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2. Overall Objectives

2.1. Overview
During the twentieth century, the development of macroscopic engineering has been largely stimulated by
progress in numerical design and prototyping: cars, planes, boats, and many other manufactured objects
are nowadays designed and tested on computers. Digital prototypes have progressively replaced actual ones,
and effective computer-aided engineering tools have helped cut costs and reduce production cycles of these
macroscopic systems.

The twenty-first century is most likely to see a similar development at the atomic scale. Indeed, the recent
years have seen tremendous progress in nanotechnology - in particular in the ability to control matter at the
atomic scale. The nanoscience revolution is already impacting numerous fields, including electronics and
semiconductors, textiles, energy, food, drug delivery, chemicals, materials, the automotive industry, aerospace
and defense, medical devices and therapeutics, medical diagnostics, etc. According to some estimates, the
world market for nanotechnology-related products and services will reach one trillion dollars by 2015. Nano-
engineering groups are multiplying throughout the world, both in academia and in the industry: in the USA,
the MIT has a “NanoEngineering” research group, Sandia National Laboratories created a “National Institute
for Nano Engineering”, to name a few; China founded a “National Center for Nano Engineering” in 2003, etc.
Europe is also a significant force in public funding of nanoscience and nanotechnology.

Similar to what has happened with macroscopic engineering, powerful and generic computational tools will
be employed to engineer complex nanosystems, through modeling and simulation.

Modeling and simulation of natural or artificial nanosystems is still a challenging problem, however, for at
least three reasons: (a) the number of involved atoms may be extremely large (liposomes, proteins, viruses,
DNA, cell membrane, etc.); (b) some chemical, physical or biological phenomena have large durations (e.g.,
the folding of some proteins); and (c) the underlying physico-chemistry of some phenomena can only be
described by quantum chemistry (local chemical reactions, isomerizations, metallic atoms, etc.). The large
cost of modeling and simulation constitutes a major impediment to the development of nanotechnology.



2 Activity Report INRIA 2012

The NANO-D team aims at developing efficient computational methods for modeling and simulation of
complex nanosystems, both natural (e.g., the ATPase engine and other complex molecular mechanisms found
in biology) and artificial (e.g., NEMS - Nano Electro-Mechanical Systems).

In particular, the group develops novel multiscale, adaptive modeling and simulation methods, which automat-
ically focus computational resources on the most relevant parts of the nanosystems under study.

2.2. Research axes

Figure 1. NANO-D’s research axes.

The goal of NANO-D is to help current and future designers of nanosystems by developing some of the
mathematical and computational foundations of a software application which will run on a desktop computer,
and will allow for efficient analysis, design, modeling and simulation of complex nanosystems, whether they
are artificial or natural, or a combination of both. For clarity, the research program of the NANO-D group is
best introduced by referring to Figure 1. There:

• User is any person who wants to study, analyze, design, model, simulate, and control a nanosystem.
• Tool is the software application being built on the research performed within NANO-D. This tool

will have functionalities that will be similar to those used to design macrosystems (e.g., CATIA,
SolidWorks, etc.), but also some others which will be specific to nanoscience.

• System is the nanosystem being designed, simulated, controlled, etc., and potentially its environ-
ment. The environment can be any system in interaction with the given nanosystem: two electrodes
between which a nanotube has been placed, the atomic force microscope which interacts with a
nano-wheel, a protein interacting mechanically with a nano-drug or an engineered protein, etc.

This simple diagram makes it clear that a complete, coherent effort towards practical design of nanosystems
should be organized in three research axes:

• Adaptive Simulation Theory. This first research axis deals with the core algorithms for modeling
and simulation, which constitute the heart of the design functionalities of the tool. The main
paradigm in this axis is to rely on divide-and-conquer, hierarchical representations to design to
adaptive algorithms for modeling and simulating nanosystems.
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• Interaction. The second group of tasks deals with the interaction of the user with the tool. This is
essential, because nanosystems may have complex topologies, kinematics and dynamics, which may
make it difficult to edit and model.

• Control. The last group of tasks deals with the bidirectional relationships between the simulated
nanosystems and the actual ones. Indeed, nanosystems may be characterized through a variety of
experimental techniques (e.g., Atomic Force Microscopy, etc.). In order to help verify designs, the
tool must thus be able to simulate characterization techniques. Conversely, the tool must be able to
take advantage of existing knowledge (both experimental and computational) to help the user design
nanosystems.

