
IN PARTNERSHIP WITH:
CNRS

Ecole des Mines de Nantes

Activity Report 2012

Project-Team ASCOLA

Aspect and composition languages

IN COLLABORATION WITH: Laboratoire d’Informatique de Nantes Atlantique (LINA)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Distributed Systems and Services

Table of contents

1. Members . 1
2. Overall Objectives . 2

2.1. Presentation 2
2.2. Highlights of the Year 2

3. Scientific Foundations .2
3.1. Overview 2
3.2. Software Components 3
3.3. Aspect-Oriented Programming 3
3.4. Protocols 4
3.5. Patterns 4
3.6. Domain-Specific Languages 5
3.7. Distribution and Concurrency 5

4. Application Domains .6
4.1. Enterprise Information Systems and Services 6
4.2. Cluster, Grid and Cloud Computing 7
4.3. Pervasive Systems 7

5. Software . 7
5.1. AWED 7
5.2. btrCloud (and Entropy) 7
5.3. ECaesarJ, EJava and EScala 8
5.4. FPath and FScript 8
5.5. WildCAT 9

6. New Results . 9
6.1. Software composition 9

6.1.1. Program transformation and formal properties 9
6.1.1.1. Forcing in the Calculus of Constructions and Coq 10
6.1.1.2. Invertible transformations for program decompositions 10

6.1.2. Service-oriented computing 10
6.1.2.1. Uniform service model 10
6.1.2.2. A type system for services 10
6.1.2.3. Criojo: a pivot language for services 11

6.1.3. Languages and composition models 11
6.1.3.1. Software product lines and model composition 11
6.1.3.2. Expressive language support for numerical constraint based programming 11

6.1.4. Analysis and test of C programs 11
6.2. Aspect-Oriented Programming 11

6.2.1. Formal models for AOP 12
6.2.1.1. The A Calculus 12
6.2.1.2. A category-theoretic foundation of aspects 12

6.2.2. Programming languages for aspects and related paradigms 12
6.2.2.1. Concurrent multi-paradigm programming with EScala 12
6.2.2.2. Monascheme: modular prototyping of aspect languages 12
6.2.2.3. Structuring computations with aspect-based membranes 13

6.3. Cloud applications and infrastructures 13
6.3.1. SLA Management for Cloud elasticity 13
6.3.2. Fully distributed and autonomous virtualized environments 13
6.3.3. Energy-efficient Cloud applications and infrastructures 13

7. Bilateral Contracts and Grants with Industry . 14
8. Partnerships and Cooperations . 14

2 Activity Report INRIA 2012

8.1. National Initiatives 14
8.1.1. ANR 14

8.1.1.1. CESSA: Compositional Evolution of Secure Services with Aspects
(ANR/ARPEGE) 14

8.1.1.2. Entropy (ANR/Emergence) 14
8.1.1.3. MyCloud (ANR/ARPEGE) 15
8.1.1.4. SONGS (ANR/INFRA) 15

8.1.2. FUI 15
8.1.3. FSN 16

8.2. European Initiatives 16
8.2.1. FP7 Projects 16
8.2.2. Collaborations in European Programs, except FP7 16

8.2.2.1. SCALUS: SCALing by means of Ubiquitous Storage (MC ITN) 16
8.2.2.2. COST IC0804 17

8.3. International Initiatives 17
8.4. International Research Visitors 18

9. Dissemination . 18
9.1. Scientific Animation 18

9.1.1. Event organization, animation of scientific community 18
9.1.1.1. International 18
9.1.1.2. National 18

9.1.2. Committee participations, reviewing activities, collective duties, etc. 18
9.2. Teaching - Supervision - Juries 19

9.2.1. Teaching 20
9.2.2. Supervision 20
9.2.3. Juries 20

10. Bibliography .20

Project-Team ASCOLA

Keywords: Software Composition, Aspect-oriented Programming, Programming Languages,
Distributed Systems, Cloud Computing, Formal Methods, Energy Consumption, Security

Creation of the Project-Team: January 01, 2009 .

1. Members
Research Scientist

Nicolas Tabareau [Junior Researcher Inria]
Faculty Members

Tony Bourdier [Associate Professor (temporary), until Aug. 12]
Pierre Cointe [Professor, EMN, HdR]
Rémi Douence [Associate Professor, Researcher Inria on leave from EMN until Aug. 12]
Hervé Grall [Associate Professor, EMN]
Adrien Lèbre [Associate Professor, EMN]
Thomas Ledoux [Associate Professor, EMN]
Jean-Marc Menaud [Associate Professor, EMN, HdR]
Jacques Noyé [Vice Team Leader: Associate Professor, EMN]
Jean-Claude Royer [Professor, EMN, HdR]
Remi Sharrock [Associate Professor (temporary), until Aug. 12]
Mario Südholt [Team Leader: Professor, EMN, HdR]

Engineers
Thierry Bernard [EMN (ANR Emergence Entropy) grant]
Omar Chebaro [Inria]
Clotilde Massot [Inria (ADT Vasp)]

PhD Students
Akram Ajouli [EMN grant, since Oct. 10]
Diana Allam [ANR Cessa grant, since Oct. 10]
Frederico Alvares [MESR grant, since Oct. 09]
Gustavo Bervian Brand [EU MCITN Scalus grant, since Sep. 10]
Ronan-Alexandre Cherrueau [EU IP A4Cloud & PdL region grant, since Oct. 12]
Simon Dupont [Cifre Sigma grant, since Nov. 12]
Ismael Figueroa [CONICYT grant, since Jan. 12]
Guilhem Jaber [ENS grant, since Sep. 10]
Yousri Kouki [ANR Mycloud grant, since Dec. 10]
Mayleen Lacouture [IST Ample grant, since Oct. 08]
Guillaume Le Louët [EMN grant, since Oct. 10]
Florent Marchand de Kerchove [CominLabs grant, since Oct. 12]
Ismael Mejía [EMN grant, since Jan. 09]
Syed Asad Ali Navqi [EMN & Univ. of Lancaster grant, since Nov. 08]
Jonathan Pastor [EMN grant, since Oct. 12]
Rémy Pottier [ANR SelfXL grant, until Sep. 12]
Flavien Quesnel [EMN grant, since Oct. 09]
Jurgen Van Ham [Armines & TUD grant, since Sep. 10]

Administrative Assistants
Diana Gaudin [Part-time (33%), until Oct. 12]
Florence Rogues [Part-time (33%), from Nov. 12]
Cécile Derouet [Part-time (33%)]

2 Activity Report INRIA 2012

2. Overall Objectives

2.1. Presentation
The ASCOLA project-team aims at harnessing and developing advanced application structuring mechanisms,
and supporting the transformational development of correct large-scale applications as well as their valid
evolution throughout their entire life cycle. We apply a language-based approach to achieve this goal, defining
new languages in order to represent architectural as well as implementation level abstractions and exploit
formal methods to ensure correctness.

Concretely, we investigate expressive aspect languages to modularize crosscutting concerns. Those languages
enable sophisticated relationships between execution events to be formulated and manipulated directly at
the language level. We study how to reconcile invasive accesses by aspects with strongly encapsulated
software entities. Furthermore, we foster the transformational development of implementations from higher-
level architectural software representations using domain-specific languages. Finally, we focus on abstractions
and development methods for distributed and concurrent systems, in particular flexible and energy-efficient
infrastructures.

Our results are subjected to validation in the context of four main application domains: enterprise information
systems, service-oriented architectures, cluster/grid, cloud applications, and pervasive systems.

2.2. Highlights of the Year
This year we have produced three major scientific results. Concerning the foundations of programming, we
have extending the Calculus of Construction, the type theory underlying the Coq theorem prover by new
logical principles that haven’t been tractable before [22], see Sec. 6.1. We have also extended the A Calculus,
the currently most comprehensive foundational calculus for AspectJ-like and history-based aspect models, by a
non-deterministic semantics and have provided a type soundness proof that is close to standard mathematical
reasoning and automated using Coq [12], see Sec. 6.2. In the domain of efficient Cloud infrastructures, we
have proposed DVMS, a fully-distributed and autonomous system for VM scheduling, that includes one of the
currently most highly-scalable scheduling algorithm [13], see Sec. 6.3.

ASCOLA is part of the new EU FP7 IP project A4Cloud on Accountability for the Cloud, a project with 13
industrial and academic partners, see Sec. 8.2.

Finally, ASCOLA members have organized the Grid’5000 international winter school at École de Mines de
Nantes, which brought together seventy, mostly European, PhD students and senior researchers, see Sec. 9.1.

3. Scientific Foundations

3.1. Overview
Since we mainly work on new software structuring concepts and programming language design, we first
briefly introduce some basic notions and problems of software components (understood in a broad sense, i.e.,
including modules, objects, architecture description languages and services), aspects, and domain-specific
languages. We conclude by presenting the main issues related to distribution and concurrency that are relevant
to our work.

Project-Team ASCOLA 3

3.2. Software Components
Modules and services. The idea that building software components, i.e., composable prefabricated and
parametrized software parts, was key to create an effective software industry was realized very early [67].
At that time, the scope of a component was limited to a single procedure. In the seventies, the growing
complexity of software made it necessary to consider a new level of structuring and programming and led
to the notions of information hiding, modules, and module interconnection languages [76], [48]. Information
hiding promotes a black-box model of program development whereby a module implementation, basically a
collection of procedures, is strongly encapsulated behind an interface. This makes it possible to guarantee
logical invariant properties of the data managed by the procedures and, more generally, makes modular
reasoning possible. In a first step, it is possible to reason locally, about the consistency between the module
implementation and the module interface. In a second step, it is possible to reason about composing modules
by only considering their interfaces. Modern module systems also consider types as module elements and
consider, typically static, modules as a unit of separate compilation, with the most sophisticated ones also
supporting modules parametrized by modules [65].

In the context of today’s Internet-based information society, components and modules have given rise to
software services whose compositions are governed by explicit orchestration or choreography specifications
that support notions of global properties of a service-oriented architecture. These horizontal compositions
have, however, to be frequently adapted dynamically. Dynamic adaptations, in particular in the context of
software evolution processes, often conflict with a black-box composition model either because of the need
for invasive modifications, for instance, in order to optimize resource utilization or modifications to the vertical
compositions implementing the high-level services.

Object-Oriented Programming. Classes and objects provide another kind of software component, which
makes it necessary to distinguish between component types (classes) and component instances (objects).
Indeed, unlike modules, objects can be created dynamically. Although it is also possible to talk about classes
in terms of interfaces and implementations, the encapsulation provided by classes is not as strong as the
one provided by modules. This is because, through the use of inheritance, object-oriented languages put the
emphasis on incremental programming to the detriment of modular programming. This introduces a white-box
model of software development and more flexibility is traded for safety as demonstrated by the fragile base
class issue [71].

Architecture Description Languages. The advent of distributed applications made it necessary to consider
more sophisticated connections between the various building blocks of a system. The software architecture
[79] of a software system describes the system as a composition of components and connectors, where the
connectors capture the interaction protocols between the components [39]. It also describes the rationale
behind such a given architecture, linking the properties required from the system to its implementation.
Architecture Description Languages (ADLs) are languages that support architecture-based development
[68]. A number of these languages make it possible to generate executable systems from architectural
descriptions, provided implementations for the primitive components are available. However, guaranteeing
that the implementation conforms to the architecture is an issue.

