

[image: cover]

GALLIUM
Programming languages, types, compilation and proofs
2012 Research Team Activity Report
	Paris - Rocquencourt

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Programs, Verification and Proofs
Presentation of the
		Project-Team

	Members
	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights of the Year

	Scientific Foundations	[bookmark: uid6]Programming languages: design, formalization, implementation
	[bookmark: uid11]Type systems
	[bookmark: uid15]Compilation
	[bookmark: uid17]Interface with formal methods

	Application Domains	[bookmark: uid21]High-assurance software
	[bookmark: uid22]Software security
	[bookmark: uid23]Processing of complex structured data
	[bookmark: uid24]Rapid development
	[bookmark: uid25]Teaching programming

	Software	[bookmark: uid27]OCaml
	[bookmark: uid28]CompCert C
	[bookmark: uid29]Zenon

	New Results	[bookmark: uid31]Language design and
type systems
	[bookmark: uid39]Formal verification of
compilers and static analyses
	[bookmark: uid51]The OCaml language and system
	[bookmark: uid60]Software specification and
verification

	Bilateral Contracts and Grants with Industry	[bookmark: uid66]The Caml Consortium

	Dissemination	[bookmark: uid80]Scientific Animation
	[bookmark: uid85]Teaching - Supervision - Juries
	[bookmark: uid104]Popularization

	Bibliography
		Major publications
	Publications of the year
	References in notes

Keywords: Programming Languages, Functional Programming, Compilation, Type Systems, Safety, Proofs Of ProgramsSection: Members
Research Scientists
Xavier Leroy [Team leader, DR Inria]
Damien Doligez [CR Inria]
François Pottier [DR Inria, HdR]
Didier Rémy [Deputy team leader, DR Inria, HdR]
Na Xu [CR Inria, until August 2012]

Technical Staff
Xavier Clerc [IR Inria, SED, 30% part time]
Valentin Robert [Research programmer, January–September 2012]
PhD Students
Julien Cretin [AMX grant, U. Paris Diderot]
Jacques-Henri Jourdan [ENS Paris student, since September 2012]
Jonathan Protzenko [CORDI-S grant, U. Paris Diderot]
Gabriel Scherer [AMN grant, U. Paris Diderot]
Post-Doctoral Fellows
Thomas Braibant [since September 2012]
Thibaut Balabonski [since October 2012]

Administrative Assistants
Stéphanie Chaix [Temporary personnel, until September 2012]
Virginie Collette [AI Inria, since October 2012]
Others
Raphaël Proust [graduate intern, ENS Cachan, April–August 2012]
Joseph Tassarotti [undergraduate intern, Harvard University, June–August 2012]

 Overall Objectives

 	Overall Objectives	[bookmark: uid3]Introduction
	[bookmark: uid4]Highlights of the Year

 [bookmark: uid3] Section:
 Overall Objectives
Introduction

The research conducted in the Gallium group aims at improving the
safety, reliability and security of software through advances in
programming languages and formal verification of programs. Our work
is centered on the design, formalization and implementation of
functional programming languages, with particular emphasis on type
systems and type inference, formal verification of compilers, and
interactions between programming and program proof. The Caml language
and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical
foundations and formal semantics to applications to real-world
problems.

[bookmark: uid4] Section:
 Overall Objectives
Highlights of the Year

Xavier Leroy was awarded the 2012 Microsoft Research Verified Software Milestone Award
in recognition of his work on the CompCert C verified compiler.

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid6]Programming languages: design, formalization, implementation
	[bookmark: uid11]Type systems
	[bookmark: uid15]Compilation
	[bookmark: uid17]Interface with formal methods

 [bookmark: uid6] Section:
 Scientific Foundations
Programming languages: design, formalization, implementation

Like all languages, programming languages are the media by which
thoughts (software designs) are communicated (development),
acted upon (program execution), and reasoned upon (validation).
The choice of adequate programming languages has a tremendous impact
on software quality. By “adequate”, we mean in particular the
following four aspects of programming languages:

	[bookmark: uid7] Safety. The programming language must not expose
error-prone low-level operations (explicit memory deallocation,
unchecked array accesses, etc) to the programmers. Further, it should
provide constructs for describing data structures, inserting
assertions, and expressing invariants within programs. The consistency
of these declarations and assertions should be verified through
compile-time verification (e.g. static type checking) and run-time
checks.

	[bookmark: uid8] Expressiveness. A programming language should manipulate
as directly as possible the concepts and entities of the application
domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A
typical example of a language feature that increases expressiveness is
pattern matching for examination of structured data (as in symbolic
programming) and of semi-structured data (as in XML processing).
Carried to the extreme, the search for expressiveness leads to
domain-specific languages, customized for a specific application area.

	[bookmark: uid9] Modularity and compositionality. The complexity of large
software systems makes it impossible to design and develop them as
one, monolithic program. Software decomposition (into semi-independent
components) and software composition (of existing or
independently-developed components) are therefore crucial. Again,
this modular approach can be applied to any programming language,
given sufficient fortitude by the programmers, but is much facilitated
by adequate linguistic support. In particular, reflecting notions of
modularity and software components in the programming language enables
compile-time checking of correctness conditions such as type
correctness at component boundaries.

	[bookmark: uid10] Formal semantics. A programming language should fully and
formally specify the behaviours of programs using mathematical
semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods
(program proof, model checking) to programs.

Our research work in language design and implementation centers around
the statically-typed functional programming paradigm,
which scores high on safety, expressiveness and formal semantics,
complemented with full imperative features and objects for additional
expressiveness, and modules and classes for compositionality. The
OCaml language and system embodies many of our earlier
results in this area [36] .
Through collaborations, we also gained
experience with several domain-specific languages based on a
functional core, including XML processing (XDuce, CDuce),
reactive functional programming, distributed programming (JoCaml), and
hardware modeling (ReFLect).

[bookmark: uid11] Section:
 Scientific Foundations
Type systems

Type systems [49] are a very effective way to improve
programming language reliability. By grouping the data manipulated by
the program into classes called types, and ensuring that operations
are never applied to types over which they are not defined
(e.g. accessing an integer as if it were an array, or calling a string
as if it were a function), a tremendous number of programming errors
can be detected and avoided, ranging from the trivial (misspelled
identifier) to the fairly subtle (violation of data structure
invariants). These restrictions are also very effective at thwarting
basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type checking,
and can be performed either dynamically (through run-time type tests)
or statically (at compile-time, through static program analysis). We
favor static type checking, as it catches bugs earlier and even in
rarely-executed parts of the program, but note that not all type
constraints can be checked statically if static type checking is to
remain decidable (i.e. not degenerate into full program proof).
Therefore, all typed languages combine static and dynamic
type-checking in various proportions.

Static type checking amounts to an automatic proof of
partial correctness of the programs that pass the compiler. The two
key words here are partial, since only type safety guarantees are
established, not full correctness; and automatic, since the
proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source).
Static type checking can therefore be viewed as the poor man's formal
methods: the guarantees it gives are much weaker than full formal
verification, but it is much more acceptable to the general population
of programmers.

[bookmark: uid12] Type systems and language design.

Unlike most other uses of static program analysis, static
type-checking rejects programs that it cannot analyze safe.
Consequently, the type system is an integral part of the language
design, as it determines which programs are acceptable and which are
not. Modern typed languages go one step further: most of the language
design is determined by the type structure (type algebra and
typing rules) of the language and intended application area. This is
apparent, for instance, in the XDuce and CDuce domain-specific
languages for XML transformations [46] , [42] ,
whose design is driven by the idea of regular expression types that
enforce DTDs at compile-time. For this reason, research on type
systems – their design, their proof of semantic correctness (type
safety), the development and proof of associated type checking and
inference algorithms – plays a large and central role in the field of
programming language research, as evidenced by the huge number of type
systems papers in conferences such as Principles of Programming
Languages.

[bookmark: uid13] Polymorphism in type systems.

There exists a fundamental tension in the field of type systems that
drives much of the research in this area. On the one hand, the desire
to catch as many programming errors as possible leads to type systems
that reject more programs, by enforcing fine distinctions between
related data structures (say, sorted arrays and general arrays). The
downside is that code reuse becomes harder: conceptually identical
operations must be implemented several times (say, copying a general array
and a sorted array). On the other hand, the desire to support code
reuse and to increase expressiveness leads to type
systems that accept more programs, by assigning a common type to
broadly similar objects (for instance, the Object type of all class
instances in Java). The downside is a loss of precision in static
typing, requiring more dynamic type checks (downcasts in Java) and
catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by
combining precise, descriptive types (to catch more errors statically)
with the ability to abstract over their differences in pieces of
reusable, generic code that is concerned only with their commonalities.
The paradigmatic example is parametric polymorphism, which is
at the heart of all typed functional programming
languages. Many forms of polymorphic typing have been studied since
then. Taking examples from our group, the work of Rémy, Vouillon and
Garrigue on row polymorphism [53] , integrated
in OCaml, extended the benefits of this approach (reusable
code with no loss of typing precision) to object-oriented programming,
extensible records and extensible variants. Another example is the
work by Pottier on subtype polymorphism, using a constraint-based
formulation of the type system [50] .

