

[image: cover]

PARKAS
Parallélisme de Kahn Synchrone
2012 Research Team Activity Report
	Paris - Rocquencourt

	 Field :
	 Algorithmics, Programming, Software and Architecture

Theme :
Embedded and Real Time Systems
Presentation of the
		Project-Team

	Members
	[bookmark: uid3]Overall Objectives
	Scientific Foundations	[bookmark: uid5]Presentation and originality
of the PARKAS team

	[bookmark: uid13]Application Domains
	Software	[bookmark: uid15]Lucid Synchrone
	[bookmark: uid16]ReactiveML
	[bookmark: uid17]Heptagon
	[bookmark: uid18]Lucy-n: an n-synchronous data-flow programming language
	[bookmark: uid19]ML-Sundials
	[bookmark: uid25]GCC
	[bookmark: uid26]isl
	[bookmark: uid27]ppcg
	[bookmark: uid28]Ott: tool support for the working semanticist
	[bookmark: uid33]Lem: a tool for lightweight executable semantics
	[bookmark: uid34]Cmmtest: a tool for hunting concurrency compiler bugs

	New Results	[bookmark: uid39]Reactive Programming
	[bookmark: uid40]n-Synchronous Languages
	[bookmark: uid44]Strong normal form for large integers, boolean functions and finite automata
	[bookmark: uid48]A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing
	[bookmark: uid49]A verified compiler for relaxed-memory concurrency
	[bookmark: uid50]Compiling C/C++ concurrency from C++11 to POWER
	[bookmark: uid51]Compilation techniques for synchronous languages
	[bookmark: uid54]Generation of Parallel Code from Synchronous Programs
	[bookmark: uid56]Semantics and Implementation of
Hybrid System Modelers

	Bilateral Contracts and Grants with Industry	[bookmark: uid58]Bilateral Contracts with Industry

	Dissemination	[bookmark: uid69]Scientific Animation
	[bookmark: uid100]Teaching - Supervision - Juries
	[bookmark: uid122]Popularization

	Bibliography
		Publications of the year
	References in notes

Address : Département d'Informatique, École Normale Supérieure, 45 rue d'Ulm, 75005 Paris.

Keywords: Compiling, Embedded Systems, Parallelism, Programming Languages, Synchronous LanguagesSection: Members
Research Scientists
Albert Cohen [Senior Researcher Inria, HdR]
Francesco Zappa Nardelli [Junior Researcher Inria, since September 2012]
Timothy Bourke [Starting Researcher]
Faculty Members
Marc Pouzet [Team leader, ENS, Professor at UPMC, HdR]
Louis Mandel [Université Paris Sud]
Jean Vuillemin [ENS, Director of DI until August 2011, HdR]

PhD Students
Cedric Auger [Université Paris Sud, MESR scholarship]
Léonard Gérard [Université Paris Sud, AMN]
Robin Morisset [ENS contract, from November 2012]
Cédric Pasteur [Université Paris Diderot, AMX]
Ramakrishna Upadrasta [Université Paris Sud, MESR scholarship]
Tobias Grosser [Google Doctoral Fellowship]
Feng Li [UPMC, ENS contract, FP7 grant]
Riyadh Baghdadi [UPMC, ENS contract, FP7 grant]
Nhat Minh Le [ENS, FP7 grant]
Adrien Guatto [ENS contract]
Jean-Yves Vet [UPMC, External student, CEA DAM]
Camille Gallet [UPMC, External student, CEA DAM]
Ivan Llopard [UPMC, External student, CEA LETI]
Post-Doctoral Fellows
Antoniu Pop [FP7 grant]
Boubacar Diouf [BGLE grant (investissements d'avenir)]
Jun Inoue [FP7 grant]
Mehdi Dogguy [ANR grant, until nov. 2012]
Sven Verdoolaege [ENS, 80%, FP7 grant]
Serge Guelton [ENS, 50%, FP7 grant]

 Overall Objectives

 	
 [bookmark: uid3]Overall Objectives

 [bookmark: uid3] Section:
 Overall Objectives
Overall Objectives

The goal of the project is the design, semantics and compilation of
languages for the implementation of provably safe and efficient
computing systems. We are driven by the ideal of a unique source code
used both to program and simulate a wide variety of
systems, including (1) embedded real-time controllers (e.g.,
fly-by-wire, engine control); (2) computationally intensive
applications (e.g., video); (3) the
simulation of (a possibly huge number of) embedded systems in close
interaction (e.g., simulation of electrical or sensor
networks, train tracking). All these applications share the need for
formally defined languages used both for simulation and the generation
of target code.
For that purpose, we design languages and experiment with compilers that
transform mathematical specifications of systems into target code, that
may execute on parallel (multi-core) architectures.

Our research team draws inspiration and focus from the simplicity and
complementarity of the data-flow model of Kahn process
networks, synchronous concurrency,
and the expression of the two in functional
languages. To reach our goal, we plan to
leverage a large body of formal principles: language design,
semantics, type theory, concurrency models (including recent works on
the formalisation of relaxed memory models), synchronous circuits and
algorithms (code generation, optimization, polyhedral compilation).

 Scientific Foundations

 	Scientific Foundations	[bookmark: uid5]Presentation and originality
of the PARKAS team

 [bookmark: uid5] Section:
 Scientific Foundations
Presentation and originality
of the PARKAS team

Our project is founded on our expertise in three complementary
domains: (1) synchronous functional programming and its extensions
to deal with features such as communication with bounded buffers and
dynamic process creation; (2) mathematical models for synchronous
circuits; (3) compilation techniques for synchronous languages and
optimizing/parallelizing compilers.