3.3. Aspect-Oriented Programming
The main driving force for the structuring means, such as components and modules, is the quest for clean
separation of concerns [50] on the architectural and programming levels. It has, however, early been
noted that concern separation in the presence of crosscutting functionalities requires specific language and
implementation level support. Techniques of so-called computational reflection, for instance, Smith’s 3-Lisp
or Kiczales’s CLOS meta-object protocol [80], [62] as well as metaprogramming techniques have been
developed to cope with this problem but proven unwieldy to use and not amenable to formalization and
property analysis due to their generality.

4 Activity Report INRIA 2012

Aspect-Oriented Software Development [61], [37] has emerged over the previous decade as the domain of sys-
tematic exploration of crosscutting concerns and corresponding support throughout the software development
process. The corresponding research efforts have resulted, in particular, in the recognition of crosscutting as a
fundamental problem of virtually any large-scale application, and the definition and implementation of a large
number of aspect-oriented models and languages.

However, most current aspect-oriented models, notably AspectJ [60], rely on pointcuts and advice defined
in terms of individual execution events. These models are subject to serious limitations concerning the
modularization of crosscutting functionalities in distributed applications, the integration of aspects with other
modularization mechanisms such as components, and the provision of correctness guarantees of the resulting
AO applications. They do, in particular, only permit the manipulation of distributed applications on a per-
host basis, that is, without direct expression of coordination properties relating different distributed entities
[81]. Similarly, current approaches for the integration of aspects and (distributed) components do not directly
express interaction properties between sets of components but rather seemingly unrelated modifications to
individual components [47]. Finally, current formalizations of such aspect models are formulated in terms of
low-level semantic abstractions (see, e.g., Wand’s et al semantics for AspectJ [83]) and provide only limited
support for the analysis of fundamental aspect properties.

Recently, first approaches have been put forward to tackle these problems, in particular, in the context of so-
called stateful or history-based aspect languages [51], [52], which provide pointcut and advice languages that
directly express rich relationships between execution events. Such languages have been proposed to directly
express coordination and synchronization issues of distributed and concurrent applications [75], [41], [54],
provide more concise formal semantics for aspects and enable analysis of their properties [40], [53], [51],
[38]. Due to the novelty of these approaches, they represent, however, only first results and many important
questions concerning these fundamental issues remain open.

3.4. Protocols
Today, protocols constitute a frequently used means to precisely define, implement, and analyze contracts
between two or more hardware or software entities. They have been used to define interactions between
communication layers, security properties of distributed communications, interactions between objects and
components, and business processes.

Object interactions [74], component interactions [84], [77] and service orchestrations [49] are most fre-
quently expressed in terms of regular interaction protocols that enable basic properties, such as compatibility,
substitutability, and deadlocks between components to be defined in terms of basic operations and closure
properties of finite-state automata. Furthermore, such properties may be analyzed automatically using, e.g.,
model checking techniques [44], [56].

However, the limited expressive power of regular languages has led to a number of approaches using more
expressive non-regular interaction protocols that often provide distribution-specific abstractions, e.g., session
types [59], or context-free or turing-complete expressiveness [78], [43]. While these protocol types allow
conformance between components to be defined (e.g., using unbounded counters), property verification can
only be performed manually or semi-automatically.

Furthermore, first approaches for the definition of aspects over protocols have been proposed, as well as over
regular structures [51] and non-regular ones [82], [73]. The modification of interaction protocols by aspects
seems highly promising for the integration of aspects and components.

3.5. Patterns
Patterns provide a kind of abstraction that is complementary to the modularization mechanisms discussed
above. They have been used, in particular, to define general architectural styles either by defining entire
computation and communication topologies [72], connectors between (complex) software artifacts [69], or
(based on, possibly concretizations of, design patterns [58]) as building blocks for object-oriented software
architectures. The resulting pattern-based architectures are similar to common component-based architectures
and are frequently used to implement the latter, see, for instance, Sun’s J2EE patterns.

Project-Team ASCOLA 5

Patterns have also been used to implement architectural abstractions. This is the case, for instance, for the
numerous variants of the publish/subscribe pattern [55] as well as the large set of so-called skeletons [46], that
is, patterns for the implementation of distributed and concurrent systems. While these patterns are essentially
similar to architecture-level patterns, their fine-grained application to multiple code entities often results in
crosscutting code structures. An important open issue consists in the lack of pattern-based representations for
the implementation of general distributed applications — in sharp contrast to their use for the derivation of
massively parallel programs.

3.6. Domain-Specific Languages
Domain-specific languages (DSLs) represent domain knowledge in terms of suitable basic language constructs
and their compositions at the language level. By trading generality for abstraction, they enable complex
relationships among domain concepts to be expressed concisely and their properties to be expressed and
formally analyzed. DSLs have been applied to a large number of domains; they have been particularly popular
in the domain of software generation and maintenance [70], [85].

Many modularization techniques and tasks can be naturally expressed by DSLs that are either specialized
with respect to the type of modularization constructs, such as a specific brand of software component, or to
the compositions that are admissible in the context of an application domain that is targeted by a modular
implementation. Moreover, software development and evolution processes can frequently be expressed by
transformations between applications implemented using different DSLs that represent an implementation at
different abstraction levels or different parts of one application.

Functionalities that crosscut a component-based application, however, complicate such a DSL-based transfor-
mational software development process. Since such functionalities belong to another domain than that cap-
tured by the components, different DSLs should be composed. Such compositions (including their syntactic
expression, semantics and property analysis) have only very partially been explored until now. Furthermore,
restricted composition languages and many aspect languages that only match execution events of a specific do-
main (e.g., specific file accesses in the case of security functionality) and trigger only domain-specific actions
clearly are quite similar to DSLs but remain to be explored.

3.7. Distribution and Concurrency
While ASCOLA does not investigate distribution and concurrency as research domains per se (but rather from
a software engineering and modularization viewpoint), there are several specific problems and corresponding
approaches in these domains that are directly related to its core interests that include the structuring and
modularization of large-scale distributed infrastructures and applications. These problems include crosscutting
functionalities of distributed and concurrent systems, support for the evolution of distributed software systems,
and correctness guarantees for the resulting software systems.

Underlying our interest in these domains is the well-known observation that large-scale distributed applications
are subject to numerous crosscutting functionalities (such as the transactional behavior in enterprise informa-
tion systems, the implementation of security policies, and fault recovery strategies). These functionalities are
typically partially encapsulated in distributed infrastructures and partially handled in an ad hoc manner by us-
ing infrastructure services at the application level. Support for a more principled approach to the development
and evolution of distributed software systems in the presence of crosscutting functionalities has been investi-
gated in the field of open adaptable middleware [42], [64]. Open middleware design exploits the concept of
reflection to provide the desired level of configurability and openness. However, these approaches are subject
to several fundamental problems. One important problem is their insufficient, framework-based support that
only allows partial modularization of crosscutting functionalities.

There has been some criticism on the use of AspectJ-like aspect models (which middleware aspect models
like that of JBoss AOP are an instance of) for the modularization of distribution and concurrency related
concerns, in particular, for transaction concerns [63] and the modularization of the distribution concern
itself [81]. Both criticisms are essentially grounded in AspectJ’s inability to explicitly represent sophisticated

6 Activity Report INRIA 2012

relationships between execution events in a distributed system: such aspects therefore cannot capture the
semantic relationships that are essential for the corresponding concerns. History-based aspects, as those
proposed by the ASCOLA project-team provide a starting point that is not subject to this problem.

From a point of view of language design and implementation, aspect languages, as well as domain specific
languages for distributed and concurrent environments share many characteristics with existing distributed
languages: for instance, event monitoring is fundamental for pointcut matching, different synchronization
strategies and strategies for code mobility [57] may be used in actions triggered by pointcuts. However, these
relationships have only been explored to a small degree. Similarly, the formal semantics and formal properties
of aspect languages have not been studied yet for the distributed case and only rudimentarily for the concurrent
one [40], [54].

4. Application Domains

4.1. Enterprise Information Systems and Services
Large IT infrastructures typically evolve by adding new third-party or internally-developed components, but
also frequently by integrating already existing information systems. Integration frequently requires the addi-
tion of glue code that mediates between different software components and infrastructures but may also consist
in more invasive modifications to implementations, in particular to implement crosscutting functionalities. In
more abstract terms, enterprise information systems are subject to structuring problems involving horizontal
composition (composition of top-level functionalities) as well as vertical composition (reuse and sharing of
implementations among several top-level functionalities). Moreover, information systems have to be more and
more dynamic.

Service-Oriented Computing (SOC) that is frequently used for solving some of the integration problems
discussed above. Indeed, service-oriented computing has two main advantages:

• Loose-coupling: services are autonomous, in that they do not require other services to be executed;

• Ease of integration: Services communicate over standard protocols.

Our current work is based on the following observation: similar to other compositional structuring mecha-
nisms, SOAs are subject to the problem of crosscutting functionalities, that is, functionalities that are scattered
and tangled over large parts of the architecture and the underlying implementation. Security functionalities,
such as access control and monitoring for intrusion detection, are a prime example of such a functionality
in that it is not possible to modularize security issues in a well-separated module. Aspect-Oriented Software
Development is precisely an application-structuring method that addresses in a systemic way the problem of
the lack of modularization facilities for crosscutting functionalities.

We are considering solutions to secure SOAs by providing an aspect-oriented structuring and programming
model that allows security functionalities to be modularized. Two levels of research have been identified:

• Service level: as services can be composed to build processes, aspect weaving will deal with the
orchestration and the choreography of services.

• Implementation level: as services are abstractly specified, aspect weaving will require to extend
service interfaces in order to describe the effects of the executed services on the sensitive resources
they control.

In 2012, we have developed techniques for the Service-Level Agreement (SLA) management for Cloud
elasticy, see Sec. 6.3, as well as models and type systems for service-oriented systems, see Sec. 6.1.
Furthermore, we take part in a starting new European project A4Cloud on accountability challenges, that
is, the responsible stewardship of third-party data and computations, see Sec. 8.2.

Project-Team ASCOLA 7

4.2. Cluster, Grid and Cloud Computing
Cluster, Grid and more recently Cloud computing platforms aim at delivering a larger capacity of computing
power compared to a single computer configuration. This capacity can be used to improve performance (for
scientific applications) or availability (e.g., for Internet services hosted by a data center). These distributed
infrastructures consist of a group of coupled computers that work together. This group can be spread across
a LAN (cluster), across a WAN (Grid), and across the Internet (Clouds). Due to their large scale, these
architectures require permanent adaptation, from the application to the system level and calls for automation of
the adaptation process. We focus on self-configuration and self-optimization functionalities across the whole
software stack: from the lower levels (systems mechanisms such as distributed file systems for instance) to the
higher ones (i.e. the applications themselves such as J2EE clustered servers or scientific grid applications).

In 2012, we have developed the DVMS system, which contains one of the most highly scalable scheduling
algorithm for virtual machines; we have also generated several results on the energy efficient management of
Cloud applications and infrastructures, see Sec. 6.3.

4.3. Pervasive Systems
Pervasive systems are another class of systems raising interesting challenges in terms of software structur-
ing. Such systems are highly concurrent and distributed. Moreover, they assume a high-level of mobility and
context-aware interactions between numerous and heterogeneous devices (laptops, PDAs, smartphones, cam-
eras, electronic appliances...). Programming such systems requires proper support for handling various inter-
fering concerns like software customization and evolution, security, privacy, context-awareness... Additionally,
service composition occurs spontaneously at runtime.