[bookmark: uid14] Type inference.

Another crucial issue in type systems research is the issue of type
inference: how many type annotations must be provided by the
programmer, and how many can be inferred (reconstructed) automatically
by the typechecker? Too many annotations make the language more
verbose and bother the programmer with unnecessary details. Too few
annotations make type checking undecidable, possibly requiring
heuristics, which is unsatisfactory.
OCaml requires explicit type information at data type
declarations and at component interfaces, but infers all
other types.

In order to be predictable, a type inference algorithm must be complete. That
is, it must not find one, but all ways of filling in the missing
type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances
of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of
principal types – that are imposed on type systems by the desire to perform
type inference sometimes lead to better designs. An illustration of this is
row variables. The development of row variables was prompted by type inference
for operations on records. Indeed, previous approaches were based on subtyping
and did not easily support type inference. Row variables have proved simpler
than structural subtyping and more adequate for typechecking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer's
understanding of his own program is often initially limited to a particular
context, where types are more specific than strictly required. Type inference
can reveal the additional generality, which allows making the code more
abstract and thus more reuseable.

[bookmark: uid15] Section:
 Scientific Foundations
Compilation

Compilation is the automatic translation of high-level programming
languages, understandable by humans, to lower-level languages, often
executable directly by hardware. It is an essential step in the
efficient execution, and therefore in the adoption, of high-level
languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has
had considerable influence on the designs of both. Compilers have
also attracted considerable research interest as the oldest instance
of symbolic processing on computers.

Compilation has been the topic of much research work in the last 40
years, focusing mostly on high-performance execution
(“optimization”) of low-level languages such as Fortran and C. Two
major results came out of these efforts: one is a superb body of
performance optimization algorithms, techniques and methodologies; the
other is the whole field of static program analysis, which now serves
not only to increase performance but also to increase reliability,
through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group
focuses on a less investigated topic: compiler certification.

[bookmark: uid16] Formal verification of compiler correctness.

While the algorithmic aspects of compilation (termination and
complexity) have been well studied, its semantic correctness – the
fact that the compiler preserves the meaning of programs – is
generally taken for granted. In other terms, the correctness of
compilers is generally established only through testing. This is
adequate for compiling low-assurance software, themselves validated
only by testing: what is tested is the executable code produced by the
compiler, therefore compiler bugs are detected along with application
bugs. This is not adequate for high-assurance, critical software
which must be validated using formal methods: what is formally
verified is the source code of the application; bugs in the compiler
used to turn the source into the final executable can invalidate the
guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not
to change the behavior of the program, it is necessary to apply formal
methods to the compiler itself. Several approaches in this direction
have been investigated, including translation validation,
proof-carrying code, and type-preserving compilation. The approach
that we currently investigate, called compiler verification,
applies program proof techniques to the compiler itself, seen as a
program in particular, and use a theorem prover (the Coq system) to
prove that the generated code is observationally equivalent to the
source code. Besides its potential impact on the critical software
industry, this line of work is also scientifically fertile: it
improves our semantic understanding of compiler intermediate
languages, static analyses and code transformations.

[bookmark: uid17] Section:
 Scientific Foundations
Interface with formal methods

Formal methods refer collectively to the mathematical specification of
software or hardware systems and to the verification of these systems
against these specifications using computer assistance: model
checkers, theorem provers, program analyzers, etc. Despite their
costs, formal methods are gaining acceptance in the critical software
industry, as they are the only way to reach the required levels of
software assurance.

In contrast with several other Inria projects, our research objectives
are not fully centered around formal methods. However, our research
intersects formal methods in the following two areas, mostly related
to program proofs using proof assistants and theorem provers.

[bookmark: uid18] Software-proof codesign

The current industrial practice is to write programs first, then
formally verify them later, often at huge costs. In contrast, we
advocate a codesign approach where the program and its proof of
correctness are developed in interaction, and are interested in
developing ways and means to facilitate this approach. One
possibility that we currently investigate is to extend functional
programming languages such as Caml with the ability to state
logical invariants over data structures and pre- and post-conditions
over functions, and interface with automatic or interactive provers to
verify that these specifications are satisfied. Another approach that
we practice is to start with a proof assistant such as Coq and improve
its capabilities for programming directly within Coq. Finally, we
also participate in the FoCaLiZe project, which designs and implements
an environment for combined programming and proving
[23] [52] .

[bookmark: uid19] Mechanized specifications and proofs for
programming languages components

We emphasize mathematical specifications and proofs of correctness for
key language components such as semantics, type systems, type
inference algorithms, compilers and static analyzers. These
components are getting so large that machine assistance becomes
necessary to conduct these mathematical investigations. We have
already mentioned using proof assistants to verify compiler
correctness. We are also interested in using them to specify and
reason about semantics and type systems. These efforts are part of a
more general research topic that is gaining importance: the formal
verification of the tools that participate in the construction and
certification of high-assurance software.

 Application Domains

 	Application Domains	[bookmark: uid21]High-assurance software
	[bookmark: uid22]Software security
	[bookmark: uid23]Processing of complex structured data
	[bookmark: uid24]Rapid development
	[bookmark: uid25]Teaching programming

 [bookmark: uid21] Section:
 Application Domains
High-assurance software

A large part of our work on programming languages and tools focuses on
improving the reliability of software. Functional programming and
static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications,
pure functional programming is well suited to program proof.
Moreover, functional programming languages such as Caml are eminently
suitable to develop the code generators and verification tools that
participate in the construction and qualification of high-assurance
software. Examples include Esterel Technologies's KCG 6 code
generator, the Astrée static analyzer, the
Caduceus/Jessie program prover, and the Frama-C platform. Our own
work on compiler verification combines these two aspects of functional
programming: writing a compiler in a pure functional language and
mechanically proving its correctness.

Static typing detects programming errors early, prevents a number
of common sources of program crashes (null references, out-of bound
array accesses, etc), and helps tremendously to enforce the integrity
of data structures. Judicious uses of generalized abstract data types
(GADTs), phantom types, type abstraction and other encapsulation
mechanisms also allow static type checking to enforce program
invariants.

[bookmark: uid22] Section:
 Application Domains
Software security

Static typing is also highly effective at preventing a number of
common security attacks, such as buffer overflows, stack smashing, and
executing network data as if it were code. Applications developed in
a language such as Caml are therefore inherently more secure than
those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their
soundness can also deliver static analyses that automatically verify
some security policies. Two examples from our past work include Java
bytecode verification [48] and enforcement of
data confidentiality through type-based inference of information flows
and noninterference properties [51] .

[bookmark: uid23] Section:
 Application Domains
Processing of complex structured data

Like most functional languages, Caml is very well suited to expressing
processing and transformations of complex, structured data. It
provides concise, high-level declarations for data structures; a very
expressive pattern-matching mechanism to destructure data; and
compile-time exhaustiveness tests. Languages such as CDuce and OCamlDuce
extend these benefits to the handling of semi-structured XML data
[44] .
Therefore, Caml is an excellent match for applications involving significant
amounts of symbolic processing: compilers, program analyzers and
theorem provers, but also (and less obviously) distributed
collaborative applications, advanced Web applications, financial
modeling tools, etc.

[bookmark: uid24] Section:
 Application Domains
Rapid development

Static typing is often criticized as being verbose (due to the additional
type declarations required) and inflexible (due to, for instance, class
hierarchies that must be fixed in advance). Its combination with type
inference, as in the Caml language, substantially diminishes the
importance of these problems: type inference allows programs to be
initially written with few or no type declarations; moreover, the
OCaml approach to object-oriented programming completely separates the
class inheritance hierarchy from the type compatibility relation.
Therefore, the Caml language is highly suitable for fast
prototyping and the gradual evolution of software prototypes into
final applications, as advocated by the popular “extreme
programming” methodology.

[bookmark: uid25] Section:
 Application Domains
Teaching programming

Our work on the Caml language has an impact on the teaching of
programming. Caml Light is one of the programming
languages selected by the French Ministry of Education
for teaching Computer Science in classes
préparatoires scientifiques. OCaml is also widely used for
teaching advanced programming in engineering schools, colleges and
universities in France, USA, and Japan.