We believe that each of these three groups of tasks is essential. Fast modeling and simulation algorithms
allow for relevant, efficient design (“Adaptive Simulation Theory”). However, software tools with powerful
functionalities but which are difficult to use (“Adaptive Simulation Theory” without “Interaction”) end up not
being used at all. Finally, a tool for modeling and simulating nanosystems which would be “disconnected”
from the reality of experimentation (“Adaptive Simulation Theory” without “Control”) could only be used for
theoretical designs with little assurance of their practicality.

2.3. Highlights of the Year
Stephane Redon has received an ERC Starting Grant in 2012 for his ADAPT project (ADAPT: Theory and
algorithms for Adaptive Particle Simulation). The grant is about 1.5 million euros over 5 years.

3. Scientific Foundations

3.1. Overview
The adaptive simulation algorithms we develop typically consist in two main components. The first one
determines which degrees of freedom are simulated at a give time step, based on the current system’s state, as
well as user-defined precision or cost thresholds. The second component incrementally updates the system’s
state based on the set of active degrees of freedom. In particular, incremental algorithms update the system’s
potential energy and forces. This allows the user to smoothly trade between precision and cost.

We detail this approach in two important types of simulations: Cartesian quasi-statics and torsion-angle
dynamics. A novel, very general approach for adaptive dynamics simulations of particles — that has a number
of important benefits over previous approaches — is mentioned in more detail in Section 6.1.

3.2. Adaptive Cartesian mechanics
In order to focus computations on a specific set of atoms, when performing quasi-static simulations (mini-
mizations), we have developed an adaptive Cartesian mechanics algorithm, which decides which atoms should
move at each time step.

In the simplest approach, we simply examine the force applied on each atom. When the norm of the force is
above a user-defined threshold, the atom is active. Else the atom position is frozen. A slightly more elaborate
version consists in defining the threshold automatically based on the system state (it might be e.g., the average
applied force, a percentage of the maximum norm, etc.).
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Figure 2. Adaptive Cartesian mechanics.
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In order to avoid the linear cost of determining the set of active atoms at each time step, a binary tree is used
to represent the system. Each leaf node represents an individual atom, while each internal node represents
a set of atoms. Each leaf node stores the norm of the force applied to the corresponding atom. Each non-
leaf node stores the maximum of the two force norms of its children, as illustrated in Figure 2. We use two
tree passes in order to update tree nodes’ values and to determine the new active atoms. In the first, bottom-
up pass, force norms are updated in a sub-tree of the binary tree (only some atoms have moved since the
previous time step, so only some forces have been updated), starting from the leaves with modified norms,
in O(kold(log( n

kold ) + 1)) times where kold is the number of active atoms and n the total number of atoms.
In the second, top-down pass, the new active atoms (i.e., the atoms with the force norms which are now the
largest), are determined in O(knew(log( n

knew ) + 1)) times where knew is the new number of active atoms.
This process is illustrated in Figure 2 as well.

Precisely, Figure 2 illustrates the procedure to determine the active zone, when the threshold is automatically
set to half the largest atomic force norm. In this example, the four leaves correspond to atoms 1 to 4. The value
indicated in each leaf node is the norm of the force applied to its corresponding atom. For internal nodes, this
value is the maximum of the norms of the forces applied to atoms in the corresponding group. In step 0, the
threshold is automatically set to 10. As a result, only atom 1 moves. In step 1, the potential is incrementally
updated, and the norms of the forces applied to atoms 1 and 2 are updated. In step 2, the values associated
to the tree nodes are incrementally updated through a bottom-up pass that starts from the modified leaf nodes
values. Because of this bottom-up update, the adaptive threshold becomes equal to 4. In step 3, the new active
atoms are determined through a top-down pass, by visiting only the nodes that have a value larger than the
adaptive threshold.

3.3. Adaptive torsion-angle mechanics
In many situations, it is preferable to represent molecular systems as articulated bodies, and perform so-called
torsion-angle mechanics. This may be to allow for larger time step sizes in a simulation, or because the user
wants to focus to e.g., protein backbone deformations.

We have also developed an adaptive mechanics algorithm in the case of torsion-angle representations. In this
case, a molecular system is recursively defined as the assembly of two molecular systems connected by a joint
(when connecting two subassemblies which belong to the same molecule) or, more generally, by a rigid body
transform (to assemble several molecules).

As in the Cartesian mechanics case, the complete molecular system is thus also represented by a binary tree, in
which leaves are rigid bodies (a rigid body can be a single atom), internal nodes represent both sub-assemblies
and connections between sub-assemblies, and the root represents the complete molecular system (see Figure 3
on the right, which shows an assembly tree associated to a short polyalanin). This hierarchical representation
handles any branched molecule or groups of molecules, since the connections between two sub-molecular
systems can be a rigid body transformation. In this representation, the positions of atoms are thus represented
as superimposed rigid transformations: the position of any atom is obtained from the position of the whole
set, to which is "added" the transformation from the complete set to the sub-set the atom belongs to, and so
on until we reach the leaf node representing the atom. Similarly, the atomic motions are superimposed rigid
motions.

