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2. Overall Objectives

2.1. Introduction

SEQUEL means “Sequential Learning”. As such, SEQUEL focuses on the task of learning in artificial systems
(either hardware, or software) that gather information along time. Such systems are named (learning) agents
(or learning machines) in the following. These data may be used to estimate some parameters of a model,
which in turn, may be used for selecting actions in order to perform some long-term optimization task.

For the purpose of model building, the agent needs to represent information collected so far in some compact
form and use it to process newly available data.

The acquired data may result from an observation process of an agent in interaction with its environment (the
data thus represent a perception). This is the case when the agent makes decisions (in order to attain a certain
objective) that impact the environment, and thus the observation process itself.

Hence, in SEQUEL, the term sequential refers to two aspects:

e The sequential acquisition of data, from which a model is learned (supervised and non supervised
learning),

e the sequential decision making task, based on the learned model (reinforcement learning).
Examples of sequential learning problems include:

Supervised learning tasks deal with the prediction of some response given a certain set of observations of
input variables and responses. New sample points keep on being observed.

Unsupervised learning tasks deal with clustering objects, these latter making a flow of objects. The
(unknown) number of clusters typically evolves during time, as new objects are observed.

Reinforcement learning tasks deal with the control (a policy) of some system which has to be optimized
(see [82]). We do not assume the availability of a model of the system to be controlled.

In all these cases, we mostly assume that the process can be considered stationary for at least a certain amount
of time, and slowly evolving.

We wish to have any-time algorithms, that is, at any moment, a prediction may be required/an action may be
selected making full use, and hopefully, the best use, of the experience already gathered by the learning agent.

The perception of the environment by the learning agent (using its sensors) is generally neither the best one to
make a prediction, nor to take a decision (we deal with Partially Observable Markov Decision Problem). So,
the perception has to be mapped in some way to a better, and relevant, state (or input) space.

Finally, an important issue of prediction regards its evaluation: how wrong may we be when we perform a
prediction? For real systems to be controlled, this issue can not be simply left unanswered.

To sum-up, in SEQUEL, the main issues regard:
e the learning of a model: we focus on models that map some input space R” to R,
e the observation to state mapping,
e the choice of the action to perform (in the case of sequential decision problem),
e the performance guarantees,

e the implementation of usable algorithms,

all that being understood in a sequential framework.
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2.2. Highlights

e Renowned for its work on the topic of exploration/exploitation trade-off, SequeL. members have also
successfully applied their research to the “Exploration and Exploitation Challenge” organized along
at the International Conference on Machine Learning (ICML’11). SequeL’s PhD students Olivier
Nicol [63] and Christophe Salperwyck [65] ranked first and second respectively.

3. Scientific Foundations

3.1. Introduction
SEQUEL is primarily grounded on two domains:

e the problem of decision under uncertainty,

e statistical analysis and statistical learning, which provide the general concepts and tools to solve this
problem.

To help the reader who is unfamiliar with these questions, we briefly present key ideas below.

3.2. Decision under uncertainty

The phrase “Decision under uncertainty” refers to the problem of taking decisions when we do not have a full
knowledge neither of the situation, nor of the consequences of the decisions, as well as when the consequences
of decision are non deterministic.

We introduce two specific sub-domains, namely the Markov decision processes which models sequential
decision problems, and bandit problems.

3.2.1. Markov decision processes

Sequential decision processes occupy the heart of the SEQUEL project; a detailed presentation of this problem
may be found in Puterman’s book [78].

A Markov Decision Process (MDP) is defined as the tuple (X, A, P,r) where X is the state space, A is the
action space, P is the probabilistic transition kernel, and r : X x A x X — IR is the reward function. For the
sake of simplicity, we assume in this introduction that the state and action spaces are finite. If the current
state (at time ¢) is € X and the chosen action is a € A, then the Markov assumption means that the transition
probability to a new state ' € X (at time ¢ + 1) only depends on (x, a). We write p(x’|z, a) the corresponding
transition probability. During a transition (z,a) — «’, a reward r(x, a, ') is incurred.

In the MDP (X, A, P,r), each initial state xo and action sequence ag,aq,... gives rise to a sequence of

states x1,Za, ..., satisfying P (x411 = /|2 = 2, a; = a) = p(2’|x,a), and rewards! ry, 7, ... defined by
Tt = T(l‘t, ag, J)t+1).

The history of the process up to time ¢ is defined to be H; = (xg,ag, ..., Tt—1,at—1, ). A policy 7 is a
sequence of functions mg, 71, ..., where m; maps the space of possible histories at time ¢ to the space of

probability distributions over the space of actions A. To follow a policy means that, in each time step, we
assume that the process history up to time ¢ is zg, ao, ..., £+ and the probability of selecting an action a is equal
to 7 (xo, ag, ..., x¢)(a). A policy is called stationary (or Markovian) if 7; depends only on the last visited
state. In other words, a policy m = (mg, 71, ...) is called stationary if 7 (xg, ag, ..., ©;) = 7o () holds for all
t > 0. A policy is called deterministic if the probability distribution prescribed by the policy for any history is
concentrated on a single action. Otherwise it is called a stochastic policy.

Note that for simplicity, we considered the case of a deterministic reward function, but in many applications, the reward 7 itself is a

random variable.
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We move from an MD process to an MD problem by formulating the goal of the agent, that is what the sought
policy 7 has to optimize? It is very often formulated as maximizing (or minimizing), in expectation, some
functional of the sequence of future rewards. For example, an usual functional is the infinite-time horizon sum
of discounted rewards. For a given (stationary) policy 7, we define the value function V™ (x) of that policy 7
at a state x € X as the expected sum of discounted future rewards given that we state from the initial state x
and follow the policy 7:

Vi(z)=E [Z yirylzo = x,w] , (1
t=0

where E is the expectation operator and € (0, 1) is the discount factor. This value function V7 gives an
evaluation of the performance of a given policy 7. Other functionals of the sequence of future rewards may
be considered, such as the undiscounted reward (see the stochastic shortest path problems [69]) and average
reward settings. Note also that, here, we considered the problem of maximizing a reward functional, but a
formulation in terms of minimizing some cost or risk functional would be equivalent.

In order to maximize a given functional in a sequential framework, one usually applies Dynamic Programming
(DP) [67], which introduces the optimal value function V* (), defined as the optimal expected sum of rewards
when the agent starts from a state z. We have V*(x) = sup, V"™ (x). Now, let us give two definitions about
policies:

e  We say that a policy 7 is optimal, if it attains the optimal values V*(x) for any state x € X, i.e.,
if V™(z) = V*(x) for all z € X. Under mild conditions, deterministic stationary optimal policies
exist [68]. Such an optimal policy is written 7*.

e We say that a (deterministic stationary) policy 7 is greedy with respect to (w.r.t.) some function V'
(defined on X) if, for all z € X,

/ ! /
7(v) € argmax %Cp@ [2,0) [r(z,a,2) + 4V (2')]

where arg max,e4 f(a) is the set of a € A that maximizes f(a). For any function V, such a greedy
policy always exists because A is finite.

The goal of Reinforcement Learning (RL), as well as that of dynamic programming, is to design an optimal
policy (or a good approximation of it).

The well-known Dynamic Programming equation (also called the Bellman equation) provides a relation
between the optimal value function at a state x and the optimal value function at the successors states z’
when choosing an optimal action: for all z € X,

V*(z) = Iarlea}fx%p(w’lw, a) [r(z,a,2') +yV*(2)]. )

The benefit of introducing this concept of optimal value function relies on the property that, from the optimal
value function V'*, it is easy to derive an optimal behavior by choosing the actions according to a policy
greedy w.r.t. V*. Indeed, we have the property that a policy greedy w.r.t. the optimal value function is an
optimal policy:

™ (z) € arg ggx%p(w’lx, a) [r(z,a,2") + 4V (2")]. 3)
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In short, we would like to mention that most of the reinforcement learning methods developed so far are built
on one (or both) of the two following approaches ( [86]):

e Bellman’s dynamic programming approach, based on the introduction of the value function. It
consists in learning a “good” approximation of the optimal value function, and then using it to
derive a greedy policy w.r.t. this approximation. The hope (well justified in several cases) is that
the performance V™ of the policy m greedy w.r.t. an approximation V' of V* will be close to
optimality. This approximation issue of the optimal value function is one of the major challenge
inherent to the reinforcement learning problem. Approximate dynamic programming addresses
the problem of estimating performance bounds (e.g. the loss in performance ||[V* — V|| resulting
from using a policy 7-greedy w.r.t. some approximation V- instead of an optimal policy) in terms of
the approximation error ||V* — V|| of the optimal value function V* by V. Approximation theory
and Statistical Learning theory provide us with bounds in terms of the number of sample data used
to represent the functions, and the capacity and approximation power of the considered function
spaces.

e Pontryagin’s maximum principle approach, based on sensitivity analysis of the performance measure
w.r.t. some control parameters. This approach, also called direct policy search in the Reinforcement
Learning community aims at directly finding a good feedback control law in a parameterized policy
space without trying to approximate the value function. The method consists in estimating the so-
called policy gradient, i.e. the sensitivity of the performance measure (the value function) w.r.t.
some parameters of the current policy. The idea being that an optimal control problem is replaced
by a parametric optimization problem in the space of parameterized policies. As such, deriving a
policy gradient estimate would lead to performing a stochastic gradient method in order to search
for a local optimal parametric policy.

Finally, many extensions of the Markov decision processes exist, among which the Partially Observable MDPs
(POMDPs) is the case where the current state does not contain all the necessary information required to decide
for sure of the best action.

Bandits

Bandit problems illustrate the fundamental difficulty of decision making in the face of uncertainty: A decision
maker must choose between what seems to be the best choice (“exploit”), or to test (“explore”) some
alternative, hoping to discover a choice that beats the current best choice.

The classical example of a bandit problem is deciding what treatment to give each patient in a clinical trial
when the effectiveness of the treatments are initially unknown and the patients arrive sequentially. These
bandit problems became popular with the seminal paper [79], after which they have found applications in
diverse fields, such as control, economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K > 2) is specified by K real-valued distributions. In each time step
a decision maker can select one of the distributions to obtain a sample from it. The samples obtained
are considered as rewards. The distributions are initially unknown to the decision maker, whose goal is to
maximize the sum of the rewards received, or equivalently, to minimize the regret which is defined as the loss
compared to the total payoff that can be achieved given full knowledge of the problem, i.e., when the arm
giving the highest expected reward is pulled all the time.