 Software

 	Software	[bookmark: uid27]OCaml
	[bookmark: uid28]CompCert C
	[bookmark: uid29]Zenon

 [bookmark: uid27] Section:
 Software
OCaml
Participants :
 Damien Doligez [correspondant] , Xavier Clerc [team SED] , Alain Frisch [LexiFi] , Jacques Garrigue [Nagoya University] , Thomas Gazagnaire [OCamlPro] , Fabrice Le Fessant [Inria Saclay and OCamlPro] , Xavier Leroy, Luc Maranget [EPI Moscova] .

OCaml, formerly known as Objective Caml, is our flagship
implementation of the Caml language. From a language standpoint, it
extends the core Caml language with a fully-fledged object and class
layer, as well as a powerful module system, all joined together by a
sound, polymorphic type system featuring type inference. The OCaml
system is an industrial-strength implementation of this language,
featuring a high-performance native-code compiler for several
processor architectures (IA32, AMD64, PowerPC, ARM, etc) as well as a
bytecode compiler and interactive loop for quick development and
portability. The OCaml distribution includes a standard library and a
number of programming tools: replay debugger, lexer and parser
generators, documentation generator, compilation manager, and the
Camlp4 source pre-processor.

Web site: http://caml.inria.fr/

[bookmark: uid28] Section:
 Software
CompCert C
Participants :
 Xavier Leroy [correspondant] , Sandrine Blazy [EPI Celtique] , Jacques-Henri Jourdan, Valentin Robert.

The CompCert C verified compiler is a compiler for a large subset of
the C programming language that generates code for the PowerPC,
ARM and x86 processors. The distinguishing feature of Compcert is that
it has been formally verified using the Coq proof assistant: the
generated assembly code is formally guaranteed to behave as prescribed
by the semantics of the source C code. The subset of C supported is
quite large, including all C types except long long and
long double , all C operators, almost all control structures
(the only exception is unstructured switch), and the full power
of functions (including function pointers and recursive functions but
not variadic functions). The generated PowerPC code runs 2–3 times
faster than that generated by GCC without optimizations, and only 7%
(resp. 12%) slower than GCC at optimization level 1 (resp. 2).

Web site:
http://compcert.inria.fr/

[bookmark: uid29] Section:
 Software
Zenon
Participant :
 Damien Doligez.

Zenon is an automatic theorem prover based on the tableaux method.
Given a first-order statement as input, it outputs a fully formal
proof in the form of a Coq proof script. It has special rules
for efficient handling of equality and arbitrary transitive
relations. Although still in the prototype stage, it already gives
satisfying results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools
(for example integration in an interactive proof assistant), and also
to be easily retargeted to output scripts for different frameworks
(for example, Isabelle).

Web site:
http://zenon-prover.org/

 New Results

 	New Results	[bookmark: uid31]Language design and
type systems
	[bookmark: uid39]Formal verification of
compilers and static analyses
	[bookmark: uid51]The OCaml language and system
	[bookmark: uid60]Software specification and
verification

 [bookmark: uid31] Section:
 New Results
Language design and
type systems

[bookmark: uid32] The Mezzo programming language
Participants :
 Jonathan Protzenko, François Pottier.

In the past ten years, the type systems community and the separation logic
community, among others, have developed highly expressive formalisms for
describing ownership policies and controlling side effects in imperative
programming languages. In spite of this extensive knowledge, it remains very
difficult to come up with a programming language design that is simple,
effective (it actually controls side effects!) and expressive (it does not force
programmers to alter the design of their data structures and algorithms).

The Mezzo programming language, formerly known as HaMLet, aims to bring new
answers to these questions.

We have come up with a solid design for the programming language: many features
of the language have been reworked or consolidated this year, and
we believe we strike a good balance between expressiveness and
complexity. We wrote several flagship examples that illustrate the gains
offered by Mezzo, as well as two (yet unpublished) papers discussing the design
of the language. Jonathan Protzenko implemented a prototype
type-checker; although it is not perfect yet, several non-trivial
examples are successfully type-checked.

The current state of the Mezzo programming language is best described
in [40] ; a former version of this document
can be found as [39] .

François Pottier wrote a formal definition of (a slightly lower-level variant
of) Mezzo, and proved that Mezzo is type-safe: that is, well-typed programs
cannot crash (but they can stop abruptly if a run-time check fails). The proof,
which is about 15,000 lines, has been machine-checked using Coq. A paper that
describes this work is in preparation.

This work was facilitated by Pottier's experience with a similar
previous proof. In particular, out of the above 15,000 lines, about
2,000 lines correspond to a re-usable library for working with de
Bruijn indices, and about 3,000 lines correspond to a re-usable
formalisation of “monotonic separation algebras”, which help reason
about resources (memory, time, knowledge, ...) and how they evolve
over time. These libraries have not yet been fully documented and
released; this might be done in the future.

[bookmark: uid33] Coercion abstraction
Participants :
 Julien Cretin, Didier Rémy.

Expressive type systems often allow non trivial conversions between types,
which may lead to complex, challenging, and sometimes ad hoc type systems.
Such examples are the extension of System F with type equalities to model
GADTs and type families of Haskell, or the extension of System F with explicit
contracts.
A useful technique to simplify the meta-theoretical studies of such systems
is to make type conversions explicit as “coercions” inside terms.

Following a general approach to coercions based on System F, we introduced a
language F-iota with abstraction over coercions and where all type
transformations are represented as coercions. The main difficulty is
dealing with coercion abstraction, as abstract coercions whose types are
uninhabited cannot be erased at run-time. We proposed a restriction, called
parametric F-iota, that ensures erasability of all coercions by
construction. This work was presented at the POPL conference in
January [22] .

We extended parametric F-iota with non-interleaved positive recursive types
and with erasable isomorphisms. We generalized the presentation of the
language viewing coercions as conversions between typings (pairs of a typing
environment and a type) rather than between types. An extended version
with full proofs will be submitted for journal publication.

We also studied a more liberal version of F-iota where coercion inhabitation
is no more ensured by construction (which limits expressiveness), but instead
by providing coercion witnesses in source terms. This extension requires
pushing abstract coercions under redexes so that they do not block the
reduction. As a consequence, coercions cannot be reified in System F, and
we need a direct proof of termination of iota-reduction. We completed
one such proof based on reducibility candidates.

[bookmark: uid34] Ambivalent types for principal type inference with GADTs
Participants :
 Jacques Garrigue [Nagoya University] , Didier Rémy.

Type inference for Generalized Abstract Data Types (GADTs) is always a
matter of compromise because it is inherently non monotone: assuming
more specific types for GADTs may ensure more invariants, which in turn may
result in more general types. Moreover, even when types of GADTs
parameters are explicitly given, they introduce equalities between
types, which makes them inter-convertible but with a limited
scope. This may then creates an ambiguity when leaving the scope of
the equation: which representative should be used for the equivalent
forms? Ideally, one should use a type disjunction, but this is not
allowed—for good reasons. Hence, to avoid arbitrary choices, these
situations must be rejected, forcing the user to add more annotations
to resolve ambiguities.

We proposed a new approach to type inference with GADTs. While some uses of
equations are unavoidable and create real ambiguities, others are gratuitous
and create artificial ambiguities, To distinguish between the two, we
introduced ambivalent types: a way to trace types that have been
obtained by an unavoidable use of an equation. We then redefined
ambiguities so that only ambivalent types become ambiguous and should be
rejected or resolved by a programmer annotation.

Interestingly, the solution is fully compatible with unification-based type
inference algorithms used in ML dialects. The work was presented at
the ML workshop [31] and implemented in the
latest version 4.00 of OCaml.

[bookmark: uid35] GADTs and Subtyping
Participants :
 Gabriel Scherer, Didier Rémy.

Following the addition of GADTs to the OCaml language in version 4.00
released this year, we studied the theoretical underpinnings of
variance subtyping for GADTs. The question is to decide which
variances should be accepted for a GADT-style type declaration that
includes type equality constraints in constructor types. This question
exposes a new notion of decomposability and unexpected tensions in
the design of a subtyping relation. Our formalization partially reuses
earlier work by François Pottier and Vincent Simonet
[54] . It was presented at the ML
Workshop [33] . An extended version including full
proofs is available as a technical report [38]
and was submitted for presentation at a conference.

[bookmark: uid36] Singleton types for code inference
Participants :
 Gabriel Scherer, Didier Rémy.

Inspired by tangent aspects of the PhD work of Julien Cretin, we
investigated the use of singleton types for code inference. If we can
prove that a type contains, in a suitably restricted pure
lambda-calculus, a unique inhabitant modulo program equivalence, the
compiler can infer the code of this inhabitant. This opens the way to
type-directed description of boilerplate code, through type inference
of finer-grained type annotations. The preliminary results seem
encouraging, both on the theoretical side (identifying general
situations for type-directed programming) and the practical side
(mining existing OCaml code for usage situations).

