursive computations in a univariate way.
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It provides a membership test and a zero-divisor test for the strongly unmixed dimensional ideal it defines.
Kalkbrenner defined regular triangular sets and showed how to decompose algebraic varieties as a union of
Zariski closures of zeros of regular triangular sets. Gallo showed that the principal component of a triangular
decomposition can be computed inO(dO(n2)) (n= number of variables, d=degree in the variables). During the
90s, implementations of various strategies of decompositions multiply, but they drain relatively heterogeneous
specifications.

D. Lazard contributed to the homogenization of the work completed in this field by proposing a series of
specifications and definitions gathering the whole of former work [1]. Two essential concepts for the use of
these sets (regularity, separability) at the same time allow from now on to establish a simple link with the
studied varieties and to specify the computed objects precisely.

A remarkable and fundamental property in the use we have of the triangular sets is that the ideals induced
by regular and separable triangular sets, are radical and equidimensional. These properties are essential
for some of our algorithms. For example, having radical and equidimensional ideals allows us to compute
straightforwardly the singular locus of a variety by canceling minors of good dimension in the Jacobian matrix
of the system. This is naturally a basic tool for some algorithms in real algebraic geometry [2], [7], [67].

In 1993, Wang [70] proposed a method for decomposing any polynomial system into fine triangular systems
which have additional properties such as the projection property that may be used for solving parametric
systems (see Section 3.4.2).

Triangular sets based techniques are efficient for specific problems, but the implementations of direct
decompositions into triangular sets do not currently reach the level of efficiency of Gröbner bases in terms
of computable classes of examples. Anyway, our team benefits from the progress carried out in this last field
since we currently perform decompositions into regular and separable triangular sets through lexicographical
Gröbner bases computations.

3.3. Zero–dimensional systems
Participants: L. Bettale, J.C. Faugère, D. Lazard, C. Mou, J. Svartz, P.J. Spaenlehauer.

A system is zero-dimensional if the set of the solutions in an algebraically closed field is finite. In this case,
the set of solutions does not depend on the chosen algebraically closed field.

Such a situation can easily be detected on a Gröbner basis for any admissible monomial ordering.

These systems are mathematically particular since one can systematically bring them back to linear algebra
problems. More precisely, the algebra K[X1, ..., Xn]/I is in fact a K-vector space of dimension equal to
the number of complex roots of the system (counted with multiplicities). We chose to exploit this structure.
Accordingly, computing a base of K[X1, ..., Xn]/I is essential. A Gröbner basis gives a canonical projection
from K[X1, ..., Xn] to K[X1, ..., Xn]/I , and thus provides a base of the quotient algebra and many other
informations more or less straightforwardly (number of complex roots for example).

The use of this vector-space structure is well known and at the origin of the one of the most known algorithms
of the field ( [49]) : it allows to deduce, starting from a Gröbner basis for any ordering, a Gröbner base
for any other ordering (in practice, a lexicographic basis, which are very difficult to compute directly). It is
also common to certain semi-numerical methods since it allows to obtain quite simply (by a computation of
eigenvalues for example) the numerical approximation of the solutions (this type of algorithms is developed,
for example, in the INRIA Galaad project).

Contrary to what is written in a certain literature, the computation of Gröbner bases is not "doubly exponential"
for all the classes of problems. In the case of the zero-dimensional systems, it is even shown that it is simply
exponential in the number of variables, for a degree ordering and for the systems without zeros at infinity.
Thus, an effective strategy consists in computing a Gröbner basis for a favorable ordering and then to deduce,
by linear algebra technics, a Gröbner base for a lexicographic ordering [49].
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The case of the zero-dimensional systems is also specific for triangular sets. Indeed, in this particular case, we
have designed algorithms that allow to compute them efficiently [59] starting from a lexicographic Gröbner
basis. Note that, in the case of zero-dimensional systems, regular triangular sets are Gröbner bases for a
lexicographical order.

Many teams work on Gröbner bases and some use triangular sets in the case of the zero-dimensional systems,
but up to our knowledge, very few continue the work until a numerical resolution and even less tackle the
specific problem of computing the real roots. It is illusory, in practice, to hope to obtain numerically and in
a reliable way a numerical approximation of the solutions straightforwardly from a lexicographical basis and
even from a triangular set. This is mainly due to the size of the coefficients in the result (rational number).

The use of innovative algorithms for Gröbner bases computations [4], [3], Rational Univariate representations
( [49] and [38] for the "shape position" case, allows to use zero-dimensional solving as sub-task in other
algorithms.

3.4. Positive-dimensional and parametric systems
Participants: J.C. Faugère, D. Lazard, M. Safey El Din, D. Wang.

When a system is positive dimensional (with an infinite number of complex roots), it is no more possible to
enumerate the solutions. Therefore, the solving process reduces to decomposing the set of the solutions into
subsets which have a well-defined geometry. One may perform such a decomposition from an algebraic point
of view or from a geometrical one, the latter meaning not taking the multiplicities into account (structure of
primary components of the ideal is lost).

Although there exist algorithms for both approaches, the algebraic point of view is presently out of the
possibilities of practical computations, and we restrict ourselves to geometrical decompositions.

When one studies the solutions in an algebraically closed field, the decompositions which are useful are the
equidimensional decomposition (which consists in considering separately the isolated solutions, the curves,
the surfaces, ...) and the prime decomposition (decomposes the variety into irreducible components). In
practice, our team works on algorithms for decomposing the system into regular separable triangular sets,
which corresponds to a decomposition into equidimensional but not necessarily irreducible components. These
irreducible components may be obtained eventually by using polynomial factorization.

However, in many situations one is looking only for real solutions satisfying some inequalities (Pi > 0
or Pi ≥ 0)1. In this case, there are various kinds of decompositions besides the above ones: connected
components, cellular or simplicial decompositions, ...

