
IN PARTNERSHIP WITH:
CNRS

Université de Strasbourg

Activity Report 2012

Team CAMUS

Compilation pour les Architectures
MUlti-coeurS

IN COLLABORATION WITH: Laboratoire des sciences de l’image,de l’informatique et de la télédétection (L.S.I.I.T)

RESEARCH CENTER
Nancy - Grand Est

THEME
Architecture and Compiling

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Overall Objectives 1
2.2. Highlights of the Year 2

3. Scientific Foundations .2
3.1. Research directions 2
3.2. Static parallelization and optimization 3

3.2.1. State of the art 3
3.2.2. Adapting parallelization to multicore architecture 4
3.2.3. Expressing many potential parallelisms 4

3.3. Profiling and execution behavior modeling 5
3.3.1. Selective profiling and interaction with the compiler 5
3.3.2. Profiling and dynamic optimization 6
3.3.3. Run time program modeling 6

3.4. Dynamic parallelization and optimization, virtual machine 7
3.4.1. State of the art 7
3.4.2. General objective: building a virtual machine 9
3.4.3. Adaptation of the intermediate code to the target architecture 9
3.4.4. High level parallelization and native code creation 10
3.4.5. Low level parallelization 10
3.4.6. Distribution, execution and profiling 10
3.4.7. Re-parallelization, thread mutation or rollback 11

3.5. Proof of program transformations for multicores 11
3.5.1. State of the art 11

3.5.1.1. Certification of low-level codes. 11
3.5.1.2. Certification of a compiler. 11
3.5.1.3. Semantics of directives. 12
3.5.1.4. Definition of a parallel programming model. 12
3.5.1.5. Programming models for multicore architectures. 12
3.5.1.6. Refinement of programs. 13

3.5.2. Main objective: formal proof of analyses and transformations 13
3.5.3. Proof of transformations in the polyhedral model 13
3.5.4. Validation under hypothesis 13
3.5.5. Rejecting incorrect parallelizations 14

4. Application Domains .14
5. Software . 14

5.1. PolyLib 14
5.2. ZPolyTrans 15
5.3. NLR 15
5.4. Binary files decompiler 15
5.5. Parwiz: a dynamic dependency analyser 16
5.6. VMAD software and LLVM 16
5.7. Polyhedral prover 17

6. New Results . 17
6.1. VMAD 17
6.2. The Multifor programming construct 17
6.3. Parwiz: dynamic data dependence analysis 18
6.4. Modeling the behavior of parallel traces 19
6.5. Certified polyhedral transformations into more and more concrete languages 19

2 Activity Report INRIA 2012

7. Partnerships and Cooperations . 20
7.1. National Initiatives 21
7.2. International Initiatives 21

7.2.1. Inria Associate Teams 21
7.2.2. Participation In International Programs 21

7.3. International Research Visitors 21
7.3.1. Visits of International Scientists 21
7.3.2. Visits to International Teams 22

8. Dissemination . 22
8.1. Scientific Animation 22
8.2. Teaching - Supervision - Juries 22

8.2.1. Teaching 22
8.2.2. Supervision 23
8.2.3. Juries 23

9. Bibliography .24

Team CAMUS

Keywords: Compiling, Embedded Systems, Hardware Accelerators, Proofs Of Programs, For-
mal Methods, Processors

University of Strasbourg, Pôle API, Illkirch.

Creation of the Team: July 01, 2009 .

1. Members
Faculty Members

Philippe Clauss [Team leader, Professor, Université de Strasbourg, HdR]
Éric Violard [Associate Professor, Université de Strasbourg, HdR]
Vincent Loechner [Associate Professor, Université de Strasbourg]
Alain Ketterlin [Associate Professor, Université de Strasbourg]
Julien Narboux [Associate Professor, Université de Strasbourg]
Nicolas Magaud [Associate Professor, Université de Strasbourg]

External Collaborators
Alexandra Jimborean [Uppsala University, Sweden]
Yosr Slama [Université El Manar, Tunis, Tunisia]
Matthieu Kuhn [Université de Strasbourg]
Stéphane Genaud [Université de Strasbourg]

PhD Students
Alexandra Jimborean [Université de Strasbourg]
Jean-François Dollinger [Université de Strasbourg]
Aravind Sukumaran-Rajam [Université de Strasbourg]
Imèn Fassi [Université El Manar, Tunis, Tunisia]

2. Overall Objectives

2.1. Overall Objectives
The CAMUS team is focusing on developping, adapting and extending automatic parallelizing and optimizing
techniques, as well as proof and certification methods, for the efficient use of current and future multicore
processors.

The team’s research activities are organized into five main issues that are closely related to reach the following
objectives: performance, correction and productivity. These issues are: static parallelization and optimization
of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms
which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where
expressive representation models of the program execution behavior will be used as engines for dynamic
parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes
running inside a virtual machine), object-oriented programming and compiling for multicores (where object
parallelism, expressed or detected, has to result in efficient runs), and finally program transformations proof
(where the correction of many static and dynamic program transformations has to be ensured).

2 Activity Report INRIA 2012

2.2. Highlights of the Year
• CAMUS takes part of the Laboratory of Excellence (LabEx) IRMIA (Institut de Recherche en

Mathématiques, ses Interactions et Applications) whose proposal has been accepted by the french
government.

• Alexandra Jimborean defended her PhD thesis September the 14th at the University of Strasbourg.
She presented the first version of the dynamic and speculative code parallelizer VMAD (Virtual
Machine for Advanced Dynamic analysis & transformation). Her jury was composed bu Albert
Cohen (reviewer), Senior researcher at Inria, André Seznec (reviewer), Senior researcher at Inria,
John Cavazos (reviewer), Professor at the University of Delaware, USA, François Bodin (examiner),
Professor at the University of Rennes, Jean Christophe Beyler, HPC Software Engineer at Intel
(examiner), Philippe Clauss and Vincent Loechner, advisors.

• Alain Ketterlin and Philippe Clauss published a paper on data dependence profiling at the The 45th
Annual IEEE/ACM International Symposium on Microarchitecture [18].

3. Scientific Foundations

3.1. Research directions
The various objectives we are expecting to reach are directly related to the search of adequacy between the
sofware and the new multicore processors evolution. They also correspond to the main research directions
suggested by Hall, Padua and Pingali in [43]. Performance, correction and productivity must be the users’
perceived effects. They will be the consequences of research works dealing with the following issues:

• Issue 1: Static parallelization and optimization

• Issue 2: Profiling and execution behavior modeling

• Issue 3: Dynamic program parallelization and optimization, virtual machine

• Issue 4: Object-oriented programming and compiling for multicores

• Issue 5: Proof of program transformations for multicores

Efficient and correct applications development for multicore processors needs stepping in every application
development phase, from the initial conception to the final run.

Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transfor-
mation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the
running virtual machine about all the parallelism that can be taken advantage of. However the compiler does
not have much knowledge about the execution environment. It obviously knows the instruction set, it can be
aware of the number of available cores, but it does not know the effective available resources at any time
during the execution (memory, number of free cores, etc.).

That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources
(issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by
the application. Indeed some program information (variables values, accessed memory adresses, etc.) being
available only at runtime, another part of the available parallelism will have to be generated on-the-fly during
the execution, here also, thanks to a dynamic mechanism.

This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such
models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives,
we can add the behavior monitoring, or profiling, of a program version. Indeed current and future architectures
complexity avoids assuming an optimal behavior regarding a given program version. A monitoring process will
allow to select on-the-fly the best parallelization.

These different parallelizing steps are schematized on figure 1.

Team CAMUS 3

Figure 1. Automatic parallelizing steps for multicore architectures

The more and more widespread usage of object-oriented approaches and languages emphasizes the need for
specific multicore programming tools. The object and method formalism implies specific execution schemes
that translate in the final binary by quite distant elementary schemes. Hence the execution behavior control
is far more difficult. Analysis and optimization, either static or dynamic, must take into account from the
outset this distortion between object-oriented specification and final binary code: how can object or method
parallelization be translated (issue 4).

Our project lies on the conception of a production chain for efficient execution of an application on a multicore
architecture. Each link of this chain has to be formally verified in order to ensure correction as well as
efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and
that the virtual machine actually performs the parallel execution semantically equivalent to the source code:
every transformation applied to the application, either statically by the compiler or dynamically by the virtual
machine, must preserve the initial semantics. They must be proved formally (issue 5).

In the following, those different issues are detailed while forming our global and long term vision of what has
to be done.

3.2. Static parallelization and optimization
Participants: Vincent Loechner, Philippe Clauss, Éric Violard, Alexandra Jimborean.

Static optimizations, from source code at compile time, benefit from two decades of research in automatic
parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and
these works are now mature enough to generate efficient parallel code [26]. Low-level optimizations, in the
assembly code generated by the compiler, have also been extensively dealt for single-core and require few
adaptations to support multicore architectures. Concerning multicore specific parallelization, we propose to
explore two research directions to take full advantage of these architectures. They are described below.

3.2.1. State of the art
Upstream, an easy interprocedural dependence analysis allows to handle complete programs (but recursivity:
recursive functions must be transformed into iterative functions). Concerning iterative control we will use the
polyhedral model, a formalism developped these last two decades, which allows to represent the execution of
a loop nest by scanning a polytope.

4 Activity Report INRIA 2012

When compiling an application, if it contains loop nests with affine bounds accessing scalars or arrays accessed
using affine functions, the polyhedral model allows to:

• compute the dependence graph, which describes the order in which the dependent instructions must
be executed [34];

• generate a schedule, which extracts some parallelism from the dependence graph [35], [36];

• generate an allocation, which assigns a processor (or a core) to a set of iterations of the loop nest to
be scanned.

This last allocation step needs a thorough knowledge of the target architecture, as many crucial choices will
result in performance hazards: for example, the volume and flow of inter-processor communications and
synchronization; the data locality and the effects of the TLB (Translation Lookaside Buffer) and the various
cache levels and distributions; or the register allocation optimizations. There are many techniques to control
these parameters, and each architecture needs specific choices, of a valid schedule, of a parallel loop iterations
distribution (bloc-, cyclic-, or tiled), of a loop-unrolling factor, as well as a memory data layout and a prefetch
strategy (when available). They require powerful mathematical tools, such as counting the number of integer
points contained in a parametric polytope.

Our own contributions in this area are significant. Concerning schedule and data placement, we proposed new
advances in minimizing the number of communications for parallel architectures [54] and in cache access
optimizations [53] [8]. We also proposed essential advances in parametric polytope manipulation [9], [5],
developped the first algorithm to count integer points in a parametric polytope as an Ehrhart polynomial [3],
and proposed successive improvements of this algorithm [10] [65]. We implemented these results in the free
software PolyLib, utilized by many researchers around the world.

3.2.2. Adapting parallelization to multicore architecture
The first research direction to be explored is multicore specific efficient optimizations. Indeed, multicore
architectures need specific optimizations, or we will get underlinear accelerations, or even decelerations.
Multicore architectures may have the following properties: specific memory hierarchy, with distributed low-
level cache and (possibly semi-) shared high level caches; software-controlled memory hierarchies (memory
hints, local stores or scratchpads for example); optimized access to contiguous memory addresses or to separate
memory banks; SIMD or vectorial execution in groups of cores, and synchronous execution; higher register
allocation pressure when several threads use the same hardware (as in GPGPUs for example); etc.

