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2. Overall Objectives
2.1. Introduction

The VerTeCs team is focused on the use of formal methods to assess the reliability, safety and security of
reactive software systems. By reactive software system we mean a system controlled by software which
reacts with its environment (human or other reactive software). Among these, critical systems are of primary
importance, as errors occurring during their execution may have dramatic economical or human consequences.
Thus, it is essential to establish their correctness before they are deployed in a real environment, or at least
detect incorrectness during execution and take appropriate action. For this aim, the VerTeCs team promotes the
use of formal methods, i.e. formal specification of software and their required properties and mathematically
founded validation methods. Our research covers several validation methods, all oriented towards a better
reliability of software systems:

• Verification, which is used during the analysis and design phases, and whose aim is to establish the
correctness of specifications with respect to requirements, properties or higher level specifications.

• Control synthesis, which consists in “forcing” (specifications of) systems to stay within desired
behaviours by coupling them with a supervisor.

• Conformance testing, which is used to check the correctness of a real system with respect to its
specification. In this context, we are interested in model-based testing, and in particular automatic
test generation of test cases from specifications.

• Diagnosis and monitoring, which are used during execution to detect erroneous behaviour.
• Combinations of these techniques, both at the methodological level (combining several techniques

within formal validation methodologies) and at the technical level (as the same set of formal
verification techniques - model checking, theorem proving and abstract interpretation - are required
for control synthesis, test generation and diagnosis).
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Our research is thus concerned with the development of formal models for the description of software systems,
the formalization of relations between software artifacts (e.g. satisfaction, conformance between properties,
specifications, implementations), the interaction between these artifacts (modelling of execution, composition,
etc). We develop methods and algorithms for verification, controller synthesis, test generation and diagnosis
that ensure desirable properties (e.g. correctness, completeness, optimality, etc). We try to be as generic as
possible in terms of models and techniques in order to cope with a wide range of application domains and
specification languages. Our research has been applied to telecommunication systems, embedded systems,
smart-cards application, and control-command systems. We implement prototype tools for distribution in the
academic world, or for transfer to the industry.

Our research is based on formal models and our basic tools are verification techniques such as model checking,
abstract interpretation, the control theory of discrete event systems, and their underlying models and logics.
The close connection between testing, control and verification produces a synergy between these research
topics and allows us to share theories, models, algorithms and tools.

2.2. Highlights
FoSSaCS paper [18] and TACAS paper [17] seriously improve the state of the art and may have a strong
impact. [18] proposes an approximate determinization procedure for timed automata, successfuly adapted
in [17] for off-line test generation from timed automata, and is promising for other observability problems
(diagnosis, implementability,...).

3. Scientific Foundations

3.1. Underlying models
The formal models we use are mainly automata-like structures such as labelled transition systems (LTS) and
some of their extensions: an LTS is a tupleM = (Q,Λ,→, qo) whereQ is a non-empty set of states; qo ∈ Q is
the initial state;A is the alphabet of actions,→⊆ Q×Λ×Q is the transition relation. These models are adapted
for testing and controller synthesis.

To model reactive systems in the testing context, we use Input/Output labeled transition systems (IOLTS for
short). In this setting, the interactions between the system and its environment (where the tester lies) must be
partitioned into inputs (controlled by the environment), outputs (observed by the environment), and internal
(non observable) events modeling the internal behavior of the system. The alphabet Λ is then partitioned into
Λ! ∪ Λ? ∪ T where Λ! is the alphabet of outputs, Λ? the alphabet of inputs, and T the alphabet of internal
actions.

In the controller synthesis theory, we also distinguish between controllable and uncontrollable events
(Λ = Λc ∪ Λuc), observable and unobservable events (Λ = ΛO ∪ T).

In the context of verification, we also use Timed Automata. A timed automaton is a tuple A = (L,X,E, I)
where L is a set of locations, X is a set of clocks whose valuations are positive real numbers,
E ⊆ L× G(X)×2X × L is a finite set of edges composed of a source and a target state, a guard given
by a finite conjunction of expressions of the form x ∼ c where x is a clock, c is a natural number and
∼∈ {<,≤,=,≥, >}, a set of resetting clocks, and I : L→ G(X) assigns an invariant to each location [27].
The semantics of a timed automaton is given by a (infinite states) labelled transition system whose states are
composed of a location and a valuation of clocks.

Also, for verification purposes, we use graph grammars that are a general tool to define families of graphs.
Such grammars are formed by a set of rules, left-hand sides being simply hyperedges and right-hand sides
hypergraphs. For finite degree, these graph grammars characterise transition graphs of pushdown automata
(each graph generated by such a grammar corresponds to the transition graph of a pushdown automaton).
They provide a simple yet powerfull setting to define and study infinite state systems.
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In order to cope with more realistic models, closer to real specification languages, we also need higher level
models that consider both control and data aspects. We defined (input-output) symbolic transition systems
((IO)STS), which are extensions of (IO)LTS that operate on data (i.e., program variables, communication
parameters, symbolic constants) through message passing, guards, and assignments. Formally, an IOSTS
is a tuple (V,Θ,Σ, T ), where V is a set of variables (including a counter variable encoding the control
structure), Θ is the initial condition defined by a predicate on V , Σ is the finite alphabet of actions, where
each action has a signature (just like in IOLTS, Σ can be partitioned as e.g. Σ? ∪ Σ! ∪ Στ ), T is a finite set of
symbolic transitions of the form t = (a, p,G,A) where a is an action (possibly with a polarity reflecting its
input/output/internal nature), p is a tuple of communication parameters, G is a guard defined by a predicate on
p and V , and A is an assignment of variables. The semantics of IOSTS is defined in terms of (IO)LTS where
states are vectors of values of variables, and transitions between them are labelled with instantiated actions
(action with valued communication parameter). This (IO)LTS semantics allows us to perform syntactical
transformations at the (IO)STS level while ensuring semantical properties at the (IO)LTS level. We also
consider extensions of these models with added features such as recursion, fifo channels, etc. An alternative
to IOSTS to specify systems with data variables is the model of synchronous dataflow equations.
Our research is based on well established theories: conformance testing, supervisory control, abstract inter-
pretation, and theorem proving. Most of the algorithms that we employ take their origins in these theories:

• graph traversal algorithms (breadth first, depth first, strongly connected components, ...). We use
these algorithms for verification as well as test generation and control synthesis.