In 2012, we have developed the language EScala, which integrates reactive programming through events with
aspect-oriented and object-oriented mechanisms, see Sec. 6.1.

5. Software

5.1. AWED
Participants: Mario Südholt [correspondent], Ismael Mejia.

Aspect-oriented programming, distributed programming, event-based programming, invasive patterns

The model of Aspects With Explicit Distribution (AWED) supports the modularization of crosscutting
functionalities of distributed applications. It addresses the problem that common aspect systems do not provide
features for distributed programming. It notably features three main aspect abstractions: remote pointcuts,
remotely-executed advice, and distributed aspects.

The AWED system has also been employed in the CESSA project proposal (see Sec. 8.1) as a basis for our
work on the secure evolution of service-oriented architectures.

AWED is available at http://awed.gforge.inria.fr.

5.2. btrCloud (and Entropy)
Participants: Jean-Marc Menaud [correspondent], Rémy Pottier, Clotilde Massot, Guillaume Le Louët,
Thierry Bernard, Frédéric Dumont.

Orchestration, virtualization, energy, autonomic system, placement, cloud computing, cluster, data center,
scheduler, grid

btrCloud is a virtual machine manager for clusters and provides a complete solution for the management and
optimization of virtualized data center. btrCloud (acronym of better cloud) is composed of three parts.

http://awed.gforge.inria.fr

8 Activity Report INRIA 2012

The analysis function enables operatives and people in charge to monitor and analyze how a data-center works,
be it on a daily basis or on the long run and predict future trends. This feature includes a performances, an
analysis and a trends board.

btrCloud, by the integration of btrScript, provides (semi-)automated, VM lifecycle management, including
provisioning, resource pool management, VM tracking, cost accounting, and scheduled deprovisioning. Key
features include a thin client interface, template-based provisioning, approval workflows, and policy-based
VM placement.

Finally, Several kinds of optimizations are currently available, such as energy and load balancing. The former
can help save up to around 20% of the data-center energy consumption, of course depending on the context.
The latter enhances provides optimal quality of service for the applications that are hosted in the virtualized
data-center.

btrCloud is available at http://www.btrcloud.org.

5.3. ECaesarJ, EJava and EScala
Participants: Jacques Noyé [correspondent], Jurgen Van Ham.

Symmetric AOP, features, software product lines, inheritance, virtual classes, propagating mixin composition,
event-based programming, events, declarative events, state machines, CaesarJ, Java, Scala

ECaesarJ is a language developed in the context of the European project AMPLE, as joint work with the
Technische Universität Darmstadt (TUD). The basic objective was to provide support for directly mapping the
high-level features defined by a software product line onto implementation-level features, beyond standard
feature-oriented programming. But the language has much wider applications. ECaesarJ can actually be
seen as a language which smoothly integrates Object-Oriented Programming, Feature-Oriented Programming,
Aspect-Oriented Programming, and Event-based Programming.

It is an extension of Java with virtual classes and propagating mixin composition (as its ancestor CaesarJ,
developed at TUD), but also declarative events and state machines. Unlike AspectJ, ECaesarJ does not include
a class-like concept of aspect. Instead, it deals with pointcuts and pieces of advice as (implicit) events and
event handlers, which are standard class members. This makes it possible to use standard inheritance to reuse
and refine them. Explicit events can also be used when events must be explicitly triggered as in traditional
event-based programming. Finally, in the same way as pointcuts can be composed using logical operators,
declarative events can be defined as a composition of other events.

This provides a symmetric version of AOP where virtual classes can be used to deal with structural aspects
whereas events can be used to deal with behavioral aspects.

In ECaesarJ, a class can also include, as class members, state transitions. Combining this with virtual classes
makes it possible to define, at the programming language level, refinable hierarchical state machines. The
combination of state machines and events provides, in particular, effective language support for the State
design pattern as well as a form of Event-based AOP.

EJava and EScala are more recent developments of the same ideas applied to Java and Scala, respectively.
EJava benefits from Java tooling with an eclipse plugin developed with the Spoofax Language Workbench.
Unlike EJava and ECaesarJ, EScala makes it possible to dynamically register and unregister event handlers. It
also benefits from a more efficient, compiler-based, implementation. As ECaesarJ, EScala is joint work with
TUD.

Prototype implementations of these languages are available through http://ecaesarj.gforge.inria.fr/.

5.4. FPath and FScript
Participants: Thomas Ledoux [correspondent], Frederico Alvares.

dynamic reliable reconfiguration, self-adaptive components, Fractal, autonomic computing

http://www.btrcloud.org
http://ecaesarj.gforge.inria.fr/

Project-Team ASCOLA 9

FPath and FScript are two domain-specific languages (DSLs) dealing respectively with the navigation and
the dynamic reconfiguration of Fractal architectures. FPath is a DSL for querying Fractal architectures. It is
restricted to the introspection of architectures by browsing elements identified by their properties or location
in the architecture. This focused domain allows FPath to offer a very concise and readable syntax and ensures
correctness properties by construction (e.g. any query terminates in a finite time). FScript is a DSL dedicated
to the reconfiguration of Fractal component architectures. It enables reconfiguration scripts to modify a Fractal
architecture. Like FPath, FScript guarantees several properties by construction, e.g. termination of scripts by
excluding the possibility of infinite loops. Moreover the FScript interpreter supports a transactional model of
reconfigurations and the preservation of the ACID properties.

An adaptation of FPath/FScript to FraSCAti, a component framework providing runtime support for the
Service Component Architecture (SCA), has been developed by the Inria Adam project-team. In that way,
software architects are able to navigate using FPath notation through FraSCAti architectures and to reconfigure
them with FScript. We have used this adaptation in our recent work [11][31] for reconfiguring cloud
applications in order to reduce the energy footprint in cloud infrastructures.

FScript and its extensions are available under the LGPL license at http://fractal.ow2.org/fscript.

5.5. WildCAT
Participants: Thomas Ledoux [correspondent], Frederico Alvares.

monitoring, context-aware applications, complex event processing

WildCAT is a generic Java framework for context-aware applications. It permits the monitoring of large-
scale applications by allowing developers to easily organize and access resources through a hierarchical
organization backed with a powerful SQL-like language to inspect sensors data and to trigger actions
upon particular conditions. WildCAT proposes two modes to inspect the resources: a pull mode relies on
synchronous communication and a push one relies on asynchronous communication. In the pull mode,
developers programmatically get and set attributes. In the push mode, developers register listeners on queries
expressed over the events generated by the backend.

WildCAT has been developed by the team in the last years. We have used WildCAT in our recent work [11]
for allowing cloud applications to listen events notification fired by the cloud infrastructure (e.g. whenever
the pricing policy of cloud resources changes) or to detect changes on the application activity (e.g. to detect
whenever the number of requests sharply increases/decreases) in order to launch the reconfiguration of cloud
applications.

WildCAT is available under GPL v2 at http://wildcat.ow2.org.

6. New Results

6.1. Software composition
Participants: Akram Ajouli, Diana Allam, Omar Chebaro, Rémi Douence, Hervé Grall, Jean-Claude Royer,
Mario Südholt.

We have produced results on service-oriented computing, language support for software composition, program
transformation for composition, as well as the analysis of C programs.

6.1.1. Program transformation and formal properties
We have proposed an extension of the type theory underlying the Coq theorem prover and studied invertible
transformations as a means to decompose object-oriented properties.

http://fractal.ow2.org/fscript
http://wildcat.ow2.org

10 Activity Report INRIA 2012

6.1.1.1. Forcing in the Calculus of Constructions and Coq

We have developed an intuitionistic forcing translation for the Calculus of Constructions (CoC), a translation
that corresponds to an internalization of the presheaf construction in CoC [22]. Depending on the chosen set
of forcing conditions, the resulting type theory can be extended with extra logical principles. The translation
is proven correct—in the sense that it preserves type checking—and has been implemented in Coq. As a case
study, we have shown how the forcing translation on integers (which corresponds to the internalization of the
topos of trees) allows us to define general inductive types in Coq, without the strict positivity condition.

6.1.1.2. Invertible transformations for program decompositions

When one chooses a main axis of structural decomposition for a software, such as function- or data-oriented
decompositions, the other axes become secondary, which can be harmful when one of these secondary axes
becomes of main importance. In the context of modular maintenance, we have tackled this problem using
invertible program transformations [19]. We have experimented our approach for Java [29] and Haskell
programs.

In [29] we have presented such a transformation for Java. Precisely, we build a reversible transformation
between Composite and Visitor design patterns in Java programs, based on chains of basic refactoring
operations. Such transformations represent an automatic reversible switching between different program
architectures with a guarantee of semantic preservation. The transformation is automated with the refactoring
tool of a popular IDE: JetBrains Intellij Idea.

As seen in that paper, basic refactoring operations can be combined to perform complex program transfor-
mations. But the resulting composed operations are rarely reused, even partially, because popular tools have
few support for composition. In [45] we have formalized the composition of refactoring operations of our
Composite/Visitor transformation by the means of a static type system. That type system is based on two
previous calculi for composition of refactoring, which we recast in one single calculus. The type system is
used to prove non-failure and correctness of transformations. This kind of formalization yields a validation of
transformations and, if integrated in existing IDEs, should help to reuse existing transformations.

6.1.2. Service-oriented computing
In the field of service-oriented computing, we have developed three contributions: a model for web services
that enables WS*/SOAP-based heavyweight services and RESTful lightweight services to be handled uni-
formly, a type system that is safe in the presence of malicious agents and insecure communication channels,
as well as a pivot language that provides a common abstraction for very different web query languages.

6.1.2.1. Uniform service model

Service-oriented applications are frequently used in highly dynamic contexts: service compositions may
change dynamically, in particular, because new services are discovered at runtime. Moreover, subtyping has
recently been identified as a strong requirement for service discovery. Correctness guarantees over service
compositions, provided in particular by type systems, are highly desirable in this context. However, while
service oriented applications can be built using various technologies and protocols, none of them provides
decent support ensuring that well-typed services cannot go wrong. Currently, Service-Oriented Architecture
applications are typically built using either the SOAP/WS or REST service models. Although there is a
clear need for a model integrating both in multiple real-world contexts, no integrated model does (yet) exist.
Therefore, in [15] we have introduced a model as a foundation for heterogeneous services, therefore unifying
the SOAP/WSand RESTmodels.

6.1.2.2. A type system for services

We have presented a formal model in [14] for service compositions and defined a type system [33] with
subtyping that ensures type soundness by combining static and dynamic checks. Our model allows channel
mobility and inference of the type of discovered channels. This type system is based on the notion of semantic
typing and proved to be sound. We have also demonstrated how to get type soundness in presence of malicious
agents and insecure communication channels.

Project-Team ASCOLA 11

6.1.2.3. Criojo: a pivot language for services

Interoperability remains a significant challenge in service-oriented computing. After proposing a pivot archi-
tecture to solve three interoperability problems, namely adaptation, integration and coordination problems
between clients and servers, we explore the theoretical foundations for this architecture. A pivot architecture
requires a universal language for orchestrating services and a universal language for interfacing resources.
Since there is no evidence today that Web Services technologies can provide this basis, we have proposed
a new language called Criojo and shown that it can be considered as a pivot language. We have formalized
the language Criojo and its operational semantics by resorting to a chemical abstract machine, and given an
account of formal translations into Criojo: in a distributed context, we have dealt with idiomatic languages for
four major programming paradigms: imperative programming, logic programming, functional programming
and concurrent programming.