A schedule and an allocation must be chosen wisely in order to obtain good performances. On NVIDIA GPG-
PUs, using the CUDA language, Baskaran et al. [25] obtained interesting results that have been implemented
in their PLuTo compiler framework. However, they are based on many empirical and imprecise techniques,
and require simulations to fine-tune the optimizations: they can be improved. Memory hierarchy efficient con-
trol is a cornerstone of tomorrow’s multicore architectures performance. Compiler-optimizers have to evolve
to meet this requirement.

Simulation and (partial-) profiling may however remain necessary in some cases, when static analysis reaches
its intrinsic limits: when the execution of a program depends on dynamic parameters, when it uses complex
pointer arithmetic, or when it performs indirect array accesses for example (as is often the case in while loops,
out of the scope of the classical polyhedral model). In these cases, the compiler should rely on the profiler, and
generate a code that interacts with the dynamic optimizer. This is the link with issues 2 and 3 of this research
project.

3.2.3. Expressing many potential parallelisms
The dynamic optimizer (issue 3) must be able to exploit various parallel codes to compare them and the
best one to choose, possibly swapping from a code to another during execution. The compiler must therefore
generate different potentially efficient versions of a code, depending on fixed parameters such as the schedule
or the data layout, and dynamic parameters such as the tile size or the unrolling factor.

Team CAMUS 5

The compiler then generates many variants of effective parallelism, formally proved by the static analyzer.
It may also generate variants of code that have not been formally validated, due to the analyzer limits, and
that have to be checked during execution by the dynamic optimizer: hypothetical parallelism. Hypothetical
parallelism could be expressed as a piece of code, valid under certain conditions. Effective and hypothetical
parallelisms are called potential parallelism. The variants of potential parallelism will be expressed in an
intermediate language that has to be discovered.

Using compiler directives is an interesting way to define this intermediate language. Among the usual
directives, we distinguish schedule directives for shared memory architectures (such as the OpenMP 1 parallel
directive), and placement directives for distributed memory architectures (for example the HPF2 ALIGN
directive). These two types of directives are conjointly necessary to take full profit of multicore architectures.
However, we have to study their complementarity and solve the interdependence or conflict that may arise
between them. Moreover, new directives should allow to control data transfers between different levels of the
memory hierarchy.

We are convinced that the definition of such a language is required in the next advances in compilation for
multicore architectures, and there does not exist such an ambitious project to our knowledge. The OpenCL
project 3, presented as an general-purpose and efficient multicore programming environment, is too low-level
to be exploitable. We propose to define a new high level language based on compilation directives, that could
be used by the skilled programmer or automatically generated by a compiler-optimizer (like OpenMP, recently
integrated in the gcc compiler suite).

3.3. Profiling and execution behavior modeling
Participants: Alain Ketterlin, Philippe Clauss, Aravind Sukumaran-Rajam.

The increasing complexity of programs and hardware architectures makes it ever harder to characterize be-
forehand a given program’s run time behavior. The sophistication of current compilers and the variety of
transformations they are able to apply cannot hide their intrinsic limitations. As new abstractions like transac-
tional memories appear, the dynamic behavior of a program strongly conditions its observed performance. All
these reasons explain why empirical studies of sequential and parallel program executions have been consid-
ered increasingly relevant. Such studies aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such studies characterize more the compiler than
the program itself. These works are of tremendous importance to highlight all aspects that escape static analy-
sis, even though their results may have a narrow scope, due to the possible incompleteness of their input data
sets.

3.3.1. Selective profiling and interaction with the compiler
In its simplest form, studying a given program’s run time behavior consists in collecting and aggregating
statistics, e.g., counting how many times routines or basic blocks are executed, or counting the number of
cache misses during a certain portion of the execution. In some cases, data can be collected about more
abstract events, like the garbage-collector frequency or the number and sizes of sent and received messages.
Such measures are relatively easy to obtain, are frequently used to quantify the benefits of some optimization,
and may suggest some way to improve performance. These techniques are now well-known, but mostly for
sequential programs.

These global studies have often been complemented by local, targeted techniques focused on some program
portions, e.g., where static techniques remain inconclusive for some fixed duration. These usages of profiling
are usually strongly related to the optimization they complement, and are set up either by the compiler or by the
execution environment. Their results may be used immediately at run time, in which case they are considered
a form of run time optimization [1]. They can also be used offline to provide hints to a subsequent compilation
cycle, in which case they constitute a form of profile-guided compilation, a strategy that is common in general
purpose compilers.

1http://www.openmp.org
2http://hpff.rice.edu
3http://www.khronos.org/opencl

http://www.openmp.org
http://hpff.rice.edu
http://www.khronos.org/opencl

6 Activity Report INRIA 2012

For instance, in the context where a set of possible parallelizations have been provided by the compiler (see
issue 1), a profiling component can easily be made responsible for testing some relevant condition at run time
(e.g., that depends on input data) and for selecting the best between various versions of the code. Beyond
such simple tasks, we expect that profiling will, at the beginning of the execution, have enough resources
to conduct more elaborate analyzes. We believe that combining an “open” static analysis with an integrated
profiling component is a promising approach, first because it may relieve the programmer of a large part of
the tedious task of implementing the distribution of computations, and second to free the compiler of the
obligation to choose between several optimizations in the absence of enough relevant data. The main open
question here is to define precisely the respective roles of the compiler and the profiler, and also the amount
and nature of information the former can transmit to the latter.

3.3.2. Profiling and dynamic optimization
In the context of dynamic optimization, that is, when the compiler’s abilities have been exhausted, a profiler
can still do useful work, provided some additional capabilities [1]. If it is able to instrument the code the way,
e.g., a PIN-tool does [55], it has access to the whole program, including libraries (or, for example, the code of
a low-level library called from a scripting language). This means that it has access to portions of the program
that were not under the compiler’s control. The profiler can then perform dynamic inter-procedural analyzes,
for instance to compute dependencies to detect parallelism that wasn’t apparent at compile time because of
a function call in the body of a loop. More generally, if the profiler is able to reconstruct at run time some
representation of the whole program, as in [74] for example, it is possible to let it search for any construct
that can be optimized and/or parallelized in the context of the current execution. Several virtual machines, e.g.,
for Java or Microsoft CLR, have opened this way of optimizing programs, probably because virtual machines
need to maintain an intermediate, structured representation of the running program.

The possibility of running programs on architectures that include a large number of computing cores has
given rise to new abstractions [72], [46], [29]. Transactional memories, for instance, aim at simplifying the
management of conflicting concurrent accesses to a shared memory, a notoriously difficult problem [48].
However, the performance of a transaction-based application heavily depends on its dynamic behavior, and
too many conflicting accesses and rollbacks, severely affect performance. We bet that the need for multicore
specific programming tools will lead to other abstractions based on speculative execution. Because of the
very nature of speculation, all these abstractions will require run time evaluation, and maybe correction,
to avoid pathological cases. The profiler has a central role here, because it can be made responsible for
diagnosing inefficient use of speculative execution, and for taking corrective action, which means that it has
to be integrated to the execution environment. We also think that the large scope and almost infinite potential
uses of a profiling component may well suggest new parallel program abstractions, specially targeted at run
time evaluation and adaptation.

3.3.3. Run time program modeling
When profiling goes beyond simple aggregation of counts, it can, for example, sample a program’s behavior
and split its execution into phases. These phases may help target a subsequent evaluation on a new architecture
[66]. When profiling instruments the whole program to obtain a trace, e.g., of memory accesses, it is possible
to use this trace for:

• simulation, e.g., by varying the parameters of the memory hierarchy,

• for modeling, e.g., to reconstruct some specific model of the program [74], or to extract dynamic
dependencies that help identifying parallel sections [62].

Handling such large execution traces, and especially compressing them, is a research topic by itself [30],
[57]. Our contribution to this topic [7] is unusual in that the result of compression is a sequence of loop nests
where memory accesses and loop bounds are affine functions of the enclosing loop indices. Modeling a trace
this way leads to slightly better average compression rates compared to other, less expressive techniques. But
more importantly, it has the advantage to provide a result in symbolic form, and this result can be further
analyzed with techniques usually restricted to the static analysis of source code. We plan to apply, in the short

Team CAMUS 7

term, similar techniques to the modeling of dynamic dependencies, so as to be able to automatically extract
parallelism from program traces.

This kind of analysis is representative of a new kind of tools than could be named “parallelization assistants”
[52], [62]. Properties that can’t be detected by the compiler but that appear to hold in one or several executions
of a program can be submitted to the programmer, maybe along a suitable reformulation of its program using
some class of abstraction, e.g., compiler directives. The goal is to provide help and guidance in adapting
source code, in the same way a classical profiling tool helps pinpoint performance bottlenecks. Control
and data dependencies are fundamental to such a tool. An execution trace provides an observed reality; for
example a trace of memory addresses. If the observed dynamic dependencies provide a set of constraints, they
also suggest a complete family of potential correct executions, be they parallel or sequential, and all these
executions are equivalent to the reference execution. Being able to handle large traces, and representing them
in some manageable way, means being able to highlight medium to large grain parallelism, which is especially
interesting on multicore architectures and often difficult for compilers to discover, for example because of the
use of pointers and the difficulty of eliminating potential aliasing. This can be seen as a machine learning
problem, where the goal is to recover a hidden structure from a large sequence of events. This general problem
has various incarnations, depending on how much the learner knows about the original program, on the kind
of data obtained by profiling, on the class of structures sought, and on the objectives of the analysis. We are
convinced that such studies will enrich our understanding of the behavior of programs, and of the programming
concepts that are really useful. It will also lead to useful tools, and will open up new directions for dynamic
optimization.

3.4. Dynamic parallelization and optimization, virtual machine
Participants: Alexandra Jimborean, Philippe Clauss, Alain Ketterlin, Aravind Sukumaran-Rajam, Vincent
Loechner.

This link in the programming chain has become essential with the advent of the new multicore architectures.
Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now
one of the keys for controling those new mechanisms complexity. From now on, performed instructions are not
only dedicated to the application functionalities, but also to its control and its transformation, and so in its own
interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”. It perfectly
knows the current characteristics of the execution environment and owns some qualitative information thanks
to a behavior modeling process (issue 2). It appends a significant part of optimizing ability compared to a static
compiler, while observing live resources availability evolution.

3.4.1. State of the art
Dynamic analysis and optimization, that is to say simultaneous to the program execution, have motivated
a growing interest during the last decade, mainly because of the hardware architectures and applications
growing complexity. Indeed, it has become more and more difficult to anticipate any program run simply from
its source code, either because its control structures introduce some unknown objects before run (dynamic
memory allocation, pointers, ...), or because the interaction between the target architecture and the program
generates unpredictable behaviors. This is notably due to the appearance of more optimizing hardware units
(prefetching units, speculative processing, code cache, branch prediction, etc.). With multicore architectures,
this interest is growing even more. Works achieved in this area for mono-core processors have permitted to
establish some classification of the so-called dynamic approaches, either based on the used methodologies or
on the objectives.

The first objective for any dynamic approach is to extract some live information at runtime relying on a
profiling process. This essential step is the main objective of issue 2 (see sub-section 3.3).