• BDDs (Binary Decision Diagrams) algorithms, for manipulating Boolean formula, and their MTB-
DDs (Multi-Terminal Decision Diagrams) extension for manipulating more general functions. We
use these algorithms for verification, test generation and control.

• abstract interpretation algorithms, specifically in the abstract domain of convex polyhedra (for
example, Chernikova’s algorithm for the computation of dual forms). Such algorithms are used in
verification and test generation.

• logical decision algorithms, such as satisfiability of formulas in Presburger arithmetics. We use these
algorithms during generation and execution of symbolic test cases.

3.2. Verification
Verification in its full generality consists in checking that a system, which is specified by a formal model,
satisfies a required property. Verification takes place in our research in two ways: on the one hand, a large
part of our work, and in particular controller synthesis and conformance testing, relies on the ability to solve
some verification problems. Many of these problems reduce to reachability and coreachability questions on a
formal model (a state s is reachable from an initial state si if an execution starting from si can lead to s; s is
coreachable from a final state sf if an execution starting from s can lead to sf ). These are important cases of
verification problems, as they correspond to the verification of safety properties.

On the other hand we investigate verification on its own in the context of complex systems. For expressivity
purposes, it is necessary to be able to describe faithfully and to deal with complex systems. Some particular
aspects require the use of infinite state models. For example asynchronous communications with unknown
transfer delay (and thus arbitrary large number of messages in transit) are correctly modeled by unbounded
FIFO queues, and real time systems require the use of continuous variables which evolve with time. Apart from
these aspects requiring infinite state data structure, systems often include uncertain or random behaviours (such
as failures, actions from the environment), which it make sense to model through probabilities. To encompass
these aspects, we are interested in the verification of systems equipped with infinite data structures and/or
probabilistic features.



4 Activity Report INRIA 2011

When the state space of the system is infinite, or when we try to evaluate performances, standard model-
checking techniques (essentially graph algorithms) are not sufficient. For large or infinite state spaces,
symbolic model-checking or approximation techniques are used. Symbolic verification is based on efficient
representations of sets of states and permits exact model-checking of some well-formed infinite-state systems.
However, for feasibility reasons, it is often mandatory to use approximate computations, either by computing
a finite abstraction and resort to graph algorithms, or preferably by using more sophisticated abstract
interpretation techniques. For systems with stochastic aspects, a quantitative analysis has to be performed,
in order to evaluate the performances. Here again, either symbolic techniques (e.g. by grouping states with
similar behaviour) or approximation techniques should be used.

We detail below verification topics we are interested in: abstract interpretation, quantitative model-checking
and analysis of systems defined by graph grammars.

3.2.1. Abstract interpretation and data handling
Most problems in test generation or controller synthesis reduce to state reachability and state coreachability
problems which can be solved by fixpoint computations of the form x = F (x), x ∈ C where C is a lattice. In
the case of reachability analysis, if we denote by S the state space of the considered program, C is the lattice
℘(S) of sets of states, ordered by inclusion, and F is roughly the “successor states” function defined by the
program.

The big change induced by taking into account the data and not only the (finite) control of the systems
under study is that the fixpoints become uncomputable. The undecidability is overcome by resorting to
approximations, using the theoretical framework of Abstract Interpretation [29]. The fundamental principles
of Abstract Interpretation are:

1. to substitute to the concrete domain C a simpler abstract domain A (static approximation) and
to transpose the fixpoint equation into the abstract domain, so that one has to solve an equation
y = G(y), y ∈ A;

2. to use a widening operator (dynamic approximation) to make the iterative computation of the least
fixpoint of G converge after a finite number of steps to some upper-approximation (more precisely,
a post-fixpoint).

Approximations are conservative so that the obtained result is an upper-approximation of the exact result. In
simple cases the state space that should be abstracted has a simple structure, but this may be more complicated
when variables belong to different data types (Booleans, numerics, arrays) and when it is necessary to establish
relations between the values of different types.

3.2.2. Model-checking quantitative systems
Model-checking techniques for finite-state systems are now quite developed, and a current challenge is to adapt
them as much as possible to infinite-state systems. We detail below two types of models we are interested in:
timed automata and infinite-state probabilistic systems.

Model-checking timed automata The model of timed automata, introduced by Alur and Dill in the 90’s [27]
is commonly used to represent real-time systems. Timed automata consist of an extension of finite automata
with continuous variables, called clocks, that evolve synchronously with time, and can be tested and reset
along an execution. Despite their uncountable state space, checking reachability, and more generally ω-regular
properties, is decidable via the construction of a finite abstraction, the so-called region automaton. The recent
developments in model-checking timed automata have aimed at modelling and verifying quantitative aspects
encompassing timing constraints, for example costs, probabilities, frequencies. These quantitative questions
demand advanced techniques that go far beyond the classical methods.

Model-checking infinite state probabilistic systems Model-checking techniques for finite state probabilistic
systems are now quite developed. Given a finite state Markov chain, for example, one can check whether some
property holds almost surely (i.e. the set of executions violating the property is negligible), and one can even
compute (or at leat approximate as close as wanted) the probability that some property holds. In general, these
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techniques cannot be adapted to infinite state probabilistic systems, just as model-checking algorithms for
finite state systems do not carry over to infinite state systems. For systems exhibiting complex data structures
(such as unbounded queues, continuous clocks) and uncertainty modeled by probabilities, it can thus be
hard to design model-checking algorithms. However, in some cases, especially when considering qualitative
verification, symbolic methods can lead to exact results. Qualitative questions do not aim at computing neither
approximating a probability, but are only concerned with almost-sure or non negligible behaviours (that is
events either of probability one, or non zero). In some cases, qualitative model-checking can be derived
from a combination of techniques for infinite state systems (such as abstractions) with methods for finite
state probabilistic systems. However, when one is interested in computing (or rather approximating) precise
probability values (neither 0 nor 1), exact methods are scarce. To deal with these questions, we either try to
restrict to classes of systems where exact computations can be made, or look for approximation algorithms.

3.2.3. Analysis of infinite state systems defined by graph grammars
Currently, many techniques (reachability, model checking, ...) from finite state systems have been generalised
to pushdown systems, that can be modeled by graph grammars. Several such extensions heavily depend on
the actual definition of the pushdown automata, for example, how many top stack symbols may be read, or
whether the existence of ε-transitions (silent transitions) is allowed. Many of these restrictions do not affect
the actual structure of the graph, and interesting properties like reachability or satisfiability (of a formula) only
depend on the structure of a graph.

