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2. Overall Objectives

2.1. Overall Objectives
The main scientific objective of the VEGAS research team is to contribute to the development of an effective
geometric computing dedicated to non-trivial geometric objects. Included among its main tasks are the study
and development of new algorithms for the manipulation of geometric objects, the experimentation of algo-
rithms, the production of high-quality software, and the application of such algorithms and implementations
to research domains that deal with a large amount of geometric data, notably solid modeling and computer
graphics.

Computational geometry has traditionally treated linear objects like line segments and polygons in the plane,
and point sets and polytopes in three-dimensional space, occasionally (and more recently) venturing into the
world of non-linear curves such as circles and ellipses. The methodological experience and the know-how
accumulated over the last thirty years have been enormous.

For many applications, particularly in the fields of computer graphics and solid modeling, it is necessary
to manipulate more general objects such as curves and surfaces given in either implicit or parametric form.
Typically such objects are handled by approximating them by simple objects such as triangles. This approach
is extremely important and it has been used in almost all of the usable software existing in industry today. It
does, however, have some disadvantages. Using a tessellated form in place of its exact geometry may introduce
spurious numerical errors (the famous gap between the wing and the body of the aircraft), not to mention
that thousands if not hundreds of thousands of triangles could be needed to adequately represent the object.
Moreover, the curved objects that we consider are not necessarily everyday three-dimensional objects, but also
abstract mathematical objects that are not linear, that may live in high-dimensional space, and whose geometry
we do not control. For example, the set of lines in 3D (at the core of visibility issues) that are tangent to three
polyhedra span a piecewise ruled quadratic surface, and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic hypersurfaces.

http://www.loria.fr/equipes/vegas/
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Effectiveness is a key word of our research project. By requiring our algorithms to be effective, we imply that
the algorithms should be robust, efficient, and versatile. By robust we mean algorithms that do not crash on
degenerate inputs and always output topologically consistent data. By efficient we mean algorithms that run
reasonably quickly on realistic data where performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of objects that are general enough to cover
realistic situations and that account for the exact geometry of the objects, in particular when they are curved.

3. Scientific Foundations

3.1. Theory and applications of three-dimensional visibility
Keywords: effective geometry, robustness, 3D visibility

The notion of 3D visibility plays a fundamental role in computer graphics. In this field, the determination
of objects visible from a given point, the extraction of shadows or of penumbra boundaries are examples
of visibility computations. In global illumination methods, (e.g. radiosity algorithms), it is necessary to
determine, in a very repetitive manner, if two points of a scene are mutually visible. The computations can
be excessively expensive. For instance, in radiosity, it is not unusual that 50 to 70% of the simulation time is
spent answering visibility queries.

Objects that are far apart may have very complicated and unintuitive visual interactions, and because of this,
visibility queries are intrinsically global. This partially explains that, until now, researchers have primarily
used ad hoc structures, of limited scope, to answer specific queries on-the-fly. Unfortunately, experience has
shown that these structures do not scale up. The lack of a well-defined mathematical foundation and the
non-exploitation of the intrinsic properties of 3D visibility result in structures that are not usable on models
consisting of many hundreds of thousands of primitives, both from the viewpoint of complexity and robustness
(geometric degeneracies, aligned surfaces, etc.).

We have chosen a different approach which consists in computing ahead of time (that is, off-line) a 3D global
visibility structure for which queries can be answered very efficiently on-the-fly (on line). The 3D visibility
complex – essentially a partition of ray space according to visibility – is such a structure, recently introduced
in computational geometry and graphics [35], [37]. We approach 3D global visibility problems from two
directions: we study, on the one hand, the theoretical foundations and, on the other hand, we work on the
practical aspects related to the development of efficient and robust visibility algorithms.

From a theoretical point of view, we study, for example, the problem of computing lines tangent to four
among k polytopes. We have shown much better bounds on the number of these tangents than were previously
known [2]. These results give a measure of the complexity of the vertices (cells of dimension 0) of the visibility
complex of faceted objects, in particular, for triangulated scenes.

