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2. Overall Objectives

2.1. Panorama
Multicore processors have now become mainstream for both general-purpose and embedded computing. In
the near future, every hardware platform will feature thread level parallelism. Therefore, the overall computer
science research community, but also industry, is facing new challenges; parallel architectures will have to be
exploited by every application from HPC computing, web and entreprise servers, but also PCs, smartphones
and ubiquitous embedded systems.
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Within a decade, it will become technologically feasible to implement 1000s of cores on a single chip.
However, several challenges must be addressed to allow the end-user to benefit from these 1000’s cores chips.
At that time, most applications will not be fully parallelized, therefore the effective performance of most
computer systems will strongly depend on their performance on sequential sections and sequential control
threads: Amdahl’s law is forever. Parallel applications will not become mainstream if they have to be adapted to
each new platform, therefore a simple performance scalability/portability path is needed for these applications.
In many application domains, particularly in real-time systems, the effective use of multicore chips will depend
on the ability of the software and hardware vendors to accurately assess the performance of applications.

The ALF team regroups researchers in computer architecture, software/compiler optimization, and real-time
systems. The long-term goal of the ALF project-team is to allow the end-user to benefit from the 2020’s
many-core platform. We address this issue through architecture, i.e. we try to influence the definition of
the 2020’s many-core architecture, compiler, i.e. we intend to provide new code generation techniques for
efficient execution on many-core architectures and performance prediction/guarantee, i.e. we try to propose
new software and architecture techniques to predict/guarantee the response time of many-core architectures.

High performance on single thread process and sequential code is a key issue for enabling overall high
performance on a 1000’s cores system. Therefore, we anticipate that future manycore architectures will
implement heterogeneous design featuring many simple cores and a few complex cores. Hence the research in
the ALF project focuses on refining the microarchitecture to achieve high performance on single thread process
and/or sequential code sections. We focus our architecture research in two main directions 1) enhancing
the microarchitecture of high-end superscalar processors, 2) exploiting/modifying heterogeneous multicore
architecture on a single thread. We also tackle a technological/architecture issue, the temperature wall.

Compilers are keystone solutions for any approach that deals with high performance on 100+ core systems.
But general-purpose compilers try to embrace so many domains and try to serve so many constraints that
they frequently fail to achieve very high performance. They need to be deeply revisited. We identify four
main compiler/software related issues that must be addressed in order to allow efficient use of multi- and
many-cores: 1) programming 2) resource management 3) application deployment 4) portable performance.
Addressing these challenges require to revisit parallel programming and code generation extensively.

While compiler and architecture research efforts often focus on maximizing average case performance,
applications with real-time constraints do not only need high performance but also performance guarantees
in all situations, including the worst-case situation. Worst-Case Execution Time estimates (WCET) need to
be upper bounds of any possible execution time. The amount of safety required depends on the criticality of
applications. Within the ALF team, our objective is to study performance guarantees for both (i) sequential
codes running on complex cores ; (ii) parallel codes running on multicores.

Our research is partially supported by industry (Intel), the Brittany region, the ANR (PetaQCD and W-SEPT
project)s, and the European Union (NoE HiPEAC3, ERC grant DAL, COST action TACLe).

2.2. Highlights of the Year
• André Seznec has received the first Intel Research Impact Medal for "His exemplary work on high-

performance computer micro-architectures, branch prediction, and cache architecture, have been of
tremendous benefit to Intel, the industry, and the academic community as a whole.". (See http://
www.intel.es/content/www/us/en/education/university/university-research-award.html ).

• André Seznec has been elevated as an IEEE Fellow "for contributions to design of branch predictors
and cache memory for processor architectures".

3. Scientific Foundations

3.1. Motivations

http://www.intel.es/content/www/us/en/education/university/university-research-award.html
http://www.intel.es/content/www/us/en/education/university/university-research-award.html
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Multicores have become mainstream in general-purpose as well as embedded computing in the last few years.
The integration technology trend allows to anticipate that a 1000-core chip will become feasible before 2020.
On the other hand, while traditional parallel application domains, e.g. supercomputing and transaction servers,
are benefiting from the introduction of multicores, there are very few new parallel applications that have
emerged during the last few years.

In order to allow the end-user to benefit from the technological breakthrough, new architectures have to be
defined for the 2020’s many-cores, new compiler and code generation techniques as well as new performance
prediction/guarantee techniques have to be proposed .

3.2. The context
3.2.1. Technological context: The advent of multi- and many- cores architecture

For almost 30 years since the introduction of the first microprocessor, the processor industry was driven by the
Moore’s law till 2002, delivering performance that doubled every 18-24 months on a uniprocessor. However
since 2002 , and despite new progress in integration technology, the efforts to design very aggressive and very
complex wide issue superscalar processors have essentially been stopped due to poor performance returns, as
well as power consumption and temperature walls.

Since 2002-2003, the microprocessor industry has followed a new path for performance: the so-called
multicore approach, i.e., integrating several processors on a single chip. This direction has been followed
by the whole processor industry. At the same time, most of the computer architecture research community
has taken the same path, focusing on issues such as scalability in multicores, power consumption, temperature
management and new execution models, e.g. hardware transactional memory.

In terms of integration technology, the current trend will allow to continue to integrate more and more
processors on a single die. Doubling the number of cores every two years will soon lead to up to a thousand
processor cores on a single chip. The computer architecture community has coined these future processor
chips as many-cores.

3.2.2. The application context: multicores, but few parallel applications
For the past five years, small scale parallel processor chips (hyperthreading, dual and quad-core) have become
mainstream in general-purpose systems. They are also entering the high-end embedded system market. At
the same time, very few (scalable) mainstream parallel applications have been developed. Such development
of scalable parallel applications is still limited to niche market segments (scientific applications, transaction
servers).

3.2.3. The overall picture
Till now, the end-user of multicores is experiencing improved usage comfort because he/she is able to
run several applications at the same time. Eventually, in the near future with the 8-core or the 16-core
generation, the end-user will realize that he/she is not experiencing any functionality improvement or
performance improvement on current applications. The end-user will then realize that he/she needs more
effective performance rather than more cores. The end-user will then ask either for parallel applications or for
more effective performance on sequential applications.

3.3. Technology induced challenges
3.3.1. The power and temperatures walls

The power and the temperature walls largely contributed to the emergence of the small-scale multicores. For
the past five years, mainstream general-purpose multicores have been built by assembling identical superscalar
cores on a chip (e.g. IBM Power series). No new complex power hungry mechanisms were introduced in
the core architectures, while power saving techniques such as power gating, dynamic voltage and frequency
scaling were introduced. Therefore, since 2002, the designers have been able to keep the power consumption
budget and the temperature of the chip within reasonable envelopes while scaling the number of cores with
the technology.



4 Activity Report INRIA 2012

Unfortunately, simple and efficient power saving techniques have already caught most of the low hanging
fruits on energy consumption. Complex power and thermal management mechanisms are now becoming
mainstream; e.g. the Intel Montecito (IA64) featured an adjunct (simple) core which unique mission is to
manage the power and temperature on two cores. Processor industry will require more and more heroic efforts
on this power and temperature management policy to maintain its current performance scaling path. Hence the
power and temperature walls might slow the race towards 100’s and 1000’s cores unless the processor industry
takes a new paradigm shift from the current "replicating complex cores" (e.g. Intel Nehalem) towards many
simple cores (e.g. Intel Larrabee) or heterogeneous manycores (e.g. new GPUs, IBM Cell).

3.3.2. The memory wall
For the past 20 years, the memory access time has been one of the main bottlenecks for performance in
computer systems. This was already true for uniprocessors. Complex memory hierarchies have been defined
and implemented in order to limit the visible memory access time as well as the memory traffic demands. Up
to three cache levels are implemented for uniprocessors. For multi- and many-cores the problems are even
worse. The memory hierarchy must be replicated for each core, memory bandwidth must be shared among
the distinct cores, data coherency must be maintained. Maintaining cache coherency for up to 8 cores can be
handled through relatively simple bus protocols. Unfortunately, these protocols do not scale for large numbers
of cores, and there is no consensus on coherency mechanism for manycore systems. Moreover there is no
consensus on core organization (flat ring? flat grid? hierarchical ring or grid?).

Therefore, organizing and dimensioning the memory hierarchy will be a major challenge for the computer
architects. The successful architecture will also be determined by the abilitty of the applications (i.e., the
programmers or the compilers or the run-time) to efficiently place data in the memory hierarchy and achieve
high performance.

Finally new technology opportunities may demand to revisit the memory hierarchy. As an example, 3D
memory stacking enables a huge last-level cache (maybe several gigabytes) with huge bandwidth (several
Kbits/ processor cycle). This dwarfs the main memory bandwidth and may lead to other architectural tradeoffs.

3.4. Need for efficient execution of parallel applications
Achieving high performance on future multicores will require the development of parallel applications, but
also an efficient compiler/runtime tool chain to adapt codes to the execution platform.

3.4.1. The diversity of parallelisms
Many potential execution parallelism patterns may coexist in an application. For instance, one can express
some parallelism with different tasks achieving different functionalities. Within a task, one can expose different
granularities of parallelism; for instance a first layer message passing parallelism (processes executing the
same functionality on different parts of the data set), then a shared memory thread level parallelism and fine
grain loop parallelism (a.k.a vector parallelism).