Deterministic graph grammars enable to focus on structural properties of systems. The connexion with finite
graph algorithms is often straightforward: for example reachability is simply the finite graph algorithm iterated
on the right hand sides. On the other hand, extending these grammars with time or probabilities is not
straightforward: qualitative values associated to each copy (in the graph) of the same vertex (in the grammar)
is different, introducing more complex equations. Furthermore, the fact that the left-hand sides are single
hyperarcs is a very strong restriction. But removing this restriction leads to non-recursive graphs. Identifying
decidable families of graphs defined by contextual graph grammars is also very challenging.

3.3. Automatic test generation
We are mainly interested in conformance testing which consists in checking whether a black box implemen-
tation under test (the real system that is only known by its interface) behaves correctly with respect to its
specification (the reference which specifies the intended behavior of the system). In the line of model-based
testing, we use formal specifications and their underlying models to unambiguously define the intended behav-
ior of the system, to formally define conformance and to design test case generation algorithms. The difficult
problems are to generate test cases that correctly identify faults (the oracle problem) and, as exhaustiveness
is impossible to reach in practice, to select an adequate subset of test cases that are likely to detect faults.
Hereafter we detail some elements of the models, theories and algorithms we use.
We use IOLTS (or IOSTS) as formal models for specifications, implementations, test purposes, and test
cases. We adapt a well established theory of conformance testing [32], which formally defines conformance
as a relation between formal models of specifications and implementations. This conformance relation,
called ioco compares the visible behaviors (called suspension traces) of the implementation I (denoted by
STraces(I)) with those of the specification S (STraces(S)). Suspension traces are sequence of inputs,
outputs or quiescence (absence of action denoted by δ), thus abstract away internal behaviors that cannot
be observed by testers. Intuitively, I ioco S if after a suspension trace of the specification, the implementation
I can only show outputs and quiescences of the specification S. We re-formulated ioco as a partial inclusion
of visible behaviors as follows:

I ioco S ⇔ STraces(I) ∩ [STraces(S).Λδ! r STraces(S)] = ∅.

In other words, suspension traces of I which are suspension traces of S prolongated by an output or quiescence,
should still be suspension traces of S.
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Interestingly, this characterization presents conformance with respect to S as a safety property of suspension
traces of I . The negation of this property is charaterized by a canonical tester Can(S) which recognizes
exactly [STraces(S).Λδ! r STraces(S)], the set of non-conformant suspension traces. This canonical tester
also serves as a basis for test selection.

Test cases are processes executed against implementations in order to detect non-conformance. They are also
formalized by IOLTS (or IOSTS) with special states indicating verdicts. The execution of test cases against
implementations is formalized by a parallel composition with synchronization on common actions. A Fail
verdict means that the IUT is rejected and should correspond to non-conformance, a Pass verdict means
that the IUT exhibited a correct behavior and some specific targeted behaviour has been observed, while
an Inconclusive verdict is given to a correct behavior that is not targeted.

Test suites (sets of test cases) are required to exhibit some properties relating the verdict they produce to the
conformance relation. Soundness means that only non conformant implementations should be rejected by a
test suite and exhaustiveness means that every non conformant implementation may be rejected by the test
suite. Soundness is not difficult to obtain, but exhaustiveness is not possible in practice and one has to select
test cases.
Test selection is often based on the coverage of some criteria (state coverage, transition coverage, etc). But
test cases are often associated with test purposes describing some abstract behaviors targeted by a test case. In
our framework, test purposes are specified as IOLTS (or IOSTS) associated with marked states or dedicated
variables, giving them the status of automata or observers accepting runs (or sequences of actions or suspension
traces). Selection of test cases amounts to selecting traces of the canonical tester accepted by the test purpose.
The resulting test case is then both an observer of the negation of a safety property (non-conformance wrt.
S), and an observer of a reachability property (acceptance by the test purpose). Selection can be reduced
to a model-checking problem where one wants to identify states (and transitions between them) which are
both reachable from the initial state and co-reachable from the accepting states. We have proved that these
algorithms ensure soundness. Moreover the (infinite) set of all possibly generated test cases is also exhaustive.
Apart from these theoretical results, our algorithms are designed to be as efficient as possible in order to be
able to scale up to real applications.

Our first test generation algorithms are based on enumerative techniques, thus adapted to IOLTS models, and
optimized to fight the state-space explosion problem. On-the-fly algorithms where designed and implemented
in the TGV tool (see 5.1), which consist in computing co-reachable states from a target state during a lazy
exploration of the set of reachable states in a product of the specification and the test purpose [4]. However,
this enumerative technique suffers from some limitations when specification models contain data.

More recently, we have explored symbolic test generation techniques for IOSTS specifications [31]. The ob-
jective is to avoid the state space explosion problem induced by the enumeration of values of variables and
communication parameters. The idea consists in computing a test case under the form of an IOSTS, i.e., a
reactive program in which the operations on data are kept in a symbolic form. Test selection is still based on
test purposes (also described as IOSTS) and involves syntactical transformations of IOSTS models that should
ensure properties of their IOLTS semantics. However, most of the operations involved in test generation (de-
terminisation, reachability, and coreachability) become undecidable. For determinisation we employ heuristics
that allow us to solve the so-called bounded observable non-determinism (i.e., the result of an internal choice
can be detected after finitely many observable actions). The product is defined syntactically. Finally test selec-
tion is performed as a syntactical transformation of transitions which is based on a semantical reachability and
co-reachability analysis. As both problems are undecidable for IOSTS, syntactical transformations are guided
by over-approximations using abstract interpretation techniques. Nevertheless, these over-approximations still
ensure soundness of test cases [5]. These techniques are implemented in the STG tool (see 5.2), with an
interface with NBAC used for abstract interpretation.