Our adaptive framework relies on two essential components. First, we associate a hierarchical set of reference
frames to the assembly tree. Precisely, each node is associated to a local reference frame, in which all
dynamical coefficients are expressed. This allows us to avoid updating these coefficients when a sub-assembly
moves rigidly. Second, we have demonstrated that it is possible to determine a priori, at each time step, the
set of joints which have the largest accelerations. Precisely, when going down the tree to compute joint
accelerations, we are able to compute the weighted sum of the (squared) norms of joint accelerations in a
sub-assembly C before computing joint accelerations themselves:

A(C) = (fC)
T

ΨCfC + (fC)
T
pC + ηC , (1)
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Figure 3. The assembly tree associated to a short polyalanin.

where the right part is a quadratic form of the spatial forces applied on the "handles" of node C. This allows
us to cull away those sub-assemblies with (relatively) lower internal accelerations, and focus on the most
mobile joints. Thus, at each time step, we can thus predict the set of joints with highest accelerations without
computing all accelerations, and we simulate only a sub-tree of the assembly tree (the green nodes in the
assembly tree, as in the figure above), based on an user-defined error threshold or computation time constraints.
This sub-tree is called the active region, and may change at each time step.

We have exploited these two characteristics - hierarchical coordinate systems and adaptive motion refinement
- to develop data structures and algorithms which enable adaptive molecular mechanics. The key observation
in our approach is the following: all coefficients which only depend on relative atomic positions do not have
to be updated when these relative positions do not change. We can thus store in each node of the assembly tree
partial system states which hold information relative only to the node itself.

Precisely, each time step involves the following operations:

1. Adaptive acceleration update

1. Determination of the acceleration update region: we determine the acceleration update
region, i.e., the subset of nodes of the full articulated body which matter the most according
to the acceleration metric, as indicated above. The union of the previous active region and
the acceleration update region is the transient active region, i.e., the region temporarily
considered as the active region.

2. Joint accelerations projection: the acceleration is projected on the reduced motion space
defined by the transient active region (to ensure that joint accelerations are consistent with
both motion constraints and applied forces).

2. Adaptive velocity update
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1. Determination of the new active region: we update the joint velocities and the velocity
metric values of the nodes in the transient active region. We then determine the set of
nodes which are considered to be important according to the velocity metric (which is
similar to the acceleration metric). This set becomes the new active region.

2. Joint velocities projection: if one or more nodes become inactive due to the update of
the active region, we determine a set of impulses that we must apply to the transient
hybrid body to perform the rigidification of these nodes. This amounts to projecting joint
velocities to the reduced motion space defined by the new active region.

3. Adaptive position update
1. Position update: we update joint positions based on non-zero joint velocities in the active

region.
2. State update: once joint positions have been updated, we update the rest of the system’s

state: inverse inertias, acceleration metric coefficients, partial neighbor lists, partial force
tables, etc.

Again, each of these steps involves a limited sub-tree of the assembly tree, which enables a fine control of the
compromise between computation time and precision.

We have showed that our adaptive approach allows for a number of applications, some of which that were not
possible for classical methods when using low-end desktop workstations. Indeed, by selecting a sufficiently
small number of simultaneously active degrees of freedom, it becomes possible to perform interactive
structural modifications of complex molecular systems.

4. Application Domains

4.1. Overview
NANO-D is a priori concerned with all applications domains involving atomistic representations, including
chemistry, physics, electronics, material science, biology, etc.

Historically, though, our first applications have been in biology, as the next two sections detail. Thanks to
the development of algorithms to efficiently simulate reactive force fields, as well as to perform interactive
quantum mechanical calculations, however, we now have the possibility to address problems in chemistry, and
physics.

4.2. Structural Biology
Structural biology is a branch of molecular biology, biochemistry, and biophysics concerned with the molec-
ular structure of biological macromolecules, especially proteins and nucleic acids. Structural biology studies
how these macromolecules acquire the structures they have, and how alterations in their structures affect their
function. The methods that structural biologists use to determine the structure typically involve measurements
on vast numbers of identical molecules at the same time, such as X-Ray crystallography, NMR, cryo-electron
microscopy, etc. In many cases these methods do not directly provide the structural answer, therefore new
combinations of methods and modeling techniques are often required to advance further.

We develop a set of tools that help biologists to model structural features and motifs not resolved experimen-
tally and to understand the function of different structural fragments.