The name “bandit” comes from imagining a gambler playing with K slot machines. The gambler can pull the
arm of any of the machines, which produces a random payoff as a result: When arm k is pulled, the random
payoff is drawn from the distribution associated to k. Since the payoff distributions are initially unknown,
the gambler must use exploratory actions to learn the utility of the individual arms. However, exploration has
to be carefully controlled since excessive exploration may lead to unnecessary losses. Hence, to play well,
the gambler must carefully balance exploration and exploitation. Auer et al. [66] introduced the algorithm
UCB (Upper Confidence Bounds) that follows what is now called the “optimism in the face of uncertainty
principle”. Their algorithm works by computing upper confidence bounds for all the arms and then choosing
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the arm with the highest such bound. They proved that the expected regret of their algorithm increases at most
at a logarithmic rate with the number of trials, and that the algorithm achieves the smallest possible regret up
to some sub-logarithmic factor (for the considered family of distributions).

3.3. Statistical analysis of time series

3.3.1.

3.3.2.

3.3.3.

Many of the problems of machine learning can be seen as extensions of classical problems of mathematical
statistics to their (extremely) non-parametric and model-free cases. Other machine learning problems are
founded on such statistical problems. Statistical problems of sequential learning are mainly those that are
concerned with the analysis of time series. These problems are as follows.

Sequence prediction

Given a series of observations x1,---,x, it is required to predict the probability distribution of the next
outcome ,,1, before it is revealed and the process continues. Different goals can be formulated in this setting.
One can either make some assumptions on the probability measure that generates the sequence x1,- - -, Ty, - - -,
such as that the outcomes are independent and identically distributed (i.i.d.), or that the sequence is a Markov
chain, that it is a stationary process, etc. More generally, one can assume that the data is generated by
a probability measure that belongs to a certain set C. In these cases the goal is to have the discrepancy
between the predicted and the “true” probabilities to go to zero, if possible, with guarantees on the speed
of convergence.

Alternatively, rather than making some assumptions on the data, one can change the goal: the predicted
probabilities should be asymptotically as good as those given by the best reference predictor from a certain
pre-defined set.

Hypothesis testing

Given a series of observations of x1,---,x,,--- generated by some unknown probability measure u, the
problem is to test a certain given hypothesis Hy about p, versus a given alternative hypothesis H;. There
are many different examples of this problem. Perhaps the simplest one is testing a simple hypothesis “u is
Bernoulli i.i.d. measure with probability of 0 equals 1/2” versus “u is Bernoulli i.i.d. with the parameter
different from 1/2”. More interesting cases include the problems of model verification: for example, testing
that 1 is a Markov chain, versus that it is a stationary ergodic process but not a Markov chain. In the case
when we have not one but several series of observations, we may wish to test the hypothesis that they are
independent, or that they are generated by the same distribution. Applications of these problems to a more
general class of machine learning tasks include the problem of feature selection, the problem of testing that
a certain behaviour (such pulling a certain arm of a bandit, or using a certain policy) is better (in terms of
achieving some goal, or collecting some rewards) than another behaviour, or than a class of other behaviours.

The problem of hypothesis testing can also be studied in its general formulations: given two (abstract)
hypothesis Hy and H; about the unknown measure that generates the data, fund out whether it is possible
to test Hy against H; (with confidence), and if yes then how can one do it.

Clustering

The problem of clustering, while being a classical problem of mathematical statistics, belongs to the realm

of unsupervised learning. For time series, this problem can be formulated as follows: given several samples
at = (a1, - 2p,), 7N = (aky, -, xh),), we wish group similar objects together. While this is of course

not a precise formulation, it can be made precise if we assume that the samples were generated by k
different distributions. Alternatively, one may assume some specific model on the data, leading to different
formalizations of the problem.
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3.4. Statistical learning

3.4.1.

3.4.2.

Before detailing some issues of statistical learning, let us remind the definition of a few terms.
Glossary

Machine learning refers to a system capable of the autonomous acquisition and integration of
knowledge. This capacity to learn from experience, analytical observation, and other means,
results in a system that can continuously self-improve and thereby offer increased efficiency and
effectiveness. (source: http://www.aaai.org/AlTopics/html/machine.htmlAAAI website)

Statistical learning is an approach to machine intelligence which is based on statistical modeling of
data. With a statistical model in hand, one applies probability theory and decision theory to get
an algorithm. This is opposed to using training data merely to select among different algorithms
or using heuristics/“common sense” to design an algorithm.

Kernel method Generally speaking, a kernel function is a function that maps a couple of points
to a real value. Typically, this value is a measure of dissimilarity between the two points.
Assuming a few properties on it, the kernel function implicitly defines a dot product in some
function space. This very nice formal property as well as a bunch of others have ensured a
strong appeal for these methods in the last 10 years in the field of function approximation. Many
classical algorithms have been “kernelized”, that is, restated in a much more general way than
their original formulation. Kernels also implicitly induce the representation of data in a certain
“suitable” space where the problem to solve (classification, regression, ...) is expected to be
simpler (non-linearity turns to linearity).

The fundamental tools used in SEQUEL come from the field of statistical learning [73]. We briefly present
the most important for us to date, namely, kernel-based non parametric function approximation, and non
parametric Bayesian models.

Kernel methods for non parametric function approximation

In statistics in general, and applied mathematics, the approximation of a multi-dimensional real function
given some samples is a well-known problem (known as either regression, or interpolation, or function
approximation, ...). Regressing a function from data is a key ingredient of our research, or to the least, a
basic component of most of our algorithms. In the context of sequential learning, we have to regress a function
while data samples are being obtained one at a time, while keeping the constraint to be able to predict points
at any step along the acquisition process. In sequential decision problems, we typically have to learn a value
function, or a policy.

Many methods have been proposed for this purpose. We are looking for suitable ones to cope with the problems
we wish to solve. In reinforcement learning, the value function may have areas where the gradient is large;
these are areas where the approximation is difficult, while these are also the areas where the accuracy of the
approximation should be maximal to obtain a good policy (and where, otherwise, a bad choice of action may
imply catastrophic consequences).

We particularly favor non parametric methods since they make quite a few assumptions about the function
to learn. In particular, we have strong interests in [ -regularization, and the (kernelized-)LARS algorithm. /;-
regularization yields sparse solutions, and the LARS approach produces the whole regularization path very
efficiently, which helps solving the regularization parameter tuning problem.

Non-parametric Bayesian models

Numerous problems in signal processing may be solved efficiently by way of a Bayesian approach. The
use of Monte-Carlo methods allows us to handle non-linear, as well as non—Gaussian, problems. In their
standard form, they require the formulation of probability densities in a parametric form. For instance, it
is a common usage to use Gaussian likelihood, because it is handy. However, in some applications such as
Bayesian filtering, or blind deconvolution, the choice of a parametric form of the density of the noise is
often arbitrary. If this choice is wrong, it may also have dramatic consequences on the estimation quality.
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To overcome this shortcoming, one possible approach is to consider that this density must also be estimated
from data. A general Bayesian approach then consists in defining a probabilistic space associated with the
possible outcomes of the object to be estimated. Applied to density estimation, it means that we need to define
a probability measure on the probability density of the noise : such a measure is called a random measure. The
classical Bayesian inference procedures can then been used. This approach being by nature non parametric,
the associated frame is called Non Parametric Bayesian.

In particular, mixtures of Dirichlet processes [72] provide a very powerful formalism. Dirichlet Processes are
a possible random measure and Mixtures of Dirichlet Processes are an extension of well-known finite mixture
models. Given a mixture density f(z|f), and G(df) = >";—, widu, (df), a Dirichlet process, we define a
mixture of Dirichlet processes as:

F(z) = /@ F@l0)Gd0) = S wif(2lUx) )
k=1

where F'(z) is the density to be estimated. The class of densities that may be written as a mixture of Dirichlet
processes is very wide, so that they really fit a very large number of applications.

Given a set of observations, the estimation of the parameters of a mixture of Dirichlet processes is performed
by way of a Monte Carlo Markov Chain (MCMC) algorithm. Dirichlet Process Mixture are also widely used in
clustering problems. Once the parameters of a mixture are estimated, they can be interpreted as the parameters
of a specific cluster defining a class as well. Dirichlet processes are well known within the machine learning
community and its potential in statistical signal processing still need to be developped.

Random Finite Sets for multisensor multitarget tracking

In the general multi-sensor multi-target Bayesian framework, an unknown (and possibly varying) number of
targets whose states 1, ...x,, are observed by several sensors which produce a collection of measurements
21, ..., Zm at every time step k. Well-known models to this problem are track-based models, such as the joint
probability data association (JPDA), or joint multi-target probabilities, such as the joint multi-target probability
density. Common difficulties in multi-target tracking arise from the fact that the system state and the collection
of measures from sensors are unordered and their size evolve randomly through time. Vector-based algorithms
must therefore account for state coordinates exchanges and missing data within an unknown time interval.
Although this approach is very popular and has resulted in many algorithms in the past, it may not the optimal
way to tackle the problem, since the sate and the data are in fact sets and not vectors.

The random finite set theory provides a powerful framework to deal with these issues. Mahler’s work on
finite sets statistics (FISST) provides a mathematical framework to build multi-object densities and derive the
Bayesian rules for state prediction and state estimation. Randomness on object number and their states are
encapsulated into random finite sets (RFS), namely multi-target(state) sets X = {x1, ..., 2, } and multi-sensor
(measurement) set Zk = {z1, ..., z,m, }. The objective is then to propagate the multitarget probability density
frix(X|Z(k)) by using the Bayesian set equations at every time step k:

fk“‘k(X'Z(k)):/fk+1|k(X|W)fk\k(W|Z(k))5W

Sr1(Zrs1 |1 X) frop 1 (X1 Z)
I fer1(Zrg W) froqr e (W20 oW

®)

flc+1\k:+1(X|Z(k+l)) =

where:

o X ={x,..,x,} is a multi-target state, i.c. a finite set of elements x; defined on the single-target
space X; 2

2The state x; of a target is usually composed of its position, its velocity, etc.
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o Ziy1={z1,...,zm} is the current multi-sensor observation, i.e. a collection of measures z; pro-
duced at time k + 1 by all the sensors;

o ZW =y, <k Zt is the collection of observations up to time k;

o fur(W|Z (k)) is the current multi-target posterior density in state 1V;
®  fit1x(X|W) is the current multi-target Markov transition density, from state 1V to state X;
e  fry1(Z]X) is the current multi-sensor/multi-target likelihood function.