3.4. Control synthesis
The supervisory control problem is concerned with ensuring (not only checking) that a computer-operated
system works correctly. More precisely, given a specification model and a required property, the problem is
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to control the specification’s behavior, by coupling it to a supervisor, such that the controlled specification
satisfies the property [30]. The models used are LTSs and the associated languages, which make a distinction
between controllable and non-controllable actions and between observable and non-observable actions.
Typically, the controlled system is constrained by the supervisor, which acts on the system’s controllable
actions and forces it to behave as specified by the property. The control synthesis problem can be seen as a
constructive verification problem: building a supervisor that prevents the system from violating a property.
Several kinds of properties can be ensured such as reachability, invariance (i.e. safety), attractivity, etc.
Techniques adapted from model checking are then used to compute the supervisor w.r.t. the objectives.
Optimality must be taken into account as one often wants to obtain a supervisor that constrains the system
as few as possible.
Supervisory control theory overview. Supervisory control theory deals with control of Discrete Event
Systems. In this theory, the behavior of the system S is assumed not to be fully satisfactory. Hence, it has
to be reduced by means of a feedback control (named Supervisor or Controller) in order to achieve a given set
of requirements [30]. Namely, if S denotes the specification of the system and Φ is a safety property that has
to be ensured on S (i.e. S¬|=Φ), the problem consists in computing a supervisor C, such that

S‖C |= Φ (1)

where ‖ is the classical parallel composition between two LTSs. Given S, some events of S are said to be
uncontrollable (Σuc), i.e. the occurrence of these events cannot be prevented by a supervisor, while the others
are controllable (Σc). It means that all the supervisors satisfying (1) are not good candidates. In fact, the
behavior of the controlled system must respect an additional condition that happens to be similar to the ioco
conformance relation that we previously defined in 3.3. This condition is called the controllability condition
and is defined as follows.

L(S‖C)Σuc ∩ L(S) ⊆ L(S‖C) (2)

Namely, when acting on S, a supervisor is not allowed to disable uncontrollable events. Given a safety property
Φ, that can be modeled by an LTS AΦ, there actually exist many different supervisors satisyfing both (1) and
(2). Among all the valid supervisors, we are interested in computing the supremal one, ie the one that restricts
the system as few as possible. It has been shown in [30] that such a supervisor always exists and is unique.
It gives access to a behavior of the controlled system that is called the supremal controllable sub-language
of AΦ w.r.t. S and Σuc. In some situations, it may also be interesting to force the controlled system to be
non-blocking (See [30] for details).

The underlying techniques are similar to the ones used for Automatic Test Generation. It consists in computing
a product between the specification andAΦ and to remove the states of the obtained LTS that may lead to states
that violate the property by triggering only uncontrollable events.

4. Application Domains

4.1. Overview
The methods and tools developed by the VERTECS project-team for test generation and control synthesis of
reactive systems are intended to be as generic as possible. This allows us to apply them in many application
domains where the presence of software is predominant and its correctness is essential. In particular, we apply
our research in the context of telecommunication systems, for embedded systems, for smart-cards application,
and control-command systems.
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4.2. Telecommunication systems
Our research on test generation was initially proposed for conformance testing of telecommunication proto-
cols. In this domain, testing is a normalized process [26], and formal specification languages are widely used
(SDL in particular). Our test generation techniques have already proved useful in this context, going up to
industrial transfer. New standardized component-based design methodologies such as UML and OMG’s MDE
increase the need for formal techniques in order to ensure the compositionality of components, by verification
and testing. Our techniques, by their genericity and adaptativity, have also proved useful at different levels
of these methodologies, from component testing to system testing. The telecommunication industry now also
tries to provide more and more services to the users. These services must be validated.

4.3. Software embedded systems
In the context of transport, software embedded systems are increasingly predominant. This is particularly
important in automotive systems, where software replaces electronics for power train, chassis (e.g. engine
control, steering, brakes) and cabin (e.g. wiper, windows, air conditioning) or new services to passengers are
increasing (e.g. telematics, entertainment). Car manufacturers have to integrate software components provided
by many different suppliers, according to specifications. One of the problems is that testing is done late in the
life cycle, when the complete system is available. Faced with these problems, but also to the complexity of
systems, compositionality of components, distribution, etc, car manufacturers now try to promote standardized
interfaces and component-based design methodologies. They also develop virtual platforms which allow for
testing components before the system is complete. It is clear that software quality and trust are one of the
problems that have to be tackled in this context. This is why we believe that our techniques (testing and
control) can be useful in such a context.

4.4. Control-command systems
The main application domain for our techniques is control-command systems. In general, such systems
control costly machines (see e.g. robotic systems, flexible manufacturing systems), that are connected to an
environment (e.g. a human operator). Such systems are often critical systems and errors occurring during
their execution may have dramatic economical or human consequences. In this field, the controller synthesis
methodology (CSM) is useful to ensure by construction the interaction between 1) the different components,
and 2) the environment and the system itself. For the first point, the CSM is often used as a safe scheduler,
whereas for the second one, the supervisor can be interpreted as a safe discrete tele-operation system. Also
in the context of the Vacsim ANR project, we investigate the testing, monitoring and verification of control-
command systems.

5. Software
5.1. TGV

Participant: Thierry Jéron.

TGV (Test Generation with Verification technology) is a tool for test generation of conformance test suites
from specifications of reactive systems [4]. It is based on the IOLTS model, a well defined theory of testing,
and on-the-fly test generation algorithms coming from verification technology. Originally, TGV allows test
generation focused on well defined behaviors formalized by test purposes. The main operations of TGV are
(1) a synchronous product which identifies sequences of the specification accepted by a test purpose, (2)
abstraction and determinisation for the computation of next visible actions, (3) selection of test cases by the
computation of reachable states from the initial states and co-reachable states from accepting states. TGV has
been developed in collaboration with Vérimag Grenoble and uses libraries of the CADP toolbox (VERIMAG
and VASY). TGV can be seen as a library that can be linked to different simulation tools through well defined
APIs. An academic version of TGV is distributed in the CADP toolbox and allows test generation from Lotos
specifications by a connection to its simulator API. TGV has been registered at APP (Agence de Protection
des Programmes) under deposit number IDDN.FR.001.310012.00.R.P.1997.000.2090.
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5.2. STG
Participant: Thierry Jéron.

STG (Symbolic Test Generation) is a prototype tool for the generation and execution of test cases using sym-
bolic techniques. It takes as input a specification and a test purpose described as IOSTS, and generates a test
case program also in the form of IOSTS. Test generation in STG is based on a syntactic product of the speci-
fication and test purpose IOSTS, an extraction of the subgraph corresponding to the test purpose, elimination
of internal actions, determinisation, and simplification. The simplification phase now relies on NBAC, which
approximates reachable and coreachable states using abstract interpretation. It is used to eliminate unreachable
states, and to strengthen the guards of system inputs in order to eliminate some Inconclusive verdicts. After a
translation into C++ or Java, test cases can be executed on an implementation in the corresponding language.
Constraints on system input parameters are solved on-the-fly (i.e. during execution) using a constraint solver.
The first version of STG was developed in C++, using Omega as constraint solver during execution. This
version has been deposited at APP under number IDDN.FR.001.510006.000.S.P.2004.000.10600.