Current multicores already feature hardware mechanisms to address these different parallelisms: physically
distributed memory — e.g. the new Intel Nehalem already features 6 different memory channels — to address
task parallelism, thread level parallelism — e.g. on conventional multicores, but also on GPUs or on Cell-
based machines —, vector/SIMD parallelism — e.g. multimedia instructions. Moreover they also attack finer
instruction level parallelism and memory latency issues. Compilers have to efficiently discover and manage
all these forms to achieve effective performance.

3.4.2. Portability is the new challenge
Up to now, most parallel applications were developed for specific application domains in high end computing.
They were used on a limited set of very expensive hardware platforms by a limited number of expert users.
Moreover, they were executed in batch mode.
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In contrast, the expectation of most end-users of the future mainstream parallel applications running on
multicores will be very different. The mainstream applications will be used by thousands, maybe millions of
non-expert users. These users consider functional portability of codes as granted. They will expect their codes
to run faster on new platforms featuring more cores. They will not be able to tune the application environment
to optimize performance. Finally, multiple parallel applications may have to be executed concurrently.

The variety of possible hardware platforms, the lack of expertise of the end-users and the varying run-time
execution environments will represent major difficulties for applications in the multicore era.

First of all, the end user considers functional portability without recompilation as granted, this is a major
challenge on parallel machines. Performance portability/scaling is even more challenging. It will become
inconceivable to rewrite/retune each application for each new parallel hardware platform generation to exploit
them. Therefore, apart from the initial development of parallel applications, the major challenge for the next
decade will be to efficiently run parallel applications on hardware architectures radically different from their
original hardware target.

3.4.3. The need for performance on sequential code sections
3.4.3.1. Most software will exhibit substantial sequential code sections

For the foreseeable future, the majority of applications will feature important sequential code sections.

First, many legacy codes were developed for uniprocessors. Most of these codes will not be completely
redeveloped as parallel applications, but will evolve to applications using parallel sections for the most
compute-intensive parts. Second, the overwhelming majority of the programmers have been educated to
program in a sequential programming style. Parallel programming is much more difficult, time consuming
and error prone than sequential programming. Debugging and maintaining a parallel code is a major issue.
Investing in the development of a parallel application will not be cost-effective for the vast majority of software
developments. Therefore, sequential programming style will continue to be dominant in the foreseeable future.
Most developers will rely on the compiler to parallelize their application and/or use some software components
from parallel libraries.

3.4.3.2. Future parallel applications will require high performance sequential processing on 1000’s cores chip

With the advent of universal parallel hardware in multicores, large diffusion parallel applications will have to
run on a broad spectrum of parallel hardware platforms. They will be used by non-expert users who will not
be able to tune the application environment to optimize performance. They will be executed concurrently with
other processes which may be interactive.

The variety of possible hardware platforms, the lack of expertise of the end-user and the varying run-
time execution environments are major difficulties for parallel applications. This tends to constrain the
programming style and therefore reinforces the sequential structure of the control of the application.

Therefore, most future parallel applications will rely on a single main thread or a few main threads in charge
of distinct functionalities of the application. Each main thread will have a general sequential control and can
initiate and control the parallel execution of parallel tasks.

In 1967, Amdahl [34] pointed out that, if only a portion of an application is accelerated, the execution time
cannot be reduced below the execution time of the residual part of the application. Unfortunately, even highly
parallelized applications exhibit some residual sequential part. For parallel applications, this indicates that the
effective performance of the future 1000’s cores chip will significantly depend on their ability to be efficient
on the execution of the control portions of the main thread as well as on the execution of sequential portions
of the application.

3.4.3.3. The success of 1000’s cores architecture will depend on single thread performance

While the current emphasis of computer architecture research is on the definition of scalable multi- many- core
architectures for highly parallel applications, we believe that the success of the future 1000-core architecture
will depend not only on their performance on parallel applications including sequential sections, but also on
their performance on single thread workloads.
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3.5. Performance evaluation/guarantee
Predicting/evaluating the performance of an application on a system without explicitly executing the appli-
cation on the system is required for several usages. Two of these usages are central to the research of the
ALF project-team: microarchitecture research (the system to be be evaluated does not exist) and Worst Case
Execution Time estimation for real-time systems (the numbers of initial states or possible data inputs is too
large).

When proposing a micro-architecture mechanism, its impact on the overall processor architecture has to
be evaluated in order to assess its potential performance advantages. For microarchitecture research, this
evaluation is generally done through the use of cycle-accurate simulation. Developing such simulators is quite
complex and microarchitecture research was helped but also biased by some popular public domain research
simulators (e.g. Simplescalar [36]). Such simulations are CPU consuming and simulations cannot be run on a
complete application. Sampling representative slices of the application was proposed [5] and popularized by
the Simpoint [45] framework.

Real-time systems need a different use of performance prediction; on hard real-time systems, timing con-
straints must be respected independently from the data inputs and from the initial execution conditions. For
such a usage, the Worst Case Execution Time (WCET) of an application must be evaluated and then checked
against the timing constraints. While safe and tight WCET estimation techniques and tools exist for reasonably
simple embedded processors (e.g. techniques based on abstract interpretation such as [38]), accurate evaluation
of the WCET of an algorithm on a complex uniprocessor system is a difficult problem. Accurately modelling
data cache behavior [4] and complex superscalar pipelines are still research questions as illustrated by the
presence of so-called timing anomalies in dynamically scheduled processors, resulting from complex inter-
actions between processor elements (among others, interactions between caching and instruction scheduling)
[42].

With the advance of multicores, evaluating / guaranteeing a computer system response time is becoming much
more difficult. Interactions between processes occurs at different levels. The execution time on each core
depends on the behavior of the other cores. Simulations of 1000’s cores micro-architecture will be needed
in order to evaluate future many-core proposals. While a few multiprocessor simulators are available for the
community, these simulators cannot handle realistic 1000’s cores micro-architecture. New techniques have
to be invented to achieve such simulations. WCET estimations on multicore platforms will also necessitate
radically new techniques, in particular, there are predictability issues on a multicore where many resources
are shared; those resources include the memory hierarchy, but also the processor execution units and all the
hardware resources if SMT is implemented [49].

3.6. General research directions
The overall performance of a 1000’s core system will depend on many parameters including architecture,
operating system, runtime environment, compiler technology and application development. In the ALF
project, we will essentially focus on architecture, compiler/execution environment as well as performance
predictability, and in particular WCET estimation. Moreover, architecture research, and to a smaller extent,
compiler and WCET estimation researches rely on processor simulation. A significant part of the effort in ALF
will be devoted to define new processor simulation techniques.

3.6.1. Microarchitecture research directions
The overall performance of a multicore system depends on many parameters including architecture, operat-
ing system, runtime environment, compiler technology and application development. Even the architecture
dimension of a 1000’s core system cannot be explored by a single research project. Many research groups are
exploring the parallel dimension of the multicores essentially targeting issues such as coherency and scalabil-
ity.

We have identified that high performance on single threads and sequential codes is one of the key issues for
enabling overall high performance on a 1000’s core system and we anticipate that the general architecture of
such 1000’s core chip will feature many simple cores and a few very complex cores.
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Therefore our research in the ALF project will focus on refining the microarchitecture to achieve high
performance on single process and/or sequential code sections within the general framework of such an
heteregeneous architecture. This leads to two main research directions 1) enhancing the microarchitecture
of high-end superscalar processors, 2) exploiting/modifying heterogeneous multicore architecture on a single
process. The temperature wall is also a major technological/architectural issue for the design of future
processor chips.

3.6.1.1. Enhancing complex core microarchitecture

Research on wide issue superscalar processors was merely stopped around 2002 due to limited performance
returns and the power consumption wall.

When considering a heterogeneous architecture featuring hundreds of simple cores and a few complex cores,
these two obstacles will partially vanish: 1) the complex cores will represent only a fraction of the chip and
a fraction of its power consumption. 2) any performance gain on (critical) sequential threads will result in a
performance gain of the whole system

On the complex core, the performance of a sequential code is limited by several factors. At first, on current
architectures, it is limited by the peak performance of the processor. To push back this first limitation, we
will explore new microarchitecture mechanisms to increase the potential peak performance of a complex core
enabling larger instruction issue width. The processor performance is also limited by control dependencies.
To push back this limitation, we will explore new branch prediction mechanisms as well as new directions for
reducing branch misprediction penalties [14], [13]. As data dependencies may strongly limit performance, we
will revisit data prediction. Processor performance is also often highly dependent on the presence or absence
of data in a particular level of the memory hierarchy. For the ALF multicore, we will focus on sharing the
access to the memory hierarchy in order to adapt the performance of the main thread to the performance of the
other cores. All these topics should be studied with the new perspective of quasi unlimited silicon budget.

3.6.1.2. Exploiting heterogeneous multicores on single process

When executing a sequential section on the complex core, the simple cores will be free. Two main research
directions to exploit thread level parallelism on a sequential thread have been initiated in late 90’s within the
context of simultaneous multithreading and early chip multiprocessor proposals: helper threads and speculative
multithreading.

Helper threads were initially proposed to improve the performance of the main threads on simultaneous
multithreaded architectures [37]. The main idea of helper threads is to execute codes that will accelerate
the main thread without modifying its semantic.

In many cases, the compiler cannot determine if two code sections are independent due to some unresolved
memory dependency. When no dependency occurs at execution time, the code sections can be executed in
parallel. Thread-Level Speculation has been proposed to exploit coarse grain speculative parallelism. Several
hardware-only proposals were presented [44], but the most promising solutions integrate hardware support for
software thread-level speculation [47].