• Symmetry is a frequent structural trait in molecular systems. For example, most of the water-soluble
and membrane proteins found in living cells are composed of symmetrical subunits, and nearly
all structural proteins form long oligomeric chains of identical subunits. Only a limited number of
symmetry groups is allowed in crystallography, and thus, in many cases the native macromolecular
conformation is not present on high-resolution X-ray structures. Therefore, to understand the realistic
macromolecular packing, modeling techniques are required.



8 Activity Report INRIA 2012

• Many biological experiments are rather costly and time-demanding. For instance, the complexity of
mutagenesis experiments grows exponentially with the number of mutations tried simultaneously.
In other experiments, many candidates are tried to obtain a desired function. For example, about
250,000 candidates were tested for the recently discovered antibiotic Platensimycin. Therefore, there
is a vast need in advance modeling techniques that can predict interactions and foresee the function
of new structures.

• Structure of many macromolecules is still unknown. For other complexes, it is known only partially.
Thus, software tools and new algorithms are needed by biologists to model missing structural
fragments or predict the structure of those molecule, where there is no experimental structural
information available.

4.3. Pharmaceutics and Drug Design
Drug design is the inventive process of finding new medications based on the knowledge of the biological
target. The drug is most commonly an organic small molecule which activates or inhibits the function of
a biomolecule such as a protein, which in turn results in a therapeutic benefit to the patient. In the most
basic sense, drug design involves design of small molecules that are complementary in shape and charge to
the biomolecular target to which they interact and therefore will bind to it. Drug design frequently relies on
computer modeling techniques. This type of modeling is often referred to as computer-aided drug design.

Structure-based drug design attempts to use the structure of proteins as a basis for designing new ligands
by applying accepted principles of molecular recognition. The basic assumption underlying structure-based
drug design is that a good ligand molecule should bind tightly to its target. Thus, one of the most important
principles for designing or obtaining potential new ligands is to predict the binding affinity of a certain ligand
to its target and use it as a criterion for selection.

We develop new methods to estimate the binding affinity using an approximation to the binding free energy.
This approximation is assumed to depend on various structural characteristics of a representative set of
native complexes with their structure solved to a high resolution. We study and verify different structural
characteristics, such as radial distribution functions, and their affect on the binding free energy approximation.

4.4. Nano-engineering
The magazine Science has recently featured a paper demonstrating an example of DNA nanotechnology, where
DNA strands are stacked together through programmable self-assembly. In February 2007, the cover of Nature
Nanotechnology showed a “nano-wheel” composed of a few atoms only. Several nanosystems have already
been demonstrated, including a wheelbarrow molecule, a nano-car and a Morse molecule, etc. Typically, these
nanosystems are designed in part via quantum mechanics calculations, such as the semi-empirical ASED+
calculation technique.

Of course, not all small systems that currently fall under the label “nano” have mechanical, electronic, optical
properties similar to the examples given above. Furthermore, current construction capabilities lack behind
some of the theoretical designs which have been proposed. However, the trend is clearly for adding more and
more functionality to nanosystems. While designing nanosystems is still very much an art mostly performed by
physicists, chemists and biologists in labs throughout the world, there is absolutely no doubt that fundamental
engineering practices will progressively emerge, and that these practices will be turned into quantitative rules
and methods. Similar to what has happened with macroscopic engineering, powerful and generic software will
then be employed to engineer complex nanosystems.

We have recently shown that our incremental and adaptive algorithms allow us to easily edit and model
complex shapes, such as a nanotube (Fig. 4) and the “nano-pillow” below (Fig. 5).

5. Software
5.1. SAMSON
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Figure 4. Snapshots of a nanotube capping process with the adaptive interactive modeler. Thanks to the adaptive
methodology, this operation can be done in a few minutes.
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Figure 5. Different steps to prototype a “nano-pillow” with the adaptive interactive modeler.
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Figure 6. SAMSON’s architecture.

A major objective of NANO-D is to try and integrate a variety of adaptive algorithms into a unified
framework. As a result, NANO-D is developing SAMSON (Software for Adaptive Modeling and Simulation
Of Nanosystems), a software platform aimed at including all developments from the group, in particular those
described below.

The objective is to make SAMSON a generic application for computer-aided design of nanosystems, similar
to existing applications for macrosystem prototyping (CATIA, SolidWorks, etc.).

The current architecture of SAMSON is visible in Figure 6. The code is organized into four main parts: a)
the Base (in which “Core” contains, in particular, the heart of the adaptive algorithms: signaling mechanisms
specifically designed for SAMSON), b) the Software Development Kit (SDK: a subset of the base that will be
provided to module developers), c) Modules, and d) the SAMSON application itself.