Identifying some “hotspots” thanks to profiling is then used for performance improvement optimizations. Two
main approaches can be distinguished:

8 Activity Report INRIA 2012

• the profile-guided approach, where analysis and optimization of profile information are performed
off-line, that is to say statically. A first run is only performed to extract information for driving a
re-compilation. Related to this approach, iterative compilation consists in running a code that has
been transformed following different optimization possibilities (nature and sequencing of the applied
optimizations), and then in re-compiling the transformed code guided by the collected performance
information, and so on until obtaining a “best” program version. In order to promote a rapid
convergence towards a better solution, some heuristics or some machine learning mechanisms are
used [21], [61], [60]. The main drawback of such approaches relates to the quality of the generated
code which depends on the reference profiled execution, and more precisely on the used input data
set, but also on the used hardware.

• the on-the-fly approach consists in performing all steps at each run (profiling, analysis and transfor-
mation). The main constraint of this approach is that the time overhead has to be widely compensated
by the benefits it generates. Several works propose such approaches dedicated to specific optimiza-
tions. We personally successfully implemented a dynamic data prefetching system for the Itanium
processor [1].

Although all these works provided some efficient dynamic mechanisms, their adaptation to multicore architec-
tures yields difficult issues, and even challenges them. It is indeed necessary to control interactions between
simultaneous tasks, imposing an additional complexity level which can be fateful for a dynamic system, while
becoming too costly in time and space.

Some dynamic parallelizing techniques have been proposed in the last years. They are mainly focusing on
parallelizing loop-nests, as programs generally spend most of their execution time in iterative structures.

The LRPD test [64] is certainly one of the foundation strategies. This method consists in speculatively
parallelizing loops. Privatization and reduction transformations are applied to promote a successful application
of the strategy. During execution, some tests are performed to verify the speculation validity. In case of invalid
speculation, the targeted loop is re-executed sequentially. However, the application range is limited to loops
accessing arrays; pointers cannot be handled. Moreover the method is not fully dynamic since an initial static
analysis is needed.

In [33], Cintra and Llanos present a speculative parallel execution mechanism for loops, where iteration chunks
are executed in sliding windows of n threads. The loops are not transformed and the sequential schedule
remains as a reference to define a total order on the speculative threads. In order to verify whether some
dependencies are violated during the program run, all data structures qualified as speculative, that is to say
those being accessed in read-write mode by the threads, are duplicated for each thread and tagged following
those states: not accessed, modified, exposed loaded or exposed loaded and later modified. For example, a
read-after-write dependency has been violated if a thread owns a data tagged as exposed loaded or exposed
loaded and modified, and if a predecessor thread, following the sequential total order, owns the same data
but tagged as modified or exposed loaded and modified, while this data has not yet been committed in main
memory. Such an approach can be memory-costly as each shared data structure is duplicated. It can be tricky
to adjust verification frequencies to minimize time overhead. Some other methods based on the same principle
of verifying speculation relatively to the sequential schedule have been proposed recently as in [68], where
each iteration of a loop is decomposed into a prologue, a speculative body and an epilogue. The speculative
bodies are performed in parallel and each body completion induces a verification. This approach seems to be
only well suited for loops which bodies represent significant computation time.

Another recent work is the development of SPICE [63] which is a speculative parallelizing system where an
entire first run of a loop is initially observed. This observation serves in determining the values reached by
some variables during the run. During a next run of the loop, several speculative threads are launched. They
consider as initial values of some variables the values that have been observed at the previous run. If a thread
reaches the starting value of another thread, it stops. Thus each thread performs a different portion of the
loop. But if the loop behavior changes and if another thread starting value is never reached, the run goes on
sequentially until completion.

Team CAMUS 9

The main limits of these propositions are:

• they do not alter the initial sequential schedule since always contiguous instruction blocks are
speculatively parallelized;

• their underlying parallelism is out of control: the characteristics of the generated parallel schedule are
completely unknown since they randomly depend on the program instructions, their dependencies
and the target machine. If bad performance is encountered, no other parallelization solution can be
proposed. Moreover, the effective instruction schedule occurring at program run can significantly
vary from one run to another, hence leading to a confusing performance inconsistency.

A strategy that would uniquely be based on a transactional memory mechanism, with rollbacks in the case
of data races, yields a totally uncontrolable parallelism where performance can not be ensured and not even
strongly expected.

While being based on efficient prediction mechanisms, a better control over parallelization will permit to
provide solutions that are well suited to a varying execution context and to parallelize portions of code that
can be parallelized only in some particular context. It is indeed crucial to maximize the potential parallelism
of the applications to take advantage of the forthcoming processors comprising several tens of cores.

3.4.2. General objective: building a virtual machine
As it has already been mentioned, dynamic parallelization and optimization can take place inside a virtual
machine. All the research objectives that are presented in the following are related to its construction.

Notice that the term of “virtual machine” is employed to group a set of dynamic analysis and optimization
mechanisms taking as input a binary code, eventually enriched with specific instructions. We refer to a
process virtual machine which main role is dynamic binary optimization from one instruction set to the same
instruction set. The taxonomy given in [67] includes this kind of virtual machine.

Notice that this virtual machine can run in parallel on the processor cores during the four initial phases
(see figure 2), but also simultaneously to the target application, either by sharing some cores with light
processes, or by using cores that are useless for the target application. It will also support a transactional
memory mechanism, if available. However the foreseen parallelizing strategies do not depend on such a
mechanism since our speculative executions are supposed to be as reliable as possible thanks to efficient
prediction models, and since they are supported by a specific and higher level rollback mechanism. Anyway
if available, a transactional memory mechanism would allow to take advantage of “nearly perfect” prediction
models.

The virtual machine takes as input an intermediate code expressing several kinds of parallelism on several code
extracts. Those kinds of parallelism are either effective, that is to say that the corresponding parallel execution
is obviously semantically correct, or hypothetical, that is to say that there is still some uncertainty on the
parallelism correctness. In this case, this uncertainty will have to be resolved at run time. This intermediate
“multi-parallel” code is generated by the static parallelization described subsection 3.2. It also contains generic
descriptions of parallelizing or optimizing transformations which parameters will have to be instanciated by
the virtual machine, thanks to its knowledge about the target architecture and the program run-time behavior.

3.4.3. Adaptation of the intermediate code to the target architecture
The virtual machine first phase is to adapt this intermediate code to the target multicore architecture. It consists
in answering the following questions:

• What is the suitable kind of parallelism?

• What is the suitable parallel task granularity?

• What is the suitable number of parallel tasks?

• Can we take advantage of a specialized instruction set for some operations?

• What are the parameter values for some parallelization or optimization?

10 Activity Report INRIA 2012

Figure 2. The virtual machine

The multi-parallel intermediate code exhibits different parameters allowing to adapt some parallelizing and
optimizing transformations to the target architecture. For example, a loop unrolling will be parametrized by
the number of iterations to be unrolled. This number will depend, for example, on the number of available
registers and the size of the instruction cache. A parallelizing transformation will depend on several possible
parallel instruction schedules. One or several schedules will be selected, for example, depending on the kind
of memory hierarchy and the cache sharing among cores.

Concerning hypothetical parallelism, this first phase will reduce the number of these propositions to solutions
that are well suited to the target architecture. This phase also instruments the intermediate code in order to
install the dynamic mechanisms related to profiling and speculative parallel execution.

3.4.4. High level parallelization and native code creation
From these target architecture related adaptations, a parallel intermediate code is generated. It contains
instructions that are specific to the dynamic optimizing and parallelizing mechanisms, i.e., instrumentation
instructions to feed the profiling process as well as calls to speculative execution management procedures. A
translation into native code executable by the target processor follows. This translation also allows to keep
trace of the code extracts that have to be modified during the run.

3.4.5. Low level parallelization
The binary version of the code exhibits new parallelism and optimization sources that are specific to the
instruction set and to the target architecture capabilities. Moreover, some dynamic optimizations are dedicated
to specific instructions, or instruction blocks, as for example the memory reads which time performances can
be dynamically improved by data prefetching [1]. Thus the binary code can be transformed and instrumented
as well.

3.4.6. Distribution, execution and profiling

Team CAMUS 11

The so built executable code is then distributed among the processor cores to be run. During the run, the
instrumentation instructions feed the profiler with information for execution monitoring and for behavior
models construction (see subsection 3.3). An accurate knowledge of the binary code, thanks to the control of
its generation, also permits at this step to dynamically control the insertion or deletion of some instrumentation
instructions. Indeed it is important to manage execution monitoring through sampling based instrumentations
in varying frequencies, following the changing behavior frequency (see in [1] and [73] a description of this
kind of mechanism), as such instrumentations necessarily induce overheads that have to be minimized.

3.4.7. Re-parallelization, thread mutation or rollback
Depending on the information collected from instrumentation, and depending on the built prediction models,
the profiling phase causes a re-transformation of some code parts, thus causing the mutation of the concerned
threads. Such re-transformation is done either on the binary code whether it consists in low level and small
modifications, as for example the adjustement of a data prefetching distance, or on the intermediate code if it
consists in a complete modification of the parallelizing strategy. For example, such a processing will follow
the observation of a bad performance, or of a change in the computing resources availability, or will be caused
by the completion of a dependency prediction model allowing the generation of a speculative parallelization.
From such a speculative execution, a re-transformation can consist in rolling back to a sequential execution
version when the considered hypothetical parallelism, and thus the associated prediction model, has been
evaluated wrong.

3.5. Proof of program transformations for multicores
Participants: Éric Violard, Julien Narboux, Nicolas Magaud, Vincent Loechner, Alexandra Jimborean.

3.5.1. State of the art
3.5.1.1. Certification of low-level codes.

Among the languages allowing to exploit the power of multicore architectures, some of them supply the
programmer a library of functions that corresponds more or less to the features of the target architecture :
for example, CUDA 4 for the architectures of type GPGPU and more recently the standard OpenCL 5 that
offers a unifying programming interface allowing the use of most of the existing multicore architectures or
a use of heterogeneous aggregate of such architectures. The main advantage of OpenCL is that it allows the
programmer to write a code that is portable on a large set of architectures (in the same spirit as the MPI library
for multi-processor architectures). However, at this low level, the programming model is very close to the
executing model, the control of parallelism is explicit. Proof of program correctness has to take into account
low-level mechanisms such as hardware interruptions or thread preemption, which is difficult.

In [38], Feng et al. propose a logic inspired from the Hoare logic in order to certify such low-level programs
with hardware interrupts and preempted threads. The authors specify this logic by using the meta-logic
implemented in the Coq proof assistant [24].

3.5.1.2. Certification of a compiler.

The problem here is to prove that transformations or optimizations preserve the operational behaviour of the
compiled programs.

Xavier Leroy in [27], [50] formalizes the analyses and optimizations performed by a C compiler: a big part of
this compiler is written in the specification language of Coq and the executable (Caml) code of this compiler
is obtained by automatic extraction from the specification.

Optimizing compilers are complex softwares, particularly in the case of multi-threaded programs. They apply
some subtle code transformations. Therefore some errors in the compiler may occur and the compiler may
produce incorrect executable codes. Work is to be done to remedy this problem. The technique of validation a
posteriori [69], [70] is an interesting alternative to full verification of a compiler.