In the context of future manycores, thread-level speculation and helper threads should be revisited. Many
simple cores will be available for executing helper threads or speculative thread execution during the execution
of sequential programs or sequential code sections. The availability of these many cores is an opportunity as
well as a challenge. For example, one can try to use the simple cores to execute many different helper threads
that could not be implemented within a simultaneous multithreaded processor. For thread level speculation,
the new challenge is the use of less powerful cores for speculative threads. Moreover the availability of many
simple cores may lead to the use of helper threads and thread level speculation at the same time.

3.6.1.3. Temperature issues

Temperature is one of the constraints that have prevented the processor clock frequency to be increased in
recent years. Besides techniques to decrease the power consumption, the temperature issue can be tackled
with dynamic thermal management [10] through techniques such as clock gating or throttling and activity
migration [46][7].
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Dynamic thermal management (DTM) is now implemented on existing processors. For high performance,
processors are dimensioned according to the average situation rather than to the worst case situation.
Temperature sensors are used on the chip to trigger dynamic thermal management actions, for instance thermal
throttling whenever necessary. On multicores, it is possible to migrate the activity from one core to another in
order to limit temperature.

A possible way to increase sequential performance is to take advantage of the smaller gate delay that comes
with miniaturization, which permits in theory to increase the clock frequency. However increasing the clock
frequency generally requires to increase the instantaneous power density. This is why DTM and activity
migration will be key techniques to deal with Amdahl’s law in future many-core processors.

3.6.2. Processor simulation research
Architecture studies, and in particular microarchitecture studies, require extensive validations through detailed
simulations. Cycle accurate simulators are needed to validate the microarchitectural mechanisms.

Within the ALF project, we can distinguish two major requirements on the simulation: 1) single process and
sequential code simulations 2) parallel code sections simulations.

For simulating parallel code sections, a cycle-accurate microarchitecture simulator of a 1000-core architecture
will be unacceptably slow. In [9], we showed that mixing analytical modeling of the global behavior of
a processor with detailed simulation of a microarchitecture mechanism allows to evaluate this mechanism.
Karkhanis and Smith [39] further developed a detailed analytical simulation model of a superscalar processor.
Building on top of these preliminary researches, simulation methodology mixing analytical modeling of the
simple cores with a more detailed simulation of the complex cores is appealing. The analytical model of
the simple cores will aim at approximately modeling the impact of the simple core execution on the shared
resources (e.g. data bandwidth, memory hierarchy) that are also used by the complex cores.

Other techniques such as regression modeling [40] can also be used for decreasing the time required to explore
the large space of microarchitecture parameter values. We will explore these techniques in the context of many-
core simulation.

In particular, research on temperature issues will require the definition and development of new simulation
tools able to simulate several minutes or even hours of processor execution, which is necessary for modeling
thermal effects faithfully.

3.6.3. Compiler research directions
3.6.3.1. General directions

Compilers are keystone solutions for any approach that deals with high performance on 100+ processors
systems. But general-purpose compilers try to embrace so many domains and try to serve so many constraints
that they frequently fail to achieve very high performance. They need to be deeply revisited. We identify four
main compiler/software related issues that must be addressed in order to allow efficient use of multi- and
many-cores: 1) programming 2) resource management 3) application deployment 4) portable performance.
Addressing these challenges will require to revisit parallel programming and code generation extensively.

The past of parallel programming is scattered with hundreds of parallel languages. Most of these languages
were designed to program homogeneous architectures and were targeting a small and well-trained community
of HPC programmers. With the new diversity of parallel hardware platforms and the new community of
non-expert developers, expressing parallelism is not sufficient anymore. Resource management, application
deployment and portable performance are intermingled issues that require to be addressed holistically.

As many decisions should be taken according to the available hardware, resource management cannot be
separated from parallel programming. Deploying applications on various systems without having to deal
with thousands of hardware configurations (different numbers of cores, accelerators, ...) will become a major
concern for software distribution. The grail of parallel computing is to be able to provide portable performance
on a large set of parallel machines and varying execution contexts.
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Recent techniques are showing promises. Iterative compilation techniques, exploiting the huge CPU cycle
count now available, can be used to explore the optimization space at compile-time. Second, machine-learning
techniques can be used to automatically improve compilers and code generation strategies. Speculation can be
used to deal with necessary but missing information at compile-time. Finally, dynamic techniques can select or
generate at run-time the most efficient code adapted to the execution context and available hardware resources.

Future compilers will benefit from past research, but they will also need to combine static and dynamic
techniques. Moreover, domain specific approaches might be needed to ensure success. The ALF research
effort will focus on these static and dynamic techniques to address the multicore application development
challenges.

3.6.3.2. Portability of applications and performance through virtualization

The life cycle is much longer for applications than for hardware. Unfortunately the multicore era jeopardizes
the old binary compatibility recipe. Binaries cannot automatically exploit additional computing cores or new
accelerators available on the silicon. Moreover maintaining backward binary compatibility on future parallel
architectures will rapidly become a nightmare, applications will not run at all unless some kind of dynamic
binary translation is at work.

Processor virtualization addresses the problem of portability of functionalities. Applications are not compiled
to the final native code but to a target independent format. This is the purpose of languages such as Java and
.NET. Bytecode formats are often a priori perceived as inappropriate for performance intensive applications
and for embedded systems. However, it was shown that compiling a C or C++ program to a bytecode format
produces a code size similar to dense instruction sets [3]. Moreover, this bytecode representation can be
compiled to native code with performance similar to static compilation [2]. Therefore processor virtualization
for high performance, i.e., for languages like C or C++, provides significant advantages: 1) it simplifies
software engineering with fewer tools to maintain and upgrade; 2) it allows better code readability and easier
code maintenancesince it avoids code specialization for specific targets using compile time macros such as
#ifdef ; 3) the execution code deployed on the system is the execution code that has been debugged and
validated, as opposed to the same source code has been recompiled for another platform; 4) new architectures
will come with their JIT compiler. The JIT will (should) automatically take advantage of new architecture
features such as SIMD/vector instructions or extra processors.

Our objective is to enrich processor virtualization to allow both functional portability and high performance
using JIT at runtime, or bytecode-to-native code offline compiler. Split compilation can be used to annotate
the bytecode with relevant information that can be helpful to the JIT at runtime or to the bytecode to native
code offline compiler. Because the first compilation pass occurs offline, aggressive analyses can be run and
their outcomes encoded in the bytecode. For example, such informations include vectorizability, memory
references (in)dependencies, suggestions derived from iterative compilation, polyhedral analysis, or integer
linear programming. Virtualization allows to postpone some optimizations to run time, either because they
increase the code size and would increase the cost of an embedded system or because the actual hardware
platform characteristics are unknown.

3.6.4. Performance predictability for real-time systems
While compiler and architecture research efforts often focus on maximizing average case performance,
applications with real-time constraints do not need onlyhigh performance but also performance guarantees
in all situations, including the worst-case situation. Worst-Case Execution Time estimates (WCET) need
to be upper bounds of any possible execution time. The safety level required depends on the criticality of
applications: missing a frame on a video in the airplane for passenger in seat 20B is less critical than a safety
critical decision in the control of the airplane.

Within the ALF project, our objective is to study performance guarantees for both (i) sequential codes running
on complex cores ; (ii) parallel codes running on the multicores. Considering the ALF base architecture, this
results in two quite distinct problems.



10 Activity Report INRIA 2012

For sequential code executing on a single core, one can expect that, in order to provide real-time possibility, the
architecture will feature an execution mode where a given processor will be guaranteed to access a fixed portion
of the shared resources (caches, memory bandwidth). Moreover, this guaranteed share could be optimized at
compile time to enforce the respect of the time constraints. However, estimating the WCET of an application
on a complex micro-architecture is still a research challenge. This is due to the complex interaction of micro-
architectural elements (superscalar pipelines, caches, branch prediction, out-of-order execution) [42]. We will
continue to explore pure analytical and static methods. However when accurate static hardware modeling
methods cannot handle the hardware complexity, new probabilistic methods [41] might be needed to explore
to obtain as safe as possible WCET estimates.

Providing performance guarantees for parallel applications executed on a multicore is a new and challenging
issue. Entirely new WCET estimation methods have to be defined for these architectures to cope with dynamic
resource sharing between cores, in particular on-chip memory (either local memory or caches) are shared, but
also buses, network-on-chip and the access to the main memory. Current pure analytical methods are too
pessimistic at capturing interferences between cores [50], therefore hardware-based or compiler methods
such as [48] have to be defined to provide some degree of isolation between cores. Finally, similarly to
simulation methods, new techniques to reduce the complexity of WCET estimation will be explored to cope
with manycore architectures.

4. Application Domains

4.1. Application Domains
Performance, processor architecture, compilers,telecommunications, multimedia, biology, health, engineering,
environment, transportation

The ALF team is working on the fundamental technologies for computer science: processor architecture and
performance-oriented compilation. The research results have impacts on any application domain that requires
high performance executions (telecommunication, multimedia, biology, health, engineering, environment ...),
but also on many embedded applications that exhibit other constraints such as power consumption, code size
and guaranteed response time. Our research activity implies the development of software prototypes.

5. Software

5.1. Panorama
The ALF team is developing several software prototypes for research purposes: compilers, architectural
simulators, programming environments, ....

Among the many prototypes developed in the project, we describe here ATMI, a microarchitecture tempera-
ture model for processor simulation, STiMuL, a temperature model for steady state studies, ATC, an address
trace compressor, HAVEGE, an unpredictable random number generator and tiptop, a user-level Linux utility
that collects data from hardware performance counters for running tasks, software developed by the team.