Although equations (5) may seem similar to the classical single-sensor/single-target Bayesian equations, they
are generally intractable because of the presence of the set integrals. For, a RFS = is characterized by the
family of its Janossy densities j= 1 («1), j=,2(21, Z2)... and not just by one density as it is the case with vectors.
Mabhler then introduced the PHD, defined on single-target state space. The PHD is the quantity whose integral
on any region S is the expected number of targets inside .S. Mahler proved that the PHD is the first-moment
density of the multi-target probability density. Although defined on single-state space X, the PHD encapsulates
information on both target number and states. The Probability Hypothesis Density is a well-known method for
single-sensor multi-target tracking problems in a Bayesian framework, but the extension to the multi-sensor
case seems to remain a challenge.

4. Application Domains
4.1. Outline

SEQUEL aims at solving problems of prediction, as well as problems of optimal and adaptive control. As such,
the application domains are very numerous.

The application domains have been organized as follows:

e adaptive control,

e signal analysis and processing,
e functional prediction,

e neuroscience.

4.2. Adaptive control

Adaptive control is an important application of the research being done in SEQUEL. Reinforcement learning
(RL) precisely aims at controling the behavior of systems and may be used in situations with more or less
information available. Of course, the more information, the better, in which case methods of (approximate)
dynamic programming may be used [77]. But, reinforcement learning may also handle situations where the
dynamics of the system is unknown, situations where the system is partially observable, and non stationary
situations. Indeed, in these cases, the behavior is learned by interacting with the environment and thus naturally
adapts to the changes of the environment. Furthermore, the adaptive system may also take advantage of expert
knowledge when available.

Clearly, the spectrum of potential applications is very wide: as far as an agent (a human, a robot, a virtual
agent) has to take a decision, in particular in cases where he lacks some information to take the decision, this
enters the scope of our activities. To exemplify the potential applications, let us cite:

e game softwares: in the 1990’s, RL has been the basis of a very successful Backgammon program,
TD-Gammon [83] that learned to play at an expert level by basically playing a very large amount of
games against itself. Today, various games are studied with RL techniques.

e many optimization problems that are closely related to operation research, but taking into account
the uncertainty, and the stochasticity of the environment: see the job-shop scheduling, or the cellular
phone frequency allocation problems, resource allocation in general [77]

e we can also foresee that some progress may be made by using RL to design adaptive conversational
agents, or system-level as well as application-level operating systems that adapt to their users habits.
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More generally, these ideas fall into what adaptive control may bring to human beings, in making
their life simpler, by being embedded in an environment that is made to help them, an idea phrased
as “ambient intelligence”.

e The sensor management problem consists in determining the best way to task several sensors when
each sensor has many modes and search patterns. In the detection/tracking applications, the tasks
assigned to a sensor management system are for instance:

— detect targets,

— track the targets in the case of a moving target and/or a smart target (a smart target can
change its behavior when it detects that it is under analysis),

— combine all the detections in order to track each moving target,

— dynamically allocate the sensors in order to achieve the previous three tasks in an optimal
way. The allocation of sensors, and their modes, thus defines the action space of the
underlying Markov decision problem.

In the more general situation, some sensors may be localized at the same place while others are
dispatched over a given volume. Tasking a sensor may include, at each moment, such choices as
where to point and/or what mode to use. Tasking a group of sensors includes the tasking of each
individual sensor but also the choice of collaborating sensors subgroups. Of course, the sensor
management problem is related to an objective. In general, sensors must balance complex trade-
offs between achieving mission goals such as detecting new targets, tracking existing targets, and
identifying existing targets. The word “target” is used here in its most general meaning, and the
potential applications are not restricted to military applications. Whatever the underlying application,
the sensor management problem consists in choosing at each time an action within the set of available
actions.

e sequential decision processes are also very well-known in economy. They may be used as a decision
aid tool, to help in the design of social helps, or the implementation of plants (see [81], [80] for such
applications).

4.3. Signal analysis and processing

Applications of sequential learning in the field of signal processing are also very numerous. A signal is
naturally sequential as it flows. It usually comes from the recording of the output of sensors but the recording
of any sequence of numbers may be considered as a signal like the stock-exchange rates evolution with respect
to time and/or place, the number of consumers at a mall entrance or the number of connections to a web site.
Signal processing has several objectives: predict , estimate, remove noise, characterize or classify. The signal is
often considered as sequential: we want to predict, estimate or classify a value (or a feature) at time ¢ knowing
the past values of the parameter of interest or past values of data related to this parameter.

Signals may be processed in several ways. One of the best way is the time-frequency analysis in which the
frequencies of each signal are analyzed with respect to time. This concept has been generalized to the time-
scale analysis obtained by a wavelet transform. Both analysis are based on the projection of the original signal
onto a well-chosen function basis. Signal processing is also closely related to the probability field as the
uncertainty inherent to many signals leads to consider them as stochastic processes: the Bayesian framework
is actually one of the main frameworks within which signals are processed for many purposes. However, there
exists alternatives like belief functions. Belief functions were introduced by Demspter few decades ago and
have been successfully used in the few past years in fields where probability had, during many years, no
alternatives like in classification. Belief functions can be viewed as a generalization of probabilities which can
capture both imprecision and uncertainty. Belief functions are also closely related to data fusion where once
more they can be considered as a serious alternative to probabilities.
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4.4. Functional prediction

One of the current trends in machine learning aims at dealing with data that are functions, rather than points or
vectors. Generally speaking, functions represent a behavior (of a person, of an apparatus, or of an algorithm,
or a response of a system, ...).

One application of functional prediction which is particularly emphasized these days, is the understanding of

client behavior, either in material shops, or in virtual shops on the web. This understanding may then be used
for different ends, such as the management of stocks according to sales, the proposition of products according
to those already bought, the “instantaneous” management of some resource in the shop (advisors, cashiers,
instant promotions, personalized advertisement, ...).

4.5. Neuroscience

Machine learning methods may be used for at least two means in neurosciences:

1.

as in any other (experimental) scientific domain, the machine learning methods relying heavily on
statistics, they may be used to analyse experimental data,

dealing with induction learning, that is the ability to generalize from facts which is an ability
that is considered to be one of the basic components of “intelligence”, machine learning may be
considered as a model of learning in living beings. In particular, the temporal difference methods
for reinforcement learning has strong ties with various concepts of psychology (Thorndike’s law of
effect, and the Rescorla-Wagner law to name the two most well-known).

5. Software

5.1. Introduction

In 2011, SEQUEL continued the development of software for computer games (notably Go) and also developed
two novel libraries for functional regression and data mining.

5.2. Computer Games
Participant: Rémi Coulom.

We developed three main softwares for computer games:

Crazy Stone is a top-level Go-playing program that has been developed by Rémi Coulom since
2005. Crazy Stone won several major international Go tournaments in the past. In 2011, its strength
improved to 5 dan on the KGS Go Server. It is distributed as a commercial product by Unbalance
Corporation (Japan). S-month work in 2011. URL: http://remi.coulom.free.fr/CrazyStone/

Crazy Hanafuda is a new program to play the Japanese game of Hanafuda. 3 weeks of work in 2011.
Discussion are in progress for licensing it.

CLOP is a tool for automatic parameter optimization of game-playing programs. Distributed as
freeware (GPL). One month of work in 2011. Available at: http://remi.coulom.free.fr/CLOP/

5.3. Functional Regression
Participant: Hachem Kadri.

A software package in C++ of algorithms for nonlinear functional data analysis using our operator-valued
kernel framework (see sec. 6.4.1) is under development. A beta-version of the software can be downloaded at:
https://gforge.inria.fr/frs/?group_id=982.


http://remi.coulom.free.fr/CrazyStone/
http://remi.coulom.free.fr/CLOP/
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The aim of this library is to grow and be shared in our scientific community, and also to be a software resource
for our group.

5.4. Data mining library

Participant: Sertan Girgin.

A fully stand-alone library for data mining has been developed, including many classical algorithms for
supervised and non supervised learning. This library is available as an internal resource for the group.

6. New Results

6.1. Introduction

The new results are organized in the following sections:

1. decision under uncertainty,

2. foundations of machine learning,

3. supervised learning,

4. signal processing (sensor networks),
5.

other results.

6.2. Decision Under Uncertainty

Participants: Lucian Busoniu, Alexandra Carpentier, Rémi Coulom, Victor Gabillon, Mohammad
Ghavamzadeh, Sertan Girgin, Jean-Francois Hren, Alessandro Lazaric, Manuel Loth, Odalric-Ambrym
Maillard, Rémi Munos, Olivier Nicol, Philippe Preux, Daniil Ryabko.

6.2.1. Reinforcement learning and approximate dynamic programming

In the domain of reinforcement learning and approximate dynamic programming, we identify two main lines
of research.