A strong point of the team is its experience and investment in the
development of languages and compilers. Members of the team also
have direct collaborations for several years with major industrial
companies in the field and several of our results are integrated in
successful products. Our main results are briefly summarized below.

[bookmark: idp140438614691408] Synchronous functional programming

In [19] , Paul Caspi and Marc Pouzet introduced
synchronous Kahn networks as those Kahn networks that can be
statically scheduled and executed with bounded buffers. This was the
origin of the language
Lucid Synchrone, (http://www.di.ens.fr/~pouzet/lucid-synchrone)(The
name is a reference to Lustre which stands for “Lucid Synchrone
et Temps réel”.) an ML extension of the synchronous language
Lustre with higher-order features, dedicated type systems (clock
calculus as a type system [19] , [29] ,
initialization analysis [30] and causality
analysis [31]). The language integrates original
features that are not found in other synchronous languages: such as
combinations of data flow, control flow, hierarchical automata and
signals [28] , [27] , and modular code
generation [20] , [17] .

In 2000, Marc Pouzet started to collaborate with the SCADE team of
Esterel-Technologies on the design of a new version of
SCADE. (http://www.esterel-technologies.com/products/scade-suite/)
Several features of Lucid Synchrone are now integrated into Scade 6, which
has been distributed since 2008, including the programming
constructs merge , reset , the clock calculus and the
type system. Several results have been developed jointly with
Jean-Louis Colaço and Bruno Pagano from Esterel-Technologies,
such as ways of combining data-flow and hierarchical automata, and
techniques for their compilation, initialization analysis, etc.

Dassault-Systèmes (Grenoble R&D center, part of
Delmia-automation) developed the language LCM, a variant of Lucid Synchrone
that is used for the simulation of factories. LCM follows closely
the principles and programming constructs of Lucid Synchrone (higher-order,
type inference, mix of data-flow and hierarchical automata). The
team in Grenoble is integrating this development into a new compiler
for the language
Modelica. (http://www.3ds.com/products/catia/portfolio/dymola/overview/)

In parallel, the goal of ReactiveML(http://rml.lri.fr/) was
to integrate a synchronous concurrency model into an existing ML
language, with no restrictions on expressiveness, so as to program a
large class of reactive systems, including efficient simulations of
millions of communicating processes (e.g., sensor networks), video
games with many interactions, physical simulations, etc. For such
applications, the synchronous model simplifies system design and
implementation, but the expressiveness of the algorithmic part of
the language is just as essential, as is the ability to create or
stop a process dynamically.

The development of ReactiveML was started by Louis Mandel during his PhD
thesis [42] , [38] and is ongoing. The
language extends Ocaml(More precisely a subset of Ocaml
without objects or functors.) with Esterel-like synchronous
primitives — synchronous composition, broadcast communication,
pre-emption/suspension — applying the solution of
Boussinot [18] to solve causality issues.

Several open problems have been solved by Louis Mandel: the
interaction between ML features (higher-order) and reactive
constructs with a proper type system; efficient simulation that
avoids busy waiting. The latter problem is particularly difficult in
synchronous languages because of possible reactions to the absence
of a signal. In the ReactiveML implementation, there is no busy
waiting: inactive processes have no impact on the overall
performance. It turns out that this enables ReactiveML to simulate
millions of (logical) parallel processes and to compete with the
best event-driven simulators [43] .

ReactiveML has been used for simulating routing protocols in ad-hoc
networks [37] and large scale sensor
networks [53] . The designer benefits from a real
programming language that gives precise control of the level of
simulation (e.g., each network layer up to the MAC layer) and
programs can be connected to models of the physical environment
programmed with Lutin [52] . ReactiveML is used since
2006 by the synchronous team at VERIMAG, Grenoble (in collaboration
with France-Telecom) for the development of low-consumption routing
protocols in sensor networks.

[bookmark: idp140438614770720] Relaxing synchrony with buffer communication

In the data-flow synchronous model, the clock calculus is a static
analysis that ensures execution in bounded memory. It checks that
the values produced by a node are instantaneously consumed by
connected nodes (synchronous constraint). To program Kahn process
networks with bounded buffers (as in video applications), it is thus
necessary to explicitly place nodes that implement buffers. The
buffers sizes and the clocks at which data must be read or written
have to be computed manually. In practice, it is done with
simulation or successive tries and errors. This task is difficult
and error prone. The aim of the n-synchronous model is to
automatically compute at compile time these values while insuring
the absence of deadlock.

Technically, it allows processes to be composed whenever they can be
synchronized through a bounded
buffer [21] , [22] . The new flexibility is
obtained by relaxing the clock calculus by replacing the equality of
clocks by a sub-typing rule. The result is a more expressive
language which still offers the same guarantees as the original. The
first version of the model was based on clocks represented as
ultimately periodic binary words [57] . It was algorithmically
expensive and limited to periodic systems. In [25] ,
an abstraction mechanism is proposed which permits direct reasoning
on sets of clocks that are defined as a rational slope and two
shifts. An implementation of the n-synchronous model, named Lucy-n, was developed in 2009 [39] , as
was a formalization of the theory in Coq [26] . We
also worked on low-level compiler and runtime support to parallelize
the execution of relaxed synchronous systems, proposing a portable
intermediate language and runtime library called Erbium [44] .