There are general algorithms for such tasks, which rely on Tarski’s quantifier elimination. Unfortunately, these
problems have a very high complexity, usually doubly exponential in the number of variables or the number of
blocks of quantifiers, and these general algorithms are intractable. It follows that the output of a solver should
be restricted to a partial description of the topology or of the geometry of the set of solutions, and our research
consists in looking for more specific problems, which are interesting for the applications, and which may be
solved with a reasonable complexity.

We focus on 2 main problems:
1. computing one point on each connected components of a semi-algebraic set;
2. solving systems of equalities and inequalities depending on parameters.

1In the zero-dimensional case, inequations and inequalities are usually taken into account only at the end of the computation, to
eliminate irrelevant solutions.
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3.4.1. Critical point methods
The most widespread algorithm computing sampling points in a semi-algebraic set is the Cylindrical Algebraic
Decomposition Algorithm due to Collins [48]. With slight modifications, this algorithm also solves the
problem of Quantifier Elimination. It is based on the recursive elimination of variables one after an other
ensuring nice properties between the components of the studied semi-algebraic set and the components of
semi-algebraic sets defined by polynomial families obtained by the elimination of variables. It is doubly
exponential in the number of variables and its best implementations are limited to problems in 3 or 4 variables.
Since the end of the eighties, alternative strategies (see [55], [45] and references therein) with a single
exponential complexity in the number of variables have been developed. They are based on the progressive
construction of the following subroutines:
(a) solving zero-dimensional systems: this can be performed by computing a lexicographical Grobner basis;
(b) computing sampling points in a real hypersurface: after some infinitesimal deformations, this is reduced to
problem (a) by computing the critical locus of a polynomial mapping reaching its extrema on each connected
component of the real hypersurface;
(c) computing sampling points in a real algebraic variety defined by a polynomial system: this is reduced to
problem (b) by considering the sum of squares of the polynomials;
(d) computing sampling points in a semi-algebraic set: this is reduced to problem (c) by applying an
infinitesimal deformation.

On the one hand, the relevance of this approach is based on the fact that its complexity is asymptotically
optimal. On the other hand, some important algorithmic developments have been necessary to obtain efficient
implementations of subroutines (b) and (c).

During the last years, we focused on providing efficient algorithms solving the problems (b) and (c). The
used method rely on finding a polynomial mapping reaching its extrema on each connected component of
the studied variety such that its critical locus is zero-dimensional. For example, in the case of a smooth
hypersurface whose real counterpart is compact choosing a projection on a line is sufficient. This method
is called in the sequel the critical point method. We started by studying problem (b) [65]. Even if we showed
that our solution may solve new classes of problems ( [66]), we have chosen to skip the reduction to problem
(b), which is now considered as a particular case of problem (c), in order to avoid an artificial growth of degree
and the introduction of singularities and infinitesimals.
Putting the critical point method into practice in the general case requires to drop some hypotheses. First, the
compactness assumption, which is in fact intimately related to an implicit properness assumption, has to be
dropped. Second, algebraic characterizations of critical loci are based on assumptions of non-degeneracy on
the rank of the Jacobian matrix associated to the studied polynomial system. These hypotheses are not satisfied
as soon as this system defines a non-radical ideal and/or a non equidimensional variety, and/or a non-smooth
variety. Our contributions consist in overcoming efficiently these obstacles and several strategies have been
developed [2], [7].
The properness assumption can be dropped by considering the square of a distance function to a generic point
instead of a projection function: indeed each connected component contains at least a point minimizing locally
this function. Performing a radical and equidimensional decomposition of the ideal generated by the studied
polynomial system allows to avoid some degeneracies of its associated Jacobian matrix. At last, the recursive
study of overlapped singular loci allows to deal with the case of non-smooth varieties. These algorithmic issues
allow to obtain a first algorithm [2] with reasonable practical performances.
Since projection functions are linear while the distance function is quadratic, computing their critical points is
easier. Thus, we have also investigated their use. A first approach [7] consists in studying recursively the critical
locus of projection functions on overlapped affine subspaces containing coordinate axes combined with the
study of their set of non-properness. A more efficient one [67], avoiding the study of sets of non-properness is
obtained by considering iteratively projections on generic affine subspaces restricted to the studied variety and
fibers on arbitrary points of these subspaces intersected with the critical locus of the corresponding projection.
The underlying algorithm is the most efficient we obtained.
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In terms of complexity, we have proved in [68] that when the studied polynomial system generates a radical
ideal and defines a smooth algebraic variety, the output of our algorithms is smaller than what could be
expected by applying the classical Bèzout bound and than the output of the previous algorithms. This has
also given new upper bounds on the number of connected components of a smooth real algebraic variety
which improve the classical Thom-Milnor bound. The technique we used, also allows to prove that the degree
of the critical locus of a projection function is inferior or equal to the degree of the critical locus of a distance
function. Finally, it shows how to drop the assumption of equidimensionality required in the aforementioned
algorithms.

3.4.2. Parametric systems
Most of the applications we recently solved (celestial mechanics, cuspidal robots, statistics, etc.) require
the study of semi-algebraic systems depending on parameters. Although we covered these subjects in an
independent way, some general algorithms for the resolution of this type of systems can be proposed from
these experiments.

The general philosophy consists in studying the generic solutions independently from algebraic subvarieties
(which we call from now on discriminant varieties) of dimension lower than the semi-algebraic set considered.
The study of the varieties thus excluded can be done separately to obtain a complete answer to the problem,
or is simply neglected if one is interested only in the generic solutions, which is the case in some applications.

We recently proposed a new framework for studying basic constructible (resp. semi-algebraic) sets defined as
systems of equations and inequations (resp. inequalities) depending on parameters. Let’s consider the basic
semi-algebraic set

S = {x ∈ Rn , p1(x) = 0, ..., ps(x) = 0, f1(x) > 0, ...fs(x) > 0}

and the basic constructible set

C = {x ∈ Cn , p1(x) = 0, ..., ps(x) = 0, f1(x) 6= 0, ...fs(x) 6= 0}

where pi, fj are polynomials with rational coefficients.