From a practical point of view, we have, for example, studied the problem of the complexity for these 3D
global visibility structures, considered by many to be prohibitive. The size of these structures in the worst case
is O(n4), where n is the number of objects in the scene. But we have, in fact, shown that when the objects
are uniformly distributed, the complexity is linear in the size of the input [6]. This probabilistic result does not
prejudice the complexity observed in real scenes where the objects are not uniformly distributed. However,
initial empirical studies show that, even for real scenes, the observed complexity is largely inferior to the
theoretical worst-case complexity, as our probabilistic result appears to indicate.

We work on translating these positive signs into efficient algorithms. We study new algorithms for the
construction of the visibility complex, with a focus on the complexity and robustness.

3.2. Reliable geometric computations on curves and surfaces
Keywords: Effective geometry, robustness, geometric predicates, intersection detection.
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Simple algebraic surfaces cover a variety of forms sufficient for representing the majority of objects encoun-
tered in the fields of design, architecture and industrial manufacturing. For instance, it has been estimated that
95% of all mechanical pieces can be well modeled by quadric patches (degree 2 surfaces, including planes,
spheres, cylinders and cones) and torii [38]. It is important, then, to be able to process these surfaces in a
robust and efficient manner.

In comparison with polygonal representations, modeling and manipulating scenes made of curved objects pose
a large variety of new issues and require entirely different tools. It is for instance no longer realistic to assume
that simple operations like intersecting two primitives take constant time. The usual notion of complexity has
to be revised and needs to incorporate the arithmetic complexity of operations.

Geometric computing with curved objects is plagued with robustness issues. The numerical instability of
geometric algorithms is intimately linked to the double nature of geometric objects. Indeed, a geometric
object is two things: a combinatorial structure which encodes the incidence properties between the elements
constituting the object, and numerical quantities (coordinates, equations) describing the embedding of the
object in space. Manipulating geometric data, without breaking the consistency constraints that govern the
relation between combinatorial and numerical quantities, is usually hard and has led to the unfolding of the
exact geometric computing paradigm.

The dependence of combinatorial decisions on numerical computations is encapsulated in the notion of
geometric predicates. When working with algebraic objects, evaluating a geometric predicate often means
determining the sign of a polynomial expression in the coefficients of the input. This sign encodes the answer to
simple geometric queries like “are three given points aligned?” or “is a given line tangent to a given surface?”.
The paradigm of exact geometric computing requires the predicates to be evaluated exactly, ensuring that the
branching of the algorithm are correct, that the software will not crash, loop indefinitely or output a wrong
answer, and thus that the topological structure of the output is correct.

In the context of exact geometric computing, we work on key problems involving curved objects, mainly
two-dimensional curves, and low-degree three-dimensional surfaces such as quadrics. For instance, we
study intersections of quadrics both from an algorithmic and an algebraic-geometric point of view. On the
algorithmic side, we work on finding simple and usable parameterizations of the intersection of two arbitrary
quadrics. On the algebraic side, we deal with finding simple (and ideally optimal) geometric predicates for
classifying the intersection pattern and the positional relationship of two quadrics.

We also work on computing arrangements of curved objects, i.e. the partitioning of space induced by the
objects, such as arrangements of curves on a surface, or arrangements of quadrics in 3D space. Note that
intersections of 2 and 3 quadrics are building blocks for the constructions of quadric arrangements. We work
on constructing simpler sub-arrangements, like the BRep (Boundary Representation) of a solid model (CSG).
Exact CSG-to-BRep conversion is a key and long-standing problem in CAGD, where many conventional
modelers work with volumes, and rendering software based on the global illumination approach need surface
patches.

Finally, we deal with geometric problems where low-degree surfaces appear indirectly, not in the input but as
intermediate structures. A major problem in this category is the computation of the Voronoi diagram, or medial
axis, of polyhedra in 3D. In particular, we work on the simpler instance where only lines and line segments in
3D are considered, the bisectors of pairs of lines being quadric surfaces.

4. Application Domains

4.1. Computer graphics
Our main application domain is photorealistic rendering in computer graphics. We are especially interested in
the application of our work to virtual prototyping, which refers to the many steps required for the creation of
a realistic virtual representation from a CAD/CAM model.
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When designing an automobile, detailed physical mockups of the interior are built to study the design and
evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and
difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and
immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility,
and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work
on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the
scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the
simulations.