A new version in OCaml has been developed in the last years. This version is more generic and will serve as a
library for symbolic operations on IOSTS. Most functionalities of the C++ version have been re-implemented.
Also a new translation of abstract test cases into Java executable tests has been developed, in which the
constraint solver is LUCKYDRAW (VERIMAG). This version has also been deposit at APP and is available
for download on the web as well as its documentation and some examples.

Finally, in collaboration with ULB, we implemented a prototype SMACS, derived from STG, that is devoted
to the control of infinite system modeled by STS.

5.3. SIGALI
Participant: Hervé Marchand.

SIGALI is a model-checking tool that operates on ILTS (Implicit Labeled Transition Systems, an equational
representation of an automaton), an intermediate model for discrete event systems. It offers functionalities for
verification of reactive systems and discrete controller synthesis. It is developed jointly by the ESPRESSO
and VERTECS teams. The techniques used consist in manipulating the system of equations instead of the set
of solutions, which avoids the enumeration of the state space. Each set of states is uniquely characterized by
a predicate and the operations on sets can be equivalently performed on the associated predicates. Therefore,
a wide spectrum of properties, such as liveness, invariance, reachability and attractivity, can be checked.
Algorithms for the computation of predicates on states are also available [6] [28]. SIGALI is connected with
the Polychrony environment (ESPRESSO project-team) as well as the Matou environment (VERIMAG),
thus allowing the modeling of reactive systems by means of Signal Specification or Mode Automata and the
visualization of the synthesized controller by an interactive simulation of the controlled system. SIGALI is
registered at APP.

6. New Results
6.1. Verification
6.1.1. Analysis of partially observed recursive discrete-event systems

Participants: Sébastien Chédor, Thierry Jéron, Hervé Marchand, Christophe Morvan.

Monitoring of recursive discrete-event systems under partial observation is an important issue with major
applications such as the diagnosability of faulty behaviors and the detection of information flow. We consider
regular discrete-event systems, that is recursive discrete-event systems definable by deterministic graph
grammars. This setting is expressive enough to capture classical models of recursive systems such as the
pushdown systems. Hence they are infinite-state in general and standard powerset constructions for monitoring
do not apply anymore. We exhibit computable conditions on these grammars together with non-trivial
transformations of graph grammars that enable us to construct a monitor. This construction is applied to
diagnose faulty behaviors, to detect information flow in regular discrete-event systems, and to generate tests.
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6.1.2. Analysis of timed systems
6.1.2.1. Approximate determinization of timed automata

Participants: Nathalie Bertrand, Thierry Jéron, Amélie Stainer.

Timed automata are frequently used to model real-time systems. Their determinization is a key issue for
several validation problems. However, not all timed automata can be determinized, and determinizability
itself is undecidable. In [18], we propose a game-based algorithm which, given a timed automaton, tries to
produce a language-equivalent deterministic timed automaton, otherwise a deterministic over-approximation.
Our method subsumes two recent contributions: it is at once more general than an existing (non terminating)
determinization procedure by Baier et al. (2009) and more precise than the approximation algorithm of
Krichen and Tripakis (2009). Moreover, an extension of the method allows to deal with invariants and ε-
transitions, and to consider other useful approximations: under approximation, and combination of under- and
over-approximations which are particularly useful in testing (see 6.2.1).

6.1.2.2. Frequency analysis for timed automata
Participants: Nathalie Bertrand, Amélie Stainer.

The languages of infinite timed words accepted by timed automata are traditionally defined using Büchi-like
conditions. These acceptance conditions focus on the set of locations visited infinitely often along a run, but
completely ignore quantitative timing aspects. In [15] we propose a natural quantitative semantics for timed
automata based on the so-called frequency, which measures the proportion of time spent in the accepting
states. We study various properties of timed languages accepted with positive frequency, and in particular the
emptiness and universality problems.

6.1.3. Petri nets reachability graphs
Participant: Christophe Morvan.

Petri nets are a general model for concurrency, the structure of their reachability graph is mostly unknown.
In [19] we have investigated the decidability and complexity status of model-checking problems on unlabelled
reachability graphs of Petri nets by considering first-order, modal and pattern-based languages without labels
on transitions or atomic propositions on markings. We consider several parameters to separate decidable
problems from undecidable ones. These results illustrate the intrinsic complexity of the structure of these
graphs.

6.2. Active and passive testing
6.2.1. Off-line test selection with test purposes for non-deterministic timed automata

Participants: Nathalie Bertrand, Thierry Jéron, Amélie Stainer.

In [17], we propose novel off-line test generation techniques for non-deterministic timed automata with inputs
and outputs (TAIOs) in the formal framework of the tioco conformance theory. In this context, a first problem is
the determinization of TAIOs, which is necessary to foresee next enabled actions, but is in general impossible.
The determinization problem is addressed in [18] thanks to an approximate determinization using a game
approach (see 6.1.2.1). We adapt this procedure here to over- and under-approximation, in order to preserve
tioco and guarantee the soundness of generated test cases. A second problem is test selection for which a
precise description of timed behaviors to be tested is carried out by expressive test purposes modeled by a
generalization of TAIOs. Finally, using a symbolic co-reachability analysis guided by the test purpose, test
cases are generated in the form of TAIOs equipped with verdicts.

6.2.2. Test generation using pushdown automata
Participant: Puneet Bhateja.
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IOLTS (input output labeled transition system) is a versatile model and is frequently used in model based
testing to model the functional behavior of an IUT (implementation under test). However when a system is
tested remotely, its observed behavior can be different from its actual functional behavior. In a previous paper,
we defined a notion of remotely observed behavior of an IOLTS in terms of its actual behavior. Paper [14]
contributes by proposing a methodology to simulate a PDA (pushdown automaton) from the given IOLTS
such that the simulated PDA precisely expresses the remotely observed behavior of the IOLTS. The simulated
PDA can be thought of as an automatic test generator for remote testing.