• [U,X] = [U1, ...Ud, Xd+1, ...Xn] is the set of indeterminates or variables, U = [U1, ...Ud] is the set
of parameters and X = [Xd+1, ...Xn] the set of unknowns;

• E = {p1, ...ps} is the set of polynomials defining the equations;
• F = {f1, ...fl} is the set of polynomials defining the inequations in the complex case (resp. the

inequalities in the real case);
• For any u ∈ Cd let φu be the specialization U −→ u;
• ΠU : Cn −→ Cd denotes the canonical projection on the parameter’s space

(u1, · · · , ud, xd+1, ..., xn) −→ (u1, · · · , ud);
• Given any ideal I we denote by V(I) ⊂ Cn the associated (algebraic) variety. If a variety is defined

as the zero set of polynomials with coefficients in Q we call it a Q-algebraic variety; we extend
naturally this notation in order to talk about Q-irreducible components, Q-Zariski closure, etc.

• for any set V ⊂ Cn, V will denote its C-Zariski closure in Cn.

In most applications, V(< φu(E) >)) as well as φu(C) = Π−1U (u)
⋂

C are finite and not empty for almost all
parameter’s u. Most algorithms that study C or S (number of real roots w.r.t. the parameters, parameterizations
of the solutions, etc.) compute in any case a Q-Zariski closed set W ⊂ Cd such that for any u ∈ Cd rW ,
there exists a neighborhood U of u with the following properties :

• (Π−1U (U)
⋂
C,ΠU ) is an analytic covering of U; this implies that the elements of F do not vanish

(and so have constant sign in the real case) on the connected components of Π−1U (U)
⋂
C;
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We recently [6] show that the parameters’ set such that there doesn’t exist any neighborhood U with the above
analytic covering property is a Q-Zariski closed set which can exactly be computed. We name it the minimal
discriminant variety of C with respect to ΠU and propose also a definition in the case of non generically
zero-dimensional systems.

Being able to compute the minimal discriminant variety allows to simplify the problem depending on n
variables to a similar problem depending on d variables (the parameters) : it is sufficient to describe its
complementary in the parameters’ space (or in the closure of the projection of the variety in the general case)
to get the full information about the generic solutions (here generic means for parameters’ values outside the
discriminant variety).

Then being able to describe the connected components of the complementary of the discriminant variety in
Rd becomes a main challenge which is strongly linked to the work done on positive dimensional systems.
Moreover, rewriting the systems involved and solving zero-dimensional systems are major components of the
algorithms we plan to build up.

We currently propose several computational strategies. An a priori decomposition into equidimensional
components as zeros of radical ideals simplifies the computation and the use of the discriminant varieties. This
preliminary computation is however sometimes expensive, so we are developing adaptive solutions where such
decompositions are called by need. The main progress is that the resulting methods are fast on easy problems
(generic) and slower on the problems with strong geometrical contents.

The existing implementations of algorithms able to "solve" (to get some information about the roots)
parametric systems do all compute (directly or indirectly) discriminant varieties but none computes optimal
objects (strict discriminant variety). This is the case, for example of the Cylindrical Algebraic Decomposition
adapted to E

⋃
F [48], of algorithms based on "Comprehensive Gröbner bases" [72], [73], [71] or of methods

that compute parameterizations of the solutions (see [69] for example). The consequence is that the output
(case distinctions w.r.t. parameters’ values) are huge compared with the results we can provide.

3.5. Cryptography
Participants: J.-C. Faugère, L. Perret, G. Renault, L. Bettale.
A fundamental problem in cryptography is to evaluate the security of cryptosystems against the most powerful
techniques. To this end, several general methods have been proposed: linear cryptanalysis, differential
cryptanalysis, etc ... Algebraic cryptanalysis is another general method which permits to study the security
of the main public-key and secret-key cryptosystems.
Algebraic cryptanalysis can be described as a general framework that permits to asses the security of a wide
range of cryptographic schemes. In fact the recent proposal and development of algebraic cryptanalysis is now
widely considered as an important breakthrough in the analysis of cryptographic primitives. It is a powerful
technique that applies potentially to a large range of cryptosystems. The basic principle of such cryptanalysis
is to model a cryptographic primitive by a set of algebraic equations. The system of equations is constructed
in such a way as to have a correspondence between the solutions of this system, and a secret information of
the cryptographic primitive (for instance, the secret key of an encryption scheme).
Although the principle of algebraic attacks can probably be traced back to the work of Shannon, algebraic
cryptanalysis has only recently been investigated as a cryptanalytic tool. To summarize algebraic attack is
divided into two steps :

1. Modeling, i.e. representing the cryptosystem as a polynomial system of equations
2. Solving, i.e. finding the solutions of the polynomial system constructed in Step 1.