This work started as a collaboration between Marc Pouzet (LIP6,
Paris, then LRI and Inria Proval, Orsay), Marc Duranton (Philips
Research then NXP, Eindhoven), Albert Cohen (Inria Alchemy, Orsay)
and Christine Eisenbeis (Inria Alchemy, Orsay) on the real-time
programming of video stream applications in set-top boxes. It was
significantly extended by Louis Mandel and Florence Plateau during
her PhD thesis [47] (supervised by Marc
Pouzet and Louis Mandel). Low-level support has been investigated
with Cupertino Miranda, Philippe Dumont (Inria Alchemy, Orsay) and
Antoniu Pop (Mines ParisTech).

[bookmark: idp140438614789296] Polyhedral compilation and optimizing compilers

Despite decades of progress, the best parallelizing and optimizing
compilers still fail to extract parallelism and to perform the
necessary optimizations to harness multi-core processors and their
complex memory hierarchies. Polyhedral compilation aims at
facilitating the construction of more effective optimization and
parallelization algorithms. It captures the flow of data between
individual instances of statements in a loop nest, allowing to
accurately model the behavior of the program and represent complex
parallelizing and optimizing transformations. Affine
multidimensional scheduling is one of the main tools in polyhedral
compilation [32] . Albert Cohen, in collaboration with
Cédric Bastoul, Sylvain Girbal, Nicolas Vasilache, Louis-Noël
Pouchet and Konrad Trifunovic (LRI and Inria Alchemy, Orsay) has
contributed to a large number of research, development and transfer
activities in this area.

The relation between polyhedral compilation and data-flow synchrony
has been identified through data-flow array
languages [36] , [35] , [54] , [33] and the study of the
scheduling and mapping algorithms for these languages. We would like
to deepen the exploration of this link, embedding polyhedral
techniques into the compilation flow of data-flow, relaxed
synchronous languages.

Our previous work led to the design of a theoretical and algorithmic
framework rooted in the polyhedral model of compilation, and to the
implementation of a set of tools based on production compilers
(Open64, GCC) and source-to-source prototypes (PoCC,
http://pocc.sourceforge.net). We have shown that not only does
this framework simplify the problem of building complex loop nest
optimizations, but also that it scales to real-world
benchmarks [23] , [34] , [50] , [49] . The polyhedral model has
finally evolved into a mature, production-ready approach to solve
the challenges of maximizing the scalability and efficiency of
loop-based computations on a variety of high performance and
embedded targets.

After an initial experiment with Open64 [24] , [23] , we
ported these techniques to the GCC
compiler [48] , [56] , [55] , applying them to multi-level
parallelization and optimization problems, including vectorization
and exploitation of thread-level parallelism. Independently, we made
significant progress in the design of effective optimization
heuristics, working on the interactions between the semantics of the
compiler's intermediate representation and the structure of the
optimization space [50] , [49] , [51] .
These results
open opportunities for complex optimizations that target larger
problems, such as the scheduling and placement of process networks,
or the offloading of computational kernels to hardware accelerators
(such as GPUs).

[bookmark: idp140438614821808] Automatic compilation of high performance circuits

For both cost and performance reasons, computing systems tightly
couple parts realized in hardware with parts realized in software.
The boundary between hardware and software keeps moving with the
underlying technology and the external economic pressure. Moreover,
thanks to FPGA technology, hardware itself has become programmable.
There is now a pressing need from industry for hardware/software
co-design, and for tools which automatically turn software code into
hardware circuits, or more usually, into hybrid code that
simultaneously targets GPUs, multiple cores, encryption ASICs, and
other specialized chips.

Departing from customary C-to-VHDL compilation, we trust that
sharper results can be achieved from source programs that specify
bit-wise time/space behavior in a rigorous synchronous language,
rather than just the I/O behavior in some (ill-specified) subset of
C. This specification allows the designer to also program the
(asynchronous) environment in which to operate the entire system,
and to profile/measure/control each variable of the design.

At any time, the designer can edit a single specification of the
system, from which both the software and the hardware are
automatically compiled, and guaranteed to be compatible. Once
correct (functionally and with respect to the behavioral
specification), the application can be automatically deployed (and
tested) on a hard/soft hybrid co-design support.

Key aspects of the advocated methodology were validated by Jean
Vuillemin in the design of a PAL2HDTV video
sampler [45] , [46] . The circuit was automatically compiled from
a synchronous source specification, decorated and guided by a few
key hints to the hardware back-end, that targetted an FPGA running
at real-time video specifications: a tightly-packed highly-efficient
design at 240MHz, generated 100% automatically from the application
specification source code, and including all
run-time/debug/test/validate ancillary software. It was subsequently
commercialized on FPGA by LetItWave, and then on ASIC by Zoran. This
successful experience underlines our research perspectives on
parallel synchronous programming.

 Application Domains

 	
 [bookmark: uid13]Application Domains

 [bookmark: uid13] Section:
 Application Domains
Application Domains

The project addresses the design, semantics and implementation of
programming languages together with compilation techniques to develop
provably safe and efficient computing systems. Traditional
applications can be found in safety critical embedded systems with
hard real-time constraints such as avionics (e.g., fly-by-wire
command), railways (e.g., on board control, engine control), nuclear
plants (e.g., emergency control of the plant). While embedded
applications have been centralized, they are now massively parallel
and physically distributed (e.g., sensor networks, train tracking,
distributed simulation of factories) and they integrate
computationally intensive algorithms (e.g., video processing) with a
mix of hard and soft real-time constraints. Finally, systems are
heterogeneous with discrete devices communicating with physical ones
(e.g., interface between analog and digital circuits). Programming
and simulating a whole system from a unique source code, with static
guarantees on the reproducibility of simulations together with a compiler
to generate target embedded code is a scientific and industrial
challenge of great importance.