6.2.3. Test case selection in asynchronous testing
Participants: Puneet Bhateja, Thierry Jéron.

Conformance testing has a rich underlying formal theory called IOLTS-based conformance testing. Depend-
ing upon whether the implementation-under-test (IUT) interacts with its environment directly, or indirectly
through a medium, IOLTS-based conformance testing can be classified as synchronous testing or asynchronous
testing, respectively. So far the problem of test case selection has been addressed mostly in the context of syn-
chronous testing. In this work we contribute by addressing this problem in the context of asynchronous testing.
Though an asynchronously communicating process can be simulated by a synchronously communicating pro-
cess, the fact that the simulating process is infinite state even if the simulated process is finite state made the
problem challenging.

6.2.4. A tagging protocol for asynchronous testing
Participant: Puneet Bhateja.

Conformance testing has a rich underlying theory popularly called IOCO-test theory. In the realm of IOCO-
test theory, this paper addresses the issue of testing a component of an asynchronously communicating
distributed system. Testing a system which communicates asynchronously (i.e., through some medium) with
its environment is more difficult than testing a system which communicates synchronously (i.e., directly
without any medium). What impedes asynchronous testing is that the actual behavior of the implementation
under test (IUT) appears distorted and infinite to the tester. This impediment consequently renders the problem
of generating a complete test suite, from the given specification of the IUT, infeasible. To this end, paper [13]
proposes a tagging protocol which when implemented by the asynchronously communicating distributed
system will enable the generation of a complete test suite, from the specification of any of its component.
Further, this paper describes how to generate the test suite from the given specification of the component.

6.2.5. Abstracting time and data for conformance testing of real-time systems
Participants: Thierry Jéron, Hervé Marchand.

Current approaches to model-based conformance testing of real-time systems are mostly based either on finite
state machines/transition systems or on timed automata. However, most real-time systems manipulate data
while being subjected to time constraints. The usual solution consists in enumerating data values (in finite
domains) while treating time symbolically, thus leading to the classical state explosion problem. Paper [12]
with W.L. Andrade and P. Machado (Fed. Univ. Campina Grande) proposes a new model of real-time systems
as an extension of both symbolic transition systems and timed automata, in order to handle both data and time
requirements symbolically. We then adapt the tioco conformance testing theory to deal with this model and
describe a test case generation process based on a combination of symbolic execution and constraint solving
for the data part and symbolic analysis for timed aspects.

6.2.6. Ensuring security properties
6.2.6.1. Runtime enforcement monitors: composition, synthesis, and enforcement abilities

Participant: Yliès Falcone.
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Runtime enforcement is a powerful technique to ensure that a program will respect a given set of properties.
In [9] we extend previous work on this topic in several directions. Firstly, we propose a generic notion of
enforcement monitors based on a memory device and finite sets of control states and enforcement operations.
Moreover, we specify their enforcement abilities w.r.t. the general Safety-Progress classification of properties.
Furthermore, we propose a systematic technique to produce a monitor from the automaton recognizing a given
safety, guarantee, obligation or response property. Finally, we show that this notion of enforcement monitors
is more amenable to implementation and encompasses previous runtime enforcement mechanisms.

6.2.6.2. What can you verify and enforce at runtime?
Participant: Yliès Falcone.

The underlying property, its definition and representation play a major role when monitoring a system. Having
a suitable and convenient framework to express properties is thus a concern for runtime analysis. It is desirable
to delineate in this framework the sets of properties for which runtime analysis approaches can be applied
to. [8] presents a unified view of runtime verification and enforcement of properties in the Safety-Progress
classification. Firstly, we extend the Safety-Progress classification of properties in a runtime context. Secondly,
we characterize the set of properties which can be verified (monitorable properties) and enforced (enforceable
properties) at runtime. We propose in particular an alternative definition of ”property monitoring” to the one
classically used in this context. Finally, for the delineated sets of properties, we define specialized verification
and enforcement monitors.

6.3. Control synthesis
6.3.1. Controllers for probabilistic systems

Participant: Nathalie Bertrand.

Partially Observable Markov Decision Processes (POMDP for short) have been extensively studied in several
research communities, among which AI and model-checking. In [16] we address the problem of the minimal
information a user needs at runtime to achieve a simple goal, modeled as reaching an objective with probability
one. More precisely, to achieve her goal, the user can either choose at each step to use partial information only,
or pay a fixed cost and receive full information. The natural question is then to minimize the cost the user needs
to fulfill its objective. This optimization question gives rise to two different problems, whether we consider to
minimize the worst case cost, or the average cost. On the one hand, concerning the worst case cost, we show
that efficient techniques from the model checking community can be adapted to compute the optimal worst
case cost and give optimal strategies for the users. On the other hand, we show that the optimal average price (a
question typically considered in the AI community) cannot be computed in general, nor can it be approximated
in polynomial time even up to a large approximation factor.

6.3.2. Supervisory control for synchronous systems
6.3.2.1. Controller synthesis and programming language

Participant: Hervé Marchand.

In [24] we define a mixed imperative/declarative programming language: declarative contracts are enforced
upon imperatively described behaviors. We rely on the notion of Discrete Controller Synthesis (DCS), a formal
technique stemming from control theory and the supervisory control of discrete event systems. We target the
application domain of adaptive and reconfigurable computing systems: our language can serve programming
closed-loop adaptation controllers, enabling flexible execution of functionalities w.r.t. changing resource and
environment conditions. We give a synthetic presentation of the language, its semantics and compilation, and
we illustrate its use with the example of a robot system.

6.3.2.2. Symbolic supervisory control of infinite transition systems under partial observation using abstract
interpretation
Participant: Hervé Marchand.
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In [11], we propose algorithms for the synthesis of state-feedback controllers with partial observation of
infinite state discrete event systems modelled by Symbolic Transition Systems. We provide models of safe
memoryless controllers both for potentially deadlocking and deadlock free controlled systems. The termination
of the algorithms solving these problems is ensured using abstract interpretation techniques which provide an
overapproximation of the transitions to disable. We then extend our algorithms to controllers with memory and
to online controllers. We also propose improvements in the synthesis of controllers in the finite case which, to
our knowledge, provide more permissive solutions than what was previously proposed in the literature. Our
tool SMACS gives an empirical validation of our methods by showing their feasibility, usability and efficiency.