Typically, the first step leads usually to rather “big” algebraic systems (at least several hundreds of variables for
modern block ciphers). Thus, solving such systems is always a challenge. To make the computation efficient,
we usually have to study the structural properties of the systems (using symmetries for instance). In addition,
one also has to verify the consistency of the solutions of the algebraic system with respect to the desired
solutions of the natural problem. Of course, all these steps must be constantly checked against the natural
problem, which in many cases can guide the researcher to an efficient method for solving the algebraic system.
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Multivariate cryptography comprises any cryptographic scheme that uses multivariate polynomial systems.
The use of such polynomial systems in cryptography dates back to the mid eighties [62], and was motivated
by the need for alternatives to number theoretic-based schemes. Indeed, multivariate systems enjoy low
computational requirements and can yield short signatures; moreover, schemes based on the hard problem
of solving multivariate equations over a finite field are not concerned with the quantum computer threat,
whereas as it is well known that number theoretic-based schemes like RSA, DH, or ECDH are. Multivariate
cryptosystems represent a target of choice for algebraic cryptanalysis due to their intrinsic multivariate
repesentation.
The most famous multivariate public key scheme is probably the Hidden Field Equation (HFE) cryptosystem
proposed by Patarin [63]. The basic idea of HFE is simple: build the secret key as a univariate polynomial S(x)
over some (big) finite field (often GF(2n)). Clearly, such a polynomial can be easily evaluated; moreover, under
reasonable hypotheses, it can also be “inverted” quite efficiently. By inverting, we mean finding any solution to
the equation S(x) = y, when such a solution exists. The secret transformations (decryption and/or signature)
are based on this efficient inversion. Of course, in order to build a cryptosystem, the polynomial S must be
presented as a public transformation which hides the original structure and prevents inversion. This is done by
viewing the finite field GF(2n) as a vector space over GF(2) and by choosing two linear transformations of
this vector space L1 and L2. Then the public transformation is the composition of L1, S and L2. Moreover,
if all the terms in the polynomial S(x) have Hamming weight 2, then it is obvious that all the (multivariate)
polynomials of the public key are of degree two.
By using fast algorithms for computing Gröbner bases, it was possible to break the first HFE challenge [5]
(real cryptographic size 80 bits and a symbolic prize of 500 US$) in only two days of CPU time. More
precisely we have used the F5/2 version of the fast F5 algorithm for computing Gröbner bases (implemented
in C). The algorithms available up to now (Buchberger) were extremely slow and could not have been used
to break the code (they should have needed at least a few centuries of computation). The new algorithm
is thousands of times faster than previous algorithms. Several matrices have to be reduced (Echelon Form)
during the computation: the biggest one has no less than 1.6 million columns, and requires 8 gigabytes of
memory. Implementing the algorithm thus required significant programming work and especially efficient
memory management.
The weakness of the systems of equations coming from HFE instances can be explained by the algebraic
properties of the secret key (work presented at Crypto 2003 in collaboration with A. Joux). From this study, it
is possible to predict the maximal degree occurring in the Gröbner basis computation. This permits to establish
precisely the complexity of the Gröbner attack and compare it with the theoretical bounds. The same kind of
technique has since been used for successfully attacking other types of multivariate cryptosystems : IP [51],
2R [53], `-IC [54], and MinRank [50].
On the one hand algebraic techniques have been successfully applied against a number of multivariate schemes
and in stream cipher cryptanalysis. On the other hand, the feasibility of algebraic cryptanalysis remains the
source of speculation for block ciphers, and an almost unexplored approach for hash functions. The scientific
lock is that the size of the corresponding algebraic systems are so huge (thousands of variables and equations)
that nobody is able to predict correctly the complexity of solving such polynomial systems. Hence one goal of
the team is ultimately to design and implement a new generation of efficient algebraic cryptanalysis toolkits to
be used against block ciphers and hash functions. To achieve this goal, we will investigate non-conventional
approaches for modeling these problems.

4. Application Domains

4.1. Panorama
Applications are fundamental for our research for several reasons.
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The first one is that they are the only source of fair tests for the algorithms. In fact, the complexity of the
solving process depends very irregularly of the problem itself. Therefore, random tests do not give a right
idea of the practical behavior of a program, and the complexity analysis, when possible, does not necessarily
provide realistic information.

A second reason is that, as quoted above, we need real world problems to determine which specifications of
algorithms are really useful. Conversely, it is frequently by solving specific problems through ad hoc methods
that we found new algorithms with general impact.

Finally, obtaining successes with problems which are intractable by the other known approaches is the best
proof for the quality of our work.

On the other hand, there is a specific difficulty. The problems which may be solved with our methods may
be formulated in many different ways, and their usual formulation is rarely well suited for polynomial system
solving or for exact computations. Frequently, it is not even clear that the problem is purely algebraic, because
researchers and engineers are used to formulate them in a differential way or to linearize them.

Therefore, our software may not be used as black boxes, and we have to understand the origin of the problem
in order to translate it in a form which is well suited for our solvers.

It follows that many of our results, published or in preparation, are classified in scientific domains which
are different from ours, like cryptography, error correcting codes, robotics, signal processing, statistics or
biophysics.

4.2. Robotic
The (parallel) manipulators we study are general parallel robots: the hexapods are complex mechanisms made
up of six (often identical) kinematic chains, of a base (fixed rigid body including six joints or articulations)
and of a platform (mobile rigid body containing six other joints). The design and the study of parallel robots
require the resolution of direct geometrical models (computation of the absolute coordinates of the joints of
the platform knowing the position and the geometry of the base, the geometry of the platform as well as
the distances between the joints of the kinematic chains at the base and the platform) and inverse geometrical
models (distances between the joints of the kinematic chains at the base and the platform knowing the absolute
positions of the base and the platform).

Since the inverse geometrical models can be easily solved, we focus on the resolution of the direct geometrical
models. The study of the direct geometrical model is a recurrent activity for several members of the project.
One can say that the progress carried out in this field illustrates perfectly the evolution of the methods for the
resolution of algebraic systems. The interest carried on this subject is old. The first work in which the members
of the project took part in primarily concerned the study of the number of (complex) solutions of the problem
[61], [60]. The results were often illustrated by Gröbner bases done with Gb software.

One of the remarkable points of this study is certainly the classification suggested in [52].

5. Software

5.1. FGb
Participant: J.C. Faugère [contact].

FGb/Gb is a powerful software for computing Gröbner bases; it is written in C/C++ (approximately 250000
lines counting the old Gb software).

5.2. FGb
Participant: Jean-Charles Faugere [correspondant].
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FGb is a powerful software for computing Groebner bases.It includes the new generation of algorihms for
computing Gröbner bases polynomial systems (mainly the F4,F5 and FGLM algorithms).It is implemented
in C/C++ (approximately 250000 lines), standalone servers are available on demand. Since 2006, FGb is
dynamically linked with Maple software (version 11 and higher) and is part of the official distribution of this
software.
See also the web page http://www-salsa.lip6.fr/~jcf/Software/FGb/index.html.