 Software

 	Software	[bookmark: uid15]Lucid Synchrone
	[bookmark: uid16]ReactiveML
	[bookmark: uid17]Heptagon
	[bookmark: uid18]Lucy-n: an n-synchronous data-flow programming language
	[bookmark: uid19]ML-Sundials
	[bookmark: uid25]GCC
	[bookmark: uid26]isl
	[bookmark: uid27]ppcg
	[bookmark: uid28]Ott: tool support for the working semanticist
	[bookmark: uid33]Lem: a tool for lightweight executable semantics
	[bookmark: uid34]Cmmtest: a tool for hunting concurrency compiler bugs

 [bookmark: uid15] Section:
 Software
Lucid Synchrone
Participant :
 Marc Pouzet [contact] .

Synchronous languages, type and clock inference, causality analysis,
compilation

Lucid Synchrone is a language for the implementation
of reactive systems. It is based on the synchronous model of time as
provided by Lustre combined with features from ML languages. It
provides powerful extensions such as type and clock inference,
type-based causality and initialization analysis and allows to
arbitrarily mix data-flow systems and hierarchical automata or flows
and valued signals.

It is distributed under binary form, at URL
http://www.di.ens.fr/~pouzet/lucid-synchrone/ .

The language was used, from 1996 to 2006 as a laboratory to
experiment various extensions of the language Lustre. Several
programming constructs (e.g. merge, last, mix of data-flow and
control-structures like automata), type-based program analysis
(e.g., typing, clock calculus) and compilation methods, originaly
introduced in Lucid Synchrone are now integrated in the new SCADE 6
compiler developped at Esterel-Technologies and commercialized since 2008.

Three major release of the language has been done and the current
version is V3 (dev. in 2006). The language is still used for
teaching and in our research but we do not develop it
anymore. Nonetheless, we have integrated several features from Lucid
Synchrone in new research prototypes described below.

[bookmark: uid16] Section:
 Software
ReactiveML
Participants :
 Mehdi Dogguy, Louis Mandel [contact] , Cédric Pasteur.

Programming language, synchronous reactive programming, concurrent
systems, dedicated type-systems.

ReactiveML is a programming language dedicated to the implementation
of interactive systems as found in graphical user interfaces, video
games or simulation problems. ReactiveML is based on the synchronous
reactive model due to Boussinot, embedded in an ML language (OCaml).

The Synchronous reactive model provides synchronous parallel
composition and dynamic features like the dynamic creation of
processes. In ReactiveML, the reactive model is integrated at the
language level (not as a library) which leads to a safer and a more
natural programming paradigm.

ReactiveML is distributed at URL http://rml.lri.fr . The compiler
is distributed under the terms of the Q Public License and the library
is distributed under the terms of the GNU Library General Public
License. The development of ReactiveML started at the University
Paris 6 (from 2002 to 2006).

The language was mainly used for the simulation of mobile ad hoc
networks at the Pierre and Marie Curie University and for the
simulation of sensor networks at France Telecom and Verimag (CNRS,
Grenoble).

In 2012, a new automatic build system for ReactiveML program based on
ocamlbuild has been implemented. A new static analysis which checks
that programs cooperate has been developed. A full ReactiveML toplevel
compiled into JavaScript has been made available at
http://rml.lri.fr/tryrml . The ReactiveML distribution has also
been cleaned up.

[bookmark: uid17] Section:
 Software
Heptagon
Participants :
 Cédric Pasteur [contact] , Brice Gelineau, Léonard Gérard, Adrien Guatto, Marc Pouzet.

Synchronous languages, compilation, optimizing compilation,
parallel code generation, behavioral synthesis.

Heptagon is an experimental language for the implementation of
embedded real-time reactive systems. It is developed inside the
Synchronics large-scale initiative, in collaboration with Inria
Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without
type inference, type polymorphism and higher-order. It is thus a
Lustre-like language extended with hierchical automata in a form
very close to SCADE 6. The
intention for making this new language and compiler is to develop
new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different
platforms. This explains much of the simplifications we have made in
order to ease the development of compilation techniques.

Some extensions have already been made, most notably automata. It's
currently used to experiment with linear typing for arrays and also
to introduce a concept of asynchronous parallel computations. The
compiler developed in our team generates C, java and VHDL code.

Heptagon is jointly developed by Gwenael Delaval and Alain Girault
from the Inria POP ART team (Grenoble).

[bookmark: uid18] Section:
 Software
Lucy-n: an n-synchronous data-flow programming language
Participants :
 Louis Mandel [contact] , Adrien Guatto, Marc Pouzet.

Lucy-n is a language to program in the n-synchronous model. The
language is similar to Lustre with a buffer construct. The Lucy-n
compiler ensures that programs can be executed in bounded memory and
automatically computes buffer sizes. Hence this language allows to
program Kahn networks, the compiler being able to statically compute
bounds for all FIFOs in the program.

The language compiler and associated tools are available in a binary
form at http://www.lri.fr/~mandel/lucy-n .

In 2012, a first version of the code generator has been
distributed. The typing algorithms has been improved.

[bookmark: uid19] Section:
 Software
ML-Sundials
Participants :
 Timothy Bourke, Marc Pouzet [contact] .