6.2.1.1. Links between Approximate Dynamic Programming and Statistical Learning Theory

The main objective here is to use tools from statistical learning theory to derive finite-sample performance
bounds for RL and ADP algorithms. The goal is to derive bounds on the performance of the policies induced
by these algorithms in terms of the number of simulation data and the capacity and approximation power of
the considered function and policy spaces. The results of this study allow us to have a better understanding of
the functionality of these algorithms and help us to design them more efficiently. The main contributions to
this research line in 2011 are:

e C(lassification-based Policy Iteration with a Critic [25], [51]. In collaboration with Bruno Scherrer
(INRIA Nancy - Grand Est, Team MAIA) we extended last year work on classification-based policy
iteration by adding a value function approximation component (critic) to rollout classification-based
policy iteration (RCPI) algorithms. The idea is to use a critic to approximate the return after we
truncate the rollout trajectories. This allows us to control the bias and variance of the rollout estimates
of the action-value function. Therefore, the introduction of a critic can improve the accuracy of the
rollout estimates, and as a result, enhance the performance of the RCPI algorithm. We presented a
new RCPI algorithm, called direct policy iteration with critic (DPI-Critic), and provided its finite-
sample analysis when the critic is based on the LSTD method. We also empirically evaluated the
performance of DPI-Critic and compared it with DPI and LSPI in two benchmark reinforcement
learning problems.
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o Finite-Sample Analysis of Least-Squares Policy Iteration [10], [45]. We extended last year work
on the finite-sample analysis of least-squares temporal-difference (LSTD) to the least-squares policy
iteration (LSPI) algorithm. In particular, we analyzed how the error at each policy evaluation step is
propagated through the iterations of a policy iteration method, and derive a performance bound for
the LSPI algorithm.

e Speedy Q-Learning [16], [48]. We introduce a new convergent variant of Q-learning, called speedy
Q-learning, to address the problem of slow convergence in the standard form of the Q-learning
algorithm. We prove a PAC bound on the performance of SQL, which shows that for an MDP with
n state-action pairs and the discount factor y only T = O(log(n)/(€2(1 —~)*)) steps are required
for the SQL algorithm to converge to an e-optimal action-value function with high probability. This
bound has a better dependency on 1/¢ and 1/(1 — ), and thus, is tighter than the best available
result for Q-learning. Our bound is also superior to the existing results for both model-free and
model-based instances of batch Q-value iteration that are considered to be more efficient than the
incremental methods like Q-learning.

e Selecting the State-Representation in Reinforcement Learning [34]. The problem of selecting
the right state-representation in a reinforcement learning problem is considered. Several models
(functions mapping past observations to a finite set) of the observations are given, and it is known
that for at least one of these models the resulting state dynamics are indeed Markovian. Without
knowing neither which of the models is the correct one, nor what are the probabilistic characteristics
of the resulting MDP, it is required to obtain as much reward as the optimal policy for the correct
model (or for the best of the correct models, if there are several). We propose an algorithm that
achieves that, with a regret of order T2/3 where T is the horizon time.

e Transfer from Multiple MDPs [32]. Transfer reinforcement learning (RL) methods leverage on
the experience collected on a set of source tasks to speed-up RL algorithms. A simple and effective
approach is to transfer samples from source tasks and include them in the training set used to solve
a target task. In this paper, we investigate the theoretical properties of this transfer method and we
introduce novel algorithms adapting the transfer process on the basis of the similarity between source
and target tasks. Finally, we report illustrative experimental results in a continuous chain problem.

6.2.1.2. RL in High-dimensional Spaces

The main objective here is to devise, analyze, implement, and experiment with RL algorithms whose sample
and computational complexities do not grow rapidly with the dimension of the state space. We have tackled
this problem from two different angles:

o Exploiting the Regularities of the Problem [57], [8], [27]. In order to solve RL in high dimensions,
we should exploit all the regularities of the problem in hand. Smoothness is the most common
regularity. We continued our collaboration with Amir massoud Farahmand and Csaba Szepesvari
at the university of Alberta, Canada, and Shie Mannor at Technion, Israel, on using regularization
methods for automatic model selection for value function approximation in RL. We have devised
and analyzed the first /5-regularized RL algorithms by adding ¢5-regularization to three well-known
ADP algorithms: fitted Q-iteration, modified Bellman residual minimization, and least-squares
temporal-difference learning [57], [8]. The designed algorithms work in both linear and reproducing
kernel Hilbert spaces. Sparsity is another form of regularity that clearly plays a central role in
the emerging theory of learning in high dimensions. We have worked on using ¢;-regularization
in approximate dynamic programming and RL, which may also serve as a method for feature
selection in value function approximation. We have derived finite-sample performance bounds for
an algorithm resulting from adding ¢ -penalty to the widely-used least-squares temporal-difference
learning (LSTD) algorithm [27].

e Random Projections [28], [52]. We have looked into recent directions popularized in compres-
sive sensing concerning the preservation of properties, such as norm or inner-product, of high
dimensional objects when projected on possibly much lower dimensional random subspaces. We
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have studied the popular LSTD algorithm when a space of low dimension is generated with a ran-
dom projection from the high-dimensional space, and derived performance bounds for the resulting
algorithm [28], [52].

6.2.2. Planning and exploration vs. exploitation trade-off

In the domain of planning and exploration-exploitation algorithms, we identify two main lines of research.

6.2.2.1. Multi-arm Bandit, Online Learning and Optimization

e Active Learning in Multi-Armed Bandit Problems [18], [49], [24], [50]. This can be seen as
an online allocation problem with several options and is closely related to the problem of optimal
experimental design in statistics. The objective here is to allocate a fixed budget to a finite (or
possibly infinite) number of options (arms) in order to achieve the best accuracy in estimating the
quality of each option. In addition to having application in a number of different fields such as
online advertisement and personalizing treatment, this problem is of specific importance in RL in
which generating training data is usually expensive. In this framework, we have studied the following
two problems: 1) estimating the mean values of all the arms uniformly well in a multi-armed bandit
setting [18], [49], and 2) identifying the best arm in each of the bandits in a multi-bandit multi-armed
setting [24], [50]. For each problem, we have developed algorithms with theoretical guarantees.

e Finite Time Analysis of Stratified Sampling for Monte Carlo [20]. We consider the problem of
stratified sampling for Monte-Carlo integration. We model this problem in a multi-armed bandit
setting, where the arms represent the strata (an interval in the input domain), and the goal is to
estimate a weighted average of the mean values of the arms. We propose a strategy that samples the
arms according to an upper bound on their standard deviations and compare its estimation quality
to an ideal allocation that would know the standard deviations of the strata. We provide two regret
analyses: a distribution-dependent bound O(n~3/2) that depends on a measure of the disparity of
the strata, and a distribution-free bound O(n~%/3) that does not.

e Optimistic Optimization of a Deterministic Function without the Knowledge of its Smoothness
[36]. We consider a global optimization problem of a deterministic function f in a semi-metric space,
given a finite budget of n evaluations. The function f is assumed to be locally smooth (around one
of its global maxima) with respect to a semi-metric. We describe two algorithms based on optimistic
exploration that use a hierarchical partitioning of the space at all scales. A first contribution is an
algorithm, DOO, that requires the knowledge of . We report a finite-sample performance bound
in terms of a measure of the quantity of near-optimal states. We then define a second algorithm,
SOO, which does not require the knowledge of the semi-metric under which f is smooth, and whose
performance is almost as good as DOO optimally-fitted.

e Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences
[35]. We consider a Kullback-Leibler-based algorithm for the stochastic multi-armed bandit problem
in the case of distributions with finite supports (not necessarily known beforehand), whose asymp-
totic regret matches the lower bound of Burnetas and Katehakis (1996). Our contribution is to pro-
vide a finite-time analysis of this algorithm; we get bounds whose main terms are smaller than the
ones of previously known algorithms with finite-time analyses (like UCB-type algorithms).

e Adaptive bandits: Towards the best history-dependent strategy [33]. We consider multi-armed
bandit games with possibly adaptive opponents. We introduce models © of constraints based on
equivalence classes on the common history (information shared by the player and the opponent)
which define two learning scenarios: (1) The opponent is constrained, i.e. he provides rewards that
are stochastic functions of equivalence classes defined by some model. The regret is measured with
respect to (w.r.t.) the best history-dependent strategy. (2) The opponent is arbitrary and we measure
the regret w.r.t. the best strategy among all mappings from classes to actions (i.e. the best history-
class-based strategy) for the best model. This allows to model opponents (case 1) or strategies (case
2) which handles finite memory, periodicity, standard stochastic bandits and other situations. When
only one model is considered, we derive tractable algorithms achieving a tight regret (at time 1)
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bounded by O(vT AC'), where C is the number of classes. Now, when many models are available,
all known algorithms achieving a nice regret O(+/T") are unfortunately not tractable and scale poorly
with the number of models. Our contribution here is to provide tractable algorithms with regret
bounded by T72/3C'/? log (|@|)1/2.

Pure Exploration in Finitely-Armed and Continuous-Armed Bandits [5]. We consider the
framework of stochastic multi-armed bandit problems and study the possibilities and limitations
of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in
terms of their simple regret, a regret notion that captures the fact that exploration is only constrained
by the number of available rounds (not necessarily known in advance), in contrast to the case when
the cumulative regret is considered and when exploitation needs to be performed at the same time.
We believe that this performance criterion is suited to situations when the cost of pulling an arm is
expressed in terms of resources rather than rewards. We discuss the links between the simple and the
cumulative regret. One of the main results in the case of a finite number of arms is a general lower
bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter,
the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret
of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we
show that the simple regret can be minimized with respect to a family of probability distributions if
and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to
prove that the separable metric spaces are exactly the metric spaces on which these regrets can be
minimized with respect to the family of all probability distributions with continuous mean-payoff
functions.

X-Armed Bandits [6]. We consider a generalization of stochastic bandits where the set of arms,
X, is allowed to be a generic measurable space and the mean-payoff function is locally Lipschitz
with respect to a dissimilarity function that is known to the decision maker. Under this condition we
construct an arm selection policy, called HOO (hierarchical optimistic optimization), with improved
regret bounds compared to previous results for a large class of problems. In particular, our results
imply that if X is the unit hypercube in a Euclidean space and the mean-payoff function has a finite
number of global maxima around which the behavior of the function is locally continuous with a
known smoothness degree, then the expected regret of HOO is bounded up to a logarithmic factor
by \/n, that is, the rate of growth of the regret is independent of the dimension of the space. We also
prove the minimax optimality of our algorithm when the dissimilarity is a metric. Our basic strategy
has quadratic computational complexity as a function of the number of time steps and does not rely
on the doubling trick. We also introduce a modified strategy, which relies on the doubling trick but
runs in linearithmic time. Both results are improvements with respect to previous approaches.