6.1.3. Languages and composition models
We have contributed new results in the domains of software product lines, model-based composition and
language support for numerical constraint-based programming.

6.1.3.1. Software product lines and model composition

Many approaches to creating Software Product Lines have emerged that are based on Model-Driven Engi-
neering. Our book [32] introduces both Software Product Lines and Model-Driven Engineering, which have
separate success stories in industry, and focuses on the practical combination of them. It describes the chal-
lenges and benefits of merging these two software development trends and provides the reader with a novel
approach and practical mechanisms to improve variability. Advanced concepts like fine-grained variability and
decision models based on aspect-oriented programming techniques are illustrated. The concepts and methods
are detailed with two product line examples: the classic smart-home systems and a collection manager infor-
mation system.

6.1.3.2. Expressive language support for numerical constraint based programming

A combinatorial search can either be performed by using an implicit or an explicit search tree. We have
proposed a functional DSL [35] for explicit search trees in the field of numerical constraints. The first
advantage of our approach is expressiveness: we can write new algorithms or reformulate existing ones in
a simple and unified way. The second advantage is efficiency, since an implicit search may also lead to a
blowup of redundant computations. We illustrate this through various examples.

6.1.4. Analysis and test of C programs
Ascola members have participated, in cooperation with researchers from CEA List institute, in the develop-
ment of analyses and corresponding tool support for C programs.

We have studied combinations of static and dynamic analysis techniques that enable the detection of out-of-
bounds memory accesses in C programs and generate corresponding concrete test data [17]. This is particularly
problematic for input arrays and pointers in C functions. We have presented a specific technique allowing the
interpretation and execution of assertions involving the size of an input array (pointer) of a C function. We
have successfully applied this technique in the Sante tool from the CEA where it allows potential out-of-
bounds access errors to be detected and classified in several real-life programs.

PathCrawler is a test generation tool developed at CEA LIST for structural testing of C programs. The new
version of PathCrawler [18] we have contributed to is developed in an entirely novel form: that of a test-
case generation web service which is freely accessible at PathCrawler-online.com. This service allows many
test-case generation sessions to be run in parallel in a completely robust and secure way. We have presented
PathCrawler-online.com in the form of a lesson on structural software testing, showing its benefits, limitations
and illustrating the usage of the tool on a series of examples.

6.2. Aspect-Oriented Programming
Participants: Rémi Douence, Guilhem Jaber, Ismael Mejía, Jacques Noyé, Mario Südholt, Nicolas Tabareau.

12 Activity Report INRIA 2012

We have contributed to the foundations of aspect-oriented programming and presented new programming
languages for aspects and related paradigms.

6.2.1. Formal models for AOP
We have presented two calculi contributing to the foundations of AOP: the A Calculus, a parameterized
calculus encompassing AspectJ-like and history based aspect languages, and a category-theoretic definition
of AOP in terms of 2-categories.

6.2.1.1. The A Calculus

With partners from Vrije Universiteit Brussel and Aarhus University, we have extended the foundational
calculus for AOP (introduced in 2010) that supports the most general aspect model to-date compared to
existing calculi and the deepest integration with plain OO concepts [12]. Integration with OOP is achieved
essentially by modeling proceed using first-class closures. Two well-known pointcut categories, call and
execution that are commonly considered similar are shown to be significantly different; our calculus enables
the resolution of the associated soundness problems. The A-calculus also includes type ranges, an intuitive and
concise alternative to explicit type variables that allows advices to be polymorphic over intercepted methods.
Finally, our calculus is the first aspect calculus to use calculus parameters to cover type safety for a wide
design space of other features. The soundness of the resulting type system has been verified in Coq.

In 2012, we have covered a range of choices with respect to evaluation order and non-determinism. We
have studied one version that enforces a deterministic call-by-value semantics, and another one that omits
restrictions on evaluation order and allows many kinds of non-determinism. Furthermore, we have provided a
mechanized complete type soundness proof using the theorem prover Coq.

6.2.1.2. A category-theoretic foundation of aspects

Aspect-Oriented Programming (AOP) started fifteen years ago with the remark that modularization of so-
called crosscutting functionalities is a fundamental problem for the engineering of large-scale applications.
However, theoretical foundations of AOP have been much less studied than its applicability.

We have proposed [26] to put a bridge between AOP and the notion of 2-category to enhance the conceptual
understanding of AOP. Starting from the connection between the λ-calculus and the theory of categories, we
have defined an internal language for 2-categories and shown how it can be used to define the first categorical
semantics for a realistic functional AOP language. We have then used this categorical framework to introduce
the notion of computational 2-monads for AOP. We have illustrated their conceptual power by defining a
2-monad for Éric Tanter’s execution levels—which constitutes the first algebraic semantics for execution
levels—and then introducing the first exception monad transformer specific to AOP that gives rise to a non-flat
semantics for exceptions by taking levels into account.

6.2.2. Programming languages for aspects and related paradigms
We have introduced three results related to aspect-based programming languages: an extension of EScala for
multi-paradigm programming; Monascheme, a language for modular prototyping of aspect-based languages
and language support for membranes, an aspect-based means for structuring computations.

6.2.2.1. Concurrent multi-paradigm programming with EScala

EScala integrates, around the notion of declarative events, object-oriented, aspect-oriented and event-based
programming [30]. However, in spite of the fact that events naturally evoke some form of concurrency, there
is no specific support for concurrency in EScala. It is up to the programmer to understand how to combine
declarative events and Scala’s support for concurrent programming. We have started working on injecting
concurrency at the heart of declarative events so that events can indeed be naturally concurrent [28].

6.2.2.2. Monascheme: modular prototyping of aspect languages

We have then developed Monascheme [21], an extensible aspect-oriented programming language based on
monadic aspect weaving. Extensions to the aspect language are defined as monads, enabling easy, simple and
modular prototyping. The language is implemented as an embedded language in Racket. We illustrate the
approach with an execution level monad and a level-aware exception transformer. Semantic variations can be
obtained through monad combinations.

Project-Team ASCOLA 13

6.2.2.3. Structuring computations with aspect-based membranes

In most aspect-oriented languages, aspects have an unrestricted global view of computation. Several ap-
proaches for aspect scoping and more strongly encapsulated modules have been formulated to restrict the
power of aspects. Our approach [27] leverages the concept of programmable membranes of Boudol, Schmitt
and Stefani, as a means to tame aspects by customizing the semantics of aspect weaving locally. Membranes
have the potential to subsume previous proposals in a uniform framework. Because membranes give structure
to computation, they enable flexible scoping of aspects; because they are programmable, they enable visi-
bility and safety constraints, both for the advised program and for the aspects. The power and simplicity of
membranes open interesting perspectives to unify multiple approaches that tackle the unrestricted power of
aspects.

6.3. Cloud applications and infrastructures
Participants: Frederico Alvares, Gustavo Bervian Brand, Yousri Kouki, Adrien Lèbre, Thomas Ledoux,
Guillaume Le Louët, Jean-Marc Menaud, Jonathan Pastor, Rémy Pottier, Flavien Quesnel, Mario Südholt.

We have contributed on SLA management for Cloud elasticity, fully distributed and autonomous virtual
machine scheduling, and energy-efficient Cloud infrastructures.

6.3.1. SLA Management for Cloud elasticity
In [23], we have introduced CSLA, the Cloud Service Level Agreement language. The CSLA language has
been influenced by related work, in particular WSLA and SLA@SOI. It allows to describe the SLA between a
cloud service provider and a cloud customer. One of the novelties of CSLA is that it integrates features dealing
with QoS uncertainty and cloud fluctuations, such as confidence, penalty and fuzziness.

Cloud computing is a model for enabling on-demand access to a shared pool of configurable resources as
services. However, the management of such elastic resources is a complex issue. In [24], we have proposed a
SLA-driven approach for optimizing the resources capacity planning for Cloud applications. We have modeled
Cloud services using a closed queuing network model and proposed an extension of a Mean Value Analysis
(MVA) algorithm to take into account the concept of SLA. Then, based on capacity planning method, our
solution calculates the optimal configuration of a Cloud application.

6.3.2. Fully distributed and autonomous virtualized environments
Extending previous preliminary results of the DVMS prototype, we have consolidated this system to obtain a
fully distributed virtual machine scheduler [13]. This system makes it possible to schedule VMs cooperatively
and dynamically in large scale distributed systems. Simulations (up to 64K VMs) and real experiments both
conducted on the Grid’5000 large-scale distributed system [34] showed that DVMS is scalable. This building
block is a first element of a more complete cloud OS, entitled DISCOVERY (DIStributed and COoperative
mechanisms to manage Virtual EnviRonments autonomicallY) [66]. The ultimate goal of this system is
to overcome the main limitations of the traditional server-centric solutions. The system, currently under
investigation in the context of the Jonathan Pastor’s PhD, relies on a peer-to-peer model where each agent
can efficiently deploy, dynamically schedule and periodically checkpoint the virtual environments it manages.

6.3.3. Energy-efficient Cloud applications and infrastructures
As a direct consequence of the increasing popularity of Cloud Computing solutions, data centers are amazingly
growing and hence have to urgently face with the energy consumption issue. Available solutions rely on Cloud
Computing models and virtualization techniques to scale up/down application based on their performance
metrics. Although those proposals can reduce the energy footprint of applications and by transitivity of cloud
infrastructures, they do not consider the internal characteristics of applications to finely define a trade-off
between applications Quality of Service and energy footprint. We have proposed a self-adaptation approach
that considers both application internals and system to reduce the energy footprint in cloud infrastructure [31],
[11]. Each application and the infrastructure are equipped with their own control loop, which allows them
to autonomously optimize their executions. In addition, these autonomic loops are coordinated to avoid
inconsistent states. This coordination improves the synergy between applications and infrastructure in order to
optimize the infrastructure energy consumption [16].

14 Activity Report INRIA 2012

We have extended our previous work on Entropy, a virtual machine placement manager, by the development
of btrScript, a safe autonomic system for virtual machine management that includes actions and placement
rules. Actions are imperative operations to reconfigure the data center and declarative rules specify the virtual
machine placement. Administrators schedule both actions and rules, to manage their data center(s). They can
also interact with the btrScript system in order to monitor the data center and compute the correct virtual
machine placement [25]. btrScript and Entropy have been packaged in a common software btrCloud.

7. Bilateral Contracts and Grants with Industry

7.1. Cooperation with SIGMA group
Participants: Thomas Ledoux, Simon Dupont.

In 2012, we have started a two-fold cooperation with Sigma Group (http://www.sigma.fr), a software editor
and consulting enterprise. The cooperation consists in a joint (a so-called Cifre) PhD on eco-elasticity of
software for the Cloud and the sponsorship of several engineering students at the MSc-level.

As a direct consequence of the increasing popularity of cloud computing solutions, data centers are amazingly
growing and hence have to urgently face with the energy consumption issue. The aim of Simon Dupont’s
PhD, started in November 2012, is to explore the software elasticity capability in Software-as-a-Service
(SaaS) development to promote the management of SaaS applications that are more flexible, more reactive to
environment changes and therefore self-adaptive for a wider range of contexts. As a result, SaaS applications
become more elastic and by transitivity more susceptible to energy constraints and optimization issues.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR
8.1.1.1. CESSA: Compositional Evolution of Secure Services with Aspects (ANR/ARPEGE)

Participants: Mario Südholt [coordinator], Diana Allam, Rémi Douence, Hervé Grall, Jean-Claude Royer.