5.2. ATMI
Participant: Pierre Michaud.

Microarchitecture temperature model Contact : Pierre Michaud

Status : Registered with APP Number IDDN.FR.001.250021.000.S.P.2006.000.10600, Available under GNU
General Public License
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Research on temperature-aware computer architecture requires a chip temperature model. General purpose
models based on classical numerical methods like finite differences or finite elements are not appropriate
for such research, because they are generally too slow for modeling the time-varying thermal behavior of a
processing chip.

We have developed an ad hoc temperature model, ATMI (Analytical model of Temperature in MIcroproces-
sors), for studying thermal behaviors over a time scale ranging from microseconds to several minutes. ATMI
is based on an explicit solution to the heat equation and on the principle of superposition. ATMI can model
any power density map that can be described as a superposition of rectangle sources, which is appropriate for
modeling the microarchitectural units of a microprocessor.

Visit http://www.irisa.fr/alf/ATMI or contact Pierre Michaud.

5.3. STiMuL
Participant: Pierre Michaud.

Microarchitecture temperature modeling

Status: Registered with APP Number IDDN.FR.001.220013.000.S.P.2010.000.31235, Available under GNU
General Public License

Some recent research has started investigating the microarchitectural implications of 3D circuits, for which
the thermal constraint is stronger than for conventional 2D circuits.

STiMuL can be used to model steady-state temperature in 3D circuits consisting of several layers of different
materials. STiMuL is based on a rigorous solution to the Laplace equation [6]. The number and characteristics
of layers can be defined by the user. The boundary conditions can also be defined by the user. In particular,
STiMuL can be used along with thermal imaging to obtain the power density inside an integrated circuit.
This power density could be used for instance in a dynamic simulation oriented temperature modeling such as
ATMI.

STiMuL is written in C and uses the FFTW library for discrete Fourier transforms computations.

Visit http://www.irisa.fr/alf/stimul or contact Pierre Michaud.

5.4. ATC
Participant: Pierre Michaud.

Address trace compression Contact : Pierre Michaud

Status: registered with APP number IDDN.FR.001.160031.000.S.P.2009.000.10800, available under GNU
LGPL License.

Trace-driven simulation is an important tool in the computer architect’s toolbox. However, one drawback of
trace-driven simulation is the large amount of storage that may be necessary to store traces. Trace compres-
sion techniques are useful for decreasing the storage space requirement. But general-purpose compression
techniques are generally not optimal for compressing traces because they do not take advantage of certain
characteristics of traces. By specializing the compression method and taking advantages of known trace char-
acterics, it is possible to obtain a better tradeoff between the compression ratio, the memory consumption and
the compression and decompression speed.

ATC is a utility and a C library for compressing/decompressing address traces. It implements a new lossless
transformation, Bytesort, that exploits spatial locality in address traces. ATC leverages existing general-
purpose compressors such as gzip and bzip2. ATC also provides a lossy compression mode that yields higher
compression ratios while preserving certain important characteristics of the original trace.

Visit http://www.irisa.fr/alf/atc or contact Pierre Michaud.

http://www.irisa.fr/alf/ATMI
http://www.irisa.fr/alf/stimul
http://www.irisa.fr/alf/atc
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5.5. HAVEGE
Participant: André Seznec.

Unpredictable random number generator

Contact : André Seznec

Status : Registered with APP Number IDDN.FR.001.500017.001.S.P.2001.000.10000. Available under the
LGPL license.

An unpredictable random number generator is a practical approximation of a truly random number generator.
Such unpredictable random number generators are needed for cryptography. HAVEGE (HArdware Volatile
Entropy Gathering and Expansion) is a user-level software unpredictable random number generator for
general-purpose computers that exploits the continuous modifications of the internal volatile hardware states
in the processor as a source of uncertainty [12]. HAVEGE combines on-the-fly hardware volatile entropy
gathering with pseudo-random number generation.

The internal state of HAVEGE includes thousands of internal volatile hardware states and is merely unmoni-
torable. HAVEGE can reach an unprecedented throughput for a software unpredictable random number gen-
erator: several hundreds of megabits per second on current workstations and PCs.

The throughput of HAVEGE favorably competes with usual pseudo-random number generators such as
rand() or random(). While HAVEGE was initially designed for cryptology-like applications, this high
throughput makes HAVEGE usable for all application domains demanding high performance and high quality
random number generators, e.g., Monte Carlo simulations.

Visit http://www.irisa.fr/alf/HAVEGE or contact André Seznec.

5.6. Tiptop
Participant: Erven Rohou.

Performance, hardware counters, analysis tool.

Status: Registered with APP (Agence de Protection des Programmes). Available under GNU General Public
License v2.

Tiptop is a new simple and flexible user-level tool that collects hardware counter data on Linux platforms
(version 2.6.31+). The goal is to make the collection of performance and bottleneck data as simple as possible,
including simple installation and usage. In particular, we stress the following points.

• Installation is only a matter of compiling the source code. No patching of the Linux kernel is needed,
and no special-purpose module needs to be loaded.

• No privilege is required, any user can run tiptop — non-privileged users can only watch processes
they own, ability to monitor anybody’s process opens the door to side-channel attacks.

• The usage is similar to top. There is no need for the source code of the applications of interest,
making it possible to monitor proprietary applications or libraries. And since there is no probe to
insert in the application, understanding of the structure and implementation of complex algorithms
and code bases is not required.

• Applications do not need to be restarted, and monitoring can start at any time (obviously, only events
that occur after the start of tiptop are observed).

• Events can be counted per thread, or per process.

• Any expression can be computed, using the basic arithmetic operators, constants, and counter values.

• A configuration file lets users define their prefered setup, as well as custom expressions.

Tiptop is written in C. It can take advantage of libncurses when available for pseudo-graphic display.

For more information, please contact Erven Rohou.

http://www.irisa.fr/alf/HAVEGE
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6. New Results

6.1. Processor Architecture within the ERC DAL project
Participants: Pierre Michaud, Nathanaël Prémillieu, Luis Germán Garcia Morales, Bharath Narasimha
Swamy, Sylvain Collange, André Seznec, Arthur Pérais, Surya Narayanan, Sajith Kalathingal, Kamil Kedzier-
ski.

Processor, cache, locality, memory hierarchy, branch prediction, multicore, power, temperature

Multicore processors have now become mainstream for both general-purpose and embedded computing.
Instead of working on improving the architecture of the next generation multicore, with the DAL project, we
deliberately anticipate the next few generations of multicores. While multicores featuring 1000s of cores might
become feasible around 2020, there are strong indications that sequential programming style will continue to
be dominant. Even future mainstream parallel applications will exhibit large sequential sections. Amdahl’s
law indicates that high performance on these sequential sections is needed to enable overall high performance
on the whole application. On many (most) applications, the effective performance of future computer systems
using a 1000-core processor chip will significantly depend on their performance on both sequential code
sections and single threads.

We envision that, around 2020, the processor chips will feature a few complex cores and many (may be 1000’s)
simpler, more silicon and power effective cores.

In the DAL research project, http://www.irisa.fr/alf/dal, we explore the microarchitecture techniques that will
be needed to enable high performance on such heterogeneous processor chips. Very high performance will be
required on both sequential sections, —legacy sequential codes, sequential sections of parallel applications—,
and critical threads on parallel applications, —e.g. the main thread controlling the application. Our research
focuses essentially on enhancing single processes performance.

6.1.1. Microarchitecture exploration of control flow reconvergence
Participants: Nathanaël Prémillieu, André Seznec.

After continuous progress over the past 15 years [14], [13], the accuracy of branch predictors seems
to be reaching a plateau. Other techniques to limit control dependency impact are needed. Control flow
reconvergence is an interesting property of programs. After a multi-option control-flow instruction (i.e. either
a conditional branch or an indirect jump including returns), all the possible paths merge at a given program
point: the reconvergence point.

Superscalar processors rely on aggressive branch prediction, out-of-order execution and instruction level
parallelism for achieving high performance. Therefore, on a superscalar core, the overall speculative execution
after the mispredicted branch is cancelled, leading to a substantial waste of potential performance. However,
deep pipelines and out-of-order execution induce that, when a branch misprediction is resolved, instructions
following the reconvergence point have already been fetched, decoded and sometimes executed. While some
of this executed work has to be cancelled since data dependencies exist, cancelling the control independent
work is a waste of resources and performance. We have proposed a new hardware mechanism called SYRANT,
SYmmetric Resource Allocation on Not-taken and Taken paths, addressing control flow reconvergence at a
reasonable cost. Moreover, as a side contribution of this research we have shown that, for a modest hardware
cost, the outcomes of the branches executed on the wrong paths can be used to guide branch prediction on the
correct path [17].

As a follower work, we are now focusing on exploiting control flow reconvergence in the special case of
predication. When the target ISA has predicated instruction, it is possible to transform control dependencies
into data dependencies. This process is called if-conversion. As a result, the two paths of a conditional branch
is merge into one path. Hence exploiting the principles developed in SYRANT is much easier than for a
standard ISA.

http://www.irisa.fr/alf/dal
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6.1.2. Memory controller
Participant: André Seznec.