Learning with Stochastic Inputs and Adversarial Outputs [11]. Most of the research in online
learning is focused either on the problem of adversarial classification (i.e., both inputs and labels
are arbitrarily chosen by an adversary) or on the traditional supervised learning problem in which
samples are independent and identically distributed according to a stationary probability distribution.
Nonetheless, in a number of domains the relationship between inputs and outputs may be adversarial,
whereas input instances are i.i.d. from a stationary distribution (e.g., user preferences). This scenario
can be formalized as a learning problem with stochastic inputs and adversarial outputs. In this
paper, we introduce this novel stochastic-adversarial learning setting and we analyze its learnability.
In particular, we show that in binary classification, given a hypothesis space H with finite VC-
dimension, it is possible to design an algorithm which incrementally builds a suitable finite set
of hypotheses from H used as input for an exponentially weighted forecaster and achieves a
cumulative regret of order /nV C(H )logn with overwhelming probability. This result shows that
whenever inputs are i.i.d., it is possible to solve any binary classification problem using a finite VC-
dimension hypothesis space with a sub-linear regret independently from the way labels are generated
(either stochastic or adversarial). We also discuss extensions to multi-label classification, regression,
learning from experts and bandit settings with stochastic side information, and application to games.
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o ICML Exploration-Exploitation Challenge [65], [63]. Olivier Nicol and Jérémie Mary won the
ICML challenge on Exploration and Exploitation 2 organized by Cambridge on dataset provided by
Adobe. The winning approach is based on ideas close to bayesian networks and Thomson sampling
as Ad Predictor from Microsoft. These kind of succes emphases the need for better theoretical
analysis of theses frameworks. The challenge was also a good occasion to think about the best way
to evaluate online politics (this part also attracts interest from Orange Labs). A publication to JLMR
is submitted.

6.2.2.2. Planning

e Optimistic Planning for Sparsely Stochastic Systems [17]. We propose an online planning
algorithm for finite action, sparsely stochastic Markov decision processes, in which the random
state transitions can only end up in a small number of possible next states. The algorithm builds
a planning tree by iteratively expanding states, where each expansion exploits sparsity to add all
possible successor states. Each state to expand is actively chosen to improve the knowledge about
action quality, and this allows the algorithm to return a good action after a strictly limited number of
expansions. More specifically, the active selection method is optimistic in that it chooses the most
promising states first, so the novel algorithm is called optimistic planning for sparsely stochastic
systems. We note that the new algorithm can also be seen as model-predictive (receding-horizon)
control. The algorithm obtains promising numerical results, including the successful online control
of a simulated HIV infection with stochastic drug effectiveness.

e Optimistic Planning in Markov decision processes [46]. We review a class of online planning
algorithms for deterministic and stochastic optimal control problems, modeled as Markov decision
processes. At each discrete time step, these algorithms maximize the predicted value of planning
policies from the current state, and apply the first action of the best policy found. An overall
receding-horizon algorithm results, which can also be seen as a type of model-predictive control.
The space of planning policies is explored optimistically, focusing on areas with largest upper
bounds on the value or upper confidence bounds, in the stochastic case. The resulting optimistic
planning framework integrates several types of optimism previously used in planning, optimization,
and reinforcement learning, in order to obtain several intuitive algorithms with good performance
guarantees. We describe in detail three recent such algorithms, outline the theoretical guarantees on
their performance, and illustrate their behavior in a numerical example.

6.2.3. Applications

6.2.3.1. Management of ad campaigns on the web

More work has been dedicated to the topic aiming at optimizing ad campaigns on the web under real-time
constraints, in a dynamic environment [9].

6.3. Foundations of Machine Learning
Participants: Daniil Ryabko, Azadeh Khaleghi, Romaric Gaudel.

6.3.1. Sequence prediction in the most general form

The problem of sequence prediction consists in forecasting, on each step of time n, the probabilities of the next
outcome of the observed sequence of data x1, 22, - - -, Zy, - - -. In the most general formulation of the problem,
we assume that we are given a set C of probability measures (on the space of infinite sequences). We can then
assume that the sequence is generated by an unknown measure p that belongs to C, or that the measure p is
arbitrary, but we compare the performance of our predictor to that of the best predictor in C.
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Relation between the realizable and non-realizable cases of the sequence prediction problem

The realizable case of the sequence prediction problem is when the measure 1 belongs to an arbitrary but
known class € of process measures. The non-realizable case is when p is completely arbitrary, but the
prediction performance is measured with respect to a given set C of process measures. We are interested
in the relations between these problems and between their solutions, as well as in characterizing the cases
when a solution exists, and finding these solutions. In this work [13] we show that if the quality of prediction
is measured by total variation distance, then these problems coincide, while if it is measured by expected
average KL-divergence, then they are different. For some of the formalizations we also show that when a
solution exists, it can be obtained as a Bayes mixture over a countable subset of C. As an illustration to the
general results obtained, we show that a solution to the non-realizable case of the sequence prediction problem
exists for the set of all finite-memory processes, but does not exist for the set of all stationary processes.

Statistical inference

We continue to obtain new results using the theoretical framework developed recently for studying time series
generated by stationary ergodic time series. This year, new results obtained include a topological characterizing
of composite hypotheses for which consistent tests exist, as well as new results on clustering.

A criterion for the existence of consistent tests

The most general result that we have obtained [14] on hypothesis testing provides a complete characterization
(necessary and sufficient conditions) for the existence of a consistent test for membership to an arbitrary family
Hj of stationary ergodic discrete-valued processes, against H; which is the complement of H|, to this class of
processes. The criterion is that Hj has to be closed in the topology of distributional distance, and closed under
taking ergodic decompositions of its elements.

Clustering
Online clustering of time series

An asymptotically consistent algorithm has been proposed for the problem of online clustering of time series.
There is a growing body of time series samples, each of which grows with time. On each time step, it is
required to group these time series into k clusters. It is known that each of the time series is generated by
one out of k unknown stationary ergodic distributions. An algorithm is proposed that, for each fixed portion
of samples, eventually (with probability 1) puts into the same group those and only those samples that were
generated by the same distribution. Empirical performance of the algorithm is evaluated on synthetic and real
data.

Clustering of ranked data

We introduced [47] a novel approach to clustering rank data on a set of possibly large cardinality n € N*,
relying upon Fourier representation of functions defined on the symmetric group &,,. In the proposed setup,
covering a wide variety of practical situations, rank data are viewed as distributions on &,,. Cluster analysis
aims at segmenting data into homogeneous subgroups, hopefully very dissimilar in a certain sense. Whereas
considering dissimilarity measures/distances between distributions on the non commutative group G,,, in a
coordinate manner by viewing it as embedded in the set [0, 1]"! for instance, hardly yields interpretable
results and leads to face obvious computational issues, evaluating the closeness of groups of permutations
in the Fourier domain may be much easier in contrast. Indeed, in a wide variety of situations, a few well-
chosen Fourier (matrix) coefficients may permit to approximate efficiently two distributions on G,, as well
as their degree of dissimilarity, while describing global properties in an interpretable fashion. Following in
the footsteps of recent advances in automatic feature selection in the context of unsupervised learning, we
propose to cast the task of clustering rankings in terms of optimization of a criterion that can be expressed in
the Fourier domain in a simple manner.

6.4. Supervised learning

Participants: Alexandra Carpentier, Emmanuel Duflos, Hachem Kadri, Manuel Loth, Odalric-Ambrym
Maillard, Rémi Munos, Philippe Preux, Christophe Salperwyck.
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6.4.1. Regression and classification

e Sparse Recovery with Brownian Sensing [19].

We consider the problem of recovering the parameter « of a sparse function f (i.e. the number of
non-zero entries of « is small compared to the number K of features) given noisy evaluations of f
at a set of well-chosen sampling points. We introduce an additional randomization process, called
Brownian sensing, based on the computation of stochastic integrals, which produces a Gaussian
sensing matrix, for which good recovery properties are proven, independently on the number of
sampling points N, even when the features are arbitrarily non-orthogonal. Under the assumption
that f is Holder continuous with exponent at least 1/2 we provide an estimate of the parameter with
quadratic error O(||n||/N), where 7 is the observation noise. The method uses a set of sampling
points uniformly distributed along a one-dimensional curve selected according to the features. We
report numerical experiments illustrating our method.

e Operator-valued Kernels for Nonlinear FDA [31], [38], [30], [53] Following the extension of
RKHS to functional setting [74], we further developed this work in [38] for functional supervised
classification.

We introduced a set of rigorously defined operator-valued kernels that can be valuably applied to
nonparametric operator learning when input and output data are continuous smooth functions, and
we have showed their use for solving the problem of minimizing a L?-regularized functional in the
case of functional outputs without the need to discretize covariate and target functions [53].

The framework developed can also be applied when the input data are both discrete and
continuous [30].

Our fully functional approach has been successfully applied to the problems of speech inversion [31]
and sound recognition [38], showing that the proposed framework is particularly relevant for audio
signal processing applications where attributes are really functions and dependent of each other.

This work is done in collaboration with Francis Bach (INRIA, Sierra), Alain Rakotomamonjy and
Stéphane Canu (LITIS, Rouen).

o Datum-wise representation [44], [54]. We consider supervised classification. We introduce the
concept of datum-wise representation for supervised classification [44]. While traditional approaches
yield a “best” representation at the data space level, that is, the same representation is used for all
the data, we proposed the idea, as well as an algorithm, that yields the “best” representation for
each data. Among other appealing properties, this leads to sparse representation of each data, and
an averaged sparser representation of each data in the data space. Along a classifier, the learning
algorithm produces a “representer”, that is a function that yields a representation given a data.

We further improved this approach to encompass various settings which are traditionally kept as
different (cost-sensitive classification and different structured sparsity) [54].

e Iso-regularization descent [1]. Manuel Loth has defended his PhD dissertation [1] where he has
provided a detailed presentation and analysis of his algorithm to solve the LASSO. This algorithm is
very efficient. It is an active set algorithm that solves the LASSO by considering it a convex problem
with linear constraints.

e Learning with few examples [41], [64]. Christophe Salperwyck has studied the performance of
various classifiers when few examples are available. This is an important point in incremental learn-
ing, and few studies have been devoted to this particular setting. Performance we are accustomed to
when the examples are quite numerous are severely disturbed in this setting. For more details, please
see [41], [64].

e Incremental discretization [40]. In incremental learning, discretization should be adaptive in order
to cope with the values of the attributes that are observed. This issue is currently under study by
Christophe Salperwyck [40].
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6.5. Sensors Networks: Tracking, Localization and Communication

6.5.1.