ML-Sundials library provides an Ocaml interface to the Sundials
numerical
suite (https://computation.llnl.gov/casc/sundials/main.html)
(version 2.4.0). This library is used for solving and initial
value problem and includes a zero-crossing detection
mechanism. Only the CVODE solver with serial nvectors is currently
supported. The structure and naming conventions largely follow the
original libraries, both for ease of reading the existing
documentation and for converting existing source code, but several
changes have been made for programming convenience, namely:

	[bookmark: uid21] solver sessions are configured through algebraic data types
rather than through multiple function calls,

	[bookmark: uid22] error conditions are signalled by exceptions rather than
return codes (including in user-supplied callback routines),

	[bookmark: uid23] closures (partial applications of higher-order functions) are
used to share user data between callback routines, and,

	[bookmark: uid24] explicit free commands are not necessary nor provided since
Ocaml is a garbage-collected language.

The library is in use in a new synchronous hybrid language we are currently
developping.

[bookmark: uid25] Section:
 Software
GCC
Participants :
 Albert Cohen [contact] , Tobias Grosser, Antoniu Pop, Feng Li, Riyadh Baghdadi, Nhat Minh Le.

Compilation, optimizing compilation, parallel data-flow programming
automatic parallelization, polyhedral compilation.

http://gcc.gnu.org

Licence: GPLv3+ and LGPLv3+

The GNU Compiler Collection includes front ends for C, C++,
Objective-C, Fortran, Java, Ada, and Go, as well as libraries for
these languages (libstdc++, libgcj,...). GCC was originally written
as the compiler for the GNU operating system. The GNU system was
developed to be 100% free software, free in the sense that it
respects the user's freedom.

PARKAS contributes to the polyhedral compilation framework, also
known as Graphite. We also distribute an experimental branch for a
stream-programming extension of OpenMP, parallel data-flow
programming, and automatic parallelization to a data-flow runtime or
architecture. This experiment borrows key design elements to
synchronous data-flow languages.

Tobias Grosser is the maintainer of the Graphite optimization pass
of GCC.

[bookmark: uid26] Section:
 Software
isl
Participants :
 Sven Verdoolaege [contact] , Tobias Grosser, Albert Cohen.

Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/isl

Licence: MIT

isl is a library for manipulating sets and relations of integer
points bounded by linear constraints. Supported operations on sets
include intersection, union, set difference, emptiness check, convex
hull, (integer) affine hull, integer projection, transitive closure
(and over-approximation), computing the lexicographic minimum using
parametric integer programming. It also includes an ILP solver based
on generalized basis reduction. isl also supports affine
transformations for polyhedral compilation.

[bookmark: uid27] Section:
 Software
ppcg
Participants :
 Sven Verdoolaege [contact] , Tobias Grosser, Riyadh Baghdadi, Albert Cohen.

Presburger arithmetic, integer linear programming, polyhedral library,
automatic parallelization, polyhedral compilation.

http://freshmeat.net/projects/ppcg

Licence: LGPLv2.1+

More tools are being developed, based on isl. PPCG is our
source-to-source research tool for automatic parallelization in the
polyhedral model. It serves as a test bet for many algorithms and
heuristics published by our group, and is currently the best
automatic parallelizer for CUDA (on the Polybench suite).

[bookmark: uid28] Section:
 Software
Ott: tool support for the working semanticist
Participant :
 Francesco Zappa Nardelli [contact] .

Languages, semantics, tool support, theorem prouvers.

Ott is a tool for writing definitions of programming languages and
calculi. It takes as input a definition of a language syntax and semantics, in
a concise and readable ASCII notation that is close to what one would
write in informal mathematics. It generates output:

	[bookmark: uid29] a LaTeX source file that defines commands to build a typeset
version of the definition;

	[bookmark: uid30] a Coq version of the definition;

	[bookmark: uid31] an Isabelle version of the definition; and

	[bookmark: uid32] a HOL version of the definition.

Additionally, it can be run as a filter, taking a
LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms
of the defined language, parsing them and replacing them by typeset
terms.

The main goal of the Ott tool is to support work on large programming
language definitions, where the scale makes it hard to keep a
definition internally consistent, and to keep a tight correspondence
between a definition and implementations. We also wish to ease rapid
prototyping work with smaller calculi, and to make it easier to
exchange definitions and definition fragments between groups. The
theorem-prover backends should enable a smooth transition between use
of informal and formal mathematics.

In collaboration with Peter Sewell (Cambridge University).

The current version of Ott is about 30000 lines of OCaml. The tool is
available from http://moscova.inria.fr/~zappa/software/ott
(BSD licence). It is widely used in the scientific community.

In 2012 we implemented several bug-fixes and we kept the theorem
prouver backends up-to date with the prover evolution. We have also
been working toward a closer integration with the Lem tool.

The currently relased version is 0.21.2.

[bookmark: uid33] Section:
 Software
Lem: a tool for lightweight executable semantics
Participant :
 Francesco Zappa Nardelli [contact] .

Languages, semantics, tool support, theorem prouvers.

Lem is a lightweight tool for writing, managing, and publishing large
scale semantic definitions. It is also intended as an intermediate
language for generating definitions from domain-specific tools, and
for porting definitions between interactive theorem proving systems
(such as Coq, HOL4, and Isabelle). As such it is a complementary tool
to Ott.

Lem resembles a pure subset of Objective Caml, supporting typical
functional programming constructs, including top-level parametric
polymorphism, datatypes, records, higher-order functions, and pattern
matching. It also supports common logical mechanisms including list
and set comprehensions, universal and existential quantifiers, and
inductively defined relations. From this, Lem generates OCaml, HOL4
and Isabelle code; the OCaml backend uses a finite set library (and
does not yet support inductive relations). A Coq backend is in
development.