• ACM: I.1.2 Algebraic algorithms

• Programming language: C/C++

5.3. RAGlib
Participant: M. Safey El Din [contact].

RAGLib is a Maple library for computing sampling points in semi-algebraic sets.

5.4. Epsilon
Participant: D. Wang [contact].

Epsilon is a library of functions implemented in Maple and Java for polynomial elimination and decomposition
with (geometric) applications.

6. New Results

6.1. Real Solving Polynomial Systems
In [20], we describe an algorithm (VQE) for a variant of the real quantifier elimination problem (QE).
The variant problem requires the input to satisfy a certain extra condition, and allows the output to be
almost equivalent to the input. The motivation/rationale for studying such a variant QE problem is that many
quantified formulas arising in applications do satisfy the extra conditions. Furthermore, in most applications,
it is sufficient that the output formula is almost equivalent to the input formula. The main idea underlying the
algorithm is to substitute the repeated projection step of CAD by a single projection without carrying out a
parametric existential decision over the reals. We find that the algorithm can tackle important and challenging
problems, such as numerical stability analysis of the widely-used MacCormack’s scheme. The problem has
been practically out of reach for standard QE algorithms in spite of many attempts to tackle it. However the
current implementation of VQE can solve it in about 12 hours. This paper extends the results reported at the
conference ISSAC 2009.

We also focused on the interaction of real solving polynomial system with global optimization. Let
f ∈ Q[X1, ..., Xn] of degree D. Algorithms for solving the unconstrained global optimization problem
fI = infx∈Rn f(x) are of first importance since this problem appears frequently in numerous applications
in engineering sciences. This can be tackled by either designing appropriate quantifier elimination algorithms
or by certifying lower bounds on fI by means of sums of squares decompositions but there is no efficient
algorithm for deciding if fI is a minimum. The paper [41] is dedicated to this important problem. We design
an algorithm that decides if fI is reached over Rn and computes a point xI ∈ Rn such that f(xI) = fI

if such a point exists. If L is the length of a straight-line program evaluating f , a probabilistic version of the
algorithm runs in time Õ(n2(L+ n2)(D(D − 1)

n−1
)
2
). Experiments show its practical efficiency.

 http://www-salsa.lip6.fr/~jcf/Software/FGb/index.html
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Global optimization problems can also be tackled by computing algebraic certificates of positivity
through sums of squares decompositions. Let f1, · · · , fp and f be polynomials in Q[X1, · · · , Xn] and let
V = V (f1, · · · , fp) ⊂ Cn be the algebraic variety defined by f1 = · · · = fp = 0 whose dimension is denoted
by d. Assume in the sequel that the ideal 〈f1, ..., fp〉 is radical and equidimensional and that V is smooth.
In [18], up to a generic linear change of variables, we construct families of polynomials M0, ...,Md in
Q[X1, ..., Xn] such that f(x) ≥ 0 for all x ∈ V ∩ Rn if and only if f can written as a sum of squares
of polynomials in R[X1, ..., Xn] modulo 〈Mi〉 for 0 ≤ i ≤ d. Such an algebraic certificate of positivity is
simpler than the more general Positivstellensatz in Real Algebra. It can be used to certify lower bounds on
fI = infx∈V ∩Rn f(x). Also, computing a numerical approximation of such certificates of positivity can be
reformulated as a semidefinite program which can be solved efficiently. We provide numerical experiments
showing the effectiveness of our approach.

In [25], we consider the problem of constructing roadmaps of real algebraic sets. This problem was introduced
by Canny to answer connectivity questions and solve motion planning problems. Given s polynomial
equations with rational coefficients, of degree D in n variables, Canny’s algorithm has a Monte Carlo cost
of sn log (s)DO(n2) operations in Q; a deterministic version runs in time sn log (s)DO(n4). A subsequent
improvement was due to Basu, Pollack and Roy, with an algorithm of deterministic cost sd+1DO(n2) for the
more general problem of computing roadmaps of a semi-algebraic set (d ≤ n is the dimension of an associated
object). We give a probabilistic algorithm of complexity (nD)

O(n1.5) for the problem of computing a roadmap
of a closed and bounded hypersurface V of degree D in n variables, with a finite number of singular points.
Even under these extra assumptions, no previous algorithm featured a cost better than DO(n2).

6.2. Zero dimensional Solve
Let I ⊂ K[x1, ..., xn] be a 0-dimensional ideal of degree D where K is a field. It is well-known that obtaining
efficient algorithms for change of ordering of Gröbner bases of I is crucial in polynomial system solving.
Through the algorithm FGLM, this task is classically tackled by linear algebra operations in K[x1, ..., xn]/I .
With recent progress on Gröbner bases computations, this step turns out to be the bottleneck of the whole
solving process.

In [38], we present an efficient algorithm that takes advantage of the sparsity structure of multiplication ma-
trices appearing during the change of ordering. This sparsity structure arises even when the input polynomial
system defining I is dense. As a by-product, we obtain an implementation which is able to manipulate 0-
dimensional ideals over a prime field of degree greater than 30000. It outperforms the Magma/Singular/FGb
implementations of FGLM.

In [38], we investigate the particular but important shape position case. The obtained algorithm performs the
change of ordering within a complexity O(D(N1 + n log (D))), where N1 is the number of nonzero entries
of a multiplication matrix (the density of the matrix). This almost matches the complexity of computing the
minimal polynomial of one multiplication matrix. Then, we address the general case and give corresponding
complexity results. Our algorithm is dynamic in the sense that it selects automatically which strategy to use
depending on the input. Its key ingredients are the Wiedemann algorithm to handle 1-dimensional linear
recurrence (for the shape position case), and the Berlekamp–Massey–Sakata algorithm from Coding Theory
to handle multi-dimensional linearly recurring sequences in the general case.