6.5.2.

Participants: Emmanuel Delande, Emmanuel Duflos, Pierre Chainais, Philippe Vanheeghe.

The sensor management problem

The aim of this work is to manage a set of sensors to track vehicles or groups of people in land applications. Our
work focuses on sensor management in the frame of the random finite sets where the Probability Hypothesis
Density (PHD) is a well-known method for single-sensor multi-target tracking problems in a Bayesian
framework, but the extension to the multi-sensor case seems to remain a challenge. We have proposed an
extension of Mahler’s work to the multi-sensor case by providing an expression of the true PHD multi-sensor
data update equation. Then, based on the configuration of the sensors fields of view (FOVs), a joint partitioning
of both the sensors and the state space provides an equivalent yet more practical expression of the data update
equation, allowing a more effective implementation in specific FOV configurations ( [70]). This work is done
in collaboration with Thales Communications. The multi-sensor / multi-target filtering problem by using PHD
filtering methods are topics developed in the The PhD thesis of Emmanuel Delande. This PhD thesis entitled
"Multi-sensor PHD filtering with application to sensor management" will be defended in December 2011.
In addition to the different questions described above, see also [22] and [23]. Then, a new approach using
operational objectives, related to the type of application, for sensor manager is proposed.

Statistical signal processing: application to civil engineering

We have obtained a PICS (International Project for Scientific Cooperation) from the CNRS in 2008 for 3
years to work in cooperation with the Department of Civil and Environmental Engineering of the University
of Waterloo (Canada). During this cooperation we have developed a belief functions based method to track the
building materials on a construction site. ( [71]). Based on this cooperation, during 2011 a new common
research project with the same department of the University of Waterloo has been built, and is actually
submitted for funding. The topic of this project is the using of nonparametric Bayesian models in the area
of Non-destructive Testing.

6.5.3. Accurate Localization using Satellites in Urban Canyons

6.5.4.

Today, Global Navigation Satellite Systems (GNSS) have penetrated the transport field through applications
such as monitoring of containers. These applications do not necessarily request a high availability, integrity and
accuracy of the positioning system. For safety applications (as complete guidance of autonomous vehicles),
performances require to be more stringent. For, sensors may deliver very erroneous measurements because
of such hard external conditions which reduce significantly the possibilities to receive direct signals. The
consequences of environmental obstructions are unavailability of the service and reception of reflected signals
that degrades in particular the accuracy of the positioning. Indeed, NLOS (Non Line Of Sight) signals, i.e.
signals received after reflections on the surrounding obstacles, frequently occur in dense environments and
degrade localization accuracy because of the delays observed on the propagation time measurement creating
additional error on pseudorange estimation. In the previous years we have proposed new algorithms to improve
the localization precision. This algorithm are based on two principles : a jump multimodel approach and a joint
state - noise density estimation. We have focused this year on an approach using Dirichlet Process Mixture
to track the noise density in urban canyon while estimating the position of the vehicle. Algorithm have been
validated on real data collected in a French town : Belfort. Nicolas Viandier has defended his PhD on this
subject on June 2011 . ( [76], [75], [84], [85] [4]). These results will be presented to the Workshop Non
Parametric Bayes at the NIPS Conference en Decembre 2011 ([62]) and to the ICASSP 2011 Conference

(I37D.
Internet of Things : Mitigation of Impulsive Noise Effects

The term "Internet of Things" has come to describe a number of technologies and research disciplines that
enable the Internet to reach out into the real world of physical objects. Technologies like RFID, short-range
wireless communications, real-time localization and sensor networks are now becoming increasingly common,
bringing the Internet of Things into commercial use. In such applications the data sent by a thing to another
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may generate an impulse noise in the reception channel of objects in the neighbourhood. The noise appearing
in such applications can be considered as a-stable. In this context, we’ve tackled the problem of interference
mitigation in ad hoc networks. In such context, the multiple access interference (MAI) is known to be of an
impulsive nature. Therefore, the conventional Gaussian assumption can not be considered to model this type
of interference. Contrariwise, it can be accurately modeled by stable distributions. Here, this issue is addressed
within an Orthogonal Frequency Division Multiplexing (OFDM) transmission link assuming a symmetric a-
stable model for the signal distortion due to MAIL We have proposed a method for the joint estimation of the
transmitted multicarrier signal and the noise parameters.Based on sequential Monte Carlo (SMC) methods,
the proposed scheme allows the online estimation using a Raoblackwellized particle filter. These results have
been presented to the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2011)
[29]. We are now focusing on bayesian non linear filtering with non stationnary alpha stable measumement
noise. We have shown that a Dirichlet Process Mixture can improve the estimation by modelling the noise by
both a infinite Cauchy mixture or a infinite alpha stable mixture. These first results will be presented to the
Workshop Non Parametric Bayes at the NIPS Conference en Decembre 2011 [62].

6.5.5. Image processing and statistical image modeling

Pierre Chainais arrived in SequeL in september 2010 with the purpose of a thematic evolution toward non
parametric Bayesian approaches. This represents an important investment in very new directions on an
emerging topic at the interface between machine learning and signal/image processing. Discussions have
begun with Emmanuel Duflos and Philippe Vanheeghe on the use of non parametric Bayesian approaches
to blind deconvolution of noisy natural images. The main objective is to use together the typical structure and
sparsity of space-scale representations of images.

Pierre Chainais has continued working on several older projects. One of them deals with the segmentation
of nanotubes in microscopic imaging [12], [43]. B. Lebental at IFFSTAR works on the conception of new
nano-sensors based on the use of carbon nanotubes to build a nano-membrane. P. Chainais has developed an
image processing pipeline to analyse images of these nanomembranes so as to characterize their properties
in a precise and objective manner. Among other properties, the histograms of orientations of the nanotubes is
provided. This tool will be very useful since such nanosensors are becoming more and more common.

In solar astronomy [7], [21], we have proposed a tool for the virtual super-resolution of scale invariant textured
images. The aim of this project was to provide astronomers with plausible high-resolution images to calibrate
next generation spatial telescopes. In particular, our images can be used to optimize the compression algorithm
to be embedded in a spatial telescope. In collaboration with M. Chevaldonné and J-M. Favreau (Université
Clermont-Ferrand I), we work a software for texture synthesis on 3D surfaces [42] based on multifractal
processes. A first version of the software is under current development. More marginal is our work on the
use of stochastic processes for the simulation of turbulent pressure fields in collaboration with M. Pachebat
(Laboratoire de Mécanique et d’ Acoustique de Marseille) and Nicolas Totaro (LVA, INSA Lyon).

7. Contracts and Grants with Industry

7.1. Contracts and Grants with Industry

7.1.1. Addressing Business
Participants: Sertan Girgin, Philippe Preux.

Addressing Business develops a software to help their clients (companies) find new clients. Currently, this
software is an information system, that helps the human decision maker.

The goal of this contract was to realize a first exploratory step towards using data mining techniques to handle,
and possibly improve, this process. Confidentiality issues restrict the communication on this contract [60].
However, this study has been very successful, and we look forward further collaboration with this company
on this topic.



7.1.2.

7.1.3.

7.1.4.

7.1.5.

7.1.6.
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Orange Labs
Participants: Jérémie Mary, Olivier Nicol, Philippe Preux, Christophe Salperwyck.

There has been various activities between SEQUEL and Orange Labs.

First, the collaboration around the PhD of Christophe Salperwyck has continued. Second, a CRE has been
signed in 2011 to continue our work on web advertising, and more generally, collaborative filtering. On this
topic, Sami Naamane has been hired in Fall 2011 as PhD student.

Effigenie

Participant: Jérémie Mary.

We worked on the next steps of the optimisation of thermal control of building with Effigenie. We presented a
common project June and this start up won in summer the OSEO innovation prize (and the LMI one).

Squoring Technology

Participants: Boris Baldassari, Philippe Preux.

Boris Baldassari has been hired by Squoring Technology (Toulouse) as a PhD student in May 2011. He works
on the use of machine learning to improve the quality of the software development process.

Through the pole de compétitivité “Industries du commerce”
Participants: Sertan Girgin, Philippe Preux.

2011 is the last year of the “Ubiquitous Virtual Seller” project of the “Pdle de compétitivité Industries du
Commerce” (PICOM). We have completed our contribution related to recommendation systems [59]. This
work was done mostly in collaboration with Becquet and Oxylane.

Qualisteo
Participants: Pierre Chainais, Emmanuel Duflos.

In collaboration with Emmanuel Duflos, Pierre Chainais has been involved in the supervising of a Master
2 student within a collaboration with the company Qualisteo on the pattern recognition in electric power
consumption signals. A PhD grant is under study. The purpose is to learn how to identify the origin of the
electric consumption of a house from the power consumption alone. This problem combines signal processing
as well as machine learning questions. This project is still under discussion.

8. Partnerships and Cooperations

8.1. Regional Initiatives

8.1.1.

PICOM
see 7.1.5.

8.2. National Initiatives
8.2.1. DGA/Thales

The work on sensor management went on this year, focusing on the extension to the multisensor case of the
PHD filter. This work is realized in the frame of the thesis of Emmanuel Delande (Grant DGA/CNRS) in
collaboration with Thales Communication. The defense of this PhD thesis will be held in December 2011.
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8.2.2. ANR-Lampada

Participants: Mohammad Ghavamzadeh, Jérémie Mary, Olivier Nicol, Philippe Preux, Daniil Ryabko,
Christophe Salperwyck.

e Title: Learning Algorithms, Models an sPArse representations for structured DAta
o Type: National Research Agency (ANR-09-EMER-007)
e Coordinator: INRIA Lille - Nord Europe (Mostrare)

e  Others partners: Laboratoire d’Informatique Fondamentale de Marseille, Laboratoire Hubert Curien
; Saint Etienne, Laboratoire d’Informatique de Paris 6.

e See also: http://lampada.gforge.inria.fr/

e Activity Report: Philippe Preux has continued his collaboration with Ludovic Denoyer (assistant
professor, Université de Paris 6), Gabriel Arnold-Dulac (PhD student), and Patrick Gallinari (profes-
sor, Université de Paris 6). This led to the work on datum-wise representation [44], [54].