The project CESSA is an (industrial) ANR project running for 3 years months, with funding amounting to 290
KEUR for ASCOLA from Jan. 10 on. Three other partners collaborate within the project that is coordinated
by ASCOLA: a security research team from Eurecom, Sophia-Antipolis, the Security and Trust team from
SAP Labs, also located at Sophia-Antipolis, and IS2T, an innovative start-up company developing middleware
technologies located at Nantes. The project deals with security in service-oriented architectures.

This year our group has contributed several scientific publications as part of the project. All partners have
been involved in the publication of a unifying model for WD*/SOAP-based and RESTful web services.
Furthermore, we have formally defined a type system that is safe in the presence of malicious attackers and
insecure communication channels.

All information is available from the CESSA web site: http://cessa.gforge.inria.fr.

8.1.1.2. Entropy (ANR/Emergence)
Participants: Jean-Marc Menaud [coordinator], Thomas Ledoux, Adrien Lèbre.

The Entropy project is an (industrial) ANR/Emergence project running for 18 months. It was accepted in
December 2010 for funding amounting to 242 KEUR (ASCOLA only).

The objective of this project is to conduct studies on economic feasibility (market, status, intellectual property,
website) for creating a industrial business on the Entropy software.

http://www.sigma.fr
http://cessa.gforge.inria.fr

Project-Team ASCOLA 15

Some task must complete the Entropy core solution with a graphical unit interface to produce convincing
demonstrators and consolidate our actual and future results. At the end of the project, the goal is to create a
company whose objective is to sell the service, support and software building blocks developed by this ANR
Emergence project.

8.1.1.3. MyCloud (ANR/ARPEGE)
Participants: Thomas Ledoux [coordinator], Jean-Marc Menaud, Yousri Kouki, Frederico Alvares.

The MyCloud project is an ANR/ARPEGE project running for 42 months, starting in Nov. 2010. It was
accepted in Jul. 2010 for funding amounting to 190 KEUR (ASCOLA only). MyCloud involves a consortium
with three academic partners (Inria, LIP6, EMN) and one industrial partner (We Are Cloud).

Cloud Computing provides a convenient means of remote on-demand and pay-per-use access to computing
resources. However, its ad-hoc management of quality-of-service (QoS)and SLA poses significant challenges
to the performance, dependability and costs of online cloud services.

The objective of MyCloud (http://mycloud.inrialpes.fr) is to define and implement a novel cloud model:
SLAaaS (SLA as a Service). The SLAaaS model enriches the general paradigm of Cloud Computing and
enables systematic and transparent integration of SLA to the cloud. From the cloud provider’s point of view,
MyCloud proposes autonomic SLA management to handle performance, availability, energy and cost issues
in the cloud. From the cloud customer’s point of view, MyCloud provides SLA governance allowing cloud
customers to be part of the loop and to be automatically notified about the state of the cloud, such as SLA
violation and cloud energy consumption.

This year, the ASCOLA project-team has proposed (i) CSLA, a novel language to describe QoS-oriented SLA
associated with cloud services [23]; (ii) a SLA-driven capacity planning for cloud applications [24].

8.1.1.4. SONGS (ANR/INFRA)
Participants: Adrien Lèbre [coordinator], Flavien Quesnel, Jonathan Pastor.

The SONGS project (Simulation of Next Generation Systems) is an ANR/INFRA project running for 48
months (starting from January 2012 with an allocated budget of 1.8MEuro, 95KEuro for ASCOLA).

The consortium is composed of 11 academic partners from Nancy (AlGorille, coordinator), Grenoble
(MESCAL), Villeurbanne (IN2P3 Computing Center, GRAAL/Avalon - LIP), Bordeaux (CEPAGE, HiePACS,
RUNTIME), Strasbourg (ICPS - LSIIT), Nantes (ASCOLA), Nice (MASCOTTE, MODALIS).

The goal of the SONGS project (http://infra-songs.gforge.inria.fr) is to extend the applicability of the SimGrid
simulation framework from Grids and Peer-to-Peer systems to Clouds and High Performance Computation
systems. Each type of large-scale computing system will be addressed through a set of use cases and lead by
researchers recognized as experts in this area. The ASCOLA involvement will start in 2013 with the arrival of
Takahiro Hirofuchi from the AIST institute in Japan.

8.1.2. FUI
8.1.2.1. Cool-IT (FUI)

Participant: Jean-Marc Menaud [coordinator].

The Cool-IT project is an (industrial) FUI project running for 24 months. It was accepted in September 2010
for funding amounting to 130 KEUR (ASCOLA only).

The objective of this project is to design systems adapted to new standards of "Green IT" to reduce the data
centers electrical consumption.

To this end, the COOL IT project will develop processes for cooling computer servers, optimize the server
power chain supply, implement tools and methods of collecting energy data in real time, and specify methods
for controlling the data centers consumption as a tradeoff between the computational power needed, the
availability, and the energy consumption.

http://mycloud.inrialpes.fr
http://infra-songs.gforge.inria.fr

16 Activity Report INRIA 2012

8.1.3. FSN
8.1.3.1. OpenCloudware (FSN)

Participants: Jean-Marc Menaud [coordinator], Thomas Ledoux, Yousri Kouki.

The OpenCloudware project is coordinated by France Telecom, funded by the French Fonds National pour la
Société Numérique (FSN, call Cloud n°1) and endorsed by competitiveness clusters Minalogic, Systematic and
SCS. OpenCloudware is developed by a consortium of 18 partners bringing together industry and academic
leaders, innovative technology start-ups and open source community expertise. Duration: 36 months - 2012-
2014.

The OpenCloudware project aims at building an open software engineering platform, for the collaborative
development of distributed applications to be deployed on multiple Cloud infrastructures. It will be available
through a self-service portal. We target virtualized multi-tier applications such as JavaEE - OSGi. The results
of OpenCloudware will contain a set of software components to manage the lifecycle of such applications,
from modelling(Think), developing and building images (Build), to a multi-IaaS compliant PaaS platform
(Run).

The ASCOLA project-team is mainly involved in the sub-projects "Think" (SLA model accross Cloud layers)
and "Run" (virtual machine manager for datacenters and placement constraints).

8.2. European Initiatives
8.2.1. FP7 Projects
8.2.1.1. A4Cloud: Accountability for the Cloud (Integrated Project)

Participants: Mario Südholt [coordinator], Omar Chebaro, Ronan-Alexandre Cherrueau, Rémi Douence,
Hervé Grall, Jean-Claude Royer.

The A4Cloud project is an integrated EU project, coordinated by HP, UK, on the topic of accountability, that
is, the responsible stewardship of private data, in the Cloud. This 42-months project started in Oct. 2012 and
Ascola’s funding amounts to 600 KEuro.

The project involves 13 partners: in addition to HP, two enterprises (SAP AG, Germany; ATC, Greece), a non-
governmental organisation (the Cloud Security Alliance, CSA) and 9 universities and research organisations
(EMNantes and Eurecom, France; HFU. Furtwangen, Germany; Karlstadt U., Sweden; U. Malaga, Spain;
Queen Mary U., U.K.; U. Stavanger and Sintef, Norway; Tilburg U., The Netherlands).

A4Cloud will create solutions to support users in deciding and tracking how their data is used by cloud service
providers. By combining methods of risk analysis, policy enforcement, monitoring and compliance auditing
with tailored IT mechanisms for security, assurance and redress, A4Cloud aims to extend accountability across
entire cloud service value chains, covering personal and business sensitive information in the cloud.

8.2.2. Collaborations in European Programs, except FP7
8.2.2.1. SCALUS: SCALing by means of Ubiquitous Storage (MC ITN)

Participants: Adrien Lèbre [coordinator], Mario Südholt, Gustavo Bervian Brand.

The vision of the Scalus Marie Curie international training network (MC ITN) is to deliver the foundation
for ubiquitous storage systems, which can be scaled with respect to multiple characteristics (capacity,
performance, distance, security, ...).

Providing ubiquitous storage will become a major demand for future IT systems and leadership in this area can
have significant impact on European competitiveness in IT technology. To get this leadership, it is necessary
to invest into storage education and research and to bridge the current gap between local storage, cluster
storage, grid storage, and cloud storage. The consortium will proceed into this direction by building the
first interdisciplinary teaching and research network on storage issues. It consists of top European institutes
and companies in storage and cluster technology, building a demanding but rewarding interdisciplinary
environment for young researchers.

Project-Team ASCOLA 17

The network involves the following partners: University of Paderborn (Germany, coordinator), Barcelona
Super Computing (Spain), University of Durham (England), University of Frankfurt (Germany), ICS-FORTH
(Greece), Universidad Polytecnica de Madrid (Spain), EMN/ARMINES (France), Inria Rennes Bretagne
Atlantique (France), XLAB (Slovenia), University of Hamburg (Germany), Fujistu Technology Systems
(Germany).

The overall funding of the project by the European Union is closed to 3,3 MEUR. ASCOLA’s share amounts
to 200 KEUR.

8.2.2.2. COST IC0804

Program: Energy efficiency in large sclae distributed systems

Project acronym: COST IC0804

Project title: Energy efficiency in large scale distributed systems

Duration: Jan. 2009 - May 2013

Coordinator: Jean-Marc Pierson (IRIT, France)

Participating countries: AT, BE, CH, CY, DE, DK, EE, FI, FR, GR, HU, IE, IL, IT, LU, PL, PT, RO,
SE, SP, TR, UK,

Abstract: The COST IC 0840 Action will propose realistic energy-efficient alternate solutions to
share IT distributed resources. As large scale distributed systems gather and share more and more
computing nodes and storage resources, their energy consumption is drastically increasing. While
much effort is nowadays put into hardware specific solutions to lower energy consumptions, the need
for a complementary approach is necessary at the distributed system level, i.e. middleware, networks
and applications. The action will characterize the energy consumption and energy efficiencies of
distributed applications. http://www.cost804.org/

8.3. International Initiatives
8.3.1. Inria Associate Teams
8.3.1.1. RAPIDS

Title: Reasoning about Aspect-oriented Programs and security In Distributed Systems

Inria principal investigator: Jacques Noyé

International Partner (Institution - Laboratory - Researcher):

University of Chile (Chile) - PLEIAD - Éric Tanter

Duration: 2010 - 2012

See also: http://rapids.gforge.inria.fr/doku.php

While Aspect-Oriented Programming offers promising mechanisms for enhancing the modularity of
software, this increased modularity raises new challenges for systematic reasoning. This project
studies means to address fundamental and practical issues in understanding distributed aspect-
oriented programs by focusing on the issue of security. To this end, the project tackles three
complementary lines of work: 1. Designing a core calculus to model distributed aspect-oriented
programming languages and reason about programs written in these languages. 2. Studying how
aspects can be used to enforce security properties in a distributed system, based upon guarantees
provided by the underlying aspect infrastructure. 3. Designing and developing languages, analyses
and runtime systems for distributed aspects based on the proposed calculus, therefore enabling
systematic reasoning about security. These lines of work are interconnected and confluent. A
concrete outcome of RAPIDS will be prototypes for two concrete distributed aspect-oriented
extensions of languages increasingly used by current practitioners: Javascript and Java/Scala.

http://www.cost804.org/
http://rapids.gforge.inria.fr/doku.php

18 Activity Report INRIA 2012

8.4. International Research Visitors
8.4.1. Internships

Rahma CHAABOUNI (from April 2012 until June 2012)

Subject: Flexible evolution of service-oriented systems

Institution: ENIS school, Sfax, Tunisie

Ismael FIGUEROA (from May 2012 until Jul 2012)

Subject: Exploring membranes for aspect oriented programming

Institution: University of Chile (Chile)

9. Dissemination

9.1. Scientific Animation
9.1.1. Event organization, animation of scientific community
9.1.1.1. International

• Aspect-oriented Software Association (AOSA): Mario Südholt has been the chair of this interna-
tional organization (headquarted in California) since 2011

• COST Action: Jean-Marc Menaud is a management committee member of the European COST
Action IC0804: Energy efficiency in large scale distributed systems from 2009 to 2013.