The memory controller has become one of the performance enablers of a computer system. Its impact is even
higher on multicores than it was on uniprocessor systems. We propose the sErvice Value Aware memory
scheduler (EVA) to enhance memory usage. EVA builds on two concepts, the request weight and the per-
thread traffic light. For a read request on memory, the request weight is an evaluation of the work allowed
by the request. Per-thread traffic lights are used to track whether or not in a given situation it is worth to
service requests from a thread, e.g. if a given thread is blocked by refreshing on a rank then it is not worth
to serve requests from the same thread on another rank. The EVA scheduler bases its scheduling decision
on a service value which is heuristically computed using the request weight and per-thread traffic lights. Our
EVA scheduler implementation relies on several hardware mechanisms, a request weight estimator, per-thread
traffic estimators and a next row predictor. Using these components, our EVA scheduler estimates scores to
issue scheduling decisions. EVA was shown to perform efficiently and fairly compared with previous proposed
memory schedulers [21]

6.1.3. Performance and power models for heterogeneous muticores
Participants: Kamil Kedzierski, André Seznec.

In the DAL project, we expect architectures to be a combination of many simple cores for parallel execution
and sequential accelerators [8] built on top of complex cores for ILP intensive tasks. For evaluating these
architectures, we need performance and power models. We design a parallel manycore simulator, built with
pthread implementation. Such an approach allows us to maintain flexibility and scalability: our goal is to scale
well both when we vary the number of cores used to perform simulation, and as we vary the number of cores
being simulated. Our implementation also allows to configure each core independently for the heterogeneous
architectures. Preliminary results show that the simulator uses with very small memory footprint, which is
crucial for the manycore studies with number of cores constantly increasing.

A new power management approach is needed for these future manycore processors that employ both
sequential accelerators and simple cores. This is due to the fact that the frequency at which a given core
operates is highly correlated with the cores’ size (and thus a task that the core performs). Therefore, we built
Dynamic Voltage Frequency Scaling model for the on-chip voltage regulator (VR) case, as we believe that
future architectures will incorporate VRs on chip.

6.1.4. Designing supercores
Participants: Pierre Michaud, Luis Germán García Morales, André Seznec.

In the framework of the DAL project, we study super-cores that could achieve very high clock frequency
and a high instruction per cycle rate (IPC). The current objective is to explore the design space of possible
configurations for the microarchitecture that are suitable in terms of performance, area and power for the super-
core. In particular, we focus on the back-end of the microarchitecture. A way to increase the IPC is to allow
the core processing more instructions simultaneously e.g. increasing the issue width. This can be done for
example by replicating the functional units (FU) inside the core. However keeping the same frequency could
become very challenging. Clustering of FUs is a technique that helps designers to overcome this problem,
even though other problems might appear e.g. IPC loss compared to an ideal monolithic back-end due to inter-
cluster delays. We have started exploring different cluster schemes and instruction steering policies with the
purpose of having a wide-issue clustered microarchitecture with a high IPC, a high frequency and the problem
of inter-cluster delay minimized.

6.1.5. Helper threads
Participants: Bharath Narasimha Swamy, André Seznec.
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Improving sequential performance will be key to both performance on single threaded codes and scalability
on parallel codes. Complex out-of-order execution processors that aggressively exploit instruction level
parallelism are the obvious design direction to improve sequential performance. However, ability of these
complex cores to deliver performance will be undermined by performance degrading events such as branch
mis-predictions and cache misses that limit the achievable instruction throughput. As an alternative to the
monolithic complex core approach, we propose to improve sequential performance on emerging heterogeneous
many core architectures by harnessing (unutilized) additional cores to work as helper cores for the sequential
code. Helper cores can be employed to mitigate the impact of performance degrading events and boost
sequential performance, for example by prefetching data for the sequential code ahead of time.

We are currently pursuing two directions to utilize helper cores. (1) We explore the use of helper cores to
emulate prefetch algorithms in software. We will adapt and extend existing prefetch mechanisms for use on
the helper cores and evaluate mechanisms to utilize both compute and cache resources on the helper cores
to prefetch for the main thread. We intend to target delinquent load/store instructions that cause most of the
cache misses and prefetch data ahead of time, possibly even before the hardware prefetchers on the main core.
(2) We explore the use of helper cores to execute pre-computation code and generate prefetch requests for the
main thread. Pre-computation code is constructed from the main thread and targets to capture the data access
behavior of the main thread, particularly for irregular data access patterns in control-flow dominated code. We
will explore algorithms to generate pre-computation code and evaluate mechanisms for communication and
synchronization between the main thread and the helper cores, specifically in the context of a heterogenous
many core architecture.

6.1.6. What makes parallel code sections and sequential code sections different?
Participants: Surya Natarajan, André Seznec.

In few years from now, single die processor components will feature many cores. They can be symmet-
ric/asymmetric or homogeneous/heterogeneous cores. The utilization of these cores depends on the application
and the programming model used. We have initiated a study on understanding the difference in nature between
the parallel and sequential code sections in parallel applications. Initial experiments show that instruction mix
of the serial and parallel parts are different. For example, contribution of the conditional branches are domi-
nant in serial part and data transfer instructions are dominant in the parallel part. By experimentation, we infer
that the conditional branch prediction in serial part needs a bigger branch predictor compared to the parallel
part. Later, we would like to define the hardware mechanisms that are needed for cost effective execution of
parallel sections; cost-effective meaning silicon and energy effective since parallelism can be leveraged.

On the other hand, the shared memory model has critical sections in the parallel sections, which makes the
parallel sections sequential at times. We will try to characterize the nature of these sequential code sections
and particularly identify their potential bottlenecks. The objective is to address the performance bottlenecks
on sequential sections through new microarchitecture and/or compiler mechanisms.

6.1.7. Revisiting Value Prediction
Participants: Arthur Pérais, André Seznec.

Value prediction was proposed in the mid 90’s to enhance the performance of high-end microprocessors. The
research on Value Prediction techniques almost vanished in the early 2000’s as it was more effective to increase
the number of cores than to dedicate silicon to Value Prediction. However high end processor chips currently
feature 8-16 high-end cores and the technology will allow to implement 50-100 of such cores on a single die
in a foreseeable future. Amdahl’s law suggests that the performance of most workloads will not scale to that
level. Therefore, dedicating more silicon area to value prediction in high-end cores might be considered as
worthwhile for future multicores.

We introduce a new value predictor VTAGE harnessing the global branch history [32]. VTAGE directly
inherits the structure of the indirect jump predictor ITTAGE[11]. VTAGE is able to predict with a very high
accuracy many values that were not correctly predicted by previously proposed predictors, such as the FCM
predictor and the stride predictor. Three sources of information can be harnessed by these predictors: the global



16 Activity Report INRIA 2012

branch history, the differences of successive values and the local history of values. Moreover we show that the
predictor components using these sources of information are all amenable to very high accuracy at the cost of
some prediction coverage.

Compared with these previously proposed solutions, VTAGE can accommodate very long prediction latencies.
The introduction of VTAGE opens the path to the design of new hybrid predictors. Using SPEC 2006
benchmarks, our study shows that with a large hybrid predictor, in average 55-60 % of the values can be
predicted with more than 99.5 % accuracy. Evaluation of effective performance benefit is an on-going work.

6.1.8. Augmenting superscalar architecture for efficient many-thread parallel execution
Participants: Sylvain Collange, Sajith Kalathingal, André Seznec.

Heterogeneous multi-core architectures create many issues for test, design and optimizations. They also
necessitate costly data transfer from the complex cores to the simple cores when switching from the parallel to
sequential sections and vice-versa. We have initiated research on designing a unique core that efficiently run
both sequential and massively parallel sections. It will explore how the architecture of a complex superscalar
core has to be modified or enhanced to be able to support the parallel execution of many threads from the
same application (10’s or even 100’s a la GPGPU on a single core). The overall objective is to support both
sequential codes and very parallel execution, particularly data parallelism, on the same hardware core.

6.2. Other Architecture Studies
Participants: Damien Hardy, Pierre Michaud, Ricardo Andrés Velásquez, Sylvain Collange, André Seznec,
Junjie Lai.

GPU, performance, simulation, vulnerability

6.2.1. Analytical model to estimate the performance vulnerability of caches and predictors to
permanent faults
Participant: Damien Hardy.

This research was partially undertaken during Damien Hardy’s stay in the Computer Architecture group of
the University of Cyprus (January-August 2012).

Technology trends suggest that in tomorrow’s computing systems, failures will become a commonplace due to
many factors, and the expected probability of failure will increase with scaling. Faults can result in execution
errors or simply in performance loss. Although faults can occur anywhere in the processor, the performance
implications of a faulty cell vary depending on how the array is used in a processor.

Virtually all previous micro-architectural work aiming to assess the performance implications of permanently
faulty cells relies on simulations with random fault-maps, assumes that faulty blocks are disabled, and focuses
on architectural arrays such as caches.

These studies are, therefore, limited by the fault-maps they use that may not be representative for the average
and distributed performance. Moreover, they are incomplete by ignoring faults in non-architectural arrays,
such as predictors, that do not affect correctness but can degrade performance.

In [20], an analytical model is proposed for understanding the implications on performance of permanently
faulty cells in caches and predictors. The model for a given program execution, micro-architectural configu-
ration, and probability of cell failure, provides rapidly the Performance Vulnerability Factor (PVF). PVF is a
direct measure of the performance degradation due to permanent faults. In particular, the model can determine
the expected PVF as well as the PVF probability distribution bounds without using an arbitrary number of
random fault-maps.

The model, once derived, can be used to explore processor behavior with different cell probability of failures.
This can be helpful to forecast how processor performance may be affected by faults in the future. Additionally,
this information can be useful to determine which arrays have significant PVF and make design decisions to
reduce their PVF, for example through a protection mechanism, using larger cells, or even by selecting a
different array organization.
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6.2.2. GPU-inspired throughput architectures
Participant: Sylvain Collange.