4http://www.nvidia.com/object/cuda_what_is.html
5http://www.khronos.org/opencl

http://www.nvidia.com/object/cuda_what_is.html
http://www.khronos.org/opencl

12 Activity Report INRIA 2012

3.5.1.3. Semantics of directives.

As it was mentioned in subsection 3.2.3, the use of directives is an interesting approach to adapt languages
to multicore architectures. It is a syntactic means to tackle the increasing need of enriching the operational
semantics of programs.

Ideally, these directives are only comments: they do not alter the correction of programs and they are a good
means to improve their performance. They allow the separation of concerns: correction and efficiency.

However, using directives in that sense and in the context of automatic parallelization, raises some questions:
for example, assuming that directives are not mandatory, how to ensure that directives are really taken into
account? How to know if a directive is better than another? What is the impact of a directive on performance?

In his thesis [40], that was supervised by Éric Violard, Philippe Gerner addresses similar questionings and
states a formal framework in which the semantics of compilation directives can be defined. In this framework,
any directive is encoded into one equation which is added to an algebraic specification. The semantics of the
directives can be precisely defined via an order relation (called relation of preference) on the models of this
specification.

3.5.1.4. Definition of a parallel programming model.

Classically, the good definition of a programming model is based on a semantic domain and on the definition
of a “toy” language associated with a proof system, which allows to prove the correctness of the programs
written in that language. Examples of such “toy” languages are CSP for control parallelism and L [28] for
data parallelism. The proof systems associated with these two languages, are extensions of the Hoare logic.

We have done some significant works on the definition of data parallelism [11]. In particular, a crucial problem
for the good definition of this programming model, is the semantics of the various syntactic constructs for data
locality. We proposed a semantic domain which unifies two concepts: alignment (in a data-parallel language
like HPF) and shape (in the data-parallel extensions of C).

We defined a “toy” language, called PEI, that is made of a small number of syntactic constructs. One of them,
called change of basis, allows the programmer to exhibit parallelism in the same way as a placement or a
scheduling directive [41].

3.5.1.5. Programming models for multicore architectures.

The multicore emergence questions the existing parallel programming models.

For example, with the programming model supported by OpenMP, it is difficult to master both correctness
and efficiency of programs. Indeed, this model does not allow programmers to take optimal advantage of the
memory hierarchy and some OpenMP directives may induce unpredictable performances or incorrect results.

Nowadays, some new programming models are experienced to help at designing both efficient and correct
programs for multicores. Because memory is shared by the cores and its hierarchy has some distributed parts,
some works aim at defining a hybrid model, between task parallelism and data parallelism. For example,
languages like UPC (Unified Parallel C) 6 or Chapel 7 combine the advantages of several programming
paradigms.

In particular, the model of memory transactions (or transactional memory [47]) retains much attention
since it offers the programmer a simple operational semantics including a mutual exclusion mechanism
which simplifies program design. However, much work remains to define the precise operational meaning
of transactions and the interaction with the other languages features [56]. Moreover, this model leaves the
compiler a lot of work to reach a safe and efficient execution on the target architecture. In particular, it is
necessary to control the atomicity of transactions [39] and to prove that code transformations preserve the
operational semantics.

6http://upc.gwu.edu
7http://chapel.cs.washington.edu

http://upc.gwu.edu
http://chapel.cs.washington.edu

Team CAMUS 13

3.5.1.6. Refinement of programs.

Refinement [22], [42] is a classical approach for gradually building correct programs: it consists in transform-
ing an initial specification by successive steps, by verifying that each transformation preserves the correctness
of the previous specification. Its basic principle is to derive simultaneously a program and its own proof. It
defines a formal framework in which some rules and strategies can be elaborated to transform specifications
written by using the same formalism. Such a set of rules is called a refinement calculus.

Unity [32] and Gamma [23] are classical examples of such formalisms, but they are not especially designed
for refining programs for multicore architectures. Each of these formalisms is associated with a computing
model and thus each specification can be viewed as a program. Starting with an initial specification, a proof
logic allows a user to derive a specification which is more suited to the target architecture.

Refinement applies for the programming of a large range of problems and architectures. It allows to pass the
limitations of the polyhedral model and of automatic parallelization. We designed a refinement calculus to
build data parallel programs [71].

3.5.2. Main objective: formal proof of analyses and transformations
Our main objective consists in certifying the critical modules of our optimization tools (the compiler and the
virtual machine). First we will prove the main loop transformation algorithms which constitute the core of our
system.

The optimization process can be separated into two stages: the transformations consisting in optimizing the
sequential code and in exhibiting parallelism, and those consisting in optimizing the parallel code itself. The
first category of optimizations can be proved within a sequential semantics. For the other optimizations, we
need to work within a concurrent semantics. We expect the first stage of optimizations to produce data-race
free code. For the second stage of optimizations, we will first assume that the input code is data-race free.
We will prove those transformations using Appel’s concurrent separation logic [44]. Proving transformations
involving program which are not data-race free will constitute a longer term research goal.

3.5.3. Proof of transformations in the polyhedral model
The main code transformations used in the compiler and the virtual machine are those carried out in the
polyhedral model [49], [37]. We will use the Coq proof assistant to formalize proofs of analyses and
transformations based on the polyhedral model. In [31], Cachera and Pichardie formalized nested loops
in Coq and showed how to prove properties of those loops. Our aim is slightly different as we plan to
prove transformations of nested loops in the polyhedral model. We will first prove the simplest unimodular
transformations, and later we will focus on more complex transformations which are specific to multicore
architectures. We will first study scheduling optimizations and then optimizations improving data locality.

3.5.4. Validation under hypothesis
In order to prove the correction of a code transformation T it is possible to:

• prove that T is correct in general, i.e., prove that for all x, T (x) is equivalent to x.

• prove a posteriori that the applied transformation has been correct in the particular case of a code c.

The second approach relies on the definition of a program called validator which verifies if two pieces of
program are equivalent. This program can be modeled as a function V such that, given two programs c1 and
c2, V (c1, c2) = true only if c1 has the same semantics as c2. This approach has been used in the field of
optimizations certification [59], [58]. If the validator itself contains a bug then the certification process is
broken. But if the validator is proved formally (as it was achieved by Tristan and Leroy for the Compcert
compiler [69], [70]) then we get a transformed program which can be trusted in the same way as if the
transformation is proved formally.

This second approach can be used only for the effective parallelism, when the static analysis provides enough
information to parallelize the code. For the hypothetical parallelism, the necessary hypotheses have to be
verified at run time.

14 Activity Report INRIA 2012

For instance, the absence of aliases in a piece of code is difficult to decide statically but can be more easily
decided at run time.

In this framework, we plan to build a validator under hypotheses: a function V ′ such that, given two programs
c1 and c2 and an hypothesis H , if V ′(c1, c2, H) = true, then H implies that c1 has the same semantics as c2.
The validity of the hypothesis H will be verified dynamically by the virtual machine. This verification process,
which is part of the virtual machine, will have to be proved as correct as well.

3.5.5. Rejecting incorrect parallelizations
The goal of the project is to exhibit potential parallelism. The source code can contain many sub-routines which
could be parallelized under some hypothesis that the static analysis fails to decide. For those optimizations,
the virtual machine will have to verify the hypotheses dynamically. Dynamically dealing with the potential
parallelism can be complex and costly (profiling, speculative execution with rollbacks). To reduce the overhead
of the virtual machine, we will have to provide efficient methods to rule out quickly incorrect parallelism. In
this context, we will provide hypotheses which are easy to check dynamically and which can tell when a
transformation cannot be applied, i.e., hypotheses which are sufficient conditions for the non-validity of an
optimization.

4. Application Domains
4.1. Application Domains

Performance being our main objective, our developments’ target applications are characterized by intensive
computation phases. Such applications are numerous in the domains of scientific computations, optimization,
data mining and multimedia.

Applications involving intensive computations are necessarily high energy consumers. However this consump-
tion can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior
objective, we can expect some positive effects for the following reasons:

• Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent
performance, or even a better performance, to a sequential higher frequency execution on one single
core, can be obtained.

• Memory and memory accesses are high energy consumers. Lowering the memory consumption,
lowering the number of memory accesses and maximizing the number of accesses in the low levels
of the memory hierarchy (registers, cache memories) have a positive consequence on execution
speed, but also on energy consumption.

5. Software
5.1. PolyLib

PolyLib 8 is a C library of polyhedral functions, that can manipulate unions of rational polyhedra of any
dimension, through the following operations: intersection, difference, union, convex hull, simplify, image
and preimage. It was the first to provide an implementation of the computation of parametric vertices of
a parametric polyhedron, and the computation of an Ehrhart polynomial (expressing the number of integer
points contained in a parametric polytope) based on an interpolation method.

It is used by an important community of researchers (in France and the rest of the world) in the area of
compilation and optimization using the polyhedral model. Vincent Loechner is the maintainer of this software.
It is distributed under GNU General Public License version 3 or later, and it has a Debian package maintained
by Serge Guelton (Symbiose Projet, IRISA).

8http://icps.u-strasbg.fr/PolyLib

http://icps.u-strasbg.fr/PolyLib

Team CAMUS 15

5.2. ZPolyTrans
ZPolyTrans 9 is a C library and a set of executables, that permits to compute the integer transformation of a
union of parametric Z-polyhedra (the intersection between lattices and parametric polyhedra), as a union of
parametric Z-polyhedra. The number of integer points of the result can also be computed. It is build upon
PolyLib and Barvinok library. This work is based on some theoretical results obtained by Rachid Seghir and
Vincent Loechner [15].

It allows for example to compute the number of solutions of a Presburger formula by eliminating existential
integer variables, or to compute the number of different data accessed by some array accesses contained in an
affine parametric loop nest.

The authors of this software are Rachid Seghir (Univ. Batna, Algeria) and Vincent Loechner. It is distributed
under GNU General Public License version 3 or later.

5.3. NLR
Participant: Alain Ketterlin.

We have developed a program implementing our loop-nest recognition algorithm, detailed in [7]. This
standalone, filter-like application takes as input a raw trace and builds a sequence of loop nests that, when
executed, reproduce the trace. It is also able to predict forthcoming values at an arbitrary distance in the
future. Its simple, text-based input format makes it applicable to all kinds of data. These data can take the form
of simple numeric values, or have more elaborate structure, and can include symbols. The program is written
in standard ANSI C. The code can also be used as a library.

We have used this code to evaluate the compression potential of loop nest recognition on memory address
traces, with very good results. We have also shown that the predictive power of our model is competitive with
other models on average.

The software is available upon request to anybody interested in trying to apply loop nest recognition. It
has been distributed to a dozen of colleagues around the world. In particular, it has been used by Andres
Charif-Rubial for his PhD work (Université de Versailles Saint-Quentin en Yvelines), and is now included in a
released tool called MAQAO (http://www.maqao.org). Our code is also used by Jean-Thomas ACQUAVIVA,
at Commissariat à l’Énergie Atomique, for work on compressing instruction traces. These colleagues have
slightly modified the code we gave them. We plan to release a stable version incorporating most of their
changes in the near future. We also plan to change the license to avoid such drifts in the future.