• Grid’5000 Winter School. A. Lèbre has been the general chair of the 5th edition of the Grid’5000
winter school organized by EMN, the LINA laboratory and Inria in Nantes, December 3-6 2012 (70
attendees). https://www.grid5000.fr/mediawiki/index.php/Grid5000:School2012.

• OW2: Jean-Marc Menaud has been a member of the OW2 board committee since 2010.

9.1.1.2. National

• COMIN Labs laboratory of Excellence: Jean-Marc Menaud has been the co-coordinator of the
focus on Energy and resource efficiency in ICT since Jun. 2011. Mario Südholt has been co-
coordinating the Security focus of COMIN Labs.

• Enterprise Information Systems in the Cloud. M. Südholt has been part of the organization
committee of this event organized by the Images&Networking competitivity cluster in Sep, 2012.
He has also given an invited lecture there on the foundations of the Cloud.

• Eco-conception of software. J.-M. Menaud co-organized the first event on Eco-conception des
logiciels in Nantes, and an event on Efficacité énergétique : comment monitorer et quels sont les
impacts sur les applications ? in Lyons.

• Software Product Line series of events. J.-C. Royer started a steering committee for the Journée
lignes de produits logiciels, which took place in Lille, November 6, http://www.jldp.org/2012

9.1.2. Committee participations, reviewing activities, collective duties, etc.
• P. Cointe: He is the head of the LINA computer science laboratory (UMR 6241)http://www.lina.

univ-nantes.fr/. As such he was involved in the CominLabs (labex) proposal.

He is a member of the board of the Doctoral School MATISSE in Rennes as well as the selection and
evaluation committee and the board of the cluster Images & Réseaux. He is the chair of the STIC-
MATHS committee working for the Pays de la Loire Council (CCRRDT) and the PRES L’UNAM.

https://www.grid5000.fr/mediawiki/index.php/Grid5000:School2012
http://www.jldp.org/2012
http://www.lina.univ-nantes.fr/
http://www.lina.univ-nantes.fr/

Project-Team ASCOLA 19

• A. Lèbre has been the program chair of the 6th international workshop on “Virtualization Technolo-
gies in Distributed Computing” (VTDC 2012) co-located with HPDC 2012 in Delft, the Netherlands.
He also was a member of the program committee of the IEEE International Conference on Cloud
and Green Computing (CGC 2012). He also took part to several reviewing processes for the IEEE
Transactions on Parallel and Distributed Systems Journal, the Concurrency and Computation: Prac-
tice and Experience Journal, the French journal Technique des Sciences Informatiques and has been
involved as external reviewers for the ISPA, the ICPADS and the Europar conferences.

• T. Ledoux was a member of the program committees of the following conferences: 3rd International
Workshop on Green and Cloud Management (GCM’12), 11th International Workshop on Adaptive
and Reflective Middleware (ARM’12), Second International Conference on ICT as Key Technology
against Global Warming (ICT- GLOW’12), 28th Symposium On Applied Computing (SAC’13) -
track Software Engineering Aspects of Green Computing.

He is a member of the board of the Regional Doctoral School STIM. He is a member of the board of
the Follow-up committee of the PhD theses at LINA.

• J.-M. Menaud has served on the program committee of the 7th Workshop on Virtualization in
High-Performance Cloud Computing (VHPC’12), the first International Workshop on Cloud and
Grid Interoperability (Cloud&Grid 2012), the IEEE/ACM Inter. Conference on Green Computing
and Communications (GreenCom2012), the Eighth Advanced International Conference on Telecom-
munications (AICT 2012), the Second International Conference on Smart Grids, Green Communi-
cations and IT Energy-aware Technologies (ENERGY 2012), the first International Conference on
Smart Grids and Green IT Systems (SMARTGREENS 2012), the second International Conference
on ICT as Key Technology against Global Warming (ICT-GLoW 2012), the first Workshop on Col-
laborative and Autonomic Green computing (CAGing 2012) and the French Conference NOuvelles
Technologies de la REpartition (NOTERE’12). He was a reviewer for the International Journal of
Computer and Telecommunications Networking (COMNET), the International Journal of the Elec-
tronics and Telecommunications Research Institute, and the International Journal on Transactions on
Parallel and Distributed Systems.

J.-M. Menaud is a management committee member of the european COST Action IC0804 : Energy
efficiency in large scale distributed systems since 2009, the co-animator of the focus Energy and
resource efficiency in ICT, in the Labex COMIN Labs since June 2011, the animator of the
CNRS/GDR ASR System group since June 2009, member of the OW2 board committee from 2010
and a member of the (RenPar/CFSE/Sympa) steering committee since 2008.

• J. Noyé co-organized the 7th international workshop on “Domain-Specific Aspect Languages”
(DSAL 2012) co-located with AOSD 2012 in Potsdam, Germany.

• J-C. Royer: He is a member of the editorial board of the journal TSI. He was a member of the
program committee of CAL 2012 and CIEL 2012 and did reviews for the SPLC conference, and the
RNTI and SoSym journals.

• M. Südholt is the chair of the international associtation of AOSD. He is a member of the steering
committees of the international conferences AOSD and Software composition. He is also a member
of the editorial board of the international journal “Transactions of AOSD”, which is published by
Springer Verlag.

He was a member of the program committes of the international conferences GPCE’12 and
AOSD’12 as well as of 2 international and 2 national workshops.

He is a member of the council of the Laboratoire Informatique de Nantes Atlantique (LINA, UMR
6241). He also serves on the selection and evaluation committee of the competitiveness cluster
Images & Réseaux. Finally, he is a member of the governing board of AOSD-Europe, the European
Network of Excellence in AOSD.

9.2. Teaching - Supervision - Juries

20 Activity Report INRIA 2012

9.2.1. Teaching
The team is involved in the following undergraduate and graduate-level programs at EMN (the institution all
of eaching staff belongs to):

• The team is a main contributor to the engineering program of EMN.

• Within this engineering program, the team is steering, chairing and the main contributor to a final-
year graduate-level informatics specialization.

• Since 2009 our team has defined and set up a new three-year engineering program on software
engineering

The team has also been involved involved in the following three MSc programs that have been carried out with
partners from French and foreign universities:

• The team participates in the MSc program “Alma” on software architecture and distributed
systems, a joint program steered by colleagues from University of Nantes. In this context, we are
responsible for a 48-hour module on advanced software composition and take part in the program’s
governing board.

• Members of the team have taught different courses at different study levels in Rennes mainly
organized by University of Rennes and the research institutes IRISA and Inria.

m members have taught each for about 190 hours on average in 2012 (hours of presence in front of students).
Hereby, we have taken into account that researchers and some professors have not taught at times and that part
of the program is taught by temporary staff.

9.2.2. Supervision
The team has been supervising 16 PhD thesis in 2012, of which four have been co-supervised with external
partners (three with foreign partners from U. Chile; TU Darmstadt, Germany; Lancaster U., U.K.) and one
with the French TASC team from EMNantes.

One PhD has been defended in Sep. 2012, Remy Pottiers thesis on “Approche langage pour l’administration
d’infrastructures virtualisées”.

Two members of the team have started preparing an HDR in 2012 for defense in 2013.

9.2.3. Juries
• A. Lèbre was member of the PhD committee of Sheheryar Malik (University of Nice).

• J.-M. Menaud was a reviewer of the PhD of Sheheryar Malik, Nice University, and member of the
PhD committees of Xavier Etchevers, Grenoble University, and Eugen Feller, Rennes University.

• J-C. Royer was a reviewer of the PhD of Alfred Sanogo, Université Paris Nord, and a member of
the PhD committees of Rémy Pottier, EMN, and Takoua Ben-Rouhma, Université Paris Sud.

• M. Südholt was a reviewer of the PhD of Arjan De Roo, university of Twente, the Netherlands.

10. Bibliography
Major publications by the team in recent years

[1] F. ALVARES DE OLIVEIRA JR., R. SHARROCK, T. LEDOUX. Synchronization of Multiple Autonomic Control
Loops: Application to Cloud Computing, in "COORDINATION - International Conference on Coordination
Models and Languages - 2012", Stockholm, Sweden, March 2012, http://hal.inria.fr/hal-00682914.

[2] B. DE FRAINE, E. ERNST, M. SÜDHOLT. Essential AOP: The A Calculus, in "ACM Transactions on
Programming Languages and Systems (TOPLAS)", December 2012, http://hal.inria.fr/hal-00676082.

http://hal.inria.fr/hal-00682914
http://hal.inria.fr/hal-00676082

Project-Team ASCOLA 21

[3] F. HERMENIER, X. LORCA, J.-M. MENAUD, G. MULLER, J. LAWALL. Entropy: a Consolidation Manager for
Clusters, in "The ACM SIGPLAN/SIGOPS Int. Conference on Virtual Execution Environments (VEE’09)",
March 2009.

[4] G. JABER, N. TABAREAU, M. SOZEAU. Extending Type Theory with Forcing, in "LICS 2012 : Logic In
Computer Science", Dubrovnik, Croatia, June 2012, http://hal.inria.fr/hal-00685150.

[5] M. LÉGER, T. LEDOUX, T. COUPAYE. Reliable Dynamic Reconfiguration in a Reflective Component Model,
in "Proc. of the 13th Int. Symposium on Component Based Software Engineering (CBSE’10)", Tchèque,
République, Lecture Notes in Computer Science, Springer-Verlag, June 2010, p. 74-92.

[6] F. QUESNEL, A. LÈBRE, M. SÜDHOLT. Cooperative and Reactive Scheduling in Large-Scale Virtualized
Platforms with DVMS, in "Concurrency and Computation: Practice and Experience", December 2012, http://
hal.inria.fr/hal-00675315.

[7] P. RITEAU, A. LÈBRE, C. MORIN. Handling Persistent States in Process Checkpoint/Restart Mechanisms
for HPC Systems, in "Proceedings of the 9th IEEE International Symposium on Cluster Computing and Grid
(CCGRID 2009)", Shangai, China, IEEE Computer Society Press, 2009.

[8] N. TABAREAU. A theory of distributed aspects, in "9th International Conference on Aspect-Oriented Software
Development (AOSD ’10)", France Rennes, Saint-Malo, ACM, 2010, p. 133–144, http://dx.doi.org/10.1145/
1739230.1739246.