Similar to the concept of Mathematica toolboxes, for example, the goal has been to make it possible to
personalize the user interface of SAMSON for potentially many distinct applications. For example, we may
want to personalize the interface of SAMSON for crystallography, drug design, protein folding, electronics,
material science, nano-engineering, etc., by loading different modules at startup, depending on the user
application domain.

6. New Results

6.1. Adaptively Restrained Particle Simulations
Participants: Svetlana Artemova, Stephane Redon.

Last year, we have introduced a novel, general approach to speed up particle simulations that we call
Adaptively Restrained Particle Simulations (ARPS). This year we continued working on this approach. The
obtained results have been published in Physical Review Letters [3], and the patent describing the theoretical
basis and the algorithms for the numerical realization of ARPS has been deposited.
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Particle simulations are widely used in physics, chemistry, biology [13], [14], and even computer graphics [9],
and faster simulations (in particular ARPS) may result in progress on many challenging problems, e.g., protein
folding, diffusion across bio-membranes, fracture in metals, ion implantation, etc.

ARPS rely on an adaptively restrained (AR) Hamiltonian used to describe a system of N particles:

HAR(q,p) =
1

2
pT Φ(q,p)p + V (q).

This Hamiltonian has an unusual inverse inertia matrix Φ(q,p), which is made a general function of phase-
space coordinates. The precise form of this matrix can be chosen according to the system under study and the
problem stated.

We have proposed a particular (diagonal) form of the inverse inertia matrix for the simulations in Cartesian
coordinates. In this case, Φ adaptively switches on and off positional degrees of freedom of individual particles
while letting particle momenta evolve. The decision whether the particle is restrained or not depends on the
particle’s momentum, and, precisely, on it’s kinetic energy. Two user-defined thresholds regulate the amount
of simplification of the particle’s motion. When a module of a particle’s momentum becomes small enough
(without necessarily becoming zero), the particle completely stops moving. Even when a particle is fully
restrained, though, its momentum may continue to change, and its kinetic energy might become large enough
again for the particle to resume moving. In general, ARPS restrain and release particles repeatedly over time.

This approach has numerous advantages: (a) it is mathematically grounded and is able to produce long,
stable simulations; (b) it does not require modifications to the simulated interaction potential, so that any
suitable existing force-field can be directly used with ARPS; (c) under frequently-used assumptions on the
interaction potential, ARPS make it possible to reduce the number of forces that have to be updated at each
time step, which may significantly speed up simulations; (d) when performing constant-energy simulations,
ARPS allow users to finely and continuously trade between precision and computational cost, and rapidly
obtain approximate trajectories; (e) the trade-off between precision and cost may be chosen for each particle
independently, so that users may arbitrarily focus ARPS on specific regions of the simulated system (e.g.,
a polymer in a solvent); (f) most important, when performing Adaptively Restrained Molecular Dynamics
(ARMD) in the canonical (NVT) ensemble, correct static equilibrium properties can be computed.

We have demonstrated the advantages of ARPS on several numerical experiments. For example, a pla-
nar collision cascade study in Fig. 7 shows how ARPS make it possible to smoothly trade between
precision and speed of the simulation. Reference simulations were derived from the usual Hamiltonian
H(q,p) = 1

2 pTM−1p + V (q).

Figure 7. Simulating a collision cascade with controlled precision. Adaptively restrained simulations allow us to smoothly trade between

precision and speed. Even for large speed-ups (up to 10x) the features of the shock are extremely well preserved.
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6.2. Hierarchical Adaptively Restrained Particle Simulations
Participants: Svetlana Artemova, Stephane Redon.

It has been shown that algorithms relying on hierarchical representations of molecular systems may accelerate
molecular simulations: for example, divide-and-conquer approach for simulations in internal coordinates [10],
[11], adaptive algorithms for dynamics of articulated bodies [15], algorithms for neighbor search for system
with symmetries [12] or for large rigid molecules [8].

Therefore, we were interested in combining hierarchically-based algorithms with Adaptively Restrained
Particle Simulations (ARPS). Precisely, as with classical ARPS, we have considered the adaptively restrained
(AR) Hamiltonian:

HAR(q,p) =
1

2
pT Φ(q,p)p + V (q),

but we have introduced a different form of the inverse inertia matrix Φ(q,p). In this case, again, positional
degrees of freedom are adaptively switched on and off during the simulation, but, these are relative positional
degrees of freedom in the system, and not the positional degrees of freedom of individual particles. Precisely,
particles are grouped together into rigid bodies according to the tree representation and released repeatedly
during the simulation. We call this approach hierarchical Adaptively Restrained Particle Simulations (hierar-
chical ARPS).