[bookmark: uid37] Programming with names and binders
Participants :
 Nicolas Pouillard, François Pottier.

Following Nicolas Pouillard's Ph.D. defense in January
2012 [11] , Nicolas Pouillard and François Pottier
produced a unified presentation of Pouillard's approach to programming with
abstract syntax, in the form of a paper that was published in the Journal of
Functional Programming [16] .

[bookmark: uid38] A type-and-capability calculus with hidden state
Participant :
 François Pottier.

During the year 2010, François Pottier developed a machine-checked proof of an
expressive type-and-capability system, which can be used to type-check and
prove properties of imperative ML programs. The proof is carried out in Coq
and takes up roughly 20,000 lines of code. In the first half of 2011, François
Pottier wrote a paper that describes the system and its proof in detail. This
paper was published, after a revision, in 2012 [15] .

[bookmark: uid39] Section:
 New Results
Formal verification of
compilers and static analyses

[bookmark: uid40] The CompCert verified C compiler
Participants :
 Xavier Leroy, Sandrine Blazy [project-team Celtique] , Jacques-Henri Jourdan, Valentin Robert.

In the context of our work on compiler verification (see
section
	3.3.1), since 2005 we have been developing and
formally verifying a moderately-optimizing compiler for a large subset
of the C programming language, generating assembly code for the
PowerPC, ARM, and x86 architectures [5] .
This compiler comprises a back-end part, translating the Cminor
intermediate language to PowerPC assembly and reusable for source
languages other than C [4] , and a
front-end translating the CompCert C subset of C to Cminor.
The compiler is mostly written within the specification language of
the Coq proof assistant, from which Coq's extraction facility
generates executable Caml code. The compiler comes with a 50000-line,
machine-checked Coq proof of semantic preservation establishing that
the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

The two major novelties of CompCert this year are described
separately: verification of floating-point arithmetic
(section
	6.2.2) and a posteriori validation of
assembly and linking (section
	6.2.3). Other
improvements to CompCert include:

	[bookmark: uid41] The meaning of “volatile” memory accesses is now fully
specified in the semantics of the CompCert C source language. Their
translation to built-in function invocations, previously part of the
unverified pre-front-end part of CompCert, is now proved correct.

	[bookmark: uid42] CompCert C now natively supports assignment between composite types
(structs or unions), passing composite types by value as function
parameters, and other instances of using composites as r-values, with
the exception of returning composites by value from a function.

	[bookmark: uid43] A new pass was added to the compiler to perform inlining of
functions. Its correctness proof raised interesting challenges
to properly relate the (widely different) call stacks of the program
before and after inlining.

	[bookmark: uid44] The constant propagation optimization is now able to propagate
the initial values of global variables declared const .

	[bookmark: uid45] The common subexpression elimination (CSE) optimization
was improved so as to eliminate more redundant memory loads.

Two versions of the CompCert development were publicly released,
integrating these improvements: versions 1.10 in March and 1.11 in July.
We also wrote a 50-page user's manual [37] and
a technical report on the CompCert memory model
[35] .

In parallel, we continued our collaboration with Jean Souyris, Ricardo
Bedin França and Denis Favre-Felix at Airbus. They are conducting
an experimental evaluation of CompCert's usability for avionics
software, and studying the regulatory issues (DO-178 certification)
surrounding the potential use of CompCert in this context.
Preliminary results were presented at the 2012 Embedded Real-Time
Software and Systems conference (ERTS'12) [29] .

[bookmark: uid46] Formalization of floating-point arithmetic in Compcert
Participants :
 Sylvie Boldo [project-team Toccata] , Jacques-Henri Jourdan, Xavier Leroy, Guillaume Melquiond [project-team Toccata] .

The aim of this research theme was to formalize the semantics and
compilation of floating-point arithmetic in the CompCert
compiler. Prior to this work, floating-point arithmetic was
axiomatized in the Coq proof of CompCert, then mapped to OCaml's
floating-point operations during extraction. This approach was prone
to errors and fails to formally guarantee conformance to the IEEE-754
standard for floating-point arithmetic.

To remedy this situation, Jacques-Henri Jourdan replaced this
axiomatization by a fully-formal Coq development, building on the
Coq formalization of IEEE-754 arithmetic provided by the Flocq
library. Sylvie Boldo and Guillaume Melquiond, authors of Flocq,
adapted their library to the needs of this development. The new
formalization of floating-point arithmetic is used throughout
CompCert: to give semantics to FP computations in the
source, intermediate and target (assembly) languages; to perform
correct compile-time FP evaluations during constant propagation; to
prove the correctness of code generation scheme for conversions
between integers and FP numbers; and to parse FP literals with correct
rounding.

A paper describing this work is accepted for presentation at the
forthcoming ARITH 2013 conference [20] .

[bookmark: uid47] Validation of assembly and linking
Participants :
 Valentin Robert, Xavier Leroy.

Valentin Robert designed and implemented a
validation tool for the assembly and linking
phases of the CompCert C compiler. These passes are not formally
verified and call into off-the-shelf assemblers and linkers. The cchecklink tool of Valentin Robert improves the confidence that
end-users can have in these passes by validating a posteriori
their operation. The tool takes as inputs the PowerPC/ELF executable
produced by the linker, as well as the abstract syntax trees for
assembly files produced by the formally-verified part of CompCert. It
then proceeds to establish a correspondence between the two sets of
inputs, via a thorough structural analysis on the ELF executable,
light disassembling of the machine code, expansion of CompCert's
macro-asm instructions, and propagation of constraints over symbolic
names. The tool produces detailed diagnostics if any discrepancies
are found.

[bookmark: uid48] Improving CompCert's reusability for verification tools
Participants :
 Xavier Leroy, Jacques-Henri Jourdan, Andrew Appel [Princeton University] , Sandrine Blazy [project-team Celtique] , David Pichardie [project-team Celtique] .

Several ongoing projects focus on proving the soundness of
verification tools that reuse parts of the CompCert development,
namely some of the intermediate languages, their formal semantics, and
the CompCert passes that produce these intermediate forms. This is
the case for the Verasco ANR project, which focuses on the proof of a
static analyzer based on abstract interpretation, and for the Verified
Software Toolchain (VST) project, led by Andrew Appel at Princeton
University, which develops a concurrent separation logic embedded in
Coq. However, the CompCert intermediate languages, currently designed
to fit the needs of a compiler, are not perfectly suited to static
analysis and deductive verification.

To improve the reusability of CompCert's Clight language in the
Verasco and VST projects, Xavier Leroy is currently revising the
CompCert C front-end passes so that function-local C variables whose
address is never taken are pulled out of memory and replaced by
nonadressable temporary variables. The resulting Clight intermediate
form is much easier to analyze or prove correct, as temporary
variables cannot suffer from aliasing problems.

Likewise, Sandrine Blazy, Jacques-Henri Jourdan, Xavier Leroy and
David Pichardie designed a variant of CompCert's RTL intermediate
language, called CFG. Like RTL, CFG represents the flow of control by
a graph; unlike RTL, CFG is independent of the target processor, and
supports complex expressions instead of 3-address code. These
features of CFG make it a better target for static analysis, both
non-relational (e.g. David Pichardie's certified interval analysis)
and relational. Jacques-Henri Jourdan implemented and
proved correct a compilation pass that produces CFG code from
the Cminor intermediate language of CompCert.

[bookmark: uid49] Formal verification of hardware synthesis
Participants :
 Thomas Braibant, Adam Chlipala [MIT] .

Verification of hardware designs has been thoroughly investigated, and
yet, obtaining provably correct hardware of significant complexity is
usually considered challenging and time-consuming. Hardware synthesis
aims to raise the level of description of circuits, reducing the
effort necessary to produce them.

This yields two opportunities for formal verification: a first option
is to verify (part of) the hardware compiler; a second option is to
study to what extent these higher-level design are amenable to formal
proof.

During a visit at MIT, Thomas Braibant worked on the implementation
and proof of correctness of a prototype hardware compiler in Coq,
under Adam Chlipala's supervision. This compiler produces
descriptions of circuits in RTL style from a high-level description
language inspired by BlueSpec. After joining Gallium, Thomas Braibant
continued working part time on this subject, finishing the proof of
this compiler, and implementing a few hardware designs of mild
complexity. This work was presented at the 2012 Coq Workshop
[30] and will be submitted to a
conference in 2013.

[bookmark: uid50] A formally-verified alias analysis
Participants :
 Valentin Robert, Xavier Leroy.