[9] É. TANTER, J. FABRY, R. DOUENCE, J. NOYÉ, M. SÜDHOLT. Scoping strategies for distributed aspects, in
"Science of Computer Programming", July 2010, http://dx.doi.org/10.1016/j.scico.2010.06.011.

[10] R. TOLEDO, A. NÚÑEZ, É. TANTER, J. NOYÉ. Aspectizing Java Access Control, in "IEEE Transactions on
Software Engineering", January 2011, http://hal.inria.fr/inria-00567489/en.

Publications of the year
Articles in International Peer-Reviewed Journals

[11] F. ALVARES DE OLIVEIRA JR., T. LEDOUX. Self-management of cloud applications and infrastructure for
energy optimization, in "SIGOPS Operating Systems Review", 2012, vol. 46, no 2, http://hal.inria.fr/hal-
00710695.

[12] B. DE FRAINE, E. ERNST, M. SÜDHOLT. Essential AOP: The A Calculus, in "ACM Transactions on
Programming Languages and Systems (TOPLAS)", December 2012, http://hal.inria.fr/hal-00676082.

[13] F. QUESNEL, A. LÈBRE, M. SÜDHOLT. Cooperative and Reactive Scheduling in Large-Scale Virtualized
Platforms with DVMS, in "Concurrency and Computation: Practice and Experience", December 2012, http://
hal.inria.fr/hal-00675315.

International Conferences with Proceedings

[14] D. ALLAM. A unified formal model for service oriented architecture to enforce security contracts, in "Proceed-
ings of the 11th annual international conference on Aspect-oriented Software Development Companion", New
York, NY, USA, AOSD Companion ’12, ACM, 2012, p. 9–10, http://doi.acm.org/10.1145/2162110.2162120.

http://hal.inria.fr/hal-00685150
http://hal.inria.fr/hal-00675315
http://hal.inria.fr/hal-00675315
http://dx.doi.org/10.1145/1739230.1739246
http://dx.doi.org/10.1145/1739230.1739246
http://dx.doi.org/10.1016/j.scico.2010.06.011
http://hal.inria.fr/inria-00567489/en
http://hal.inria.fr/hal-00710695
http://hal.inria.fr/hal-00710695
http://hal.inria.fr/hal-00676082
http://hal.inria.fr/hal-00675315
http://hal.inria.fr/hal-00675315
http://doi.acm.org/10.1145/2162110.2162120

22 Activity Report INRIA 2012

[15] D. ALLAM, R. DOUENCE, H. GRALL, J.-C. ROYER, M. SÜDHOLT. A Message-Passing Model for Service
Oriented Computing, in "WEBIST, 8th International Conference on Web Information Systems and Technolo-
gies", Porto, Portugal, K.-H. KREMPELS, J. CORDEIRO (editors), SciTePress Digital Library, April 2012,
http://hal.inria.fr/hal-00668975.

[16] F. ALVARES DE OLIVEIRA JR., R. SHARROCK, T. LEDOUX. Synchronization of Multiple Autonomic Control
Loops: Application to Cloud Computing, in "COORDINATION - International Conference on Coordination
Models and Languages - 2012", Stockholm, Sweden, March 2012, http://hal.inria.fr/hal-00682914.

[17] O. CHEBARO, M. DELAHAYE, N. KOSMATOV. Testing Inexecutable Conditions on Input Pointers in C
Programs with SANTE, in "24th International Conference on Software & Systems Engineering and their
Applications (ICSSEA 2012)", Paris, France, October 2012, 7, http://icssea.enst.fr/icssea12/, http://hal.inria.
fr/hal-00724508.

[18] O. CHEBARO, N. KOSMATOV, N. WILLIAMS, B. BOTELLA, M. ROGER. A lesson on structural testing with
PathCrawler-online.com, in "6th International Conference on Tests & Proofs", Prague, Czech Republic, June
2012, 6 pages, http://hal.inria.fr/hal-00685504.

[19] J. COHEN, R. DOUENCE, A. AJOULI. Invertible Program Restructurings for Continuing Modular Mainte-
nance, in "16th European Conference on Software Maintenance and Reengineering (CSMR 2012)", Szeged,
Hungary, R. F. TOM MENS (editor), IEEE, March 2012, p. 347–352, 6 pages, Early Research Achievements
Track [DOI : 10.1109/CSMR.2012.42], http://hal.inria.fr/hal-00662777.

[20] T. DINKELAKER, J. FABRY, J. NOYÉ. Proceedings of the seventh workshop on Domain-Specific Aspect
Languages (DSAL 2012), in "AOSD - Aspect-Oriented Software Development - 2012", Potsdam, Germany,
A. PRESS (editor), March 2012, http://hal.inria.fr/hal-00726770.

[21] I. FIGUEROA, É. TANTER, N. TABAREAU. A Practical Monadic Aspect Weaver, in "Foundations of Aspect-
Oriented Languages", Potsdam, Germany, March 2012, http://hal.inria.fr/hal-00690717.

[22] G. JABER, N. TABAREAU, M. SOZEAU. Extending Type Theory with Forcing, in "LICS 2012 : Logic In
Computer Science", Dubrovnik, Croatia, June 2012, http://hal.inria.fr/hal-00685150.

[23] Y. KOUKI, T. LEDOUX. CSLA : a Language for Improving Cloud SLA Management, in "International
Conference on Cloud Computing and Services Science, CLOSER 2012.", Porto, Portugal, April 2012, http://
hal.inria.fr/hal-00675077.

[24] Y. KOUKI, T. LEDOUX. SLA-driven Capacity Planning for Cloud applications, in "IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2012)", Taipei, Taiwan, Province Of
China, December 2012, http://hal.inria.fr/hal-00734417.

[25] J.-M. MENAUD, R. POTTIER. btrScript : a safe management system for virtualized data center, in "The 8th
International Conference on Autonomic and Autonomous Systems (ICAS 2012)", XPS, March 2012, http://
hal.inria.fr/hal-00656091.

[26] N. TABAREAU. A Monadic Interpretation of Execution Levels and Exceptions for AOP, in "Modularity:
AOSD’12", Postdam, Germany, ACM Press, March 2012, http://hal.inria.fr/inria-00592132.

http://hal.inria.fr/hal-00668975
http://hal.inria.fr/hal-00682914
http://icssea.enst.fr/icssea12/
http://hal.inria.fr/hal-00724508
http://hal.inria.fr/hal-00724508
http://hal.inria.fr/hal-00685504
http://hal.inria.fr/hal-00662777
http://hal.inria.fr/hal-00726770
http://hal.inria.fr/hal-00690717
http://hal.inria.fr/hal-00685150
http://hal.inria.fr/hal-00675077
http://hal.inria.fr/hal-00675077
http://hal.inria.fr/hal-00734417
http://hal.inria.fr/hal-00656091
http://hal.inria.fr/hal-00656091
http://hal.inria.fr/inria-00592132

Project-Team ASCOLA 23

[27] É. TANTER, N. TABAREAU, R. DOUENCE. Taming Aspects with Membranes, in "Foundations of Aspect-
Oriented Languages", Potsdam, Germany, March 2012, http://hal.inria.fr/hal-00690706.

[28] J. M. VAN HAM. Adding high-level concurrency to EScala, in "Proceedings of the 11th annual international
conference on Aspect-oriented Software Development Companion", New York, NY, USA, AOSD Companion
’12, ACM, 2012, p. 19–20, http://doi.acm.org/10.1145/2162110.2162125.

National Conferences with Proceeding

[29] A. AJOULI. An Automatic Reversible Transformation from Composite to Visitor in Java, in "CIEL 2012",
P. Collet, P. Merle (eds.); Conférence en IngénieriE du Logiciel (CIEL), June 2012, http://hal.inria.fr/hal-
00733182.

[30] J. NOYÉ. E{Java, CaesarJ, Scala} : un exercice d’intégration de la programmation par objets, par aspects
et par évènements, in "Quatrièmes journées nationales du GDR GPL", Rennes, France, L. DUCHIEN, O.
BARAIS (editors), June 2012, p. 85-86, http://hal.inria.fr/hal-00726618.

Scientific Books (or Scientific Book chapters)

[31] F. ALVARES DE OLIVEIRA JR., A. LÈBRE, T. LEDOUX, J.-M. MENAUD. Self-management of applications
and systems to optimize energy in data centers, in "Achieving Federated and Self-Manageable Cloud Infras-
tructures: Theory and Practice", I. BRANDIC, M. VILLARI, F. TUSA (editors), IGI Global, February 2012,
http://hal.inria.fr/hal-00670033.

[32] H. ARBOLEDA, J.-C. ROYER. Model-Driven and Software Product Line Engineering, ISTE LTd and John
Wiley & Sons, Inc., August 2012, 288, http://hal.inria.fr/hal-00734143.

Research Reports

[33] D. ALLAM, R. DOUENCE, H. GRALL, J.-C. ROYER, M. SÜDHOLT. Well-Typed Services Cannot Go Wrong,
Inria, May 2012, no RR-7899, http://hal.inria.fr/hal-00700570.

[34] D. BALOUEK, A. CARPEN AMARIE, G. CHARRIER, F. DESPREZ, E. JEANNOT, E. JEANVOINE, A. LÈBRE,
D. MARGERY, N. NICLAUSSE, L. NUSSBAUM, O. RICHARD, C. PÉREZ, F. QUESNEL, C. ROHR, L.
SARZYNIEC. Adding Virtualization Capabilities to Grid’5000, Inria, July 2012, no RR-8026, 18, http://hal.
inria.fr/hal-00720910.

[35] G. CHABERT, R. DOUENCE. From Implicit to Explicit Pavings, Inria, July 2012, no RR-8028, http://hal.inria.
fr/hal-00720739.

Other Publications

[36] H. GRALL, M. LACOUTURE. Criojo: A Pivot Language for Service-Oriented Computing - The Introspective
Chemical Abstract Machine, 2012, Internal report, http://hal.inria.fr/hal-00676083.

References in notes

[37] M. AKŞIT, S. CLARKE, T. ELRAD, R. E. FILMAN (editors). Aspect-Oriented Software Development,
Addison-Wesley Professional, September 2004.

http://hal.inria.fr/hal-00690706
http://doi.acm.org/10.1145/2162110.2162125
http://hal.inria.fr/hal-00733182
http://hal.inria.fr/hal-00733182
http://hal.inria.fr/hal-00726618
http://hal.inria.fr/hal-00670033
http://hal.inria.fr/hal-00734143
http://hal.inria.fr/hal-00700570
http://hal.inria.fr/hal-00720910
http://hal.inria.fr/hal-00720910
http://hal.inria.fr/hal-00720739
http://hal.inria.fr/hal-00720739
http://hal.inria.fr/hal-00676083

24 Activity Report INRIA 2012

[38] C. ALLAN, P. AVGUSTINOV, A. S. CHRISTENSEN, L. HENDREN, S. KUZINS, O. LHOTÁK, O. DE MOOR,
D. SERENI, G. SITTAMPALAM, J. TIBBLE. Adding trace matching with free variables to AspectJ, in "ACM
Conference on Object-Oriented Programming, Systems and Languages (OOPSLA)", R. P. GABRIEL (editor),
ACM Press, 2005.

[39] R. ALLEN, D. GARLAN. A Formal Basis for Architectural Connection, in "ACM Transactions on Software
Engineering and Methodology", July 1997, vol. 6, no 3, p. 213–49.