We have performed several numerical experiments to illustrate this new approach. For example, in Fig. 8 we
present the planar collision cascade study.

For hierarchical AR simulations, obtained results depend on the tree representation of the system: for the
results demonstrated in Fig. 8 the tree was constructed in a top-down manner by recursive dividing of the
system in halves and, therefore, the squares of different levels are being activated by the shock.

Figure 8. Simulating a collision cascade with controlled precision. Hierarchical adaptively restrained simulations allow us to smoothly trade

between precision and speed. The main features of the shock are preserved. The binary tree representation was constructed top-down.

To clearly demonstrate the effect of the tree, we provide the results for the same four simulations with another
tree built in a bottom-up manner by grouping the particles pairwise according to their sequence number (they
were enumerated, first, along the y-axis, vertically, and then, along the x-axis, horizontally). These results are
shown in Fig. 9, and are rather different from those in Fig. 8: vertical lines are being activated when the central
part of the plane is reached by the shock.

The patent reporting the principles and the algorithms used to implement hierarchical ARPS has been
deposited.
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Figure 9. Simulating a collision cascade with controlled precision. Hierarchical adaptively restrained simulations allow us to smoothly trade

between precision and speed. The main features of the shock are preserved. The binary tree representation was constructed bottom-up.

6.3. Interactive quantum chemistry
Participants: Mael Bosson, Caroline Richard, Antoine Plet, Sergei Grudinin, Stephane Redon.

Interactive simulation tools allow users to take advantage of their knowledge and intuition to understand
physical properties and prototype new devices. To accurately describe bond breaking, bond formation, charge
transfer or other electronic phenomena, interactive simulation should ideally be based on quantum mechanics.
However, solving quantum chemistry models at interactive rates is a challenging task. Thanks to the algorithms
developed in the group, SAMSON is the first software to propose interactive quantum chemistry.

A first contribution allows for interactive quantum chemistry with systems up to a few hundred atoms [6].
The method is based on a divide-and-conquer (D&C) approach. The D&C technique subdivides the system
into many subsystems (a–h on the Figure 10). Each of them involves a diagonalisation at each time step. To
treat larger systems, we introduce a new algorithm: Block-Adaptive Quantum Mechanics (BAQM) [5] from
the combination of two new components.

• Block-adaptive Cartesian mechanics
By freezing atomic positions in some subsystems (d–h on the Figure 10) (with atoms in blue),
we may avoid updating some eigenproblems. The Block-adaptive Cartesian mechanics component
takes advantage of this to control the simulation cost by adaptively adjusting the number of
diagonalisations, based on the forces applied to the atoms. Only the subsystems with the largest
applied forces are allowed to have mobile atoms.

• Adaptive reduced-basis quantum mechanics
Solving even just one of the subsystem’s eigenproblem may be too costly to achieve interactive rates.
The Adaptive reduced-basis quantum mechanics component projects the equation in an adaptive
reduced basis composed of low-energy eigenvectors that have been computed at a previous time
step, to benefit from temporal coherence between successive eigenproblems (subsystems (b) and (c)
with atoms in black and white on the Figure 10). We use a simple distance to decide on the fly when
to automatically update the reduced basis during the simulation (subsystem (a) with atoms in red on
the Figure 10).

We demonstrated that BAQM may accelerate geometry optimization for several atomic systems. Indeed, each
step is solved significantly faster by constraining some nuclei and electrons, and, by focusing computational
resources on the most active parts of the system, we obtain a faster potential energy descent. The proposed
BAQM approach also allows for interactive rates with many atomic systems.

6.4. Molecular Docking
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Figure 10. Interactive editing of a polyflurorene molecule with the BAQM algorithm

6.4.1. Development of a new Knowledge-Based Potential for Protein-Ligand Interactions
Participants: Sergei Grudinin, Georgy Cheremovskiy.

Macromolecular complexes formed by proteins with small molecules (ligands) play an important role in many
biological processes such as signal transduction, cell regulation, etc. Experimental methods for determining
the structures of molecular complexes have a very high cost and still involve many difficulties. Therefore,
computational methods, such as molecular docking, are typically used for predicting binding modes and
affinities, which are essential to understand molecular interaction mechanisms and design new drugs.

Databases containing three-dimensional protein-ligand structures determined by experimental techniques
grow very rapidly. In 2011, the PDB (Protein Data Bank) contained about 70,000 of protein structures, with
almost 8,000 structures of protein-ligand complexes having refined binding affinity data. The CSD (Cambridge
Structural Database), a database for small molecules, contained about 500,000 entries at the beginning of 2012.
Thus, we believe that computational tools based on statistical information extracted from three-dimensional
structures of protein-ligand complexes will play an ever more increasing role in the functional study of proteins
as well as in structure-based drug design and other fields.