4.2. Solid modeling
Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed
somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms
and deal with many of the same issues. But while the computational geometry community has been mathe-
matically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer
ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the
middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are
of interest to us, let us mention: the description of geometric shapes, the representation of solids, the
conversion between different representations, data structures for graphical rendering of models and robustness
of geometric computations.

5. Software

5.1. QI: Quadrics Intersection
QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of an
algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [10], [32], [33], [34]
and represents the first complete and robust solution to what is perhaps the most basic problem of solid
modeling by implicit curved surfaces.

QI is written in C++ and builds upon the LiDIA computational number theory library [27] bundled with
the GMP multi-precision integer arithmetic [26]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [10] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under the free for non-commercial use INRIA
license and will be distributed under the QPL license in the next release. The implementation can also be
queried via a web interface [28].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.
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5.2. Isotop: Topology and Geometry of Planar Algebraic Curves
ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from INRIA Paris - Rocquencourt. It is based on
the method described in [31] which incorporates several improvements over previous methods. In particular,
our approach does not require generic position.

Isotop is registered at the APP (June 15th 2011) with reference IDDN.FR.001.240007.000.S.P.2011.000.10000.
This version is competitive with other implementations (such as ALCIX and INSULATE developed at MPII
Saarbrücken, Germany and TOP developed at Santander Univ., Spain). It performs similarly for small-degree
curves and performs significantly better for higher degrees, in particular when the curves are not in generic
position.

We are currently working on an improved version integrating our new bivariate polynomial solver [22].

5.3. CGAL: Computational Geometry Algorithms Library
Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. we want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, we contributed a model of the Univariate Algebraic Kernel concept for algebraic
computations [30] (see Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency
of the computation of arrangements of polynomial functions in CGAL [36]. We are currently developing a
model of the Bivariate Algebraic Kernel based on our new bivariate polynomial solver [22]. This work is done
in collaboration with F. Rouillier at INRIA Paris - Rocquencourt and L. Peñaranda at the university of Athens.

6. New Results
6.1. Algebraic methods for geometric problems
6.1.1. New bivariate system solver and topology of algebraic curves

We present in [22] a new approach for solving polynomial systems of two bivariate polynomials with rational
coefficients. The tools used in our algorithm are classical (subresultants, Groebner basis, triangular systems,
regular chains, RUR (rational univariate representations), modular computation) but they are combined in a
new way. We first use a classical approach based on subresultant sequences for decomposing a system into
subsystems according to the number of roots (counted with multiplicities) in vertical lines. We then show how
the resulting triangular subsystems can be efficiently solved by computing lexicographic Gröbner bases and
Rational Univariate Representations (RURs) of these systems. We eventually show how this approach can
be performed using modular arithmetic, while remaining deterministic, yielding an algorithm that can take
advantage of a parallel implementation. We apply our solver to the problem of computing the topology of
algebraic curves using the algorithm Isotop [31]. We show that, on generic curves, our algorithm performs
similarly as classical resultant-based algorithms and, on non-generic curves, it performs significantly better
than all non-GPU based implementations (it outperforms the curve arrangement of CGAL with factors up to
several hundreds). Preliminary experiments also hint that the recent GPU-based approach of Berberich et al.
[29] and the multi-thread version of our implementation perform similarly on a standard machine, although
our implementation naturally depends on the number of threads.

http://www.cgal.org
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We also started to work on a generalization of these results to real algebraic curves embedded in dimension 3
and higher.

6.1.2. Counting the number of embeddings of a given rigid graph
We addressed the problem of counting the number of embeddings of a given rigid graph (a graph with edges
labeled by distances). Such graphs are still not well understood and appear in several applications such as
robot kinematics and structural biology. By modeling the problem as a sparse system of polynomial equations,
we could bound the maximal number of embeddings from above with the algebraic mixed volume theory, and
bound it from below with stochastic optimization methods. This work submitted in 2010 was accepted and
published in the proceedings of the IFToMM 2011 conference [21].