Valentin Robert improved the verified static analysis for pointers and
non-aliasing that he initiated in 2011 during his Master's internship
supervised by Xavier Leroy.
This alias analysis is intraprocedural and flow-sensitive, and follows
the “points-to” approach of Andersen [41] . An
originality of this alias analysis is that it is conducted over the
RTL intermediate language of the CompCert compiler: since RTL is
essentially untyped, the traditional approaches to field sensitivity
do not apply, and are replaced by a simple but effective tracking of
the numerical offsets of pointers with respect to their base memory
blocks. The soundness of this alias analysis is proved against the
operational semantics of RTL using the Coq proof assistant and
techniques inspired from abstract interpretation. A paper describing
the analysis and its soundness proof was presented at the CPP 2012
conference [26] .

[bookmark: uid51] Section:
 New Results
The OCaml language and system

[bookmark: uid52] The OCaml system
Participants :
 Xavier Clerc [team SED] , Damien Doligez, Alain Frisch [Lexifi SAS] , Jacques Garrigue [University of Nagoya] , Fabrice Le Fessant [Inria Saclay and OCamlPro start-up company] , Jacques Le Normand [Lexifi SAS] , Xavier Leroy.

This year, we released versions 4.00.0 and 4.00.1 of the OCaml system.
Version 4.00.0 (released in July) is a major release that fixes about
150 reported bugs and 4 unreported bugs, and introduces 57 new
features suggested by users. Version 4.00.1 (released in October) is a
bug-fix release that fixes 3 major and 20 minor bugs.
Damien Doligez acted as release manager for both versions.

The major innovation in OCaml 4.00 is support for generalized
algebraic datatypes (GADTs). These non-uniform datatype definitions
enable programmers to express some invariants over data structures,
and the OCaml type-checker to enforce these invariants. They also
support interesting ways of reflecting types into run-time values.
GADTs are found in proof assistants such as Coq and in functional
languages such as Agda and Haskell. Their integration in OCaml raised
delicate issues of partial type inference and principality of inferred
types, to which Jacques Garrigue and Jacques Le Normand provided
original solutions [45] .

Other features of this release include:

	[bookmark: uid53] Lightweight notations to facilitate the use of first-class modules.

	[bookmark: uid54] Better reporting of type errors.

	[bookmark: uid55] Improvements in native-code generation.

	[bookmark: uid56] Performance and security improvements in the hashing primitive
and hash tables.

	[bookmark: uid57] New warnings for unused code (variables, record fields, etc.)

	[bookmark: uid58] A new back-end for the ARM architecture.

[bookmark: uid59] Namespaces for OCaml
Participants :
 Gabriel Scherer, Didier Rémy, Fabrice Le Fessant [Inria Saclay] .

As part of an ongoing discussion among members of the OCaml Consortium, we
investigated the formal aspects of “namespaces” and their putative status
in the OCaml language. Namespaces aim at providing OCaml programmers
with efficient ways to manage and structure the names of compilation
units, in contrast with the flat, global space of compilation units
provided today in OCaml. This formalization provides scientific support to
ongoing design and engineering discussions. It was presented at the
December 2011 IFIP 2.8 working group on functional programming, and at
the December 2012 meeting of the OCaml Consortium.

[bookmark: uid60] Section:
 New Results
Software specification and
verification

[bookmark: uid61] Tools for TLA+
Participants :
 Damien Doligez, Leslie Lamport [Microsoft Research] , Stephan Merz [EPI VeriDis] , Tomer Libal [Microsoft Research-Inria Joint Centre] , Hernán Vanzetto [Microsoft Research-Inria Joint Centre] .

Damien Doligez is head of the “Tools for Proofs” team in the
Microsoft-Inria Joint Centre. The aim of this team is to
extend the TLA+ language with a formal language for hierarchical
proofs, formalizing the ideas in [47] , and to
build tools for writing TLA+ specifications and mechanically
checking the corresponding formal proofs.

This year, the TLA+ project released two new versions (in January and
in November) of the TLA+
tools: the GUI-based TLA Toolbox and the TLA+ Proof System, an
environment for writing and checking TLA+ proofs. This environment is
described in a paper presented at the 2012 symposium on Formal
Methods [21] .
The January release (version 1.0 of TLAPS and 1.4.1 of Toolbox) added
support for back-ends based on SMT provers (CVC3, Z3, Yices, VeriT),
which dramatically extends the range of proof obligations that the
system can discharge automatically. The November release includes many
bug-fixes and performance improvements.

We have also improved the theoretical design of the proof language
with respect to temporal properties. This design will be implemented
in TLAPS in the near future.

Web site:
http://tlaplus.net/

[bookmark: uid62] The Zenon automatic theorem prover
Participants :
 Damien Doligez, David Delahaye [CNAM] , Mélanie Jacquel [CNAM] .

Damien Doligez continued the development of Zenon, a tableau-based
prover for first-order logic with equality and theory-specific
extensions. Version 0.7.1 of Zenon was released in May.

David Delahaye and Mélanie Jacquel designed and implemented (with some
help from Damien Doligez) an extension of Zenon called SuperZenon,
based on the Superdeduction framework of Brauner, Houtmann, and
Kirchner [43] .

Both Zenon and SuperZenon entered the CASC theorem-proving contest,
where, as expected, SuperZenon did much better than Zenon.

[bookmark: uid63] Hybrid contract checking via symbolic simplification
Participant :
 Na Xu.

Program errors are hard to detect or prove absent. Allowing
programmers to write formal and precise specifications, especially in
the form of contracts, is one popular approach to program verification
and error discovery. Na Xu formalizes and implements a hybrid contract
checker for a pure subset of OCaml. The key technique we use is symbolic
simplification, which makes integrating static and dynamic contract
checking easy and effective. This technique statically verifies that a
function satisfies its contract or blames the function violating the
contract. When a contract satisfaction is undecidable, it leaves
residual code for dynamic contract checking.

A paper describing this result is published in the proceeding of the
PEPM'2012 conference [27] . An extended version of this
paper will appear in the journal Higher-Order and Symbolic
Computation. Na Xu implemented this approach in a prototype based on
the OCaml 3.12.1 compiler and experimented with nontrivial examples
such as sorting algorithms and balancing AVL trees (see
http://gallium.inria.fr/~naxu/research/hcc.html).

[bookmark: uid64] Probabilistic contracts for component-based design
Participants :
 Na Xu, Gregor Goessler [project-team POPART] , Alain Girault [project-team POPART] .

We define a framework of probabilistic contracts for constructing
component-based embedded systems, based on the formalism of
discrete-time Interactive Markov Chains. A contract specifies the
assumptions a component makes on its context and the guarantees it
provides. Probabilistic transitions represent allowed uncertainty in
the component behavior, for instance, to model internal choice or
reliability. Action transitions are used to model non-deterministic
behavior and communication between components. An interaction model
specifies how components interact with each other.

We provide the ingredients for a component-based design flow,
including (1) contract satisfaction and refinement, (2) parallel
composition of contracts over disjoint, interacting components, and
(3) conjunction of contracts describing different requirements over
the same component. Compositional design is enabled by congruence of
refinement. A paper describing the details of this result is published
in the journal Formal Methods in System Design [14] .

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	[bookmark: uid66]The Caml Consortium

 [bookmark: uid66] Section:
 Bilateral Contracts and Grants with Industry
The Caml Consortium
Participants :
 Xavier Leroy [correspondant] , Xavier Clerc, Damien Doligez, Didier Rémy.

The Caml Consortium is a formal structure where industrial and
academic users of Caml can support the development of the language and
associated tools, express their specific needs, and contribute to the
long-term stability of Caml. Membership fees are used to fund
specific developments targeted towards industrial users. Members of
the Consortium automatically benefit from very liberal licensing
conditions on the OCaml system, allowing for instance the OCaml
compiler to be embedded within proprietary applications.

The Consortium currently has 12 member companies:
CEA,
Citrix,
Dassault Aviation,
Dassault Systèmes,
Esterel Technologies,
Jane Street,
LexiFi,
Microsoft,
MLstate,
Mylife.com,
OCamlPro,
and SimCorp.

For a complete description of this
structure, refer to http://caml.inria.fr/consortium/ .
Xavier Leroy chairs the scientific committee of the Consortium.

 Dissemination

 	Dissemination	[bookmark: uid80]Scientific Animation
	[bookmark: uid85]Teaching - Supervision - Juries
	[bookmark: uid104]Popularization

 [bookmark: uid80] Section:
 Dissemination
Scientific Animation

[bookmark: uid81] Conference organization

Didier Rémy co-chaired the OCaml Users and Developers Workshop (OUD
2012), affiliated with ICFP 2012, which took place in Copenhagen,
Denmark in September 2012.

Didier Rémy is organizing the next meeting of IFIP working group 2.8
“Functional programming”, which will take place in Aussois, France,
in October 2013.

[bookmark: uid82] Editorial boards

Xavier Leroy was co-editor in chief of the Journal of Functional
Programming until March 2012, when he stepped down at the end of his
5-year term.