We proposed and validated a new statistical method that predicts binding modes and affinities of protein-
ligand complexes. To do so, we have developed a novel machine-learning-based approach. Precisely, we have
formulated a new optimization problem with 30,000 unknowns, whose solution is a scoring function. We
trained the scoring function on 6,000 structures of protein-ligand complexes of high accuracy from the PDB
database. Despite the very high dimensionality of the optimization problem, we manage to solve it on a desktop
computer in just a few hours.

Our scoring function has three major applications in drug-design:

• Docking: determination of the binding site of a ligand bound to a protein.

• Ranking: identifying a set of ligands with the highest binding affinity for the given protein target by
screening a large ligand database.

• Binding constants prediction: prediction of the absolute value of the binding constant of a protein-
ligand complex.

The success rates of our method rank it among the top three methods currently available. Thus, we believe that
our scoring function is the first one that performs well in all three major applications in drug-design.

6.4.2. DockTrina
Participants: Sergei Grudinin, Petr Popov.
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Figure 11. Comparison of the success rates of scoring functions when the best-scored binding pose differs from the
true one by RMSD < 1.0 Å (light bars), < 2.0 Å (darker bars) or < 3.0 Å (the darkest bars), respectively. Scoring

functions are ranked by success rates when the ligand binding pose is found within RMSD < 3.0 Å.

We derived analytical formulas for fast evaluation of the Root-Mean-Square-Deviation (RMSD) between
rigid protein structures. This work resulted in a RMSD library containing algorithms to calculate the RMSD
between two proteins in constant time. Based on this library we introduced an efficient algorithm to predict
triangular protein structures and implemented it into the DockTrina software. We collected bound benchmarks
of 220 protein trimers with and without symmetry properties from the Protein Data Bank and demonstrated the
superiority of DockTrina over standard combinatorial algorithms aimed at predicting nonsymmetrical protein
trimers.

6.4.3. Machine Learning for Structural Biology
Participants: Sergei Grudinin, Petr Popov, Mathias Louboutin.

We developed a new formulation of the machine learning optimization problem to predict protein–protein
interactions. We implemented several optimization strategies, both in dual and primal. We studied the effect of
different types of loss-functions on the quality of the prediction. We also tested the efficiency of three descent
algorithms, Nesterov descent, gradient descent, and stochastic descent. We demonstrated that generally, primal
optimization is faster compared to dual optimization. In the primal, Nesterov descent has a better convergence
compared to the gradient descent. Finally, stochastic algorithms often provide a better convergence compared
to deterministic algorithms. All the studied algorithms were implemented as a stand-alone library.

6.5. Software Engineering
Participants: Jocelyn Gate, Stephane Redon.

We have continued the development of SAMSON, our open-architecture platform for modeling and simulation
of nanosystems (SAMSON: Software for Adaptive Modeling and Simulation Of Nanosystems). The interface
has been improved:

• The visualization of the data graph has been improved. Users may now drag and drop models and
parts between layers, as well as directly drag and drop files into SAMSON.

• The undo/redo stack can now be visualized.
• We have begun to work on selection and highlighting.
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The software engineering process has been improved as well, in particular to help base and modules
developers:

• We have reorganized the file hierarchy so that modules can have associated data.
• We have developed a system to build SAMSON automatically on virtual machines (e.g., ubuntu

12.04 32bit, ubuntu 12.04 64 bit, fedora 17 32 bit, etc.).
• Tools have been created to let modules developers easily write new modules.
• We have begun to develop a mechanism to make it easy to install and update SAMSON automati-

cally.

We have also developed several SAMSON apps to test various concepts, including scripting, manipulating
molecules with haptic feedback, etc. Figure 12 shows the current user interface of SAMSON.

We have deposited the first version of SAMSON’s code base at the APP ("Agence de Protection des
Programmes").

Figure 12. The current user interface of SAMSON, showing an app to download molecules directly from the Protein
Data Bank, an app to deform molecules, and an app for haptic interaction. The data graph on the left shows the

hierarchical structure of the data graph.

7. Partnerships and Cooperations
7.1. Regional Initiatives

We have obtained a regional grant for a PhD student (ARC 2012). The PhD student will be co-advised by
Jean-François Mehaut (LIG, Grenoble) and Benjamin Bouvier (IBCP, Lyon), and will develop algorithms for
parallel adaptive molecular dynamics simulations.
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7.2. National Initiatives
7.2.1. ANR

In 2012, NANO-D received funding from four ANR programs:
• ANR JCJC: 340,000 Euros over three years (2011-2014). This grant has been provided to S. Redon

by the French Research Agency for being a finalist in the ERC Starting Grant 2009 call, and is for
two PhD students and an engineer.