6.3. Solving structured systems
Solving multihomogeneous systems, as a wide range of structured algebraic systems occurring frequently
in practical problems, is of first importance. Experimentally, solving these systems with Gröbner bases
algorithms seems to be easier than solving homogeneous systems of the same degree. Nevertheless, the reasons
of this behaviour are not clear. In [16], we focus on bilinear systems (i.e. bihomogeneous systems where
all equations have bidegree (1, 1)). Our goal is to provide a theoretical explanation of the aforementioned
experimental behaviour and to propose new techniques to speed up the Gröbner basis computations by
using the multihomogeneous structure of those systems. The contributions are theoretical and practical.



14 Activity Report INRIA 2011

First, we adapt the classical F5 criterion to avoid reductions to zero which occur when the input is a set
of bilinear polynomials. We also prove an explicit form of the Hilbert series of bihomogeneous ideals
generated by generic bilinear polynomials and give a new upper bound on the degree of regularity of
generic affine bilinear systems. This leads to new complexity bounds for solving bilinear systems. We
propose also a variant of the F5 Algorithm dedicated to multihomogeneous systems which exploits a
structural property of the Macaulay matrix which occurs on such inputs. Experimental results show that
this variant requires less time and memory than the classical homogeneous F5 Algorithm. Lastly, we
investigate the complexity of computing a Gröbner basis for the grevlex ordering of a generic 0-dimensional
affine bilinear system over k[x1, ..., xnx , y1, ..., yny ]. In particular, we show that this complexity is upper

bounded by O

((
nx + ny + min (nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)
, which is polynomial in nx + ny (i.e. the number

of unknowns) when min(nx, ny) is constant.

6.4. Structured Systems and Applications to Cryptanalysis
The Goppa Code Distinguishing (GCD) problem consists in distinguishing the matrix of a Goppa code from
a random matrix. Up to now, it is widely believed that the GCD problem is a hard decisional problem. In
[36], we present the first technique allowing to distinguish alternant and Goppa codes over any field. Our
technique can solve the GCD problem in polynomial-time provided that the codes have rates sufficiently
large. The key ingredient is an algebraic characterization of the key-recovery problem which reduces to the
solving of a system of bi-homogeneous polynomial equations. The idea is to consider the dimension of the
solution space of a linearized system deduced from the algebraic system describing the key-recovery. It turns
out that experimentally this dimension depends on the type of code. Explicit formulas derived from extensive
experimentations for the value of the dimension are provided for “generic” random, alternant, and Goppa code
over any alphabet. Finally, we give explanations of these formulas in the case of random codes, alternant codes
over any field and binary Goppa codes.

6.5. Algebraic Cryptanalysis
The Isomorphism of Polynomials (IP) is one of the most fundamental problems in multivariate public key
cryptography (MPKC). In In [23], we introduce a new framework to study the counting problem associated
to IP. Namely, we present tools of finite geometry allowing to investigate the counting problem associated
to IP. Precisely, we focus on enumerating or estimating the number of isomorphism equivalence classes of
homogeneous quadratic polynomial systems. These problems are equivalent to finding the scale of the key
space of a multivariate cryptosystem and the total number of different multivariate cryptographic schemes
respectively, which might impact the security and the potential capability of MPKC. We also consider their
applications in the analysis of a specific multivariate public key cryptosystem. Our results not only answer
how many cryptographic schemes can be derived from monomials and how big the key space is for a fixed
scheme, but also show that quite many HFE cryptosystems are equivalent to a Matsumoto-Imai scheme.

In [34], we present a practical cryptanalysis of the Identification Scheme proposed by Patarin at Crypto
1996. This scheme relies on the hardness of the Isomorphism of Polynomial with One Secret (IP1S), and
enjoys shorter key than many other schemes based on the hardness of a combinatorial problem (as opposed to
number theoretic problems). We present two new deterministic algorithms to attack the IP1S problem, and we
rigorously analyze their complexity and success probability. We show that they can solve a constant fraction
of all the instances of degree two in polynomial time.

In [33], we investigate the security of a generalization of HFE (multivariate and odd-characteristic variants).
We propose an improved version of the basic Kipnis-Shamir key recovery attack against HFE. We then
generalize the Kipnis-Shamir attack to Multi-HFE. The attack reduces to solve a MinRank problem directly
on the public key. This leads to an improvement of a factor corresponding to the square of the degree of the
extension field. We used recent results on MinRank to show that our attack is polynomial in the degree of
the extension field. It appears that multi-HFE is less secure than original HFE for equal-sized keys. Finally,
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adaptations of our attack overcome several variants (i.e. minus modifier and embedding). As a proof of
concept, we have practically broken the most conservative parameters given by Chen, Chen, Ding,Werner
and Yang in 9 days for 256 bits security. All in all, our results give a more precise picture on the (in)security
of several variants of HFE proposed these last years.

In [31], we initiate the formal treatment of cryptographic constructions (“Polly Cracker”) based on the hardness
of computing remainders modulo an ideal. We start by formalising and studying the relation between the
ideal remainder problem and the problem of computing a Gröbner basis. We show both positive and negative
results. On the negative side, we define a symmetric Polly Cracker encryption scheme and prove that this
scheme only achieves bounded CPA security under the hardness of the IR problem. Furthermore, we show
that a large class of algebraic transformations cannot convert this scheme to a fully secure Polly Cracker-style
scheme. On the positive side, we formalise noisy variants of the ideal related problems. These problems can
be seen as natural generalisations of the LWE problem and the approximate GCD problem over polynomial
rings. After formalising and justifying the hardness of the noisy assumptions we show that noisy encoding
of messages results in a fully IND-CPA secure somewhat homomorphic encryption scheme. Together with a
standard symmetric-to-asymmetric transformation for additively homomorphic schemes, we provide a positive
answer to the long standing open problem of constructing a secure Polly Cracker-style cryptosystem reducible
to the hardness of solving a random system of equations. Indeed, our results go beyond that by also providing
a new family of somewhat homomorphic encryption schemes based on new, but natural, hard problems.
Our results also imply that Regev’s LWE-based public-key encryption scheme is (somewhat) multiplicatively
homomorphic for appropriate choices of parameters.