6.1.3. Description of singularities of a parameterized mechanism
Kinematic design can be seen as an application of rigid graph theory. In collaboration with the IRCCyN
laboratory, we worked on the design of parallel mechanisms. We studied in particular the cable robots, a new
kind of architecture, which is difficult to understand. The problem is to describe the set of parameters such
that the robot doesn’t break or lose control. Using tools from algebra, we can describe rigorously the working
space of a simple planar cable robot [19]. Work on this subject is promising, and some theory developed for
rigid graphs could give other interesting results in kinematic design.

6.1.4. Distance between 3-dimensional terrains
We addressed the problem of computing efficiently the distance between two piecewise-linear bivariate
functions f and g defined over a common domainM . We focus on the distance induced by the L2-norm, that is

‖f − g‖2 =
√∫

M
(f − g)

2. If f is defined by linear interpolation over a triangulation of M with n triangles,
while g is defined over another such triangulation, the obvious naïve algorithm requires Θ(n2) arithmetic
operations to compute this distance. We show that it is possible to compute it in O(n log (n)

4
) arithmetic

operations, by reducing the algebraic problem to multi-point evaluation of a certain type of polynomials [24].

6.1.5. Invariant-based predicate evaluation strategies
We have worked on formalizing polynomial evaluation strategies of geometric predicates using algebraic
invariant theory. Let P be a typical predicate that one encounters in (non-linear) computational geometry. The
general approach has three main steps:

1. Identify the symmetries of the problem, i.e. the transformations on the entries X of P that leave
invariant the output of the predicate. These transformations can be modeled by the action ψ of a
group G operating on X .

2. Use appropriate techniques or known theorems to obtain polynomial invariants for ψ. In particular,
we have investigated the use of an effective invariant construction method due to Grosshans et al.
based on a symbolic representation of invariants.

3. Build a polynomial evaluation strategy for P by determining those orbits of ψ that are discriminated
by the invariants obtained above.

We have applied this general approach to two problems: determining the number of real lines piercing four
given lines and determining when two quadrics have no real point in common. For the first problem we
essentially reproduce the results obtained previously by Devillers et al. through a direct manipulation of
equations. For the second we only have partial results so far.

This work is part of Guillaume Batog’s PhD thesis (defended in December 2011) [12].
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6.2. 3D visibility, theory and applications
6.2.1. Calibration for linear cameras

The linear camera is a fairly general geometric model of imaging devices proposed by Jean Ponce and based
on linear line congruences, two-dimensional sections of the Klein quadric (a classical model for the space
of lines). In a previous work, in collaboration with Jean Ponce, we explored properties of this model. We
established in particular the equivalence of linear camera with another model proposed by Tomas Pajdla (which
we generalized along the way). The complementarity of these models allowed to extend standard computer
vision techniques, such as stereo-reconstruction, to any imaging system modeled by a linear camera. We went
one step further and explored how the notion of “calibration” extends to linear cameras. We enriched the usual
“intrinsic” parameters used for central cameras by additional parameters that encode the geometry of linear
line congruences. This required to investigate the Euclidean aspects of linear line congruences, objects that are
usually studied in a projective setting.

This work is part of Guillaume Batog’s PhD thesis (defended in December 2011) [12] and a journal version is
in preparation.

6.3. Discrete and computational geometry
6.3.1. On Point-sets that Support Planar Graphs

A set of points is said universal if it supports a crossing-free drawing of any planar graph. For a planar graph
with n vertices, if bends on edges of the drawing are permitted, universal point-sets of size n are known, but
only if the bend-points are in arbitrary positions. If the locations of the bend-points must also be specified as
part of the point-set, no result was known, and we prove that any planar graph with n vertices can be drawn
on a universal set S of O(n2/ log n) points with at most one bend per edge and with the vertices and the bend
points in S. If two bends per edge are allowed, we show thatO(n log n) points are sufficient, and if three bends
per edge are allowed, Θ(n) points are sufficient. When no bends on edges are permitted, no universal point-set
of size o(n2) is known for the class of planar graphs. We show that a set of n points in balanced biconvex
position supports the class of maximum-degree-3 series-parallel lattices [20].

6.3.2. Helly numbers of acyclic families
The nerve of a family of sets is a simplicial complex that records the intersection pattern of its subfamilies.
Nerves are widely used in computational geometry and topology, because the nerve theorem guarantees that
the nerve of a family of geometric objects has the same topology as the union of the objects, if they form a
good cover.