Xavier Leroy is a member of the editorial boards of Journal of
Automated Reasoning, Journal of Functional Programming, and Journal of
Formalized Reasoning.

[bookmark: uid83] Program committees

Damien Doligez was a member of the program committee of the
International Workshop on the TLA+ Method and Tools 2012 (TLA 2012), a
satellite event of Formal Methods 2012 (FM 2012)

Xavier Leroy was a member of the program committees of the
ACM symposium on Principles of Programming Languages (POPL 2013)
and of the European Symposium on Programming (ESOP 2013). He was a
member of the external review committee for the ACM conference on
Programming Languages Design and Implementation (PLDI 2013).

François Pottier was a member of the program committees of the ACM
workshops on ML (ML 2012), on Higher-Order Programming with Effects (HOPE 2012),
and on Programming Languages meets Program
Verification (PLPV 2013). He was a member of the external review
committee for the ACM symposium on Principles of Programming Languages
(POPL 2013).

Na Xu was a member of the program committee of the ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM 2013).

[bookmark: uid84] Steering committees

Xavier Leroy is a member of the steering committees for the Certified
Programs and Proofs (CPP) conference and for the ACM PLPV workshop.

François Pottier is a member of the steering committee for the ACM
TLDI workshop.

Didier Rémy is a member of the steering committee of the OCaml Users
and Implementors Workshop.

[bookmark: uid85] Section:
 Dissemination
Teaching - Supervision - Juries

[bookmark: uid86] Teaching

	[bookmark: uid87] Licence:
“Algorithmique et programmation” (INF431),
13h30,
L3,
École Polytechnique,
France.
Lecturer: François Pottier (professeur chargé de cours).

	[bookmark: uid88] Licence:
“Algorithmique et programmation”,
40h,
L3,
École Polytechnique,
France.
Teaching assistant: Jonathan Protzenko.

	[bookmark: uid89] Licence:
“Bases de données”,
26h,
L1,
U. Paris Diderot,
France.
Teaching assistant: Julien Cretin.

	[bookmark: uid90] Licence:
“Principe de fonctionnement des machines binaires”,
33h,
L1,
U. Paris Diderot,
France.
Teaching assistant: Julien Cretin.

	[bookmark: uid91] Licence:
“Travaux dirigés de Caml Light”,
36h,
L1 (classes préparatoires MPSI),
Lycée Louis-le-Grand,
France.
Teaching assistant: Gabriel Scherer.

	[bookmark: uid92] Master: “Functional programming and type systems”,
30h,
M2,
MPRI master (U. Paris Diderot and ENS Paris and ENS Cachan and Polytechnique),
France.
Lecturers: Xavier Leroy (12h) and Didier Rémy (18h).

	[bookmark: uid93] Master:
“Modal Web”,
36 hours,
M1,
École Polytechnique,
France.
Teaching assistant: Jonathan Protzenko.

	[bookmark: uid94] Doctorat:
“Proving a compiler: mechanized verification of program transformations and static analyses”,
7h,
Oregon Programming Languages Summer School,
USA.
Lecturer: Xavier Leroy.

[bookmark: uid95] Supervision

	[bookmark: uid96] PhD:
Nicolas Pouillard,
“A unifying approach to safe programming with first-order syntax with
binders”,
U. Paris Diderot,
defended January 13th, 2012,
supervised by François Pottier.

	[bookmark: uid97] PhD:
Tahina Ramananandro,
“Mechanized formal semantics and verified compilation for C++ objects”,
U. Paris Diderot,
defended January 10th, 2012,
supervised by Xavier Leroy.

	[bookmark: uid98] PhD in progress:
Julien Cretin,
“Coercions in typed languages”,
since December 2010,
supervised by Didier Rémy.

	[bookmark: uid99] PhD in progress:
Alexandre Pilkiewicz (currently employed by Google in New York),
“Verifying polyhedral optimizations”,
U. Paris Diderot,
since December 2008,
supervised by François Pottier

	[bookmark: uid100] PhD in progress:
Jonathan Protzenko,
“Fine-grained static control of side effects”,
U. Paris Diderot,
since September 2010,
supervised by François Pottier.

	[bookmark: uid101] PhD in progress:
Gabriel Scherer,
“Modules and mixins”,
U. Paris Diderot,
since October 2011,
supervised by Didier Rémy.

	[bookmark: uid102] PhD in progress:
Jacques-Henri Jourdan,
“Formal verification of static analyzers for critical embedded software”,
U. Paris Diderot,
since September 2012,
supervised by Xavier Leroy.

[bookmark: uid103] Juries

Xavier Leroy was reviewer (rapporteur) for the Ph.D. of
Robert Dockins (Princeton University, August 2012),
Antonis Stampoulis (Yale University, October 2012),
and Delphine Demange (ENS Cachan Bretagne, October 2012).
He was a member of the Ph.D. jury of Ricardo Bedin França
(U. Toulouse, April 2012). Xavier Leroy chaired the Habilitation jury
of Fabrice Rastello, ENS Lyon, December 2012.

François Pottier was an external examiner for the Habilitation defense of
Etienne Lozes (École Normale Supérieure de Cachan, July 3, 2012)
and for the Ph.D. defense of
Jérémy Planul (École Polytechnique, February 8, 2012),
Thibaut Balabonski (Université Paris Diderot, November 16, 2012),
and
Antoine Madet (Université Paris Diderot, December 6, 2012).

[bookmark: uid104] Section:
 Dissemination
Popularization

Jacques-Henri Jourdan participated in the organization of the Castor
computer science contest (http://castor-informatique.fr/). This
contest aims at making computer science more popular in French high
schools and junior high schools. It attracted over 90,000
participants.

Xavier Leroy gave a popular science talk on critical avionics software
at the December 2012 “Jam session” meeting of Inria Alumni.

Jonathan Protzenko, along with two other PhD students, is curating the Junior
Seminar in Rocquencourt, where he coaches other PhD students into presenting
their work in front of a friendly audience.

Gabriel Scherer set up a research blog for the Gallium project-team, to
highlight small chunks of work of the team members in an informal and
popularized style. For example, Valentin Robert, Thomas Braibant and
Jacques-Henri Jourdan described various aspects of their interaction with
the Coq proof assistant, some of which eventually resulted in small
improvements integrated by the Coq development team. Articles are published
approximately once a week, and the blog gets on average 500 visits a day.

 Bibliography
[bookmark: Major]Major publications by the team in recent years
	[1][bookmark: gallium-2012-bid47]
	A. Charguéraud, F. Pottier.
Functional Translation of a Calculus of Capabilities, in: Proceedings of the 13th International Conference on Functional Programming (ICFP'08), ACM Press, September 2008, p. 213–224.
http://doi.acm.org/10.1145/1411204.1411235

 	[2][bookmark: gallium-2012-bid51]
	K. Chaudhuri, D. Doligez, L. Lamport, S. Merz.
Verifying Safety Properties With the TLA+ Proof System, in: Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Lecture Notes in Computer Science, Springer, 2010, vol. 6173, p. 142–148.
http://dx.doi.org/10.1007/978-3-642-14203-1_12

 	[3][bookmark: gallium-2012-bid49]
	D. Le Botlan, D. Rémy.
Recasting MLF, in: Information and Computation, 2009, vol. 207, no 6, p. 726–785.
http://dx.doi.org/10.1016/j.ic.2008.12.006

 	[4][bookmark: gallium-2012-bid22]
	X. Leroy.
A formally verified compiler back-end, in: Journal of Automated Reasoning, 2009, vol. 43, no 4, p. 363–446.
http://dx.doi.org/10.1007/s10817-009-9155-4

 	[5][bookmark: gallium-2012-bid21]
	X. Leroy.
Formal verification of a realistic compiler, in: Communications of the ACM, 2009, vol. 52, no 7, p. 107–115.
http://doi.acm.org/10.1145/1538788.1538814

 	[6][bookmark: gallium-2012-bid50]
	B. Montagu, D. Rémy.
Modeling Abstract Types in Modules with Open Existential Types, in: Proceedings of the 36th ACM Symposium on Principles of Programming Languages (POPL'09), ACM Press, January 2009, p. 354-365.
http://doi.acm.org/10.1145/1480881.1480926

 	[7][bookmark: gallium-2012-bid48]
	F. Pottier.
Hiding local state in direct style: a higher-order anti-frame rule, in: Proceedings of the 23rd Annual IEEE Symposium on Logic In Computer Science (LICS'08), IEEE Computer Society Press, June 2008, p. 331-340.
http://dx.doi.org/10.1109/LICS.2008.16

 	[8][bookmark: gallium-2012-bid46]
	F. Pottier, D. Rémy.
The Essence of ML Type Inference, in: Advanced Topics in Types and Programming Languages, B. C. Pierce (editor), MIT Press, 2005, chap. 10, p. 389–489.