6.6. Computer Algebra and Algorithmic Number Theory
The Elliptic Curve Discrete Logarithm Problem (ECDLP) has become the most attractive alternative to
factoring for public key cryptography. Whereas subexponential factoring algorithms exist, solving the ECDLP
in general can only be done in exponential time. Provided that a certain heuristic assumption holds, we present
in [39] an index calculus algorithm solving ECDLP over any binary field Fq in time O(2c n

2/3 logn), where
c is a small constant. Our algorithm follows the index calculus method that was first introduced by Semaev
and later developed by Gaudry and Diem. In particular, the main step consists in decomposing points of the
curve with respect to an appropriately chosen factor basis. This part can be nicely reformulated as a purely
algebraic problem consisting in finding solutions to a multivariate polynomial f(x1, ...,xm) = 0 such that all
the variables xi belong to some vector subspace of Fq/Fp. We solve this problem by means of Gröbner basis
techniques and analyse its complexity using the multihomogeneous structure of the equations. Even, if this
paper is essentially theoretical and is not aiming for practical attacks, the new ideas developed here could be
used to have practical attacks in the future. This of course represents a challenging open problem.

7. Contracts and Grants with Industry

7.1. Contract with Thalès
Participants: J.-C. Faugère [contact], G. Renault, C. Goyet.

The goal of this contract (including a CIFRE PhD grant) is to mix side chanel attacks (DPA) and algebraic
cryptanalysis.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR Jeunes Chercheurs “CAC”

Participants: L. Perret [contact], J.-C. Faugère, G. Renault.
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The new contract CAC “ Computer Algebra and Cryptography” begins in October 2009 for a period of 4 years.
This project will investigate the areas of cryptography and computer algebra, and their influence on the security
and integrity of digital data. In CAC, we plan to use basic tools of computer algebra to evaluate the security
of cryptographic schemes. CAC will focus on three new challenging applications of algebraic techniques
in cryptography; namely block ciphers, hash functions, and factorization with known bits. To this hand, we
will use Gröbner bases techniques but also lattice tools. In this proposal, we will explore non-conventional
approaches in the algebraic cryptanalysis of these problems.

8.2. ANR “HPAC”
Participants: J.-C. Faugère [contact], L. Perret, G. Renault, M. Safey El Din.

The pervasive ubiquity of parallel architectures and memory hierarchy has led to a new quest for parallel
mathematical algorithms and software capable of exploiting the various levels of parallelism: from hardware
acceleration technologies (multi-core and multi-processor system on chip, GPGPU, FPGA) to cluster and
global computing platforms. For giving a greater scope to symbolic and algebraic computing, beyond the
optimization of the application itself, the effective use of a large number of resources (memory and specialized
computing units) is expected to enhance the performance multi-criteria objectives: time, resource usage,
reliability, even energy consumption. The design and the implementation of mathematical algorithms with
provable, adaptive and sustainable performance is a major challenge. In this context, this project2 is devoted to
fundamental and practical research specifically in exact linear algebra and system solving that are two essential
"dwarfs" (or "killer kernels") in scientific and algebraic computing. The project should lead to progress in
matrix algorithms and challenge solving in cryptology, and should provide new insights into high performance
programming and library design problems.

8.3. ANR “GeoLMI”
Participants: J.-C. Faugère, M. Safey El Din [contact].

The GeoLMI project3 aims at developing an algebraic and geometric study of linear matrix inequalities (LMI)
for systems control theory. It is an interdisciplinary project at the border between information sciences (systems
control), pure mathematics (algebraic geometry) and applied mathematics (optimisation). The project focuses
on the geometry of determinantal varieties, on decision problems involving positive polynomials, on compu-
tational algorithms for algebraic geometry, on computational algorithms for semi-definite programming, and
on applications of algebraic geometry techniques in systems control theory, namely for robust control of linear
systems and polynomial optimal control.

8.3.1. European Initiatives
8.3.1.1. ECRYPT II - European Network of Excellence for Cryptology

Participants: J.C. Faugère [contact], L. Perret, G. Renault, L. Bettale.

ECRYPT II - European Network of Excellence for Cryptology II is a 4-year network of excellence funded
within the Information & Communication Technologies (ICT) Programme of the European Commission’s
Seventh Framework Programme (FP7) under contract number ICT-2007-216676. It falls under the action line
Secure, dependable and trusted infrastructures. ECRYPT II started on 1 August 2008. Its objective is to con-
tinue intensifying the collaboration of European researchers in information security. The ECRYPT II research
roadmap is motivated by the changing environment and threat models in which cryptology is deployed, by the
gradual erosion of the computational difficulty of the mathematical problems on which cryptology is based,
and by the requirements of new applications and cryptographic implementations. Its main objective is to en-
sure a durable integration of European research in both academia and industry and to maintain and strengthen
the European excellence in these areas. In order to reach this goal, 11 leading players have integrated their
research capabilities within three virtual labs focusing on symmetric key algorithms (SymLab), public key

2http://hpac.gforge.inria.fr/
3http://homepages.laas.fr/henrion/geolmi/

http://hpac.gforge.inria.fr/
http://homepages.laas.fr/henrion/geolmi/
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algorithms and protocols (MAYA), and hardware and software implementations associate (VAMPIRE). They
are joined by more than 20 adjoint members to the network who will closely collaborate with the core part-
ners. The team joins the European Network of Excellence for Cryptology ECRYPT II this academic year as
associate member.

8.3.2. International Initiatives
8.3.2.1. Royal Society Project

Participants: J.C. Faugère [contact], L. Perret, L. Bettale.

Royal Society Project with the Crypto team Royal Holloway, University of London, UK.
8.3.2.2. Joint LIAMA Project ECCA

ECCA (Exact/Certified Computation with Algebraic systems) is a LIAMA project (Reliable Software Theme)
focusing on polynomial system solving. The partners are INRIA, CNRS, and CAS (Chinese Academy of
Sciences). The general objectives of this project are mainly the same as those of SALSA.