8.2.3. ANR EXPLO-RA

Participants: Lucian Busoniu, Alexandra Carpentier, Mohammad Ghavamzadeh, Jean-Francois Hren,
Alessandro Lazaric, Odalric-Ambrym Maillard, Rémi Munos, Daniil Ryabko.

o Title: EXPLOration - EXPLOitation for efficient Resource Allocation with Applications to opti-
mization, control, learning, and games

e Type: National Research Agency
e Coordinator: INRIA Lille - Nord Europe (SequeL, Rémi Munos)

e  Others partners: INRIA Saclay - Ile de France (TAO), HEC Paris (GREGHEC), Ecole Nationale des
Ponts et Chaussées (CERTIS), Université Paris 5 (CRIPS), Université Paris Dauphine (LAMSADE).

e See also: https://sites.google.com/site/anrexplora/

e Activity Report: We developed bandit algorithm for planning in Markov Decision Processes based
on the optimism in the face of uncertainty principle.

8.2.4. ANR CO-ADAPT

Participants: Alexandra Carpentier, Rémi Munos.

e Title: Brain computer co-adaptation for better interfaces
e Type: National Research Agency
e Duration: 2009-2013

e Partners: INRIA Odyssee project (Maureen Clerc), the INSERM U821 team (Olivier Bertrand), the
Laboratory of Neurobiology of Cognition (CNRS) (Boris Burle) and the laboratory of Analysis,
topology and probabilities (CNRS and University of Provence) (Bruno Torresani).

e Activity Report: In collaboration with Maureen Clerc and here student Joan Fruitet, we proposed
a new Brain Computer interface procedure to select online a discriminative motor task based on a
bandit algorithm. The efficient trading off between exploration (getting information about each motor
tasks) and exploitation (selecting those that have highest classification rates) enables to reduce the
time of the training session.
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8.2.5. ANR AMATIS

Participant: Pierre Chainais.

Title: Multifractal Analysis and Applications to Signal and Image Processing

Type: National Research Agency

Duration: 2011-2015

Partners : Univ. Paris-Est Créteil, Univ. Sciences et Technologies de Lille and INRIA (Lille=, ENST
(Telechom ParisTech), Univ. Blaise Pascal (Clermont-Ferrand), and Univ. Bretagne Sud (Vannes),
Statistical Signal Processing group at the Physics Department at the Ecole Normale Supérieure de
Lyon, one researcher from the Math. Department of Institut National des Sciences Appliquees de
Lyon and two researchers from the Laboratoire d’Analyse, Topologie et Probabilités (LAPT) of
Aix-Marseille University.

Coordinator: Univ. Paris-Est-Créteil (S. Jaffard)

Activity Report: Ideas from the multifractal framework are the basis of our current work on the
development of a new Bayesian approach to the blind deconvolution of noisy images.

8.2.6. National Partners

INRIA Nancy - Grand Est, Team MAIA, France.

—  Bruno Scherrer Collaborator
We have had collaboration on the topic of approximate dynamic programming and sta-
tistical learning and published a conference paper [25] and a technical report [51] this
year.

LITIS : Laboratoire d’Informatique, du Traitement de I’Information et des Systémes.

—  Stéphane Canu Collaborator
Emmanuel Duflos and Hachem Kadri are collaborating with Pr. Stéphane Canu on Func-
tional RKHS.

8.3. European Initiatives

8.3.1. FP7 Projects
8.3.1.1. PASCAL-2

Participants: the whole SEQUEL is involved

Title: Pattern Analysis, Statistical Modeling, and Computational Learning

Type: Cooperation (ICT), Network of Excellence (NoE)

Duration: March 2008 - February 2013

Coordinator: Univ. Southampton

Others partners: Many european organizations, universities, and research centers.

See also: http://www.pascal-network.org/

8.3.1.2. PASCAL-2 Pump Priming Programme
Participants: Mohammad Ghavamzadeh, Rémi Munos.

Title: Sparse Reinforcement Learning in High Dimensions

Type: PASCAL-2 Pump Priming Programme

Duration: November 2009 - March 2012

Partners: INRIA Lille - Nord Europe, Shie Mannor (Technion, Israel)

See also: http://sites.google.com/site/sparserl/home
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8.3.1.3. CompLACS
Participants: Mohammad Ghavamzadeh, Alessandro Lazaric, Rémi Munos, Philippe Preux, Daniil Ryabko.

e Title: Composing Learning for Artificial Cognitive Systems

e Type: Cooperation (ICT), Specific Targeted Research Project (STREP)
e Duration: March 2011 - February 2015

e  Coordinator: University College of London

e Partners: University College London, United Kingdom (John Shawe-Taylor, Stephen Hailes, David
Silver, Yee Whye Teh), University of Bristol, United Kingdom (Nello Cristianini), Royal Holloway,
United Kingdom (Chris Watkins), Radboud Universiteit Nijmegen, The Netherlands (Bert Kappen),
Technische Universitat Berlin, Germany (Manfred Opper), Montanuniversitat Leoben, Austria (Peter
Auer), Max-Planck Institute of Biological Cybernetics, Germany (Jan Peters).

e See also: http://www.complacs.org/

8.3.1.4. PIPER
Participant: Alessandro Lazaric.

e Title: New Paradigms for Preventing uncontrolled social influence in the future web
e Type: FET-Open Young Explorer Scheme

e Duration: Submitted

e Coordinator: Politecnico di Milano (Nicola Gatti)

e Partners: University of Southampton, United Kingdom (Valentin Robu, Enrico Gerdin, Nick Jen-
nings).

8.4. International Initiatives
8.4.1. INRIA Associate Teams: SEQ-RL

e Title: Decision-making under Uncertainty with Applications to Reinforcement Learning, Control,
and Games

e INRIA principal investigator: Rémi Munos
e [International Partner:
— Institution: University of Alberta (Canada)
—  Laboratory: Department of Computer Science

—  Principal investigator: Csaba Szepesvari

e  Duration: January 2010 - January 2013
o  Website: http://sites.google.com/site/associateteamualberta’home

e This associate team aims at bridging researchers from the SequeL team-project at INRIA Lille
with the Department of Computing Science of the University of Alberta in Canada. Our common
interest lies in machine learning, especially reinforcement learning, bandit algorithms and statistical
learning with applications to control and computer games. The department of Computing Science
at the University of Alberta is internationally renown as a leading research institute on these
topics. The research work spans from theory to applications. Grounded on an already existing
scientific collaboration, this associate team will make it easier to collaborate further between the
two institutes, and thus strengthen this relationship. We foresee that the associate team will boost
our collaboration, create new opportunities for financial support, and open-up a long-term fruitful
collaboration between the two institutes. The collaboration will be through organizing workshops
and exchanging researchers, postdoctoral fellows, and Ph.D. students between the two institutes.
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8.4.2. INRIA International Partners

e  University of Alberta, Edmonton, Alberta, Canada.

—  Prof. Csaba Szepesvari Collaborator
We have been working on the topic of regularized reinforcement learning over the last four
years. This year, we have one journal paper submitted [57] and one that will be submitted
soon [8] on this topic. We are also coordinators of an INRIA associate team program with
the university of Alberta.

—  Amir massoud Farahmand Collaborator
We have been working on the topic of regularized reinforcement learning over the last five
years. This year, we have one journal paper submitted [57] and one that will be submitted
soon [8] on this topic.

e  Technion - Israel Institute of Technology, Haifa, Israel.

—  Prof. Shie Mannor Collaborator

We have been collaborating on the topic of Bayesian reinforcement learning for the last
six years, on the topic of regularized reinforcement learning for the last four years, and
on the topic of reinforcement learning in high dimensions in the last two year. On the first
topic, we have a journal paper (survey) in preparation [58] this year. On the second topic,
we have one journal paper under review [57] and one in preparation [8] this year. Finally,
on the third topic, we were Co-PI’s of a PASCAL2 pump-priming program that ended in
June 2011.

e  University of Waterloo, Waterloo, Ontario, Canada.

—  Prof. Pascal Poupart Collaborator
We have been collaborating on the topic of Bayesian reinforcement learning in the last five
years. This year, we have a journal paper in preparation [58] on this topic.

e Politecnico di Milano, Italy.

—  Prof. Marcello Restelli Collaborator
We have been working on the topic of transfer in reinforcement learning over the last year.
In particular, we have one conference paper [32] and a journal paper in preparation.

—  Prof. Nicola Gatti Collaborator
We have started a collaboration on the topic of bandit mechanisms for sponsored-search
auction. This year, we have submitted a paper to AAMAS [26] and we have collaborated
on a proposal for a Marie Curie ITN and a Fet-Open Young Researcher proposal.

e  University of Southampton, United Kingdom.

—  Prof. Enrico Gerding Collaborator
We have been working on the topic of learning and mechanism design over the last year.
In particular, we have collaborated on a proposal for a Marie Curie ITN and a Fet-Open
Young Researcher proposal.

8.4.3. Visits of International Scientists
8.4.3.1. International Scientists

e  Brahim Chaib-Draa, from Université Laval, Québec.
His visit has been funded by Université de Lille 3 where he also taught.
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e Mohammad G. Azar, Ph.D. student at University of Nijmegen, The Netherlands.
Period: April 2011 - July 2011
He worked with Rémi Munos and Mohammad Ghavamzadeh on performance analysis of reinforce-
ment learning algorithms. The outcome of this collaboration has been a conference paper [16] and a
technical report [48] so far.

8.4.3.2. Internship

e  Matthew Hoffman, Ph.D. student at University of British Columbia, Canada.
Period: October 2010 - April 2011.
He worked with Alessandro Lazaric, REmi Munos, and Mohammad Ghavamzadeh on our PASCAL2
Pump-Priming project on sparse reinforcement learning in high dimensions. The outcome of this
collaboration has been a conference paper [61] so far.

9. Dissemination

9.1. Animation of the scientific community
9.1.1. Awards

Sébastien Bubeck received the second prize for the best French Ph.D in Artificial Intelligence (Al prize 2011).
9.1.2. Tutorials
e R. Munos co-organized with J.-Y. Audibert a tutorial on “Introduction to Bandits: Algorithms and

Theory” (https://sites.google.com/site/banditstutorial/) at the International Conference of Machine
Learning ICML’11).