 	[9][bookmark: gallium-2012-bid52]
	N. Pouillard, F. Pottier.
A fresh look at programming with names and binders, in: Proceedings of the 15th International Conference on Functional Programming (ICFP 2010), ACM Press, 2010, p. 217–228.
http://doi.acm.org/10.1145/1863543.1863575

 	[10][bookmark: gallium-2012-bid53]
	J.-B. Tristan, X. Leroy.
A simple, verified validator for software pipelining, in: Proceedings of the 37th ACM Symposium on Principles of Programming Languages (POPL'10), ACM Press, 2010, p. 83–92.
http://doi.acm.org/10.1145/1706299.1706311

[bookmark: year]Publications of the year
Doctoral Dissertations and Habilitation Theses
	[11][bookmark: gallium-2012-bid18]
	N. Pouillard.
Une approche unifiante pour programmer sûrement avec de la syntaxe du premier ordre contenant des lieurs / Namely, Painless: A unifying approach to safe programming with first-order syntax with binders, Université Paris Diderot (Paris 7), January 2012.
http://tel.archives-ouvertes.fr/tel-00759059

 	[12][bookmark: gallium-2012-bid40]
	T. Ramananandro.
Machine-checked Formal Semantics and Verified Compilation for C++ Objects, Université Paris Diderot (Paris 7), January 2012.
http://tel.archives-ouvertes.fr/tel-00769044

Articles in International Peer-Reviewed Journal
	[13][bookmark: gallium-2012-bid37]
	A. W. Appel, R. Dockins, X. Leroy.
A list-machine benchmark for mechanized metatheory, in: Journal of Automated Reasoning, 2012, vol. 49, no 3, p. 453–491.
http://dx.doi.org/10.1007/s10817-011-9226-1

 	[14][bookmark: gallium-2012-bid35]
	G. Gössler, D. N. Xu, A. Girault.
Probabilistic contracts for component-based design, in: Formal Methods in System Design, 2012, vol. 41, no 2, p. 211–231.
http://dx.doi.org/10.1007/s10703-012-0162-4

 	[15][bookmark: gallium-2012-bid20]
	F. Pottier.
Syntactic soundness proof of a type-and-capability system with hidden state, in: Journal of Functional Programming, 2013, vol. 23, no 1, p. 38–144, to appear.
http://dx.doi.org/10.1017/S0956796812000366

 	[16][bookmark: gallium-2012-bid19]
	N. Pouillard, F. Pottier.
A unified treatment of syntax with binders, in: Journal of Functional Programming, 2012, vol. 22, no 4–5, p. 614–704.
http://dx.doi.org/10.1017/S0956796812000251

 	[17][bookmark: gallium-2012-bid42]
	D. Rémy, B. Yakobowski.
A Church-Style Intermediate Language for MLF, in: Theoretical Computer Science, 2012, vol. 435, no 1, p. 77–105.
http://dx.doi.org/10.1016/j.tcs.2012.02.026

 	[18][bookmark: gallium-2012-bid45]
	J. Schwinghammer, L. Birkedal, F. Pottier, B. Reus, K. Støvring, H. Yang.
A step-indexed Kripke Model of Hidden State, in: Mathematical Structures in Computer Science, 2013, vol. 23, no 1, p. 1–54, to appear.
http://dx.doi.org/10.1017/S0960129512000035

Invited Conferences
	[19][bookmark: gallium-2012-bid38]
	X. Leroy.
Mechanized Semantics for Compiler Verification, in: Programming Languages and Systems, 10th Asian Symposium, APLAS 2012, R. Jhala, A. Igarashi (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7705, p. 386–388, Abstract of invited talk.
http://dx.doi.org/10.1007/978-3-642-35182-2_27

International Peer-Reviewed Conference/Proceedings
	[20][bookmark: gallium-2012-bid26]
	S. Boldo, J.-H. Jourdan, X. Leroy, G. Melquiond.
A Formally-Verified C Compiler Supporting Floating-Point Arithmetic, in: IEEE Symposium on Computer Arithmetic, ARITH 2013, IEEE Computer Society Press, 2013, to appear.
http://hal.inria.fr/hal-00743090

 	[21][bookmark: gallium-2012-bid32]
	D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, H. Vanzetto.
TLA + Proofs, in: FM 2012: Formal Methods - 18th International Symposium, D. Giannakopoulou, D. Méry (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7436, p. 147-154.
http://dx.doi.org/10.1007/978-3-642-32759-9_14

 	[22][bookmark: gallium-2012-bid13]
	J. Cretin, D. Rémy.
On the Power of Coercion Abstraction, in: Proceedings of the 39th ACM Symposium on Principles of Programming Languages (POPL'12), ACM Press, 2012, p. 361–372.
http://dx.doi.org/10.1145/2103656.2103699

 	[23][bookmark: gallium-2012-bid6]
	D. Doligez, M. Jaume, R. Rioboo.
Development of secured systems by mixing programs, specifications and proofs in an object-oriented programming environment: a case study within the FoCaLiZe environment, in: Proceedings of the 7th Workshop on Programming Languages and Analysis for Security (PLAS'12), ACM Press, 2012, p. 9:1–9:12.
http://doi.acm.org/10.1145/2336717.2336726

 	[24][bookmark: gallium-2012-bid36]
	J.-H. Jourdan, F. Pottier, X. Leroy.
Validating LR(1) Parsers, in: Programming Languages and Systems – 21st European Symposium on Programming, ESOP 2012, H. Seidl (editor), Lecture Notes in Computer Science, Springer, 2012, vol. 7211, p. 397–416.
http://dx.doi.org/10.1007/978-3-642-28869-2_20

 	[25][bookmark: gallium-2012-bid41]
	T. Ramananandro, G. Dos Reis, X. Leroy.
A Mechanized Semantics for C++ Object Construction and Destruction, with Applications to Resource Management, in: Proceedings of the 39th ACM Symposium on Principles of Programming Languages (POPL'12), ACM Press, 2012, p. 521–532.
http://dx.doi.org/10.1145/2103656.2103718

 	[26][bookmark: gallium-2012-bid29]
	V. Robert, X. Leroy.
A Formally-Verified Alias Analysis, in: Certified Programs and Proofs – Second International Conference, CPP 2012, C. Hawblitzel, D. Miller (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7679, p. 11-26.
http://dx.doi.org/10.1007/978-3-642-35308-6_5

 	[27][bookmark: gallium-2012-bid34]
	D. N. Xu.
Hybrid contract checking via symbolic simplification, in: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM'12), ACM Press, 2012, p. 107–116.
http://dx.doi.org/10.1145/2103746.2103767

 	[28][bookmark: gallium-2012-bid44]
	B. Yorgey, S. Weirich, J. Cretin, José Pedro. Magalhães, S. Peyton Jones, D. Vytiniotis.
Giving Haskell a Promotion, in: The Seventh ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI'12), ACM Press, 2012, p. 67–78.
http://dx.doi.org/10.1145/2103786.2103795

Workshops without Proceedings
	[29][bookmark: gallium-2012-bid25]
	R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, J. Souyris.
Formally verified optimizing compilation in ACG-based flight control software, in: Embedded Real Time Software and Systems (ERTS2 2012), AAAF, SEE, 2012.
http://hal.inria.fr/hal-00653367/

 	[30][bookmark: gallium-2012-bid27]
	T. Braibant, A. Chlipala.
Formal verification of hardware synthesis, in: The Coq Workshop, 2012.
http://gallium.inria.fr/~braibant/data/braibant-talk-coq-workshop-2012.pdf

 	[31][bookmark: gallium-2012-bid14]
	J. Garrigue, D. Rémy.
Tracing ambiguity in GADT type inference, in: ACM SIGPLAN Workshop on ML, 2012.
http://www.lexifi.com/ml2012/full7.pdf

 	[32][bookmark: gallium-2012-bid39]
	J. Protzenko, F. Pottier.
Programming with permissions: the Mezzo language, in: ACM SIGPLAN Workshop on ML, 2012.
http://www.lexifi.com/ml2012/full1.pdf

 	[33][bookmark: gallium-2012-bid16]
	G. Scherer, D. Rémy.
GADTs meet subtyping, in: ACM SIGPLAN Workshop on ML, 2012.
http://www.lexifi.com/ml2012/full14.pdf

Internal Reports
	[34][bookmark: gallium-2012-bid43]
	G. Gössler, D. N. Xu, A. Girault.
Probabilistic Contracts for Component-based Design, Inria, July 2012, no RR-7328.
http://hal.inria.fr/hal-00715750