We relaxed the good cover assumption to the case where each subfamily intersects in a disjoint union of
possibly several homology cells, and we proved a generalization of the nerve theorem in this framework,
using spectral sequences from algebraic topology. We then deduced a new topological Helly-type theorem that
unifies previous results of Amenta, Kalai and Meshulam, and Matoušek. This Helly-type theorem is applied
to (re)prove, in a unified way, bounds on Helly numbers of sets of lines in geometric transversal theory [25].

6.4. National Initiatives
6.4.1. ANR Blanc - PRESAGE

This project brings together computational geometers (from the VEGAS and GEOMETRICA projects of
INRIA) and probabilistic geometers (from Universities of Rouen, Orléans and Poitiers) to tackle new
probabilistic geometry problems arising from the design and analysis of geometric algorithms and data
structures. We focus on properties of discrete structures induced by or underlying random continuous
geometric objects.

This is a four year project, with a total budget of 400kE, that will start on Dec. 31st, 2011. It is coordinated by
X. Goaoc (VEGAS).
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6.4.2. PEPS Rupture - INS2I: Manifold
The aim of this project is to initiate a collaboration to investigate algebraic/numeric methods for the analysis of
manifolds, considering also singularities, that arise in robotics and biological models. Researchers specialized
in interval analysis (LINA) and symbolic methods (LORIA) evaluate the relevance of their approaches to
applications in robotics (IRCCyN) and biology (LINA). The outcome of this evaluation will be a proposal for
a hybridization of both methods that will be worked out in a longer term project.

This is a one year project with a budget of 10 kE. Two one day workshops have been funded with invitations
of potential partners for a followup.

6.5. International Initiatives
6.5.1. Visits of International Scientists

• William J. Lenhart, Williams College (USA), one year (sabbatical) from September 2011.

• Andreas Holmsen, KAIST (South Korea), June, 1 week.

• Martin Tancer, Charles University (Prague), April 1 week.

• Pavel Patak, Charles University (Prague), April 1 week.

• Zuzana Safernova, Charles University (Prague), April 1 week.

• Jinsan Cheng, Chinese academy of science (Beijing), November, 1 week.

• Luis Peñaranda, University of Athens, December, 1 week.

6.5.2. Participation In International Programs

• Sylvain Petitjean collaborates with Pr. Gert Vegter of the University of Groningen on “Certified
Geometric Approximation”. This collaboration is funded by the Netherlands Organization for
Scientific Research (NWO) - 2008–2012.

7. Dissemination

7.1. Animation of the scientific community
Program and Paper Committee:

• Sylvain Lazard: Program committee of the ACM Symposium on Computational Geometry 2012
(SoCG’12).

• Sylvain Petitjean: Paper committee of the 13th IEEE International Conference on Computer Vision
(ICCV’11). Paper committee of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’12).

Editorial responsibilities:

• Xavier Goaoc: Editor of the Journal of Computational Geometry.

• Sylvain Petitjean: Editor of Graphical Models.

Workshop organizations:

• Sylvain Lazard co-organized with S. Whitesides (Victoria University) the 10th INRIA - McGill -
Victoria Workshop on Computational Geometry1 (Bellairs Research Institute of McGill University)
in Feb. (1 week workshop on invitation).

1Workshop on Computational Geometry

http://www.loria.fr/~everett/McGill-ISA/Bellairs-2011/report.html
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Thesis and habilitation committee:

• Sylvain Lazard: external examiner of the PhD of T. NGuyen, University of Nice; member of the
PhD. committees of H-S Kim, KAIST, South Korea, and of R. Cosset, Nancy University.

• Sylvain Petitjean: member of the PhD committee of B. Nefzi, Nancy University.

Other responsibilities:

• Sylvain Lazard: Head of the INRIA Nancy-Grand Est PhD and Post-doc hiring committee (since
2009). Member of the Bureau du Département Informatique de Formation Doctorale of the École
Doctorale IAE+M (since 2009). Reviewer for the Dutch National Science Foundation.