8.3.2.3. ANR International Grant “EXACTA”
Participants: D. Wang [contact], J.-C. Faugère, D. Lazard, L. Perret, G. Renault, M. Safey El Din.

The main objective of this project is to study and compute the solutions of nonlinear algebraic systems and their
structures and properties with selected target applications using exact or certified computation. The project
consists of one main task of basic research on the design and implementation of fundamental algorithms and
four tasks of applied research on computational geometry, algebraic cryptanalysis, global optimization, and
algebraic biology. It will last for three years (2010–2012) with 300 person-months of workforce. Its consortium
is composed of strong research teams from France and China (KLMM, SKLOIS, and LMIB) in the area of
solving algebraic systems with applications.

8.3.3. Scientific Animation
8.3.3.1. Journals – Associate Editors and Program Committees

J.-C. Faugère is member of the editorial board of Journal “Mathematics in Computer Science” (Birkhäuser)
and Journal “Cryptography and Communications – Discrete Structures, Boolean Functions and Sequences”
(Springer); guest editor for special issues in Journal of Symbolic Computation (Elsevier) and Journal “Math-
ematics in Computer Science” (Birkhäuser).

M. Safey el Din is member of the editorial board of Journal of Symbolic Computation (Elsevier).

J.-C. Faugère is PC co-chair of the third SCC conference (Santander, 2012).

D. Wang is member of the editorial board of:

• Editor-in-Chief and Managing Editor for the journal “Mathematics in Computer Science” (published
by Birkhäuser/Springer, Basel).

• Executive Associate Editor-in-Chief for the journal “SCIENCE CHINA Information Sciences”
(published by Science China Press, Beijing and Springer, Berlin).

• Member of the Editorial Boards for the
– Journal of Symbolic Computation (published by Academic Press/Elsevier, London),
– Frontiers of Computer Science in China (published by Higher Education Press, Beijing

and Springer, Berlin),
– Texts and Monographs in Symbolic Computation (published by Springer, Wien New

York),
– Book Series on Mathematics Mechanization (published by Science Press, Beijing),
– Book Series on Fundamentals of Information Science and Technology (published by

Science Press, Beijing).

• Editor for the Book Series in Computational Science (published by Tsinghua University Press,
Beijing).
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M. Safey El Din was member of the program committees of the 36-th International Symposium on Symbolic
and Algebraic Computation (San Jose, USA, June 8–11 2011) and the 13-th International Workshop on
Computer Algebra in Scientific Computing (Kassel, Germany, September 5 - 9, 2011) and is member of
the program committee of the 13-th International Workshop on Computer Algebra in Scientific Computing
(Maribor, Slovenia, September 3 - 6, 2012).

D.Wang was member of the program committee of:

• Technical Session at ICCSA 2011 on Symbolic Computing for Dynamic Geometry (Santander,
Spain, June 20–23, 2011),

8.3.3.2. Scientific visits and international seminar

M. Safey El Din was invited 2 weeks in July 2011 by L. Zhi at the Key Laboratory of Mechnanization and
Mathematics (Chinese Academy of Sciences, Beijing China), 1 week at the department of Computer Science at
Aarhus University (Denmark), 2 weeks in October 2011 by E. Schost at the Department of Computer Science
at The University of Western Ontario (London, Canada). He is a co-organizer of the next National Days of
Computer Algebra in 2012.

L. Perret was invited 2 weeks in 2011 (in July and December) by D. Lin at the SKLOIS (Chinese Academy of
Sciences, Beijing China), 1 week (April, 2011) at the Stevens Institute (New-York, USA) by A. Miasnikov.

J.-C. Faugère was invited 1 week in July 2011 by D. Lin at the SKLOIS (Chinese Academy of Sciences,
Beijing China).

8.3.3.3. Conferences (organization) and invited talks

J.-C. Faugère was plenary invited speaker at ECC 2011, the 15th workshop on Elliptic Curve Cryptography.

J.-C. Faugère, is member of the MEGA Advisory Board.

M. Safey El Din is co-organizer (with L. Zhi) of the First International Workshop on Certified and Reliable
Computing, held in July 2011 at Nanning, China, co-organizer of the mini-symposia on Algebraic Complexity
(with E. Schost) and Algorithms in Real Algebraic Geometry (with H. Hong) which have been held on the
occasion of the SIAM conference on Applications of Algebraic Geometry (Raleigh, Oct. 2011).

M. Safey El Din was invited speaker at the mini-symposium on Algebraic Geometry and Optimization (SIAM
conference on Optimization), the MaGIX conference (LIX, Palaiseau) and gave several talks in the mini-
symposia organized during the SIAM Conference on Applications of Algebraic Geometry. He was also invited
to give a talk at the joint Mathematics-Computer Science seminar at the University of Western Ontario and
gave a talk at the first workshop of the GeoLMI project (Rennes, Nov. 2011).

J.-C. Faugère was invited speaker at the MaGIX conference (LIX, Palaiseau) and in the mini-symposium on
Linear Algebra organized during the SIAM Conference on Applications of Algebraic Geometry (Raleigh,
USA). He was also invited to give a talk at the joint Mathematics-Computer Science seminar at the University
of Aarhus (Danmark).

8.3.3.4. Committees

J.-C. Faugère was a member of the evaluation committee (AERES) of the institut de mathématiques de Toulon
et du Var.

M. Safey El Din is a designated member of the French National Council of the Universities (CNU).

J.-C. Faugère is member of the hiring committee in computer science at the <<Université Pierre et Marie
Curie>>, <<Université de Toulon>> and <<Université Joseph Fourier>>.

8.3.4. Teaching
J.C. Faugère, L. Perret give a course on Polynomial System Solving, Computer Algebra and Applications at
the “Master Parisien de Recherche en Informatique” (MPRI).

G. Renault gives a course on Computational Number Theory and Cryptology at the <<Master d’Informatique
de l’Université Paris 6>>.
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