Lem is already in use at Cambridge and Inria for research on
relaxed-memory concurrency. We are currently preparing a
feature-complete release with back-ends for HOL4, Isabelle/HOL, Coq,
OCaml, and LaTeX. The project web-page is
http://www.cl.cam.ac.uk/~so294/lem/ .

In collaboration with Scott Owens (U. Kent, UK) and Peter Sewell (U. Cambridge, UK).

[bookmark: uid34] Section:
 Software
Cmmtest: a tool for hunting concurrency compiler bugs
Participants :
 Francesco Zappa Nardelli [contact] , Robin Morisset, Pankaj Pawan.

Languages, concurrency, memory models, C11/C++11, compiler, bugs.

The cmmtest tool performs random testing of C and C++ compilers against the C11/C++11 memory model. A
test case is any well-defined, sequential C program; for each test
case, cmmtest:

	[bookmark: uid35] compiles the program using the compiler and compiler
optimisations that are being tested;

	[bookmark: uid36] runs the compiled program in an instrumented execution environment that logs all memory accesses to global variables and synchronisations;

	[bookmark: uid37] compares the recorded trace with a reference trace for the same program, checking if the recorded trace can be obtained from the reference trace by valid eliminations, reorderings and introductions.

Although not yet publicly distributed, cmmtest already identified
several mistaken write introductions and other unexpected behaviours
in the latest release of the gcc compiler. These have been promptly
fixed by the gcc developers.

 New Results

 	New Results	[bookmark: uid39]Reactive Programming
	[bookmark: uid40]n-Synchronous Languages
	[bookmark: uid44]Strong normal form for large integers, boolean functions and finite automata
	[bookmark: uid48]A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing
	[bookmark: uid49]A verified compiler for relaxed-memory concurrency
	[bookmark: uid50]Compiling C/C++ concurrency from C++11 to POWER
	[bookmark: uid51]Compilation techniques for synchronous languages
	[bookmark: uid54]Generation of Parallel Code from Synchronous Programs
	[bookmark: uid56]Semantics and Implementation of
Hybrid System Modelers

 [bookmark: uid39] Section:
 New Results
Reactive Programming
Participants :
 Mehdi Dogguy, Louis Mandel, Cédric Pasteur, Marc Pouzet.

ReactiveML is an extension of OCaml with synchronous concurrency,
based on synchronous parallel composition and broadcast of
signals. The goal is to provide a general model of deterministic
concurrency inside a general purpose functional language to program
reactive systems. It is particularly suited to program discrete
simulations, for instance of sensor networks.

One of the current focus of the research is being able to simulate
huge systems, composed of millions of agents, by extending the current
purely sequential implementation in order to be able to take advantage
of multi-core and distributed architectures. This goal has led to the
introduction of a new programming construct, reactive domain,
which allows to define local time scales. These domains help for the
distribution of the code but also increase the expressiveness of the
language. In particular, it allows to do time refinement. A paper on
this new construct and the related static analysis has been submitted.
We have implemented a new runtime for ReactiveML, that uses the MPI
(Message Passing Interface) library to run programs on multi-core and
distributed architectures.

We have also investigated new static analyses for the
language. Following the work of PhD thesis of Mehdi Dogguy, we have
studied a new analysis which adds usages on signals to be able to
ensure one to one communications. We have also studied a new
reactivity analysis which ensures that a process can not prevent the
other ones to from executing. This analysis will be published
in [10] .

[bookmark: uid40] Section:
 New Results
n-Synchronous Languages
Participants :
 Louis Mandel [contact] , Marc Pouzet, Albert Cohen, Adrien Guatto.

The n-synchronous model introduced a way to compose streams which have
almost the same clock and can be synchronized through the use
of a finite buffer.

We have designed the language Lucy-n to program in this model of
computation [40] . This language is
similar to the first order synchronous data-flow language Lustre in
which a buffer operator is added. A dedicated type system allows to
check that programs can be executed in bounded memory and to compute
sufficient buffer sizes. Technically it is done through the
introduction of a subtyping constraint at each bufferization point.

	[bookmark: uid41] In collaboration with F. Plateau (Prove&Run), we developed a
new resolution constraint algorithm for the clocking of Lucy-n
programs [8] . Even if the new algorithm is
less efficient that the one using abstraction, it has the advantage
to be more precise and thus to accept more programs. It is useful
for example for the static scheduling of Latency Insensitive
Designs [41] .

	[bookmark: uid42] We worked on an extension of the synchronous model with integer
clocks. This extension allows to produce and consume several values
at each activation. It has large implication on the semantics, clock
typing, causality and code generation of the language.

	[bookmark: uid43] We have continue the work on the code generation. In particular,
we have been designing a new intermediate representation that allows
to deal with integer clocks.

[bookmark: uid44] Section:
 New Results
Strong normal form for large integers, boolean functions and finite automata
Participant :
 Jean Vuillemin.

Jean Vuillemin's recent work focusses on finding Strong Normal Form
for large Integers, Boolean functions and finite Automata, with
applications to circuits and software.

	[bookmark: uid45] [16] is the latest version of JV’s course notes at ENS ”De
l’algorithme au circuit”.

	[bookmark: uid46] [9] shows that the ordered dimension of a Boolean
function is a lower bound on the size of most known ordered Decision
Diagrams, and that ordered decision diagrams can be efficiently
constructed an operated upon.

	[bookmark: uid47] [6] shows an approach to circuit protection against
side-channel attacks based on a statistical analysis of power traces
derived from actual measures of the circuit in operation.

[bookmark: uid48] Section:
 New Results
A theory of safe optimisations in the C11/C++11 memory model and applications to compiler testing
Participants :
 Francesco Zappa Nardelli [contact] , Robin Morisset, Pankaj Pawan.