This research was partially undertaken while Sylvain Collange was with Universidade Federal de Minas
Gerais, Belo Horizonte - Brazil, (January-September 2012).

In an heterogeneous architecture where power is the primary performance constraint, parallel sections of ap-
plications need to run on throughput-optimized cores that focus on energy efficiency. The Single-Instruction
Multiple Thread (SIMT) execution model introduced for Graphics Processing Units (GPUs) provides inspi-
ration to design such future energy-efficient throughput architectures. However, the performance of SIMT
architectures is vulnerable to control and data flow divergences across threads. It limits its applicability to
regular data-parallel applications. We work on making SIMT architectures more efficient, and generalizing
the SIMT model to general-purpose architectures.

First, hybrids between multi-thread architectures and SIMT architectures can achieve a tradeoff between
energy efficiency and flexibility [35]. Second, the same concepts that benefit GPUs may be applied to vectorize
dynamically single-program, multi-thread applications. Indeed, data-parallel multi-thread workloads, such as
OpenMP applications, expose parallelism by running many threads executing the same program. These threads
may be synchronized to run the same instructions at the same time. SPMD threads also commonly perform
the same computation on the same value. We take advantage from these correlations by sharing instructions
between threads. It promises to save energy and frees processing resources on multi-threaded cores [26].

Besides architecture-level improvements, the efficiency of SIMT architectures can be improved through
compiler-level code optimization. By maintaining a large number of threads in flight (in the order of tens
of thousands), GPUs suffer from high cache contention as the local working set of each thread increases. This
raises challenges as memory accesses are costly in terms of energy. Divergence analysis is a compiler pass that
identifies similarities in the control flow and data flow of concurrent threads. In particular, it detects program
variables that are affine functions of the thread identifier. Register allocation can benefit from divergence
analysis to unify affine variables across SIMT threads and re-materialize them when needed. It reduces the
volume of register spills, relieving pressure on the memory system [28].

6.2.3. Behavioral application-dependent superscalar core modeling
Participants: Ricardo Andrés Velásquez, Pierre Michaud, André Seznec.

Behavioral superscalar core modeling is a possible way to trade accuracy for processor simulation speed in
situations where the focus of the study is not the core itself but what is outside the core, i.e., the uncore. In this
modeling approach, a superscalar core is viewed as a black box emitting requests to the uncore at certain times.
A behavioral core model can be connected to a cycle-accurate uncore model. Behavioral core models are built
from detailed simulations. Once the time to build the model is amortized, significant simulation speedups are
achieved.

We have proposed a new method for defining behavioral models for modern superscalar cores. Our method,
behavioral application-dependent superscalar core (BADCO) modeling, requires two traces generated with
cycle-accurate simulations to build a model. After the model is built, it can be used for simulating uncores.
BADCO predicts the execution time of a thread running on a modern superscalar core with an error typically
under 5%. From our experiments, we found that BADCO is qualitatively accurate, being able to predict
how performance changes when we change the uncore. The simulation speedups obtained with BADCO are
typically greater than 10 [29].

In a later work [33], we have shown that fast approximate microarchitecture models such as BADCO can also
be very useful for selecting multiprogrammed workloads for evaluating the throughput of multicore processors.
Computer architects usually study multiprogrammed workloads by considering a set of benchmarks and some
combinations of these benchmarks. However, there is no standard method for selecting such sample, and
different authors have used different methods. The choice of a particular sample impacts the conclusions of
a study. Using BADCO, we propose and compare different sampling methods for defining multiprogrammed
workloads for computer architecture [33]. We evaluate their effectiveness on a case study, the comparison of
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several multicore last-level cache replacement policies. We show that random sampling, the simplest method,
is robust to define a representative sample of workloads, provided the sample is big enough. We propose
a method for estimating the required sample size based on fast approximate simulation. We propose a new
method, workload stratification, which is very effective at reducing the sample size in situations where random
sampling would require large samples.

6.2.4. Performance Upperbound Analysis of GPU applications
Participants: Junjie Lai, André Seznec.

In the framework of the ANR Cosinus PetaQCD project, we are modeling the demands of high performance
scientific applications on hardware. GPUs have become popular and cost-effective hardware platforms. In this
context, we have been addressing the gap between theoretical peak performance on GPU and the effective
performance [22]. There has been many studies on optimizing specific applications on GPU as well as and
also a lot of studies on automatic tuning tools. However, the gap between the effective performance and
the maximum theoretical performance is often huge. A tighter performance upperbound of an application is
needed in order to evaluate whether further optimization is worth the effort. We designed a new approach to
compute the CUDA application’s performance upperbound through intrinsic algorithm information coupled
with low-level hardware benchmarking. Our analysis [30] allows us to understand which parameters are critical
to the performance and therefore to get more insight on the performance result. As an example, we analyzed
the performance upperbound of SGEMM (Single-precision General Matrix Multiply) on Fermi and Kepler
GPUs. Through this study, we uncover some undocumented features on Kepler GPU architecture. Based on
our analysis, our implementations of SGEMM achieve the best performance on Fermi and Kepler GPUs so far
( 5 % improvement on average).

6.2.5. Multicore throughput metrics
Participant: Pierre Michaud.

Several different metrics have been proposed for quantifying the throughput of multicore processors. There is
no clear consensus about which metric should be used. Some studies even use several throughput metrics. We
have shown several new results concerning multicore throughput metrics [16]. We have exhibited the relation
between single-thread average performance metrics and throughput metrics, emphasizing that throughput
metrics inherit the meaning or lack of meaning of the corresponding single-thread metric [16]. In particular,
two of the three most frequently used throughput metrics in microarchitecture studies, the weighted speedup
and the harmonic mean of speedups, are inconsistent: they do not give equal importance to all benchmarks.
We have demonstrated that the weighted speedup favors unfairness. We have shown that the harmonic mean of
IPCs, a seldom used throughput metric, is actually consistent and has a physical meaning. We have explained
under which conditions the arithmetic mean or the harmonic mean of IPCs can be used as strong indicators of
throughput increase.

In a subsequent work [31], we have pointed out a problem with commonly used multiprogram throughput
metrics, which is that they are based on the assumption that all the jobs execute for a fixed and equal time. We
argue that this assumption is not realistic. We have proposed and characterized some new throughput metrics
based on the assumption that jobs execute a fixed and equal quantity of work. We have shown that using such
equal-work throughput metric may change the conclusion of a microarchitecture study [31].

6.3. Compiler, vectorization, interpretation
Participants: Erven Rohou, Emmanuel Riou, Arjun Suresh, André Seznec.

The usage of the bytecode-based languages such as Java has been generalized in the past few years.
Applications are now very large and are deployed on many different platforms, since they are highly portable.
With the new diversity of multicore platforms, functional, but also performance portability will become the
major issue in the next 10 years. Therefore our research effort focuses on efficiently compiling towards
bytecodes and on efficiently executing the bytecodes through JIT compilation or through direct interpretations.
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6.3.1. Vectorization Technology To Improve Interpreter Performance
Participant: Erven Rohou.

Recent trends in consumer electronics have created a new category of portable, lightweight software applica-
tions. Typically, these applications have fast development cycles and short life spans. They run on a wide range
of systems and are deployed in a target independent bytecode format over Internet and cellular networks. Their
authors are untrusted third-party vendors, and they are executed in secure managed runtimes or virtual ma-
chines. Furthermore, due to security policies, these virtual machines are often lacking just-in-time compilers
and are reliant on interpreter execution.

The main performance penalty in interpreters arises from instruction dispatch. Each bytecode requires a
minimum number of machine instructions to be executed. In this work we introduce a powerful and portable
representation that reduces instruction dispatch thanks to vectorization technology. It takes advantage of the
vast research in vectorization and its presence in modern compilers. Thanks to a split compilation strategy, our
approach exhibits almost no overhead. Complex compiler analyses are performed ahead of time. Their results
are encoded on top of the bytecode language, becoming new SIMD IR (i.e., intermediate representation)
instructions. The bytecode language remains unmodified, thus this representation is compatible with legacy
interpreters.

This approach drastically reduces the number of instructions to interpret and improves execution time. SIMD
IR instructions are mapped to hardware SIMD instructions when available, with a substantial improvement.
Finally, we finely analyze the impact of our extension on the behavior of the caches and branch predictors.

These results are published in ACM TACO [18], and will be presented at the HiPEAC 2013 conference.

6.3.2. Tiptop
Participant: Erven Rohou.

Hardware performance monitoring counters have recently received a lot of attention. They have been used
by diverse communities to understand and improve the quality of computing systems: for example, architects
use them to extract application characteristics and propose new hardware mechanisms; compiler writers study
how generated code behaves on particular hardware; software developers identify critical regions of their
applications and evaluate design choices to select the best performing implementation.

We propose [27] that counters be used by all categories of users, in particular non-experts, and we advocate
that a few simple metrics derived from these counters are relevant and useful. For example, a low IPC (number
of executed instructions per cycle) indicates that the hardware is not performing at its best; a high cache miss
ratio can suggest several causes, such as conflicts between processes in a multicore environment.

We propose tiptop: a new tool, similar to the UNIX top utility, that requires no special privilege and no
modification of applications. Tiptop provides more informative estimates of the actual performance than
existing UNIX utilities, and better ease of use than current tools based on performance monitoring counters.
With several use cases, we have illustrated possible usages of such a tool.

Tiptop has been extended to display any user-defined arithmetic expression based on constants and counter
values. A new configuration file lets users defined their default parameters as well as custom expressions.