• Laurent Dupont: Director of the departement Services et réseaux de communication of IUT Charle-
magne, University Nancy 2 (since 2008, until July 2011). Responsible of admissions of IUT Charle-
magne, University Nancy 2 (since September 2011). Member of Commission Pédagogique Nationale
Infocom/SRC (since 2011). Member of Commission Information Scientifique (Inria/Loria).

• Xavier Goaoc: Correspondant Europe of INRIA Nancy Grand-Est. Chairman of the INRIA COST-
GTRI committee since may 2011.

• Guillaume Moroz: Member of the organizing committee of the Olympiades académiques de
mathématiques. Delegate of the Commission des Utilisateurs des Moyens Informatiques pour la
Recherche.

• Sylvain Petitjean: Scientific delegate of INRIA Nancy Grand-Est and chairman of its Project
committee (since 2009). Member of the Executive committee of INRIA Nancy Grand-Est, member
of its Commission des développements technologiques. Member of INRIA’s Evaluation committee.

• Marc Pouget: Member of the CGAL Editorial Board (since 2008).

7.2. Teaching
Most of the teaching activities were carried out in Nancy, and some in South Korea and Ghana. Several
members of the group, in particular the (assistant) professors and Ph.D. students, actively teach at Nancy
Université, which consists of Université Nancy 2, Université Henri Poincaré Nancy 1 and several engineering
schools grouped into INPL (Institut National Polytechnique de Lorraine).

Most of the teaching activities were carried out in Nancy, and some in South Korea and Ghana. The research
Masters program is a joint degree with Univ. Nancy 1, Univ. Nancy 2 and the engineering school INPL. These
three institutes are jointly known as University of Nancy.

Several members of the group, in particular the (assistant) professors and Ph.D. students, actively teach at
Nancy Université. Inria researchers also intervene: Sylvain Lazard taught

Licence: Algorithms and Complexity, 25h, L3, Université Nancy 2,

and Xavier Goaoc taught

Master: Pépites Algorithmiques, 6h, cours électif, École des Mines de Nancy (INPL),

Master: Discrete and computational geometry, 15h, master of CS, Postech, South Korea,

Master: Introduction to discrete and computational geometry, 3h, master of geology, ENSG (INPL),

Master: Mathematical foundations of computer science, 30h, Sandwich course, University of Cape
Coast, Ghana,

Licence: C programming, 10h, formation continue, Université Nancy 2,

http://www.nancy-universite.fr/
http://www.nancy-universite.fr/
http://www.univ-nancy2.fr/
http://www.uhp-nancy.fr/
http://www.inpl-nancy.fr/
http://www.nancy-universite.fr/
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Laurent Dupont, assistant professor, taught at Université Nancy 2 (IUT Charlemagne)

Licence: Concepts et Outils Internet, 30h, L1,

Licence: Algorithmique 1, 30h, L1,

Licence: Programmation Java, 40h, L1,

Licence: Programmation de Sites Web Dynamiques, 30h, L2,

Licence: Programmation Objet et Évènementielle, 30h, L2,

Licence: Intégration Multimedia, 20h, L2,

Licence: Programmation AJAX, 20h, L2,

Licence: Rich Internet Applications, 20h, L1,

Licence: Content Management Systems, 20h, L2,

Licence: Systèmes d’Information, 30h, L3.

Yacine Bouzidi, PhD student, taught at Université Nancy 2 (IUT Charlemagne)

Licence: Algorithmique et programmation, 26h, L1,

Licence: Systèmes d’information-php, 29h, L2,

Licence: Ajax, 6h, L2,

Licence: Algorithmique 1, 3h, L1.

PhD & HdR:

HdR: Xavier Goaoc, Transversal Helly numbers, pinning theorems and projection of simplicial
complexes, Université Henri Poincaré - Nancy 1, defended on December 7th, 2011.

PhD: Guillaume Batog, Problèmes classiques en vision par ordinateur et en géométrie algorithmique
revisités via la géométrie des droites, defended on December 15th, 2011, under the supervision of S.
Petitjean and X. Goaoc.

PhD in progress: Yacine Bouzidi, On the topology of curves and surfaces, started in October 2010,
under the supervision of S. Lazard and M. Pouget.
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