5.4. Binary files decompiler
Participant: Alain Ketterlin.

Our research on efficient memory profiling has led us to develop a sophisticated decompiler. This tool analyzes
x86-64 binary programs and libraries, and extracts various structured representations of the code. It works on a
routine per routine basis, and first builds a loop hierarchy to characterize the overall structure of the algorithm.
It then puts the code into Static Single Assignment (SSA) form to highlight the fine-grain data-flow between
registers and memory. Building on these, it performs the following analyzes:

• All memory addresses are expressed as symbolic expressions involving specific versions of register
contents, as well as loop counters. Loop counter definitions are recovered by resolving linearly
incremented registers and memory cells, i.e., registers that act as induction variables.

• Most conditional branches are also expressed symbolically (with registers, memory contents, and
loop counters). This captures the control-flow of the program, but also helps in defining what
amounts to loop “trip-counts”, even though our model is slightly more general, because it can
represent any kind of iterative structure.

9http://ZPolyTrans.gforge.inria.fr

http://www.maqao.org
http://ZPolyTrans.gforge.inria.fr

16 Activity Report INRIA 2012

This tool embodies several passes that, as far as we know, do not exist in any existing similar tool. For instance,
it is able to track data-flow through stack slots in most cases. It has been specially designed to extract a
representation that can be useful in looking for parallel (or parallelizable) loops [45]. It is the basis of several
of our studies.

Because binary program decompilation is especially useful to reduce the cost of memory profiling, our current
implementation is based on the Pin binary instrumenter. It uses Pin’s API to analyze binary code, and directly
interfaces with the upper layers we have developed (e.g., program skeletonization, or minimal profiling).
However, we have been careful to clearly decouple the various layers, and to not use any specific mechanism
in designing the binary analysis component. Therefore, we believe that it could be ported with minimal effort,
by using a binary file format extractor and a suitable binary code parser. It is also designed to abstract away
the detailed instruction set, and should be easy to port (even though we have no practical experience in doing
so).

We feel that such a tool could be useful to other researchers, because it makes binary code available under
abstractions that have been traditionally available for source code only. If sufficient interest emerges, e.g.,
from the embedded systems community, or from researchers working on WCET, or from teams working on
software security, we are willing to distribute and/or to help make it available under other environments.

5.5. Parwiz: a dynamic dependency analyser
Participant: Alain Ketterlin.

We have developed a dynamic dependence analyzer. Such a tool consumes the trace of memory (or object)
accesses, and uses the program structure to list all the data dependences appearing during execution. Data
dependences in turn are central to the search for parallel sections of code, with the search for parallel
loops being only a particular case of the general problem. Most current works of these questions are either
specific to a particular analysis (e.g., computing dependence densities to select code portions for thread-level
speculation), or restricted to particular forms of parallelism (e.g., typically to fully parallel loops). Our tool
tries to generalize existing approaches, and focuses on the program structures to provide helpful feedback
either to a user (as some kind of “smart profiler”), or to a compiler (for feedback-directed compilation). For
example, the tool is able to produce a dependence schema for a complete loop nest (instead of just a loop).
It also targets irregular parallelism, for example analyzing a loop execution to estimate the expected gain of
parallelization strategies like inspector-executor.

We have developed this tool in relation to our minimal profiling research project. However, the tool itself
has been kept independent of our profiling infrastructure, getting data from it via a well-defined trace format.
This intentional design decision has been motivated by our work on distinct execution environments: first
on our usual x86-64 benchmark programs, and second on less regular, more often written in Java, real-
world applications. The latter type of applications is likely the one that will most benefit from such tools,
because their intrinsic execution environment does not offer enough structure to allow effective static analysis
techniques. Parallelization efforts in this context will most likely rely on code annotations, or specific
programming language constructs. Programmers will therefore need tools to help them choose between various
constructs. Our tool has this ambition. We already have a working tool-chain for C/C++/Fortran programs (or
any binary program). We are in the process of developing the necessary infrastructure to connect the dynamic
dependence profiler to instrumented Java programs. Other managed execution environments could be targeted
as well, e.g., Microsoft’s .Net architecture, but we have no time and/or workforce to devote to such time-
consuming engineering efforts.

5.6. VMAD software and LLVM
Participants: Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Aravind Sukumaran-Rajam,
Juan Manuel Martinez Caamaño.

For dynamic analysis and optimization of programs, we are developing a virtual machine called VMAD,
and specific passes to the LLVM compiler suite, plus a modified Clang frontend. It is fully described in
subsection 6.1.

Team CAMUS 17

As the final result of Alexandra Jimborean’s PhD thesis, the VMAD framework now handles speculative
parallelization of loop nests by applying dynamically polyhedral code transformations. It is currently extended
to handle even more advanced code transformations as tiling in particular, and also to handle codes whose
memory behavior is not fully linear.

Alexandra Jimborean (PhD student), Matthieu Herrmann (former Master student), Luis Mastrangelo (former
Master student), Juan Manuel Martinez Caamaño (Master student), Jean-François Dollinger (PhD student),
Aravind Sukumaran-Rajam (PhD student) and Philippe Clauss are the main contributors of this software. It is
not yet distributed.

5.7. Polyhedral prover
Participants: Nicolas Magaud, Julien Narboux, Éric Violard [correspondant].

polyhedral transformations, verified compiler

We are currently developing a formal proof of program transformations based on the polyhedral model. We
use the CompCert verified compiler [51] as a framework. This tool is written in the specification language of
Coq. It is connected to the activity described in section 6.5.

6. New Results

6.1. VMAD
Participants: Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Aravind Sukumaran-Rajam,
Juan Manuel Martinez Caamaño, Vincent Loechner.

The goal of the VMAD project is to provide a set of annotations (pragmas) that the user can insert in the source
code to perform advanced analyses and optimizations, for example dynamic speculative parallelization.

VMAD contains a modified LLVM compiler and a runtime system. The program binary files are first generated
by our compiler to include necessary data, instrumentation instructions, parallel code templates, and callbacks
to the runtime system. External modules associated to specific analyses and transformations are dynamically
loaded when required at runtime. Dynamic information, such as memory locations of the modules entries, are
patched at startup in the loaded executable.

VMAD uses sampling and multi-versioning to limit the runtime overhead (profiling, analysis, and code
generation). At runtime, targeted codes are launched by successive chunks that can be either original,
instrumented or optimized/parallelized versions. After each chunk execution, decisions can be taken relatively
to the current optimization strategy. VMAD is handling advanced memory access profiling [17] through linear
interpolation of the addresses, dynamic dependence analysis, version selection [17] and speculative polyhedral
parallelization [19], [16].

Alexandra Jimborean defended her PhD thesis on this topic in 2012 [12]. In 2012, Aravind Sukumaran-
Rajam started a PhD in our team to continue this work, especially on extending the dependence analysis
to make it handle more general programs, keeping it fast and accurate. Jean-François Dollinger will extend
the framework to handle heterogeneous architectures (GPGPUs). Juan Manuel Martinez Caamaño, a master
student of University of Buenos Aires (associate team EA-Ancome) is also working on VMAD to make the
code generation support tiling.

6.2. The Multifor programming construct
Participants: Philippe Clauss, Imèn Fassi, Yosr Slama, Matthieu Kuhn.

18 Activity Report INRIA 2012

We have proposed a new programming control structure called “multifor”, allowing to take advantage of
parallelization models that were not naturally attainable with the polytope model before. In a multifor-loop,
several loops whose bodies are run simultaneously can be defined. Respective iteration domains are mapped
onto each other according to a run frequency – the grain – and a relative position – the offset –. Execution
models like dataflow, stencil computations or MapReduce can be represented onto one referential iteration
domain, while still exhibiting traditional polyhedral code analysis and transformation opportunities. Moreover,
this construct provides ways to naturally exploit hybrid parallelization models, thus significantly improving
parallelization opportunities in the multicore era. Traditional polyhedral software tools are used to generate the
corresponding code. Additionally, a promising perspective related to non-linear mapping of iteration spaces
has also been developed, yielding to run a loop nest inside any other one by solving the problem of inverting
“ranking Ehrhart polynomials”.

This work is the PhD work of Imèn Fassi, who started her work this year and who is co-advised by Yosr Slama,
Assistant Professor at the University El Manar in Tunis, Tunisia, and Philippe Clauss. A first publication of
this topic has been accepted at the IMPACT workshop that will be held in conjunction with the HIPEAC
conference in Berlin, Germany, January 2013.

Figure 3. Red-Black Gauss-Seidel Multifor Iteration Space

6.3. Parwiz: dynamic data dependence analysis
Participants: Alain Ketterlin, Philippe Clauss.

We have continued working on dynamic data-dependence analysis during this year, especially on increasing
the scope of our tool (called Parwiz). For instance, Parwiz is now able to suggest several program transforma-
tions (like loop distribution) that enable loop vectorization. It uses an algorithm known as codegen (developed
by Allen & Kennedy), but the novelty is that it applies the algorithm to dependence graphs that are built em-
pirically, by running the program on selected input data sets. As far as we know, Parwiz is the first tool able to
suggest loop transformations.

We have also developed several other empirical analysis. One of these focuses on loops that are not parallel,
but whose iterations present significant parallelism provided the program explicitly schedules the various
iterations. This still lacks a suitable cost model to estimate the potential gain, but gives significant insight into
the behavior of a given non-parallel loop.

Team CAMUS 19

This work has been presented at the MICRO-45 conference held in Vancouver on december 1–5 2012 [18].

6.4. Modeling the behavior of parallel traces
Participants: Alain Ketterlin, Stéphane Genaud.

We have started this year a project aiming at developing algorithms and tools to capture the behavior of parallel
programs. Our initial goal is automatically obtain formal models of communicating MPI processes, in terms
of message sends and receives and of synchronization events. Such models have various uses, the first of them
being the visualization of the system’s communications, for debugging, or plain understanding (see below,
Figure 4). However, we expect to develop other applications, for example in optimizing the communication
infrastructure (or routing algorithm) for specific applications.

Figure 4. Visualizing parallel traces

Our modeling algorithm works in two phases. The first phase is local to each node, using our work on nested
loop recognition [7]. This builds a sequence of loop nests providing a compact representation of all local
communication events. At the end of the run, the various local models are merged, typically through a parallel
reduction operation, to build the global model.

We plan to publish the first part of this work in the first half of 2013. Several experimental data have been
collected already, but we would like to evaluate the overall task on significantly sized programs.

Currently, the whole process is restricted to communication events. However, it can be immediately extended
to trace including other kinds of events, like the addresses and sizes of memory buffers transmitted from
process to process. This would provide a complete, run time description of the program, which could be
used to evaluate the potential gain of various re-parallelization techniques. This aspect is the next goal on our
agenda.

6.5. Certified polyhedral transformations into more and more concrete
languages
Participants: Nicolas Magaud, Julien Narboux, Éric Violard.

20 Activity Report INRIA 2012

We continued our work to complete the proof of polyhedral based transformations in the language Loops
designed by Alexandre Pilkiewicz (see the proof scheme on Fig. 5). Our idea is to use once again a
validator. The validation here consists in comparing two polyhedrons: the one (pprogopt) obtained from the
non-optimized Loops program (prog), by translation to the polyhedral language (Plang) (pprog), and then
optimization in Plang; and the one (interprogopt) obtained from the optimized Loops program (progopt)
by translation into Plang. If these two polyhedrons are the same, then the validator returns true, otherwise it
returns false. The proof that the non-optimized and optimized programs have the same behaviour lies on the
deterministic property of the function that translates a program Loops into Plang. We obtained the proof in
Coq that our scheme is correct. Now, we have to complete the implementation of our optimizing compiler for
Loops by connecting our validator with the off the shell tools for polyhedral transformations. We will use the
tool PLuTo10 to find efficient code transformations and CLooG11 to generate the loops from the polyhedral
representation (we proposed an internship for this purpose).