6.3.2.3. Decentralized control of infinite systems
Participant: Hervé Marchand.

In [10] we propose algorithms for the synthesis of decentralized state-feedback controllers with partial
observation of infinite state systems, which are modeled by Symbolic Transition Systems. We first consider the
computation of safe controllers ensuring the avoidance of a set of forbidden states and then extend this result
to the deadlock free case. The termination of the algorithms solving these problems is ensured by the use of
abstract interpretation techniques, but at the price of overapproximations, in particular, in the computation of
the states which must be avoided. We then extend our algorithms to the case where the system to be controlled
is given by a collection of subsystems (modules). This structure is exploited to locally compute a controller
for each module. Our tool SMACS gives an empirical evaluation of our methods by showing their feasibility,
usability and efficiency.

6.3.2.4. Polychronous controller synthesis from MARTE CCSL timing specifications
Participant: Hervé Marchand.

The UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) defines a
mathematically expressive model of time, the Clock Constraint Specification Language (CCSL), to specify
timed annotations on UML diagrams and thus provides them with formally defined timed interpretations.
Thanks to its expressive capability, the CCSL allows for the specification of static and dynamic properties, of
deterministic and non-deterministic behaviors, or of systems with multiple clock domains. Code generation
from such multiclocked specifications (for the purpose of synthesizing a simulator, for instance) is known to be
a difficult issue. We address it in [23] by using the approach of controller synthesis. In our framework, a timed
CCSL specification is regarded as a property whose satisfaction should be enforced for any UML diagram
carrying it as annotation. To do so, CCSL statements are first translated into dynamical polynomial systems.
Such systems can be manipulated using the model-checker Sigali to synthesize an executable property (a
controller) which enforces the satisfaction of the specified timing constraints on the UML diagram with which
it is executed.

6.3.3. Control of distributed systems
Participant: Hervé Marchand.

In this work, we consider the control of distributed systems composed of subsystems communicating asyn-
chronously; the aim is to build local controllers that restrict the behavior of a distributed system in order to
satisfy a global state avoidance property. We model our distributed systems as communicating finite state
machines with reliable unbounded FIFO queues between subsystems. Local controllers can only observe the
behavior of their local subsystem and do not see the queue contents. To refine their control policy, the con-
trollers can use the FIFO queues to communicate by piggybacking extra information (some timestamps and
their state estimates) to the messages sent by the subsystems [21]. We provide an algorithm that computes,
for each local subsystem (and thus for each controller), during the execution of the system, an estimate of the
current global state of the distributed system. The local estimate is updated at each message reception. We then
define synthesis algorithms allowing to compute the local controllers. Our method relies on the computation
of (co)reachable states. Since the reachability problem is undecidable in our model, we use abstract interpre-
tation techniques to obtain regular overapproximations of the possible FIFO queue contents, and hence of the
possible current global states. An implementation of our algorithms provides an empirical evaluation of our
method [22].
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7. Partnerships and Cooperations

7.1. National initiatives
7.1.1. ANR TesTec: Test of real-time and critical embedded system

Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

The TesTec project is a three years [2008-2010] industrial research project that gathers two companies: an
end-user (EDF R&D ) and one software editor for embedded real-time systems and automation systems
(Geensys), and four laboratories from automation engineering and computer science (I3S, INRIA Rennes,
LaBRI, LURPA). This project focuses on automatic generation and execution of tests for the class of embedded
real-time systems. They are highly critical. Such systems can be found in many industrial domains, such as
energy, transport systems. More precisely the project TesTec will address two crucial technological issues:

• optimisation of test generation techniques for large size systems, in particular by an explicit
modelling of time and by simultaneous management of continuous and discrete variables in hybrid
applications;

• reduction of the size of the tests derived from specification models by using the results of formal
verification of implementation models.

The overall aim of this project is to propose a software tool for generation and execution of tests; this tool will
be based on an existing environment for embedded systems design and will implement the scientific results of
the project.

This year our contributions to this project were our works on test generation from timed models, as well as
approximate determinization of timed automata.

In 2011, the post-doc position of Puneet Bhateja was funded by TestTec.

7.1.2. ANR VACSIM: Validation of critical control-command systems by coupling simulation
and formal analysis
Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

The Vacsim project (2011-2014) is a 3 years project with EDF R&D, Dassault Systèmes, LURPA Cachan, I3S
Nice and Labri Bordeaux. The project aims at developping both methodological and formal contributions for
the simulation and validation of control-command systems. The rôle of the Vertecs team will be to contribute
to the advance of validation techniques for timed systems, including quantitative analysis and its application
to testing, monitoring of timed systems, and verification of communicating timed automata.

7.1.3. Action Incitative VeSPa: Verification of security and privacy properties
Participant: Nathalie Bertrand.

The VeSPa "Action Incitative" is a one-year [2011] project funded by Rennes 1 University to develop emerging
research themes. The goal of the project is to strat and verify security and privacy properties in protocols, using
logic and games techniques. The participants are Sophie Pinchinat (leader, S4), Sébastien Gambs (Cidre),
Guillaume Aucher (DistribCom), and Nathalie Bertrand (Vertecs). To gather researchers interested in the topic,
the second edition of a workshop on Games, Logics and Security has been organized in October 2011.

7.2. European initiatives
7.2.1. Artist design network of excellence

Participants: Nathalie Bertrand, Thierry Jéron, Hervé Marchand.

Program: FP7
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Project acronym: Artist Design

Project title: Artist - European Network of Excellence on Embedded System Design

Duration: 01/08 - 12/11

Coordinator: VERIMAG

Abstract: The central objective for ArtistDesign http://www.artist-embedded.org/artist/-
ArtistDesign-Participants-.html is to build on existing structures and links forged in Artist2,
to become a virtual Center of Excellence in Embedded Systems Design. This will be mainly
achieved through tight integration between the central players of the European research community.
Also, the consortium is smaller, and integrates several new partners. These teams have already
established a long-term vision for embedded systems in Europe, which advances the emergence of
Embedded Systems as a mature discipline.
The research effort aims at integrating topics, teams, and competencies, grouped into 4 Thematic
Clusters: “Modelling and Validation”, “Software Synthesis, Code Generation, and Timing Analysis”,
“Operating Systems and Networks”, “Platforms and MPSoC”. “Transversal Integration” covering
both industrial applications and design issues aims for integration between clusters.
The Vertecs EPI is a partner of the “Validation” activity of the “Modeling and Validation” cluster.
This year, the Vertecs EPI has contributed to quantitative verification of timed automata [15],
approximate determinization of timed automata [18] and its adaptation to test generation [17], and
control sysnthesis using abstract interpretation for infinite state systems [11], on decentralized [10]
and distributed control [21], [22]. Amélie Stainer spent one month in Aalborg to implement the
approximate determinization of timed automata using UPPAAL libraries.