6.3.3. Code obfuscation and JIT Compilers
Participant: Erven Rohou.

This project proposes to leverage JIT compilation to make software tamper-proof. The idea is to constantly
generate different versions of an application, even while it runs, to make reverse engineering hopeless. A strong
random number generator will guarantee that generated code is not reproducible, though the functionality is
the same. Performance will not be sacrificed thanks to multi-core architectures: the JIT runs on separate cores,
overlapping with the execution of the application.
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The following directions are investigated:

1. We proposed a "change metric" that evaluates how different each new version of a function differs
from the previous one, and hence contributes to the robustness of the system. The metric is based on
string matching (such as in bioinformatics).

2. To increase the frequency of code switching, we consider on-stack-replacement. For performance,
compilation is performed on a separate thread and pre-copying of the stack state to the new function
version, thereby saving switching time.

3. We decompose a thread control-flow graph into many control-flow graphs such that the result of
execution would be the same. The control-flow complexity is substantial as there are in the order of
O(nn) possible combinations (where n is the number of threads and compilation units).

This is done in collaboration with the group of Prof. Ahmed El-Mahdy at E-JUST, Alexandria, Egypt.

6.3.4. Dynamic Analysis and Re-Optimization of Executables
Participants: Erven Rohou, Emmanuel Riou.

The objective of the ADT PADRONE beginning in November 2012 is to design and develop a platform
for re-optimization of binary executables at run-time. We reviewed available support in hardware (such as
performance monitoring unit, trap instructions), and in the Linux operating system (such as the ptrace system
call). We started working on the platform, with an initial focus on analysis techniques.

6.3.5. Improving single core execution in the many-core era
Participants: Erven Rohou, André Seznec, Arjun Suresh.

In the framework of the DAL research project, we have initiated compiler research on using available unused
resources in multicores to improve the performance of sequential code segments. Helper threads, driven by
automated compiler infrastructure, can alleviate potential performance degradation due to resource contention.
For example, loop based applications experiencing bad memory locality can be re-optimized by a just-in-time
compiler to adjust to actual hardware characteristics.

6.4. WCET estimation
Participants: Damien Hardy, Benjamin Lesage, Hanbing Li, Isabelle Puaut, Erven Rohou, André Seznec.

Predicting the amount of resources required by embedded software is of prime importance for verifying that
the system will fulfill its real-time and resource constraints. A particularly important point in hard real-time
embedded systems is to predict the Worst-Case Execution Times (WCETs) of tasks, so that it can be proven
that tasks temporal constraints (typically, deadlines) will be met. Our research concerns methods for obtaining
automatically upper bounds of the execution times of applications on a given hardware. Our focus this year is
on (i) multi-core architectures (ii) preemption delay analysis (iii) traceability of flow information in compilers
for WCET estimation.

6.4.1. WCET estimation and multi-core systems
6.4.1.1. Predictable shared caches for mixed-criticality real-time systems

Participants: Benjamin Lesage, Isabelle Puaut, André Seznec.

The general adoption of multi-core architectures has raised new opportunities as well as new issues in
all application domains. In the context of real-time applications, it has created one major opportunity and
one major difficulty. On the one hand, the availability of multiple high performance cores has created the
opportunity to mix on the same hardware platform the execution of a complex critical real-time workload
and the execution of non-critical applications. On the other hand, for real-time tasks timing deadlines must be
met and enforced. Hardware resource sharing inherent to multicores hinders the timing analysis of concurrent
tasks. Two different objectives are then pursued: enforcing timing deadlines for real-time tasks and achieving
highest possible performance for the non-critical workload.
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In this work [23], we suggest a hybrid hardware-based cache partitioning scheme that aims at achieving these
two objectives at the same time. Plainly considering inter-task conflicts on shared cache for real-time tasks
yields very pessimistic timing estimates. We remove this pessimism by reserving private cache space for real-
time tasks. Upon the creation of a real-time task, our scheme reserves a fixed number of cache lines per set
for the task. Therefore uniprocessor worst case execution time (WCET) estimation techniques can be used,
resulting in tight WCET estimates. Upon the termination of the real-time task, this private cache space is
released and made available for all the executed threads including non-critical ones. That is, apart the private
spaces reserved for the real-time tasks currently running, the cache space is shared by all tasks running on the
processor, i.e. non-critical tasks but also the real-time tasks for their least recently used blocks. Experiments
show that the proposed cache scheme allows to both guarantee the schedulability of a set of real-time tasks
with tight timing constraints and enable high performance on the non-critical tasks.

6.4.1.2. WCET-oriented cache partitioning for multi-core systems
Participant: Isabelle Puaut.

Multi-core architectures are well suited to fulfill the increasing performance requirements of embedded real-
time systems. However, such systems also require the capacity to estimate the timing behavior of their critical
components. Interference between tasks, as they occur on standard multi-core micro-architectures due to cache
sharing are still difficult to predict accurately. An alternative is to remove these indirect interferences between
tasks through partitioning of the shared cache and through the use of partitioned task scheduling.

In this work [19], we have proposed a new algorithm for joint task and cache partitioning in multi-core
systems scheduled using non-preemptive Earliest Deadline First policy. The main novelty of the algorithm
is to take into account the tasks’ period repartition in the task partitioning problem, which is critical in a
non-preemptive context. Other task properties such as task cache requirements are also considered to optimize
cache partitioning. Experiments show that our algorithm outperforms the state-of-the-art algorithm for tasks
and cache partitioning, named IA3 [43], in terms of schedulability, specially when the spectrum of tasks
periods is wide.

6.4.2. Preemption delay analysis for floating non-preemptive region scheduling
Participant: Isabelle Puaut.

This is joint work with Stefan M. Petters, Vincent Nélis and José Marinho, ISEP Porto, Portugal.

In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive
and preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delays but
its schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delays, but
benefits from a higher flexibility in the scheduling decisions.

The time-delay involved by task preemptions is a major source of pessimism in the analysis of the task Worst-
Case Execution Time (WCET) in real-time systems. Cache related preemption delays (CRPD) are the most
important ones, and are caused by the preempting tasks that modify the cache; the preempted task then suffers
an indirect delay after the preemption to reload the cache with useful information.

Preemptive scheduling policies including non-preemptive regions are a hybrid solution between non-
preemptive and fully preemptive scheduling paradigms, which enables to conjugate both worlds benefits. In
this work [25], we exploit the connection between the progression of a task in its operations, and the knowl-
edge of the preemption delays as a function of its progression. Thus the pessimism in the preemption delay
estimation is reduced, in comparison to state of the art methods, due to the increase in information available
in the analysis. The method proposed in [25] was later improved in [24], to extract more information on the
code and further decrease the CRPD estimation.

6.4.3. Traceability of flow information for WCET estimation
Participants: Hanbing Li, Isabelle Puaut, Erven Rohou.
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Control-flow information is mandatory for WCET estimation, to guarantee that programs terminate (e.g.
provision of bounds for the number of loop iterations) but also to obtain tight estimates (e.g. identification
of infeasible or mutually exclusive paths). Such flow information is expressed though annotations, that may
be calculated automatically by program/model analysis, or provided manually.

The objective of this work is to address the challenging issue of the mapping and transformation of the
flow information from high level down to machine code. In a first step, we will consider only the issue of
conveying information through the compilation flow, without any optimization. Then, we will study the impact
of optimizations on the traceability of annotations.

This research started in October 2012 and is part of the ANR W-SEPT project.

7. Bilateral Contracts and Grants with Industry

7.1. Intel Research Grant
Participant: André Seznec.

Intel is supporting the research of the ALF project-team on "Alternative ways for improving uniprocessor
performance".

8. Partnerships and Cooperations

8.1. European Initiatives
8.1.1. DAL: ERC AdG 2010- 267175, 04-2011/03-2016

Participants: Pierre Michaud, Luis Germán García Morales, Nathanaël Prémillieu, Erven Rohou, André
Seznec, Bharath Narasimha Swamy, Ricardo Andrés Velásquez, Arthur Pérais, Surya Narayanan, Arjun
Suresh, Sajith Kalathingal, Kamil Kedzierski.

In the DAL, Defying Amdahl’s Law project, we envision that, around 2020, the processor chips will feature
a few complex cores and many (may be 1000s) simpler, more silicon and power effective cores. In the
DAL research project, we will explore the microarchitecture techniques that will be needed to enable
high performance on such heterogeneous processor chips. Very high performance will be required on both
sequential sections —legacy sequential codes, sequential sections of parallel applications— and critical
threads on parallel applications —e.g. the main thread controlling the application. Our research will focus
on enhancing single process performance. On the microarchitecture side, we will explore both a radically new
approach, the sequential accelerator, and more conventional processor architectures. We will also study how
to exploit heterogeneous multicore architectures to enhance sequential thread performance.

For more information, see http://www.irisa.fr/alf/dal.

8.1.2. HiPEAC3 NoE
Participants: François Bodin, Pierre Michaud, Erven Rohou, André Seznec.

F. Bodin, P. Michaud, A. Seznec and E. Rohou are members of the European Network of Excellence HiPEAC3.
HiPEAC3 addresses the design and implementation of high-performance commodity computing devices in
the 10+ year horizon, covering both the processor design, the optimizing compiler infrastructure, and the
evaluation of upcoming applications made possible by the increased computing power of future devices.