Figure 5. Our proof scheme for a certified compiler of Loops

We now have to connect the language Loops with more concrete languages (whose features and semantics
have to be defined). We already showed how to deal with arithmetic overflows in a more concrete language
where each loop variable is a machine integer [20]. Our approach is thus to incrementally add concrete features
until joining an intermediate language of CompCert.

Since the members of our team have some skill in defining new languages and their semantics, we thought
that it could be a good idea to exploit this and to define a formal semantics for the Multifor syntactic sugar
proposed by Philippe Clauss. We aims at associating a rigorous mathematical meaning with this syntactic
construct: first a denotational semantics and then an operational one. This work will serve as a base to prove
correct the compilation process that translates this construct into intermediate code.

7. Partnerships and Cooperations
10http://pluto-compiler.sourceforge.net/
11http://www.cloog.org/

http://pluto-compiler.sourceforge.net/
http://www.cloog.org/

Team CAMUS 21

7.1. National Initiatives
7.1.1. Action d’Envergure Nationale

Philippe Clauss, Alain Ketterlin and Vincent Loechner are involved in the proposition of an Inria Large
Scale Initiative (Action d’Envergure Nationale) entitled “Large scale multicore virtualization for performance
scaling and portability” and regrouping several french researchers in compilers, parallel computing and
program optimization. Philippe Clauss shares the head of the project with Gilles Muller of the Inria REGAL
team. The project should start officially early 2013. Philippe Clauss and Erven Rohou (ALF team) will co-
advise a PhD thesis on dynamic binary code analysis, parallelization and optimization in the frame of this
project.

7.2. International Initiatives
7.2.1. Inria Associate Teams
7.2.1.1. ANCOME

Title: Memory and applications memory behavior

Inria principal investigator: Philippe Clauss

International Partner (Institution - Laboratory - Researcher):

University of Buenos Aires (Argentina) - Departamento de Computación, Facultad de
Ciencias Exactas y Naturales - Sergio Yovine

Duration: 2011 - 2013

See also: http://lafhis.dc.uba.ar/wiki/index.php/EA-Ancome

This associate team focuses on developing original methods for the analysis of programs memory
behavior, in particular in the context of applications using dynamic memory allocation. The proposed
approaches consist in analyzing and modeling the runtime behavior, where extracted properties
are then verified thanks to static analysis processes. Thus pure static approaches limits will be
overpassed. Further, the case of multi-threaded applications run on multi-core architectures will be
studied in order to elaborate and extend our analysis techniques and to extract properties specific to
this context. The issues are mainly concerned with the conception of real-time applications using
dynamic memory allocation.

7.2.2. Participation In International Programs
The collaboration between the LaFhis team of the University of Buenos Aires and the CAMUS team has also
been supported by the CNRS-MINCyt project QUATRIX since 2011.

The CAMUS team is associated to the CNRS-CONICET Associated International Laboratory France-
Argentina INFINIS (INformatique Fondamentale, logIque, laNgages, vérIfication et Systèmes) inaugurated
in December 2011.

7.3. International Research Visitors
7.3.1. Visits of International Scientists

Rachid Seghir, assistant professor at University of Batna (Algeria), was invited in our team from May 10 to 26,
2012. We worked on improving ZPolyTrans, our library for computing integer affine images of Z-polyhedra.
More precisely, we have implemented non-regression tests and we improved the performance of the library
by reducing the complexity of some algorithms. Our major publication on this topic was published in 2012 in
ACM TACO [15].

Diego Garbervetsky, University of Buenos Aires, Argentina, has spent two weeks of October 2012 in the
CAMUS team.

http://lafhis.dc.uba.ar/wiki/index.php/EA-Ancome

22 Activity Report INRIA 2012

7.3.1.1. Internships

Juan Manuel Martinez Caamaño, who is Master student at the University of Buenos Aires, is doing his Master
thesis internship in the CAMUS team from August 2012 to January 2013.

Gervasio Perez, PhD student at the University of Buenos Aires, Argentina, has spent one month in the CAMUS
team in November 2012.

7.3.2. Visits to International Teams
Philippe Clauss visited the parallel computing research team of the University of Tunis, Tunisia, from
November the 26th to the 30th. The main goal of the visit was to meet the student Imèn Fassi and her co-
advisor Yosr Slama to work for the starting co-advised PhD thesis.

Alain Ketterlin has spent three weeks in the LAFHIS team in January 2012.

Philippe Clauss has spent one week in the LAFHIS team in December 2012.

8. Dissemination

8.1. Scientific Animation
Vincent Loechner co-organized IMPACT 2012, the 2nd International Workshop on Polyhedral Compilation
Techniques, in conjunction with the HiPEAC conference in January 2012. Out of 13 received submissions,
6 were accepted as regular papers and 4 as tool demonstrations, and presented along a keynote by Keshav
Pingali.

Philippe Clauss and Vincent Loechner are part of the program committee of IMPACT 2013.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Licence : Vincent Loechner, programmation système et réseau, 30, L2, University of Strasbourg,
France
Licence : Vincent Loechner, fondements des systèmes d’exploitation, 33, L3, University of Stras-
bourg, France
Master : Vincent Loechner, système et programmation temps-réel, 25, M1, University of Strasbourg,
France
Master : Vincent Loechner, compilation avancée, 6, M1, University of Strasbourg, France
Master : Vincent Loechner, parallélisme, 28, M2, University of Strasbourg, France
Master : Vincent Loechner, calcul parallèle, 30, école d’ingénieur (5ième année), University of
Strasbourg, France
Master : Vincent Loechner, langage interprété, 40, M1, University of Strasbourg, France
Master : Vincent Loechner, TP programmation, 10, M1, University of Strasbourg, France
Licence : Julien Narboux, Culture et Pratique de l’Informatique, 18, L1, University of Strasbourg,
France
Licence : Julien Narboux, Logique et Programmation Logique, 61 , L2, University of Strasbourg,
France
ENSIIE : Julien Narboux, Logique, 31 , 1a, ENSIIE, France
Master: Julien Narboux, Ingénierie de la preuve, 27 , M1, University of Strasbourg, France
Master: Julien Narboux, Certification du Logiciel, 36 , M2, University of Strasbourg, France
Master: Julien Narboux, Suivi apprentissage, 50, M1-M2, University of Strasbourg, France

Team CAMUS 23

Master: Julien Narboux, Encadrement TER, -, M1, University of Strasbourg, France
Master: Julien Narboux, Encadrement Projet Individuel (1 étudiant), -, M2, University of Strasbourg,
France
Master: Julien Narboux, Encadrement Projets de Groupe 140h (25 étudiants), 10, M2, University of
Strasbourg, France
Master: Julien Narboux, Soutenances d’apprentissage, 10, M2, University of Strasbourg, France
Licence : Nicolas Magaud, Méthodologie du Travail Universitaire, 12, L1, University of Strasbourg,
France
Licence : Nicolas Magaud, Projet professionnel personnel, 20, L1, University of Strasbourg
Licence : Nicolas Magaud, Structures de données et Algorithmes 2, 22, L2 Informatique, University
of Strasbourg
Licence : Nicolas Magaud, Informatique : Algorithmique et Structures de Données, 20, L3 Mathé-
matiques, University of Strasbourg
Licence : Nicolas Magaud, Pratique des systèmes d’exploitation (PSE), 16, L2 Informatique,
University of Strasbourg
Master: Nicolas Magaud, Ingénierie de la preuve, 18 , M1, University of Strasbourg, France
Master: Nicolas Magaud, Suivi apprentissage, 60, M1-M2, University of Strasbourg, France
ENSIIE : Nicolas Magaud, Introduction à la Programmation Fonctionnelle, 52 , 1a, ENSIIE, France
CNAM Alsace : Nicolas Magaud, Algorithmique, 40, 1a, CNAM Alsace, France
Licence : Éric Violard, Programmation système & réseau, 60 , L2, University of Strasbourg, France
Licence : Éric Violard, Programmation fonctionnelle, 42 , L2, University of Strasbourg, France
Licence : Éric Violard, Bases de données, 8 , L2, University of Strasbourg, France
Master : Éric Violard, Compilation, 54, M1, University of Strasbourg, France
Master : Éric Violard, Sémantique, 45, M1, University of Strasbourg, France
Master : Alain Ketterlin, Compilation, 64 , M1, University of Strasbourg
Master : Alain Ketterlin, Compilation avancée, 20 , M1, University of Strasbourg
Master : Alain Ketterlin, Suivi d’apprenti, 12 , M1, University of Strasbourg
Master : Philippe Clauss, Compilation avancée, 30 , M1, University of Strasbourg
Master : Philippe Clauss, Système et Programmation Temps-réel, 30 , M1, University of Strasbourg
Master : Philippe Clauss, OS embarqués, 30 , M1, University of Strasbourg

8.2.2. Supervision
PhD : Alexandra Jimborean, Adapting the polytope model for dynamic and speculative paralleliza-
tion, University of Strasbourg, September the 14th 2012, Philippe Clauss and Vincent Loechner
PhD in progress : Aravind Sukumaran-Rajam, Enlarging the scope of polyhedral speculative paral-
lelization, November 2012, Philippe Clauss and Alain Ketterlin
PhD in progress : Jean-François Dollinger, Heterogeneous speculative parallelization, September
2010, Vincent Loechner and Philippe Clauss
PhD in progress : Imèn Fassi, Multifor for Multicore, September 2012, Philippe Clauss and Yosr
Slama

8.2.3. Juries
Philippe Clauss participated to the following HDR jurys in 2012:
Date Candidate Place Role
Dec. 7 Fabrice Rastello École Normale Supérieure

de Lyon
Reviewer

Déc. 12 Cédric Bastoul Univ. Paris-Sud Examiner

24 Activity Report INRIA 2012

Philippe Clauss participated to the following PhD jurys in 2012:
Date Candidate Place Role
July 3 Oussama Gamoudi Univ. Pierre et Marie Curie,

Paris
Reviewer

Oct. 2 Artur Pietrek Univ. Grenoble Reviewer
Oct. 22 Andrés Salim

Charif-Rubial
Univ. Versailles Reviewer

Dec. 13 Mehdi Amini École des Mines, Paris Examiner

9. Bibliography
Major publications by the team in recent years

[1] J. C. BEYLER, P. CLAUSS. Performance driven data cache prefetching in a dynamic software optimization
system, in "ICS ’07: Proceedings of the 21st annual international conference on Supercomputing", New York,
NY, USA, ACM, 2007, p. 202–209, http://doi.acm.org/10.1145/1274971.1275000.

[2] J. C. BEYLER, M. KLEMM, P. CLAUSS, M. PHILIPPSEN. A meta-predictor framework for prefetching in
object-based DSMs, in "Concurr. Comput. : Pract. Exper.", September 2009, vol. 21, p. 1789–1803, http://dx.
doi.org/10.1002/cpe.v21:14.