 	[35][bookmark: gallium-2012-bid24]
	X. Leroy, A. W. Appel, S. Blazy, G. Stewart.
The CompCert Memory Model, Version 2, Inria, June 2012, no RR-7987.
http://hal.inria.fr/hal-00703441

 	[36][bookmark: gallium-2012-bid0]
	X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon.
The Objective Caml system, documentation and user's manual – release 4.00, Inria, July 2012.
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/

 	[37][bookmark: gallium-2012-bid23]
	X. Leroy.
The CompCert C verified compiler, documentation and user's manual, Inria, July 2012.
http://compcert.inria.fr/man/

 	[38][bookmark: gallium-2012-bid17]
	G. Scherer, D. Rémy.
GADT meet Subtyping, Inria, October 2012, no RR-8114.
http://hal.inria.fr/hal-00744292

Other Publications
	[39][bookmark: gallium-2012-bid12]
	F. Pottier, J. Protzenko.
An introduction to Mezzo, September 2012, Unpublished draft.
http://gallium.inria.fr/~fpottier/publis/mezzo-tutorial.pdf

 	[40][bookmark: gallium-2012-bid11]
	F. Pottier, J. Protzenko.
Programming with permissions in Mezzo, October 2012, Submitted for publication.
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf

[bookmark: References]References in notes
	[41][bookmark: gallium-2012-bid28]
	L. O. Andersen.
Program Analysis and Specialization for the C Programming Language, DIKU, University of Copenhagen, 1994.

 	[42][bookmark: gallium-2012-bid3]
	V. Benzaken, G. Castagna, A. Frisch.
CDuce: an XML-centric general-purpose language, in: Int. Conf. on Functional programming (ICFP'03), ACM Press, 2003, p. 51–63.

 	[43][bookmark: gallium-2012-bid33]
	P. Brauner, C. Houtmann, C. Kirchner.
Principles of Superdeduction, in: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), IEEE Computer Society Press, 2007, p. 41-50.
http://hal.inria.fr/inria-00133557

 	[44][bookmark: gallium-2012-bid10]
	A. Frisch.
OCaml + XDuce, in: Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming, ACM Press, September 2006, p. 192–200.
http://doi.acm.org/10.1145/1159803.1159829

 	[45][bookmark: gallium-2012-bid30]
	J. Garrigue, J. Le Normand.
Adding GADTs to OCaml: the direct approach, in: ACM SIGPLAN Workshop on ML, ACM Press, 2011.

 	[46][bookmark: gallium-2012-bid2]
	H. Hosoya, B. C. Pierce.
XDuce: A Statically Typed XML Processing Language, in: ACM Transactions on Internet Technology, May 2003, vol. 3, no 2, p. 117–148.

 	[47][bookmark: gallium-2012-bid31]
	L. Lamport.
How to write a 21st century proof, in: Journal of Fixed Point Theory and Applications, 2012, vol. 11, p. 43-63.
http://dx.doi.org/10.1007/s11784-012-0071-6

 	[48][bookmark: gallium-2012-bid8]
	X. Leroy.
Java bytecode verification: algorithms and formalizations, in: Journal of Automated Reasoning, 2003, vol. 30, no 3–4, p. 235–269.
http://gallium.inria.fr/~xleroy/publi/bytecode-verification-JAR.pdf

 	[49][bookmark: gallium-2012-bid1]
	B. C. Pierce.
Types and Programming Languages, MIT Press, 2002.

 	[50][bookmark: gallium-2012-bid5]
	F. Pottier.
Simplifying subtyping constraints: a theory, in: Information and Computation, 2001, vol. 170, no 2, p. 153–183.

 	[51][bookmark: gallium-2012-bid9]
	F. Pottier, V. Simonet.
Information Flow Inference for ML, in: ACM Transactions on Programming Languages and Systems, January 2003, vol. 25, no 1, p. 117–158.
http://gallium.inria.fr/~fpottier/publis/fpottier-simonet-toplas.ps.gz

 	[52][bookmark: gallium-2012-bid7]
	V. Prevosto, D. Doligez.
Algorithms and Proofs Inheritance in the FOC Language, in: Journal of Automated Reasoning, 2002, vol. 29, no 3–4, p. 337-363.

 	[53][bookmark: gallium-2012-bid4]
	D. Rémy, J. Vouillon.
Objective ML: A simple object-oriented extension to ML, in: 24th ACM Conference on Principles of Programming Languages, ACM Press, 1997, p. 40–53.

 	[54][bookmark: gallium-2012-bid15]
	V. Simonet, F. Pottier.
A Constraint-Based Approach to Guarded Algebraic Data Types, in: ACM Transactions on Programming Languages and Systems, January 2007, vol. 29, no 1, article no. 1 p.
http://gallium.inria.fr/~fpottier/publis/simonet-pottier-hmg-toplas.ps.gz

OEBPS/uid76.xhtml
[bookmark: uid76] Section:
 Partnerships and Cooperations

International Research Visitors

[bookmark: uid77] Visits of International Scientists

Gabriel Dos Reis, assistant professor at Texas A&M University,
visited the Gallium team in July 2012, to work on the formal semantics
of the C and C++ languages.

[bookmark: uid78] Internships

Joseph Tassarotti, undergraduate student at Harvard
University, did an internship at Gallium from June to August 2012. He
worked on register allocation and instruction scheduling for the
CompCert verified compiler.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid68.xhtml
[bookmark: uid68] Section:
 Partnerships and Cooperations

National Initiatives

[bookmark: uid69] ADN4SE (FSN)

Participant :
 Damien Doligez.

The “ADN4SE” project (2012-2016) is coordinated by the Sherpa
Engineering company and funded by the Briques Génériques du
Logiciel Embarqué programme of Fonds national pour la
Société Numérique. The aim of this project is to develop a process and a
set of tools to support the rapid development of embedded software
with strong safety constraints.
Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS
real-time kernel, on which the whole project is based.

[bookmark: uid70] BWare (ANR)

Participant :
 Damien Doligez.

The “BWare” project (2012-2016) is coordinated by David Delahaye at
Conservatoire National des Arts et Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de
la Recherche. BWare is an industrial research project that aims to
provide a mechanized framework to support the automated verification
of proof obligations coming from the development of industrial
applications using the B method and requiring high guarantees of
confidence.

[bookmark: uid71] CEEC (FSN)

Participants :
 Thomas Braibant, Xavier Leroy.

The “CEEC” project (2011-2014) is coordinated by the Prove & Run
company and also involves Esterel Technologies and Trusted Labs. It
is funded by the Briques Génériques du
Logiciel Embarqué programme of Fonds national pour la
Société Numérique. The CEEC project develops an environment for the
development and certification of high-security software, centered on a
new domain-specific language designed by Prove & Run. Our involvement
in this project focuses on the formal verification of a C code
generator for this domain-specific language, and its interface with
the CompCert C verified compiler.

[bookmark: uid72] LaFoSec

Participant :
 Damien Doligez.

The LaFoSec study, commissioned by ANSSI, aims at studying the
security properties of functional languages, and especially of OCaml.
The study is done by a consortium led by the SafeRiver company. Last
year, it produced more than 600 pages of documents, including
recommendations for security-aware development in OCaml.

The study continued this year with the production of a prototype
of a secure XML/XSD validator following these recommendations, and a
security evaluation of the prototype by an independent company.

Most of these documents will be made available in 2013 on the ANSSI
Web site (http://ssi.gouv.fr/).

[bookmark: uid73] Paral-ITP (ANR)

Participant :
 Damien Doligez.

The “Paral-ITP” project (2011-2014) is coordinated by Burkhart Wolff
at Université Paris Sud and funded by the Ingénierie Numérique
et Sécurité programme of Agence Nationale de la
Recherche. The objective of Paral-ITP is to investigate the
parallelization of interactive theorem provers such as Coq and
Isabelle.

[bookmark: uid74] U3CAT (ANR)

Participant :
 Xavier Leroy.

The “U3CAT” project (2009-2012) ended in August 2012. It was
coordinated by Virgile Prevosto at CEA LIST and funded by the
Arpège programme of Agence Nationale de la Recherche.
This action focused on program verification tools for critical
embedded C codes. We were involved in this project on issues related
to memory models [35]
and formal semantics for the C language, at the
interface between compilers and verification tools.

[bookmark: uid75] Verasco (ANR)

Participants :
 Jacques-Henri Jourdan, Xavier Leroy.

The “Verasco” project (2012-2015) is coordinated by Xavier Leroy and
funded by the Ingéniérie Numérique et Sécurité programme of Agence Nationale de la Recherche. The objective of this 4-year
project is to develop and formally verify a static analyzer based on
abstract interpretation, and interface it with the CompCert C verified
compiler.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2012
Project-Team gallium

Programming languages,
types, compilation and
proofs