9.1.3. Workshops and Schools

e R. Munos co-organized the Machine Learning Summer School 2011 (MLSS’11) in Bordeaux (2
weeks of lectures for about 80 international students), with Francois Caron, Manuel Davy, Pierre
Del Moral, Pierrick Legrand, Manuel Lopes.

o R Munos co-organized (with Florence Forbes, Bernard Espiau et Monique Thonnat) the Journées
INRIA autour de I’apprentissage statistique, Décembre 2011.

9.1.4. Invited Talks

e M. Ghavamzadeh, Max Planck Institute for Intelligent Systems, Tiibingen, Host: Prof. Jan Peters

(June 2011).

o M. Ghavamzadeh, University of Liege - Systems & Modeling Research Unit, Host: Prof. Damien
Ernst (June 2011).

e M. Ghavamzadeh, University of Waterloo - School of Computer Science, Host: Prof. Pascal Poupart
(November 2010).

e M. Ghavamzadeh, McGill University - School of Computer Science, Host: Prof. Joelle Pineau
(November 2010).

e M. Ghavamzadeh, University of Alberta - Al Seminar, Host: Prof. Csaba Szepesvari (November
2010).

e A Lazaric, University of Liege - Systems & Modeling Research Unit, Host: Prof. Damien Ernst
(October 2011).

e R. Munos, University of Liege, Department of Electical Engineering, February 2011.
e R. Munos, ICAPS, workshop Monte-Carlo Tree Search, Freiburg, June 2011
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R. Munos, Machine learning Summer School in Bordeaux, September 201 1.

R. Munos, Oxford, department of Computer Science, November 2011

9.1.5. Review Activities

Participation to the program committees of international conferences

E. Duflos and P. Vanheeghe were members of the Fusion’2011 International Program
Committee

E. Duflos is reviewing papers for the following journals : IEEE Transaction on Signal
Processing, International Journal of Approximate Reasoning, Information Fusion.

P. Vanheeghe is reviewing papers for the journal : IEEE Transaction on Signal Processing.
D. Ryabko: UAI 2011.

M. Ghavamzadeh: International Joint Conference on Artificial Intelligence (IICAI 2011),
European Workshop on Reinforcement Learning (EWRL 2011), International Conference
on Artificial Neural Networks (ICANN 2011), National Conference on Artificial Intelli-
gence (AAAI2011).

R. Munos: Area chair for NIPS 2011.
P. Preux: ADPRL 2011, ICPRAM 2012, EGC 2011.

International journal and conference reviewing activities (in addition to the conferences in which
we belong to the PC)

M. Ghavamzadeh is Editorial Board Member of the Machine Learning Journal (MLJ,
2011-2014).

M. Ghavamzadeh: Annual Conference on Neural Information Processing Systems (NIPS
2011), International Conference on Artificial Intelligence and Statistics (AISTATS 2011),
Neurocomputing, Machine Learning Journal (MLJ), Journal of Machine Learning Re-
search (JMLR), Journal of Artificial Intelligence Research (JAIR).

D. Ryabko: IEEE Trans. Inf. Th., NIPS 2011.
R. Munos: ADPRL 2011, AISTATS 2011, ALT 2011, CAP 2011, ICML 2011, IJCAI 2011.

P. Preux: NIPS 2011, CAP 2011,IEEE Trans. on Neural Networks, Revue d’Intelligence
Artificielle.

A. Lazaric: AAAT 2011, AAMAS 2011 & 2012, ACC, ALT, COLT, ICML, IJCALI, Journal
of Artificial Intelligence Research (JAIR), Journal of Machine Learning Research (JMLR),
IEEE Transactions on Automatic Controls (TAC).

P. Chainais: IEEE Trans. on Pattern Analysis and Machine Learning, Journal of Statistical
Physics, Physica A.

9.1.6. Evaluation activities, expertise

Emmanuel Duflos was appointed Director of Research of the Ecole Centrale in Lille. He has also
reviewed proposals for the ANR programs.

M. Ghavamzadeh is a grant proposal reviewer for the Natural Sciences and Engineering Research
Council of Canada (NSERC).

J. Mary is expert for the “Ministere de I’Enseignement Supérieur et de la Recherche” on control
of“Crédit Impo6t Recherche”, member of the COS at Lille 3 for one assistant professor in computer
science, member of the COS at 3 for one assistant professor un computer science at Ecole Centrale
de Lille for one assistant professor in computer science.
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e R. Munos project evaluation for Research Foundation Flanders (FWO), Belgique, 2011, member of
the evaluation committee for the Machine Learning, Université Libre de Bruxelles (ULB). Member
of the Comité de sélection Professeur 27¢me section for Polytech Paris-Sud, 2011.

e P, Preux: reviewer for the CNRS program PEPPI biology-mathematics-computer science, reviewer
for the ANR program CONTINT, and the ANR program “blanc”, president of the committee of
selection (COS) at the University of Lille 3 for one assistant professor in computer science, member
of the committee of selection (COS) at the Ecole Centrale de Lille for one assistant professor in
computer science.

e D. Ryabko is a member of COST-GRI evaluation committee.
e  Philippe Vanheeghe has reviewed proposals for Discovery Grant applications of the Natural Sciences
and Engineering Research Council of Canada (NSERRC - CRSNG), as well as for the ANR.
9.1.7. Participation to PhD and HDR jurys

e D. Ryabko is an examiner of the Ph.D. of K. Eltysheva.

e  R. Munos examiner of the Ph.D. of Louis Dorard (University College of London), Raphael Fonteneau
(University of Liege), and member of PhD juries for Lei Yu (University Cergy Pontoise) and Wassim
Jouini (Supelec Rennes).

e R Munos is member of HDR Committee for Daniil Ryabko (INRIA Lille - Nord Europe) and
Aurélien Garivier (Télécom PariTech), 2011.

e P Preux is member of the Ph.D. juries of Halem Benhabiles and Manuel Loth (Université de Lille
Y

e E. Duflos was rapporteur for the for PhD thesis of Michele Pace (INRIA Bordeaux), Pierre Neri
(ENAC - University of Toulouse), Frédéric Faurie (University of Bordeaux), Sébastien Rougerie
(University of Toulouse) and the Habilitation a Diriger des Recherche of Frédéric Dambreville.

9.1.8. Other Scientific Activities
e R. Munos is Vice Président du Comité des Projets at INRIA Lille-Nord Europe since September
2011.
e R Munos is member of the Commission d’Evaluation INRIA.
e R. Munos is Président du jury d’admissibilité CR1-CR2 INRIA Lille - Nord Europe.
® R Munos is member of the jury d’admission DR2 INRIA en 2011.

9.2. Teaching
9.2.1. Courses

e R. Munos, Master: “Introduction to Reinforcement Learning”, 30 hours, M2, Master “Mathema-
tiques, Vision, Apprentissage”, ENS Cachan.

e J. Mary, Master : “Programmation web avancée et design pattern”, 32h eq TD, M2, Université de
Lille 3, France.

e J. Mary, Master : “Introduction a la Programmation R”, 32h eq TD, M1, Université de Lille 3,
France.

e J. Mary, Master : “Programmation R avancée”, 32h eq TD, M1, Université de Lille 3, France.

e  P. Chainais, Master: “Ondelettes et Applications”, 24h, niveau M1, Ecole Centrale de Lille, 2éme
année.

e  P. Chainais, Master : “Décision et Apprentissage”, 24h, niveau M2, Ecole Centrale de Lille, 3¢me
année.
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P. Preux, Master : “Décision dans I’incertain”, 40h, niveau M2 informatique, Lille 1.

P. Preux, Master : “Mathematiques, Informatique, Modélisation”, 72h, niveau M1 psychologie, Lille
3.

E. Duflos, Master : “Modélisation et Inférence Bayesienne”, 40h, niveau M2, Ecole Centrale de Lille,
3eme année.

P. Vanheeghe, Master : “Estimation, Identification, Observation”, 32h, niveau M2, Ecole Centrale de
Lille, 3eme année.

9.2.2. PhD and HdR

HdR : Daniil Ryabko, Learnability in Problems of Sequential Inference, Université de Lille 1,
December 19, 2011, [3].

PhD : Manuel Loth, Active Set Algorithms for the LASSO, Université de Lille 1, July 8, 2011, Philippe
Preux, [1].

PhD : Odalric Maillard, Active Set Algorithms for the LASSO, Université de Lille 1 / Université de
Toulouse, October 3, 2011, Rémi Munos and Philippe Berthet, [2].

PhD: Nicolas Viandier, June 2011 (see section 10, [4]) : encadrement Emmanuel Duflos, Juliette
Marais (IFSTTAR).

PhD in progress : Boris Baldassari, “Apprentissage automatique et développement logiciel”, Sep.
2011, encadrement : Ph. Preux.

PhD in progress : Victor Gabillon, “Active Learning in Classification-based Policy Iteration”, Sep.
2009, encadrement : M. Ghavamzadeh, Ph. Preux.

PhD in progress : Azadeh Khaleghi, “Unsupervised Learning of Sequential Data”, Sep. 2010,
encadrement : D. Ryabko, Ph. Preux.

PhD in progress : Sami Naamane, “Filtrage collaboratif adverse et dynamique”, Nov. 2011, en-
cadrement : J. Mary, Ph. Preux.

PhD in progress : Olivier Nicol, “Apprentissage par renforcement sous contrainte de ressources
finies, dans un environnement non stationnaire, face a des flux de données massifs”’, Nov. 2010,
encadrement : J. Mary, Ph. Preux.

PhD in progress : Christophe Salperwyck, “Apprentissage incrémentale et sur flux de données” ,
Dec. 2009, encadrement : Ph. Preux.

PhD in progress : Amir Sani, “Learning under uncertainty”, Oct. 2011, encadrement : R. Munos, A.
Lazaric.

PhD in progress : Jean-Frangois Hren, “Prise de décision et planification optimiste”, Oct. 2007,
encadrement : R. Munos.

PhD in progress : Alexandra Carpentier, “Allocation adaptatives de ressources pour I’apprentissage
actif”’, Oct. 2007, encadrement : R. Munos.

PhD in progress : Emilie Kaufmann, “Bayesian Bandits”, Oct. 2011, encadrement : R. Munos, O.
Cappé, A. Garivier.
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