[3] P. CLAUSS. Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: applications
to analyze and transform scientific programs, in "ICS ’96: Proceedings of the 10th international conference on
Supercomputing", New York, NY, USA, ACM, 1996, p. 278–285, http://doi.acm.org/10.1145/237578.237617.

[4] P. CLAUSS, F. J. FERNÁNDEZ, D. GARBERVETSKY, S. VERDOOLAEGE. Symbolic polynomial maximization
over convex sets and its application to memory requirement estimation, in "IEEE Transactions on Very Large
Scale Integration (VLSI) Systems", Aug 2009, vol. 17, no 8, p. 983-996, http://hal.inria.fr/inria-00504617.

[5] P. CLAUSS, V. LOECHNER. Parametric Analysis of Polyhedral Iteration Spaces, in "J. VLSI Signal Process.
Syst.", 1998, vol. 19, no 2, p. 179–194, http://dx.doi.org/10.1023/A:1008069920230.

[6] P. CLAUSS, I. TCHOUPAEVA. A Symbolic Approach to Bernstein Expansion for Program Analysis and
Optimization, LNCS, Springer, April 2004, vol. 2985, p. 120-133.

[7] A. KETTERLIN, P. CLAUSS. Prediction and trace compression of data access addresses through nested loop
recognition, in "6th annual IEEE/ACM international symposium on Code generation and optimization", États-
Unis Boston, ACM, April 2008, p. 94-103, http://dx.doi.org/10.1145/1356058.1356071, http://hal.inria.fr/
inria-00504597/en.

[8] V. LOECHNER, B. MEISTER, P. CLAUSS. Precise data locality optimization of nested loops, in "Journal of
Supercomputing", January 2002, vol. 21, no 1, p. 37–76, Kluwer Academic Pub..

[9] V. LOECHNER, D. K. WILDE. Parameterized Polyhedra and their Vertices, in "International Journal of Parallel
Programming", December 1997, vol. 25, no 6.

http://doi.acm.org/10.1145/1274971.1275000
http://dx.doi.org/10.1002/cpe.v21:14
http://dx.doi.org/10.1002/cpe.v21:14
http://doi.acm.org/10.1145/237578.237617
http://hal.inria.fr/inria-00504617
http://dx.doi.org/10.1023/A:1008069920230
http://dx.doi.org/10.1145/1356058.1356071
http://hal.inria.fr/inria-00504597/en
http://hal.inria.fr/inria-00504597/en

Team CAMUS 25

[10] S. VERDOOLAEGE, R. SEGHIR, K. BEYLS, V. LOECHNER, M. BRUYNOOGHE. Counting Integer Points in
Parametric Polytopes Using Barvinok’s Rational Functions, in "Algorithmica", 2007, vol. 48, no 1, p. 37–66,
http://dx.doi.org/10.1007/s00453-006-1231-0.

[11] É. VIOLARD. A Semantic Framework to Address Data Locality in Data Parallel Languages, in "Parallel
Computing", 2004, vol. 30, no 1, p. 139-161.

Publications of the year
Doctoral Dissertations and Habilitation Theses

[12] A. JIMBOREAN. Adapting the polytope model for dynamic and speculative parallelization, Université de
Strasbourg, September 2012, http://tel.archives-ouvertes.fr/tel-00733850.

Articles in International Peer-Reviewed Journals

[13] A. KETTERLIN, P. CLAUSS. Recovering memory access patterns of executable programs, in "Science of Com-
puter Programming", 2012, (in press) [DOI : 10.1016/J.SCICO.2012.08.002], http://www.sciencedirect.
com/science/article/pii/S0167642312001505.

[14] B. PRADELLE, A. KETTERLIN, P. CLAUSS. Polyhedral parallelization of binary code, in "ACM
Transactions on Architecture and Code Optimization", January 2012, vol. 8, no 4, p. 39:1–39:21
[DOI : 10.1145/2086696.2086718], http://hal.inria.fr/hal-00664370.

[15] R. SEGHIR, V. LOECHNER, B. MEISTER. Integer Affine Transformations of Parametric Z-polytopes and
Applications to Loop Nest Optimization, in "ACM Transactions on Architecture and Code Optimization",
June 2012, vol. 9, no 2, p. 8.1-8.27 [DOI : 10.1145/2207222.2207224], http://hal.inria.fr/inria-00582388.

International Conferences with Proceedings

[16] A. JIMBOREAN, P. CLAUSS, B. PRADELLE, L. MASTRANGELO, V. LOECHNER. Adapting the Polyhedral
Model as a Framework for Efficient Speculative Parallelization, in "PPoPP - 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming", New Orleans, United States, ACM Press, February 2012,
http://hal.inria.fr/hal-00664353.

[17] A. JIMBOREAN, L. MASTRANGELO, V. LOECHNER, P. CLAUSS. VMAD: an Advanced Dynamic Program
Analysis & Instrumentation Framework, in "CC - 21st International Conference on Compiler Construction",
Tallinn, Estonia, M. F. P. O’BOYLE (editor), Lecture Notes in Computer Science, Springer, March 2012, vol.
7210, p. 220-237, http://hal.inria.fr/hal-00664345.

[18] A. KETTERLIN, P. CLAUSS. Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and
Optimization, in "MICRO-45 – Proceedings of the 2012 IEEE/ACM 45th International Symposium on
Microarchitecture", Vancouver, Canada, December 2012, (in press).

Conferences without Proceedings

[19] P. CLAUSS, A. JIMBOREAN. Does dynamic and speculative parallelization enable advanced parallelizing
and optimizing code transformations?, in "DCE - 1st International Workshop on Dynamic compilation from
SoC to Web Browser via HPC, in conjonction with HiPEAC 2012", Paris, France, Henri-Pierre Charles and
Philippe Clauss and Frédéric Pétrot, January 2012, http://hal.inria.fr/hal-00664339.

http://dx.doi.org/10.1007/s00453-006-1231-0
http://tel.archives-ouvertes.fr/tel-00733850
http://www.sciencedirect.com/science/article/pii/S0167642312001505
http://www.sciencedirect.com/science/article/pii/S0167642312001505
http://hal.inria.fr/hal-00664370
http://hal.inria.fr/inria-00582388
http://hal.inria.fr/hal-00664353
http://hal.inria.fr/hal-00664345
http://hal.inria.fr/hal-00664339

26 Activity Report INRIA 2012

[20] B. CUERVO PARRINO, J. NARBOUX, É. VIOLARD, N. MAGAUD. Dealing with arithmetic overflows in the
polyhedral model, in "IMPACT 2012 - 2nd International Workshop on Polyhedral Compilation Techniques",
Paris, France, U. BONDHUGULA, V. LOECHNER (editors), Louis-Noel Pouchet, January 2012, http://hal.inria.
fr/hal-00655485.

References in notes

[21] F. AGAKOV, E. BONILLA, J. CAVAZOS, B. FRANKE, G. FURSIN, M. F. P. O’BOYLE, J. THOMSON, M.
TOUSSAINT, C. K. I. WILLIAMS. Using Machine Learning to Focus Iterative Optimization, in "CGO ’06:
Proceedings of the International Symposium on Code Generation and Optimization", Washington, DC, USA,
IEEE Computer Society, 2006, p. 295–305, http://dx.doi.org/10.1109/CGO.2006.37.

[22] R. BACK. On the Correctness of Refinement Steps in Program Development, University of Helsinki, 1978.

[23] J.-P. BANÂTRE, D. LE MÉTAYER. The GAMMA Model and its Discipline of Programming, in "Science of
Computer Programming", 1990, vol. 15, no 1, p. 55-79.

[24] B. BARRAS, S. BOUTIN, C. CORNES, J. COURANT, J.-C. FILLIATRE, E. GIMENEZ, H. HERBELIN, G.
HUET, C. MUNOZ, C. MURTHY, C. PARENT, C. PAULIN-MOHRING, A. SAIBI, B. WERNER. The Coq
Proof Assistant Reference Manual : Version 6.1, 1997.

[25] M. M. BASKARAN, U. BONDHUGULA, S. KRISHNAMOORTHY, J. RAMANUJAM, A. ROUNTEV, P. SA-
DAYAPPAN. A compiler framework for optimization of affine loop nests for GPGPUs, in "ICS ’08: Proceed-
ings of the 22nd annual international conference on Supercomputing", New York, NY, USA, ACM, 2008, p.
225–234, http://doi.acm.org/10.1145/1375527.1375562.

[26] C. BASTOUL. Code Generation in the Polyhedral Model Is Easier Than You Think, in "PACT’13 IEEE
International Conference on Parallel Architecture and Compilation Techniques", Juan-les-Pins, France, 2004,
p. 7–16, http://hal.ccsd.cnrs.fr/ccsd-00017260.

[27] Y. BERTOT, B. GRÉGOIRE, X. LEROY. A Structured Approach to Proving Compiler Optimizations Based on
Dataflow Analysis, in "TYPES 2004", 2004, p. 66-81.

[28] L. BOUGÉ, Y. LE GUYADEC, G. UTARD, B. VIROT. A Proof System for a Simple Data-Parallel Programming
Language, in "IFIP WG 10.3, Applications in Parallel and Distributed Computing", Caracas (Venezuela),
North-Holland, April 1994.

[29] M. BRIDGES, N. VACHHARAJANI, Y. ZHANG, T. JABLIN, D. I. AUGUST. Revisiting the Sequential Pro-
gramming Model for Multi-Core, in "MICRO ’07: Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture", Washington, DC, USA, IEEE Computer Society, 2007, p. 69–84, http://
dx.doi.org/10.1109/MICRO.2007.35.

[30] M. BURTSCHER, I. GANUSOV, S. J. JACKSON, J. KE, P. RATANAWORABHAN, N. B. SAM. The VPC Trace-
Compression Algorithms, in "IEEE Trans. Comput.", 2005, vol. 54, no 11, p. 1329–1344.

[31] D. CACHERA, D. PICHARDIE. Embedding of Systems of Affine Recurrence Equations in Coq, in "Proc. of
16th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’03)", Lecture Notes in
Computer Science, Springer-Verlag, 2003, no 2758, p. 155–170.

http://hal.inria.fr/hal-00655485
http://hal.inria.fr/hal-00655485
http://dx.doi.org/10.1109/CGO.2006.37
http://doi.acm.org/10.1145/1375527.1375562
http://hal.ccsd.cnrs.fr/ccsd-00017260
http://dx.doi.org/10.1109/MICRO.2007.35
http://dx.doi.org/10.1109/MICRO.2007.35

Team CAMUS 27

[32] K. CHANDY, J. MISRA. Parallel Program Design: A Foundation, Addison Wesley, 1988.

[33] M. CINTRA, D. R. LLANOS. Design Space Exploration of a Software Speculative Parallelization Scheme, in
"IEEE Trans. Parallel Distrib. Syst.", 2005, vol. 16, no 6, p. 562–576, http://dx.doi.org/10.1109/tpds.2005.69.

[34] P. FEAUTRIER. Dataflow analysis of scalar and array references, in "International Journal of Parallel
Programming", 1991, vol. 20, no 1, p. 23–53.

[35] P. FEAUTRIER. Some efficient solutions to the affine scheduling problem, Part 1 : one dimensional time, in
"International Journal of Parallel Programming", 1992, vol. 21, no 5, p. 313–348.