Compilers sometimes generate correct sequential code but break the
concurrency memory model of the programming language: these subtle
compiler bugs are observable only when the miscompiled functions
interact with concurrent contexts, making them particularly hard to
detect. In this work we design a strategy to reduce the hard problem
of hunting concurrency compiler bugs to differential testing of
sequential code and build a tool that puts this strategy to work. Our
first contribution is a theory of sound optimisations in the C11/C++11
memory model, covering most of the optimisations we have observed in
real compilers and validating the claim that common compiler
optisations are sound in the C11/C++11 memory model. Our second
contribution is to show how, building on this theory, concurrency
compiler bugs can be identified by comparing the memory trace of
compiled code against a reference memory trace for the source code.
Our tool identified several mistaken write introductions and other
unexpected behaviours in the latest release of the gcc compiler.

A paper on this work has been submitted to an international
conference [15] .

[bookmark: uid49] Section:
 New Results
A verified compiler for relaxed-memory concurrency
Participant :
 Francesco Zappa Nardelli [contact] .

We studied the semantic design and verified compilation of a C-like
programming language for concurrent shared-memory computation above
x86 multiprocessors. The design of such a language is made
surprisingly subtle by several factors: the relaxed-memory behaviour
of the hardware, the effects of compiler optimisation on concurrent
code, the need to support high-performance concurrent algorithms, and
the desire for a reasonably simple programming model. In turn, this
complexity makes verified (or verifying) compilation both essential
and challenging. This project started in 2010, and in 2012 we
submitted a journal version, describing the correctness proof of all
the phases of our CompCertTSO compiler (including experimental fence
eliminations). This has been accepted for publication in Journal of
the ACM [3] .

In collaboration with Jaroslav Sevcik (U. Cambridge), Viktor
Vafeiadis (MPI-SWS), Suresh Jagannathan (Purdue U.), Peter Sewell
(U. Cambridge).

[bookmark: uid50] Section:
 New Results
Compiling C/C++ concurrency from C++11 to POWER
Participant :
 Francesco Zappa Nardelli [contact] .

The upcoming C and C++ revised standards add concurrency to the
languages, for the first time, in the form of a subtle relaxed memory
model (the C++11 model). This aims to permit compiler optimisation and
to accommodate the differing relaxed-memory behaviours of mainstream
multiprocessors, combining simple semantics for most code with
high-performance low-level atomics for concurrency libraries.

We studied the the correctness of two proposed compilation schemes for
the C++11 load and store concurrency primitives to Power assembly,
having noted that an earlier proposal was flawed. (The main ideas
apply also to ARM, which has a similar relaxed memory architecture.)

This should inform the ongoing development of production compilers for
C++11 and C1x, clarifies what properties of the machine architecture
are required, and builds confidence in the C++11 and Power semantics.

A paper describing this work will appear in POPL 2012 [5] .

In collaboration with Kayvan Memarian (previously student in the
Moscova EPI, currently at U. Cambridge).

[bookmark: uid51] Section:
 New Results
Compilation techniques for synchronous languages
Participants :
 Marc Pouzet [contact] , Adrien Guatto, Léonard Gérard, Cédric Pasteur.

	[bookmark: uid52] The generation of efficient sequential code for synchronous
data-flow languages raises two intertwined issues: control and
memory optimization. While the former has been extensively
studied, for instance in the compilation of Lustre and SIGNAL, the
latter has been only addressed in a restricted manner. Yet, memory
optimization becomes a pressing issue when arrays are added to
such languages, for example,
SCADE 6 (http://www.esterel-technologies.com/products/scade-suite/).
We have proposed a two-levels solution to
the memory optimization problem. It combines a compile-time
optimization algorithm, reminiscent of register allocation, paired
with language annotations on the source given by the
designer. Annotations express in-place modifications and control
where allocation is performed. Moreover, they allow external
functions performing in-place modifications to be imported
safely. Soundness of annotations is guaranteed by a semilinear
type system and additional scheduling constraints. A key feature
is that annotations for well-typed programs do not change the
semantics of the language: removing them may lead to a less
efficient code but with the very same semantics.

[bookmark: uid52] The method has been implemented in Heptagon, the compiler developed in
the team of a Lustre-like synchronous language extended with hierarchical
automata and arrays. Experiments show that the proposed approach
removes most of the unnecessary array copies, resulting in faster
code that uses less memory. This work has been presented at the
ACM Intern. Conf. on Languages, Compilers and Tools for
Embedded Systems (LCTES'12) in June 2012 and it has
received the Best paper award.

[bookmark: uid54] Section:
 New Results
Generation of Parallel Code from Synchronous Programs
Participants :
 Albert Cohen [contact] , Léonard Gérard, Adrien Guatto, Nhat Minh Le, Marc Pouzet.

	[bookmark: uid55] Efficiently distributing synchronous programs is a challenging
and long-standing subject. This paper introduces the use of
futures in a Lustre-like language, giving the programmer control
over the expression of parallelism. In the synchronous model where
computations are considered instantaneous, futures increase
expressiveness by decoupling the beginning from the end of a
computation. Through a number of examples, we show how to
desynchronize long computations and implement parallel patterns
such as fork-join, pipelining and data parallelism. The proposed
extension preserves the main static properties of the base
language, including static resource bounds and the absence of
deadlock, livelock and races. Moreover, we prove that adding or
removing futures preserves the underlying synchronous semantics.

[bookmark: uid55] This work has been presented at the ACM Intern. Conf. on
Embedded Software (EMSOFT 2012), in October 2012 and it
received the Best paper award.