• ANR MN: 180,000 Euros over four years (2011-2015). This project, coordinated by NANO-D (S.
Grudinin), gathers biologists and computer scientists from three research groups: Dave Ritchie at
LORIA, Valentin Gordeliy at IBS (total grant: 360,000 Euros).

• ANR PIRIBio: 25,000 Euros over four years (2010-2013). We are participating in this project
coordinated by Michel Vivaudou at IBS, with Serge Crouzy at CEA/LCBM and Frank Fieschi at
IBS.

• ANR COSINUS: 85,000 Euros over four years (2009-2012). This project, coordinated by NANO-D
(S. Redon), gathers physicists, biologists and computer scientists from five research groups: Xavier
Bouju and Christian Joachim at CEMES, Martin J. Field at IBS, Serge Crouzy at CEA/LCBM,
Thierry Deutsch and Frederic Lancon at CEA/SP2M (total grant: 380,000 Euros).

7.2.2. PEPS
Sergei Grudinin participates in the Cryo-CA PEPS project. Cryo-CA (Computational algorithms for biomolec-
ular structure determination by cryo-electron microscopy) is a 2-years project, supported by the Projets Ex-
ploratoires Pluridisciplinaires (PEPS) program in the panel Bio-Maths-Info provided by CNRS (French Na-
tional Centre for Scientific Research). The project started on the 01/09/2012. Its main goal is to develop
computational algorithms for cryo-electron microscopy (cryo-EM).

The partners of the Cryo-CA project are: Inria Nancy / Team Orpailleur (David Ritchie); Inria Grenoble / Team
NANO-D (Sergei Grudinin); and INSERM IGBMC/ Team Integrated structural Biology (Annick Dejaegere,
Patrick Schultz, and Benjamin Schwarz).

The main scientific aim of this cross-disciplinary project is to develop computational algorithms to help ex-
perimentalists and molecular modelers to solve more rapidly and accurately the structures of macromolecular
complexes using cryo-electron microscopy (cryo- EM) and integrative structural biomolecular modeling tech-
niques. More specifically, this PEPS initiative aims to address two important challenges in single particle
cryo-EM, namely particle picking and multi-dimensional structure fitting. In the longer term, a further driving
aim of this project is to develop strong collaborations amongst the participating teams to position ourselves
for a larger project proposal to ANR or ERC.

7.3. European Initiatives
7.3.1. FP7 Projects
7.3.1.1. ADAPT

Title: Theory and algorithms for adaptive particle simulation
Type: IDEAS
Instrument: ERC Starting Grant
Duration: September 2012 - August 2017
Principal Investigator: Stephane Redon
Coordinator: Inria (France)

7.4. International Research Visitors
7.4.1. Internships
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Georgy CHEREMOVSKIY (from Jul 2012 until Oct 2012)

Subject: Development of Orientation-Dependent Potential Function for Computational
Drug Design

Institution: Moscow Institute for Physics and Technology (Russian Federation)

8. Dissemination

8.1. Teaching - Supervision
8.1.1. Teaching

Licence : Stephane Redon, “Introduction to computer science”, INF311 and INF321, 80h, Ecole
Polytechnique, Paris, France

8.1.2. Supervision
PhD : Svetlana Artemova, Adaptive Algorithms for molecular simulation, Grenoble University, May
30, 2012, Stephane Redon

PhD : Mael Bosson, Adaptive algorithms for computational chemistry and interactive modeling,
Grenoble University, October 19, 2012, Brigitte Bidegaray and Stephane Redon

PhD in progress : Petr Popov, Computational methods for protein structure prediction, November
2011, Sergei Grudinin

8.2. Participation to conferences, seminars
• S. Grudinin and P. Popov attended "Journees du GdR BiMGdR Bim", Paris (January 20 2012).

• S. Grudinin and P. Popov participated in a workshop "Exploring Protein Interactions through Theory
and Experiments", Lausanne (September 24-26 2012).

• S. Grudinin gave a talk titled "Fast Fitting of Atomic Structures into Cryo-EM Density Maps Using
Hermite Orthogonal Functions" in a workshop "Computational Challenges in Structural Biology",
Strasbourg (November 14-15 2012).

• P. Popov participated in a workshop "Computational Challenges in Structural Biology", Strasbourg
(November 14-15 2012).
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