[36] P. FEAUTRIER. Some efficient solutions to the affine scheduling problem, Part 2 : multidimensional time, in
"International Journal of Parallel Programming", 1992, vol. 21, no 6.

[37] P. FEAUTRIER. Automatic Parallelization in the Polytope Model, in "The Data Parallel Programming Model:
Foundations, HPF Realization, and Scientific Applications", Springer-Verlag, 1996, p. 79–103.

[38] X. FENG, Z. SHAO, Y. DONG, Y. GUO. Certifying low-level programs with hardware interrupts and
preemptive threads, in "SIGPLAN Not.", 2008, vol. 43, no 6, p. 170–182, http://dx.doi.org/10.1145/1379022.
1375603.

[39] C. FLANAGAN, S. N. FREUND, J. YI. Velodrome: a sound and complete dynamic atomicity checker for
multithreaded programs, in "PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation", New York, NY, USA, ACM, 2008, p. 293–303, http://dx.doi.org/10.
1145/1375581.1375618.

[40] P. GERNER. La sémantique des directives au compilateur : application au parallélisme de données, Université
Louis Pasteur, 2002.

[41] P. GERNER, É. VIOLARD. A Theoretical Framework of Data Parallelism and Its Operational Semantics, in
"Euro-Par 2000", LNCS, Springer, 2001, vol. 1900, p. 668–677.

[42] E. P. GRIBOMONT. Stepwise refinement and concurrency: the finite-state case, in "Sci. Comput. Program.",
1990, vol. 14, no 2-3, p. 185–228, http://dx.doi.org/10.1016/0167-6423(90)90020-E.

[43] M. HALL, D. PADUA, K. PINGALI. Compiler research: the next 50 years, in "Commun. ACM", 2009, vol.
52, no 2, p. 60–67, http://doi.acm.org/10.1145/1461928.1461946.

[44] A. HOBOR, A. W. APPEL, F. Z. NARDELLI. Oracle Semantics for Concurrent Separation Logic, in "ESOP",
2008, p. 353-367.

[45] A. KETTERLIN, P. CLAUSS. Recovering the Memory Behavior of Executable Programs, in "10th IEEE
Working Conference on Source Code Analysis and Manipulation, SCAM", Roumanie Timisoara, IEEE
Computer Society Press, Sep 2010, http://hal.inria.fr/inria-00502813.

[46] M. KULKARNI, K. PINGALI, B. WALTER, G. RAMANARAYANAN, K. BALA, L. P. CHEW. Optimistic
parallelism requires abstractions, in "PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on

http://dx.doi.org/10.1109/tpds.2005.69
http://dx.doi.org/10.1145/1379022.1375603
http://dx.doi.org/10.1145/1379022.1375603
http://dx.doi.org/10.1145/1375581.1375618
http://dx.doi.org/10.1145/1375581.1375618
http://dx.doi.org/10.1016/0167-6423(90)90020-E
http://doi.acm.org/10.1145/1461928.1461946
http://hal.inria.fr/inria-00502813

28 Activity Report INRIA 2012

Programming language design and implementation", New York, NY, USA, ACM, 2007, p. 211–222, http://
doi.acm.org/10.1145/1250734.1250759.

[47] J. LARUS, C. KOZYRAKIS. Transactional memory, in "Commun. ACM", 2008, vol. 51, no 7, p. 80–88.

[48] E. A. LEE. The Problem with Threads, in "Computer", 2006, vol. 39, no 5, p. 33–42, http://dx.doi.org/10.
1109/MC.2006.180.

[49] C. LENGAUER. Loop Parallelization in the Polytope Model, in "Parallel Processing Letters", 1994, vol. 4, no

3.

[50] X. LEROY. Formal verification of a realistic compiler, in "Communications of the ACM", July 2009, To
appear.

[51] X. LEROY. The Compcert verified compiler, software and commented proof, January 2010, http://compcert.
inria.fr.

[52] S.-W. LIAO, A. DIWAN, R. P. BOSCH, A. GHULOUM, M. S. LAM. SUIF Explorer: an interactive and
interprocedural parallelizer, in "PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming", New York, NY, USA, ACM, 1999, p. 37–48, http://doi.
acm.org/10.1145/301104.301108.

[53] V. LOECHNER, B. MEISTER, P. CLAUSS. Data Sequence Locality: a Generalization of Temporal Locality, in
"Euro-Par 2001", Manchester, UK, Springer, 2001.

[54] V. LOECHNER, C. MONGENET. Communication Optimization for Affine Recurrence Equations using Broad-
cast and Locality, in "International Journal of Parallel Programming", 2000, vol. 28, no 1.

[55] C.-K. LUK, R. COHN, R. MUTH, H. PATIL, A. KLAUSER, G. LOWNEY, S. WALLACE, V. J. REDDI, K.
HAZELWOOD. Pin: building customized program analysis tools with dynamic instrumentation, in "PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation",
New York, NY, USA, ACM, 2005, p. 190–200, http://doi.acm.org/10.1145/1065010.1065034.

[56] K. F. MOORE, D. GROSSMAN. High-level small-step operational semantics for transactions, in "POPL
’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages", New York, NY, USA, ACM, 2008, p. 51–62, http://dx.doi.org/10.1145/1328438.1328448.

[57] T. MOSELEY, D. A. CONNORS, D. GRUNWALD, R. PERI. Identifying potential parallelism via loop-centric
profiling, in "CF ’07: Proceedings of the 4th international conference on Computing frontiers", ACM, 2007,
p. 143–152.

[58] G. C. NECULA. Translation validation for an optimizing compiler, in "SIGPLAN Not.", 2000, vol. 35, no 5,
p. 83–94, http://doi.acm.org/10.1145/358438.349314.

[59] A. PNUELI, O. SHTRICHMAN, M. SIEGEL. The Code Validation Tool (CVT) - Automatic verification of code
generated from synchronous languages, in "Software Tools for Technology Transfer", 1998, vol. 2.

http://doi.acm.org/10.1145/1250734.1250759
http://doi.acm.org/10.1145/1250734.1250759
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://compcert.inria.fr
http://compcert.inria.fr
http://doi.acm.org/10.1145/301104.301108
http://doi.acm.org/10.1145/301104.301108
http://doi.acm.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1328438.1328448
http://doi.acm.org/10.1145/358438.349314

Team CAMUS 29

[60] L.-N. POUCHET, C. BASTOUL, A. COHEN, J. CAVAZOS. Iterative optimization in the polyhedral model:
part II, multidimensional time, in "PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation", New York, NY, USA, ACM, 2008, p. 90–100, http://
doi.acm.org/10.1145/1375581.1375594.

[61] L.-N. POUCHET, C. BASTOUL, A. COHEN, N. VASILACHE. Iterative Optimization in the Polyhedral Model:
part I, One-Dimensional Time, in "CGO ’07: Proceedings of the International Symposium on Code Generation
and Optimization", Washington, DC, USA, IEEE Computer Society, 2007, p. 144–156, http://dx.doi.org/10.
1109/CGO.2007.21.

[62] G. D. PRICE, J. GIACOMONI, M. VACHHARAJANI. Visualizing potential parallelism in sequential programs,
in "PACT ’08: Proceedings of the 17th international conference on Parallel architectures and compilation
techniques", New York, NY, USA, ACM, 2008, p. 82–90, http://doi.acm.org/10.1145/1454115.1454129.

[63] E. RAMAN, N. VACHHARAJANI, R. RANGAN, D. I. AUGUST. Spice: speculative parallel iteration chunk
execution, in "CGO ’08: Proceedings of the sixth annual IEEE/ACM international symposium on Code
generation and optimization", New York, NY, USA, ACM, 2008, p. 175–184, http://doi.acm.org/10.1145/
1356058.1356082.

[64] L. RAUCHWERGER, D. PADUA. The LRPD Test: Speculative Run-Time Parallelization of Loops with
Privatization and Reduction Parallelization, in "IEEE Trans. Parallel Distrib. Syst.", 1999, vol. 10, no 2,
p. 160–180, http://dx.doi.org/10.1109/71.752782.

[65] R. SEGHIR. Méthodes de dénombrement de points entiers de polyèdres et applications à l’optimisation de
programmes, Université de Strasbourg, December 2006.

[66] T. SHERWOOD, E. PERELMAN, G. HAMERLY, B. CALDER. Automatically characterizing large scale
program behavior, in "ASPLOS-X: Proceedings of the 10th international conference on Architectural support
for programming languages and operating systems", New York, NY, USA, ACM, 2002, p. 45–57, http://doi.
acm.org/10.1145/605397.605403.

[67] J. SMITH, R. NAIR. Virtual Machines: Versatile Platforms for Systems and Processes (The Morgan Kaufmann
Series in Computer Architecture and Design), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[68] C. TIAN, M. FENG, V. NAGARAJAN, R. GUPTA. Copy or Discard Execution Model For Speculative
Parallelization On Multicores, in "IEEE/ACM 41st International Symposium on Microarchitecture, MICRO
41", November 2008, p. 330-341.

[69] J.-B. TRISTAN, X. LEROY. Formal verification of translation validators: a case study on instruction
scheduling optimizations, in "SIGPLAN Not.", 2008, vol. 43, no 1, p. 17–27, http://dx.doi.org/10.1145/
1328897.1328444.

[70] J.-B. TRISTAN, X. LEROY. Verified Validation of Lazy Code Motion, in "Programming Language Design and
Implementation 2009", ACM Press, 2009, To appear.

[71] É. VIOLARD, S. GENAUD, G.-R. PERRIN. Refinement of Data Parallel Programs in PEI, in "Proceedings
of the IFIP TC 2 WG 2.1 international workshop on Algorithmic languages and calculi", London, UK, UK,
Chapman & Hall, Ltd., 1997, p. 107–131.

http://doi.acm.org/10.1145/1375581.1375594
http://doi.acm.org/10.1145/1375581.1375594
http://dx.doi.org/10.1109/CGO.2007.21
http://dx.doi.org/10.1109/CGO.2007.21
http://doi.acm.org/10.1145/1454115.1454129
http://doi.acm.org/10.1145/1356058.1356082
http://doi.acm.org/10.1145/1356058.1356082
http://dx.doi.org/10.1109/71.752782
http://doi.acm.org/10.1145/605397.605403
http://doi.acm.org/10.1145/605397.605403
http://dx.doi.org/10.1145/1328897.1328444
http://dx.doi.org/10.1145/1328897.1328444

30 Activity Report INRIA 2012

[72] A. WELC, S. JAGANNATHAN, A. HOSKING. Safe futures for Java, in "OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications",
New York, NY, USA, ACM, 2005, p. 439–453, http://doi.acm.org/10.1145/1094811.1094845.

[73] Q. WU, O. MENCER. Evaluating Sampling Based Hotspot Detection, in "International Conference on
Architecture of Computing Systems, ARCS", March 2009.

[74] B. XIN, W. N. SUMNER, X. ZHANG. Efficient program execution indexing, in "PLDI ’08: Proceedings of
the 2008 ACM SIGPLAN conference on Programming language design and implementation", New York, NY,
USA, ACM, 2008, p. 238–248, http://doi.acm.org/10.1145/1375581.1375611.

http://doi.acm.org/10.1145/1094811.1094845
http://doi.acm.org/10.1145/1375581.1375611