7.2.2. PHC Tournesol STP : Verification of timed and probabilistic systems
Participants: Nathalie Bertrand, Amélie Stainer.

A two-year contract with the group of Thomas Brihaye (Université Mons) started in 2010. Its objective is
to study timed and probabilistic systems. This year, Nathalie Bertrand visited Thomas Brihaye in Mons, and
Thomas Brihaye came to Rennes to give a seminar and further discuss with Nathalie Bertrand and Amélie
Stainer.

7.2.3. Followed collaborations with major European organizations

Université Libre Bruxelles (Belgium), Prof. Thierry Massart

Testing and control of symbolic transitions systems

University of Kaiserslautern (Germany), Roland Meyer

Petri nets

University of Dresden (Germany), Prof. Christel Baier

Probabilistic automata over infinite words

7.3. International Initiatives
7.3.1. INRIA associate team
7.3.1.1. TREATIES

Title: Test of Real-Time Embedded Systems

INRIA principal investigator: Thierry Jéron

International Partner:

Institution: Federal University of Campina Grande (Brazil)

http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html
http://www.artist-embedded.org/artist/-ArtistDesign-Participants-.html
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Laboratory: Universidade Federal do Campina Grande

Duration: 2009 - 2011
See also: http://www.irisa.fr/vertecs/Treaties.html
This associated team with the Federal University of Campina Grande (Prof. Patrícia D. L. Machado)
and University Pernambuco (Prof. Augusto Sampaio) in Brazil started in 2009 and ended this year.
In 2011 Nathalie Bertrand and Sébastien Chédor visited the Brazilian team in Recife in November
where a meeting took place, and we had the visit of Wilkerson Andrade in November.
This year the cooperation addressed problems in test generation for timed input/output symbolic
transition systems (see 6.2.5) and compositional conformance verification for these models, on the
problems of non-determinism in timed models for test generation (see 6.1.2.1 and 6.2.1), on test
vector generation for timed models, and automatic test case generation and execution for regular
graphs (see 6.2.2).

7.3.2. INRIA international partners

University of Michigan (Prof. Stéphane Lafortune) on control and diagnosis of discrete event systems.

7.3.3. Visits of international scientists
Laurie Ricker, associate professor at the Mathematics & Computer Science department of Mount Allison
University (Canada) has visited Vertecs for 6 months, from January 2011 to June 2011. We collaborate on
control of discrete event systems for distributed systems.

8. Dissemination

8.1. Animation of the scientific community
Nathalie Bertrand was PC member of QAPL’11, and co-organiser of the 2nd edition of the GIPSy

Workshop in October 2011. She was invited to give a talk at the Seminar of the Centre Fédéré
en Vérification in Brussels, in May 2011.

Yliès Falcone was a reviewer for DATE’12, ACM Tissec, Elsevier Cosrev, ICFEM’11, HSCC’11. He was
invited to give a talk at LIG (Grenoble), LORIA (Nancy), LRI (Paris), NICTA (Canberra, Asutralia),
Valence (in the context of the SEMBA project). He is in the Organization Committee of AFADL’12.

Thierry Jéron was PC member of Scenario’2011, ICTSS’2011, ICST’2012, TAP’2011. He was invited
to give a talk in LIFC Besançon. He is member of IFIP WG 10.2. He was member of the PhD
commitee of Alexander Heussner (Labri Bordeaux) and reviewer of the PhD thesis of Gilles Benattar
(University of Nantes), Julien Provost (LURPA, ENS Cachan) and Pierre-Christophe Bué (LIFC
Besançon).

Hervé Marchand is Associate Editor of the IEEE Transactions on Automatic Control journal and
member of the IFAC Technical Committee (TC 1.3 on Discrete Event and Hybrid Systems). He
was PC member of the ICINCO’11, DCDS,11, MSR’11 Conferences and IFAC World Congress
2011. He was member of the PhD committee of Mingming REN (INSA de Lyon, July 2011).

8.2. Teaching and supervision
8.2.1. Teaching

Nathalie Bertrand

Master : Advanced model-checking, 8h, niveau M2, ISTIC, Université de Rennes 1, France.
Agrégation : Langages formels, 16h, niveau M2, ENS Cachan antenne de Bretagne, France.

http://www.irisa.fr/vertecs/Treaties.html
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Sébastien Chédor

Licence : Java (TD-TP), 40h, niveau L1, ISTIC, Université de Rennes 1, France.
Scheme (TP), 20h, niveau L1, ISTIC, Université de Rennes 1, France.
Java (TP), 20h, niveau L2, ISTIC, Université de Rennes 1, France.
Programmation (TP), 20h, niveau L3, ENS-Cachan-Antenne de Bretagne, France.
Initiation à LaTeX (Cours), 5h, niveau L3, ENS-Cachan-Antenne de Bretagne, France.

Thierry Jéron

Master : Testing of timed systems, 4h, niveau M2, ISTIC, Université de Rennes 1, France.
Testing of timed systems, 4h, niveau M2, ESIR, Université de Rennes 1, France.

Christophe Morvan

Licence : Object Oriented programming with Java, 192h, niveau L2, Université de Marne-la-Vallée,
France.

Amélie Stainer

Licence : Java (Cours-TD-TP), 42h, niveau L1, INSA-Rennes, France.
Scheme (TP), 14h, niveau L1, INSA-Rennes, France.
Modélisation de structures de données (TP), 20h, niveau L3, INSA-Rennes, France.

Agrégation : Modélisation (Cours), 13h, niveau M2, ENS-Cachan-Antenne de Bretagne, France.
Oraux blancs de mathématiques et de modélisation, 24h, niveau M2, ENS-Cachan-Antenne

de Bretagne, France.
Préparation de leçons d’informatique, 12h, niveau M2, ENS-Cachan-Antenne de Bretagne,

France.

8.2.2. PhD

PhD in progress: Sébastien Chédor, Verification and test of systems modeled by regular graphs,
started in September 2009, supervised by Christophe Morvan and Thierry Jéron.

PhD in progress: Amélie Stainer, Quantitative verification of timed automata, started in October
2010, supervised by Nathalie Bertrand and Thierry Jéron.

PhD in progress: Srinivas Pinisetty, Runtime validation of critical control-command systems, started
in December 2011, supervised by Hervé Marchand and Thierry Jéron.
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