8.1.3. COST Action TACLe - Timing Analysis on Code-Level 10-2012/09-2015
Participants: Damien Hardy, Isabelle Puaut.

http://www.irisa.fr/alf/dal


Project-Team ALF 23

Embedded systems increasingly permeate our daily lives. Many of those systems are business- or safety-
critical, with strict timing requirements. Code-level timing analysis is indispensable to ascertain whether
these requirements are met. However, recent developments in hardware, especially multicore processors,
and software organization make the analysis increasingly harder, thus challenging the evolution of timing
analysis techniques. Principles for building "timing-composable" embedded systems are needed to make
timing analysis tractable in the future. The furthering and consolidation of those principles require increased
contacts within the timing analysis community as well as with the neighboring communities that deal with
other forms of analysis, such as model checking and type inference, and with computer architectures and
compilers. The goal of this COST Action (http://www.cost.eu/domains_actions/ict/Actions/IC1202) is to
gather these forces in order to develop industrial strength code-level timing analysis techniques for future
generation embedded systems.

Twelve countries are currently involved in this COST action.

8.2. Regional Initiative
8.2.1. Britanny region fellowship

Participants: Ricardo Andrés Velásquez, Pierre Michaud, André Seznec.

The Britanny region is funding a Ph.D. fellowship for Ricardo Velasquez on the topic “Fast hybrid multicore
architecture simulation”.

8.3. National Initiatives
8.3.1. ANR PetaQCD 01-2009/10-2012

Participants: Junjie Lai, André Seznec.

Simulation of Lattice QCD is a challenging computational problem that requires very high performance
exceeding sustained Petaflops/s. The ANR PetaQCD project combines research groups from computer science,
physics and two SMEs (CAPS Entreprise, Kerlabs) to address the challenges of the design of LQCD oriented
supercomputer.

8.3.2. ANR W-SEPT
Participants: Hanbing Li, Isabelle Puaut, Erven Rohou.

Critical embedded systems are generally composed of repetitive tasks that must meet drastic timing con-
straints, such as termination deadlines. Providing an upper bound of the worst-case execution time (WCET)
of such tasks at design time is thus necessary to prove the correctness of the system. Static WCET estimation
methods, although safe, may produce largely over-estimated values. The objective of the project is to produce
tighter WCET estimates by discovering and transforming flow information at all levels of the software de-
sign process, from high level-design models (e.g. Scade, Simulink) down to binary code. The ANR W-SEPT
project partners are Verimag Grenoble, IRIT Toulouse, Inria Rennes. A case study is provided by Continental
Toulouse.

8.3.3. Large Scale Initiative: Large scale multicore virtualization for performance scaling and
portability
Participant: Erven Rohou.

An Inria Large Scale Initiative (Action d’Envergure) has been submitted and approved. It is entitled “Large
scale multicore virtualization for performance scaling and portability”. Partner project-teams include: ALF,
ALGORILLE, CAMUS, REGAL, RUNTIME, as well as DALI.

This project aims to build collaborative virtualization mechanisms that achieve essential tasks related to
parallel execution and data management. We want to unify the analysis and transformation processes of
programs and accompanying data into one unique virtual machine.

http://www.cost.eu/domains_actions/ict/Actions/IC1202


24 Activity Report INRIA 2012

8.3.4. ADT PADRONE 2012-2014
Participants: Erven Rohou, Emmanuel Riou.

Computer science is driven by two major trends: on the one hand, the lifetime of applications is much larger
than the lifetime of the hardware for which they are initially designed; on the other hand the diversity of
computing hardware keeps increasing. The net result is that many applications are not optimized for their
current executing environment. The objective of PADRONE is to design and develop a platform for re-
optimization of binary executables at run-time. There are many advantages: actual hardware is known, the
whole application is visible (including libraries), profiling can be collected, and source code is not necessary
(interesting in the case of proprietary applications).

8.4. International Initiative
8.4.1. PHC Imhotep (Egypt): Code obfuscation through JIT compilation, Jan 2012 – Dec 2013

Participant: Erven Rohou.

Collaboration with Pr Ahmed El-Mahdy, Egypt-Japan University for Science and Technology (Alexandria,
Egypt)

This project proposes to leverage JIT compilation to make software tamper-proof. The idea is to constantly
generate different versions of an application, even while it runs, to make reverse engineering hopeless. A strong
random number generator will guarantee that generated code is not reproducible – though the functionality is
the same. Performance will not be sacrificed thanks to multi-core architectures: the JIT runs on separate cores,
overlapping with the execution of the application.

9. Dissemination

9.1. Scientific community animation
• Pierre Michaud was a member of the ISPASS 2012 and MuCoCos 2012 program committees

• Isabelle Puaut is a member of the program committees of ECRTS 2013, RTAS 2013 and RTCSA
2013. She was a member of the program committee of DAC 2012, ECRTS 2012, EFTA 2012, LCTES
2012, RTCSA 2012, RTNS 2012, WCET 2012.

• André Seznec was a member of Micro 2012, ISCA 2012 and ICDD2012 program committees. He is
a member of the editorial board of the IEEE Micro.

• André Seznec is the Program co-chair of HiPEAC 2013, January 2013 and Program co-chair of
PACT 2013 (September 2013).

• Erven Rohou was a member of the program committees of PARMA 2012, EUC 2012 and Computing
Frontiers 2012.

9.2. Teaching
• F. Bodin, A. Seznec, I. Puaut and E. Rohou are teaching computer architecture and compilation in

the master of research in computer science at University of Rennes I.

• Erven Rohou teaches classes and labs of Computing Systems at école Polytechnique (INF422).

• I. Puaut teaches operating systems and real-time systems in the master degree of computer science
of the University of Rennes I and at Ecole Supérieure d’ingénieurs de Rennes.

• D. Hardy teaches operating systems and compilers in the master degree of computer science of
the University of Rennes I. He teaches real-time systems in the BSc degree Embedded automotive
systems.
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• Pierre Michaud and André Seznec are teaching computer architecture at the engineering degree in
computer science at Ecole Supérieure d’ingénieurs de Rennes.

• I. Puaut is co-responsible of the Master of Research in computer science in Britanny (administered
jointly by University of Rennes I, University of Bretagne Sud, University of Bretagne Occidentale,
INSA de Rennes, ENS Cachan antenne de Bretagne, ENIB, Supélec, Telecom-Bretagne).

9.3. Workshops, seminars, invitations, visitors
9.3.1. Seminars

• A. Seznec has presented a seminar on "What you will never have wanted to know on branch
prediction" at University of Cyprus (April 2012), ETH Zurich (May 2012), Qualcomm (August
2012, Raleigh, North Carolina), Georgia Tech (August 2012) and ARM Sophia Antipolis (October
2012).

• A. Seznec has presented invited talks on "Should we defy the Amdahl’s Law" at MATEO 2012
workshop in honor of Mateo Valero (Barcelona, June 2012), and at the "Let’s Imagine the Future
Workshop" in honor of Jean-Pierre Banâtre (Rennes, November 2012).

• A. Seznec has presented a seminar on "Revisiting value prediction" at Intel Hillsboro in December
2012.

• A. Seznec has presented a seminar on "HAVEGE, HArdware Volatile Entropy Gathering and
Expansion: unpredictable random number generation at user level" at the LPMA laboratory (Paris,
September 2012).

• I. Puaut has presented a seminar on "WCET estimation for multi-core architectures" at CNES,
Toulouse, in December 2012.

• Pierre Michaud has presented a seminar on "Hardware acceleration of sequential loops" at Intel,
Boston in December 2011.

• E. Rohou gave a talk at the GDR GPL/5es journées françaises de compilation: "Défis des architec-
tures à venir - Quelle compilation pour demain ?" (Rennes, Irisa/Inria April 2012)

• E. Rohou gave an invited talk at Harvard University: “Compilation Challenges for Upcoming
Architectures”, (September 2012)

• E. Rohou gave a invited talk at the Workshop on Language Virtual Machines and Multicore
Architectures: “Compilation Challenges for Future Architectures” (September 2012, LIP6 Paris)

• E. Rohou gave an invited talk at the Egypt-Japan University of Science and Technology in Alexan-
dria:“Performance of Future Architectures and Compilation Challenges” (May 2012).

9.3.2. Visits
• Pr Ahmed El-Mahdy, from the Egyptian-Japanese University of Science and Technology visited the

ALF project for 1 week in October 2012.

• Pr Qureshi from Georgia Tech visited the ALF project-team for 3 weeks in July 2012 in the
framework of the DAL ERC project.

• Pr Baniasidi from Victoria university visited the ALF project-team for 1 week in October 2012. This
visit was funded by the French embassy in Canada.

• Keisuke Kuroyanagi from University of Tokyo was a master intern in the ALF team from April 2012
to July 2012. He worked on memory scheduling [21].

9.4. Miscelleanous
• I. Puaut is a member of the advisory board of the foundation Michel Métivier (http://www.fondation-

metivier.org).

http://www.fondation-metivier.org
http://www.fondation-metivier.org
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• I. Puaut is a member of the Technical Committee on Real-Time Systems of Euromicro, which is
responsible for ECRTS, the prime European conference on real-time systems.

• I. Puaut is in the steering committee of the RTNS conference.
• I. Puaut is the french representative for the COST action TACLe (Timing Analysis on Code-Level),

for which she also chairs the student mobility committee.
• Erven Rohou was a member of the working group GTInria2020 whose mission is to produce the

next “Plan Stratégique”.
• A. Seznec is an elected member of the scientific committee of Inria.
• A. Seznec has been nominated by ACM for 3 years 2011-2013 on the selection committee for the

ACM-IEEE Eckert-Mauchly award.
• A. Seznec was a member of the steering committee of ISCA 2012.
• E. Rohou has been appointed “correspondant scientifique des relations internationales” for Inria

Rennes Bretagne Atlantique.
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