[40] J. H. ANDREWS. Process-Algebraic Foundations of Aspect-Oriented Programming, in "Proceedings of the
3rd International Conference on Metalevel Architectures and Separation of Crosscutting Concerns", Lecture
Notes in Computer Science, 2001, vol. 2192, p. 187–209.

[41] L. D. BENAVIDES NAVARRO, M. SÜDHOLT, W. VANDERPERREN, B. DE FRAINE, D. SUVÉE. Explicitly
distributed AOP using AWED, in "Aspect-Oriented Software Development (AOSD)", ACM Press, March
2006, p. 51-62.

[42] G. S. BLAIR, G. COULSON, P. ROBIN, M. PAPATHOMAS. An architecture for next generation middleware,
in "Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing", Springer-Verlag, 1998.

[43] A. BRACCIALIA, A. BROGI, C. CANAL. A formal approach to component adaptation, in "Journal of Systems
and Software", 2005.

[44] E. M. CLARKE, O. GRUMBERG, D. A. PELED. Model Checking, The MIT Press, Cambridge, Massachusetts,
1999.

[45] J. COHEN, A. AJOULI. Practical use of static composition of refactoring operations, in "ACM Symposium
On Applied Computing", Portugal, March 2013, 6, http://hal.archives-ouvertes.fr/hal-00751304.

[46] M. COLE. Algorithmic Skeletons: Structured Management of Parallel Computation, MIT Press, 1989.

[47] A. COLYER, A. CLEMENT. Large-scale AOSD for Middleware, in "Proceedings of the 3rd ACM Int. Conf. on
Aspect-Oriented Software Development (AOSD), Lancaster", K. LIEBERHERR (editor), ACM Press, 2004,
p. 56–65.

[48] F. DEREMER, H. H. KRON. Programming-in-the-large versus programming-in-the-small, in "IEEE Transac-
tions on Software Engineering", 1976, vol. SE-2, no 2, p. 80-86.

[49] G. DECKER, O. KOPP, F. LEYMANN, M. WESKE. BPEL4Chor: Extending BPEL for Modeling Choreogra-
phies, in "IEEE International Conference on Web Services (ICWS 2007)", IEEE Computer Society, 2007, p.
296–303.

[50] E. W. DIJKSTRA. On the role of scientific thought, in "Selected Writings on Computing: A Personal
Perspective", Springer-Verlag, 1974, p. 60–66, Published in 1982.

[51] R. DOUENCE, P. FRADET, M. SÜDHOLT. A framework for the detection and resolution of aspect interactions,
in "Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component

http://hal.archives-ouvertes.fr/hal-00751304

Project-Team ASCOLA 25

Engineering (GPCE’02)", Lecture Notes in Computer Science, Springer-Verlag, October 2002, vol. 2487, p.
173–188, http://hal.inria.fr/inria-00072153.

[52] R. DOUENCE, P. FRADET, M. SÜDHOLT. Trace-Based Aspects, in "Aspect-Oriented Software Development",
M. AKŞIT, S. CLARKE, T. ELRAD, R. E. FILMAN (editors), Addison-Wesley, 2004, p. 201-218.

[53] R. DOUENCE, O. MOTELET, M. SÜDHOLT. A formal definition of crosscuts, in "Proceedings of the 3rd
International Conference on Metalevel Architectures and Separation of Crosscutting Concerns", Lecture Notes
in Computer Science, Springer-Verlag, 2001, vol. 2192, p. 170–186.

[54] R. DOUENCE, D. LE BOTLAN, J. NOYÉ, M. SÜDHOLT. Concurrent Aspects, in "Proc. of the Int. ACM Conf.
on Generative Programming and Component Engineering (GPCE)", ACM Press, October 2006, p. 79-88.

[55] P. T. EUGSTER, P. A. FELBER, R. GUERRAOUI, A.-M. KERMARREC. The many faces of publish/subscribe,
in "ACM Computing Surveys", June 2003, vol. 35, no 2, p. 114–131, http://doi.acm.org/10.1145/857076.
857078.

[56] H. FOSTER, S. UCHITEL, J. MAGEE, J. KRAMER. Model-based Verification of Web Service Compositions,
in "Proceedings of the 18th IEEE Int. Conf. on Automated Software Engineering (ASE’03)", IEEE Computer
Society, 2003, p. 152–163.

[57] A. FUGGETTA, G. P. PICCO, G. VIGNA. Understanding Code Mobility, in "IEEE Transactions on Software
Engineering", May 1998, vol. 24, no 5, p. 342–361.

[58] E. GAMMA, R. HELM, R. JOHNSON, J. VLISSIDES. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, Massachusetts, 1994.

[59] K. HONDA, N. YOSHIDA, M. CARBONE. Multiparty asynchronous session types, in "Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008", G. C. NECULA, P. WADLER (editors), ACM, 2008, p. 273–284, http://
www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdf, http://doi.acm.org/10.1145/1328438.1328472.

[60] G. KICZALES, E. HILSDALE, J. HUGUNIN, M. KERSTEN, J. PALM, W. G. GRISWOLD. An Overview of
AspectJ, in "ECOOP 2001 — Object-Oriented Programming 15th European Conference, Budapest Hungary",
Berlin, J. L. KNUDSEN (editor), Lecture Notes in Computer Science, Springer-Verlag, Berlin, June 2001, vol.
2072, p. 327–353, http://www.eclipse.org/aspectj/.

[61] G. KICZALES. Aspect Oriented Programming, in "Proc. of the Int. Workshop on Composability Issues in
Object-Orientation (CIOO’96) at ECOOP", July 1996, Selected paper published by dpunkt press, Heidelberg,
Germany.

[62] G. KICZALES, J. DES RIVIERES, DANIEL G. BOBROW. The Art of the Meta-Object Protocol, MIT Press,
Cambridge (MA), USA, 1991.

[63] J. KIENZLE, R. GUERRAOUI. AOP - Does It Make Sense? The Case of Concurrency and Failures, in "16th
European Conference on Object-Oriented Programming (ECOOP’2002)", Malaga, Spain, B. MAGNUSSON
(editor), Lecture Notes in Computer Science, Springer-Verlag, 2002.

http://hal.inria.fr/inria-00072153
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdf
http://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdf
http://doi.acm.org/10.1145/1328438.1328472
http://www.eclipse.org/aspectj/

26 Activity Report INRIA 2012

[64] T. LEDOUX. OpenCorba: a Reflective Open Broker, in "ACM Meta-Level Architectures and Reflection,
Second International Conference, Reflection’99", Saint-Malo, France, P. COINTE (editor), Lecture Notes in
Computer Science, Springer-Verlag, July 1999, vol. 1616, p. 197–214.

[65] X. LEROY. Manifest types, modules, and separate compilation, in "Manifest types, modules, and separate
compilation", Portland, Oregon, USA, ACM Press, January 1994, p. 109-121.

[66] A. LÈBRE, P. ANEDDA, M. GAGGERO, F. QUESNEL. DISCOVERY, Beyond the Clouds - DIStributed and
COoperative framework to manage Virtual EnviRonments autonomicallY: a prospective study, in "Virtualiza-
tion for High Performance Cloud Computing workshop (colocated with EUROPAR 2011)", Bordeaux, France,
August 2011, http://hal.inria.fr/hal-00645912/en.

[67] M. MCILROY. Mass produced software components, in "Mass produced software components", Garmish,
Germany, P. NAUR, B. RANDELL (editors), NATO Science Committee, October 1968, p. 138-155.

[68] N. MEDVIDOVIC, R. N. TAYLOR. A Classification and Comparison Framework for Software Architecture
Description Languages, in "IEEE Transactions on Software Engineering", January 2000, vol. 26, no 1, p.
70-93.

[69] N. R. MEHTA, N. MEDVIDOVIC, S. PHADKE. Towards a Taxonomy of Software Connectors, in "Proceedings
of ICSE", Limerick, Ireland, jun 2000, p. 178–187.

[70] M. MERNIK, J. HEERING, A. M. SLOANE. When and How to Develop Domain-Specific Languages, in "ACM
Computing Surveys", December 2005, vol. 37, no 4, p. 316-344.

[71] L. MIKHAJLOV, E. SEKERINSKI. A study of the fragile base class, in "A study of the fragile base class",
Brussels, Belgium, E. JUL (editor), Lecture Notes in Computer Science, July 1998, vol. 1445, p. 355-382.

[72] R. T. MONROE, A. KOMPANEK, R. MELTON, D. GARLAN. Architectural Styles, Design Patterns, and
Objects, in "IEEE Software", January 1997, vol. 14, no 1, p. 43-52.

[73] D. H. NGUYEN, M. SÜDHOLT. VPA-based aspects: better support for AOP over protocols, in "4th IEEE
International Conference on Software Engineering and Formal Methods (SEFM’06)", IEEE Computer Society
Press, September 2006.

[74] O. NIERSTRASZ. Regular Types for Active Objects, in "Object-Oriented Software Composition", O. NIER-
STRASZ, D. TSICHRITZIS (editors), Prentice Hall, 1995, chap. 4, p. 99–121.

[75] M. NISHIZAWA, S. CHIBA, M. TATSUBORI. Remote Pointcut - A Language Construct for Distributed AOP,
in "Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented Software Development (AOSD), Lancaster",
ACM Press, 2004.

[76] D. L. PARNAS. On the criteria for decomposing systems into modules, in "Communications of the ACM",
December 1972, vol. 15, no 12, p. 1053-1058.

[77] F. PLASIL, S. VISNOVSKY. Behavior Protocols for Software Components, in "Transactions on Software
Engineering", January 2002, vol. 28, no 9.

http://hal.inria.fr/hal-00645912/en

Project-Team ASCOLA 27

[78] F. PUNTIGAM. Coordination Requirements Expressed in Types for Active Objects, in "ECOOP’97—Object-
Oriented Programming", M. AKŞIT, S. MATSUOKA (editors), Lecture Notes in Computer Science, Springer-
Verlag, 1997, vol. 1241, p. 367–388.

[79] M. SHAW, D. GARLAN. Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

[80] B. C. SMITH. Reflection and Semantics in LISP, Xerox Palto Alto Research Center, Palo Alto, 1984, no

P84-00030.

[81] S. SOARES, E. LAUREANO, P. BORBA. Implementing distribution and persistence aspects with AspectJ
, in "Proceedings of the 17th ACM conference on Object-oriented programming, systems, languages, and
applications (OOPSLA-02)", C. NORRIS, J. J. B. FENWICK (editors), ACM SIGPLAN Notices, ACM Press,
November 4–8 2002, vol. 37, 11, p. 174–190.

[82] R. J. WALKER, K. VIGGERS. Implementing Protocols via Declarative Event Patterns, in "Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-12)", ACM Press,
2004, p. 159 - 169.

[83] M. WAND, G. KICZALES, C. DUTCHYN. A Semantics for Advice and Dynamic Join Points in Aspect-Oriented
Programming, in "ACM Transactions on Programming Languages and Systems (TOPLAS)", 2004, vol. 26,
no 5, p. 890–910.

[84] D. M. YELLIN, R. E. STROM. Protocol specifications and component adaptors, in "ACM Transactions of
Programming Languages and Systems", March 1997, vol. 19, no 2, p. 292–333.

[85] A. VAN DEURSEN, P. KLINT, J. VISSER. Domain-Specific Languages: An Annotated Bibliography, in "ACM
SIGPLAN Notices", June 2000, vol. 35, no 6, p. 26-36.