[bookmark: uid55] Further work along these lines is taking place, to generate code
for a variety of low-overhead execution models, to cope with
real-time constraints, and to formalize and prove the correctness
of the underlying concurrent data structures. On the latter point,
a paper has been accepted at the ACM Conf. PPoPP 2013.

[bookmark: uid56] Section:
 New Results
Semantics and Implementation of
Hybrid System Modelers
Participants :
 Marc Pouzet [contact] , Timothy Bourke.

Zélus is a new programming language for modeling systems that mix
discrete logical time and continuous time behaviors. From a user's
perspective, its main originality is to extend an existing -like
synchronous language with Ordinary Differential Equations (ODEs). The
extension is conservative: any synchronous program expressed as
data-flow equations and hierarchical automata can be composed
arbitrarily with ODEs in the same source code. A dedicated type
system and causality analysis ensure that all discrete changes are
aligned with zero-crossing events so that no side effects or
discontinuities occur during integration. Programs are statically
scheduled and translated into sequential code which, by construction,
runs in bounded time and space. Compilation is effected by
source-to-source translation into a small synchronous subset which is
processed by a standard synchronous compiler architecture. The
resulting code is paired with an off-the-shelf numeric solver.

This experiment show that it is possible to build a modeler for
explicit hybrid systems à la Simulink/Stateflow on top of an existing
synchronous language, using it both as a semantic basis and as a
target for code generation. In parallel with the software development done
during the year, we investigate, in
collaboration with Albert Benveniste, Benoit Caillaud (Inria Rennes)
and Dassault-Systèmes the treatment of Differential Algebraic
Equations (DAEs), in explicit or semi-explicit form.

This work will be presented at the ACM Intern. Conference on
Hybrid Systems: Computation and Control (HSCC 2013) in April 2013.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	[bookmark: uid58]Bilateral Contracts with Industry

 [bookmark: uid58] Section:
 Bilateral Contracts and Grants with Industry
Bilateral Contracts with Industry

	[bookmark: uid59] Google European Doctoral Fellowship of Tobias Grosser. $62000 per
year over 3 years. Studying the interaction of affine loop
transformations and vectorization, for multicore processors and
hardware accelerators.

 Dissemination

 	Dissemination	[bookmark: uid69]Scientific Animation
	[bookmark: uid100]Teaching - Supervision - Juries
	[bookmark: uid122]Popularization

 [bookmark: uid69] Section:
 Dissemination
Scientific Animation

[bookmark: uid70] Event organization

	[bookmark: uid71] J. Vuillemin is member of the International Scientific Advisory Board
of the National ICT Australia.

	[bookmark: uid72] J. Vuillemin chairs the Scientific Advisory Board of the national
Institute for InfoCom Research I2R in Singapore.

	[bookmark: uid73] F. Zappa Nardelli is member of the “comité executif” of the
CEA-EDF-Inria summer schools.

	[bookmark: uid74] F. Zappa Nardelli served in the POPL 2012 ERC.

	[bookmark: uid75] F. Zappa Nardelli is member of the "comité de suivi doctoral" de l'Inria Saclay.

	[bookmark: uid76] A. Cohen is the General Chair of the 7th HiPEAC conference, January
2012. Louis Mandel is member of the local arrangements committee. The
conference pionneered a new “journal first” publication model, and
has been completely reorganized into a large networking event with 27
parallel events, an industry exhibit with 50 companies booths and
posters, and a European project exhibit with 46 projects from the
computing systems, embedded systems strategic objectives of the FP7
and from the FET programme. 516 registered participants, 34 ACM TACO
journal papers presented (the record number for previous HiPEAC
conferences was 210 participants).

	[bookmark: uid77] M. Pouzet is in charge, with Catherine Dubois (IIE CNAM, Evry) of the
national research group LTP (Language, Types, Proofs) of the French GDR GLP
(“Génie de la Programmation et du Logiciel”). Two meetings a year with
three invited speakers.

	[bookmark: uid78] M. Pouzet organised 18th edition of SYNCHRON
(http://synchron2011.di.ens.fr), the workshop on Synchronous
Programming and Applications, in Dec. 2011 in Damaries-les-lys. We got
the record track of 80 participants and a special half-day devoted to
synchronous programming for music applications with collegues from IRCAM.

[bookmark: uid79] Editorial boards

	[bookmark: uid80] Jean Vuillemin is on the board of 5 international journals.

	[bookmark: uid81] Marc Pouzet is associate editor of the EURASIP Journal on
Embedded systems (http://jes.eurasipjournals.com .

	[bookmark: uid82] Marc Pouzet is “directeur de collection” for Hermes publisher.

	[bookmark: uid83] Albert Cohen is on the editorial board of the International
Journal on Parallel Programming (IJPP,
http://www.springer.com/computer/theoretical+computer+science/journal/10766).

	[bookmark: uid84] Albert Cohen is on the distinguished reviewer board of the ACM
Transactions on Architecture and Code Optimization (TACO).

[bookmark: uid85] Program committees

	[bookmark: uid86] M. Pouzet is a member of the program committee of the following
conferences: Design, Automation & Test in Europe (DATE 2012);
Embedded Software (EMSOFT 2012); Complex Systems Design & Management (CSD&M) 2012;
Approches Formelles dans l'Assistance au Développement de
Logiciels (AFADL 2012); ACM Conf. on the Principles and Applications
of Declarative Programming (PADL 2012), located with POPL;

	[bookmark: uid87] M. Pouzet is an expert reviewer for the Design Automation
Conference (DAC) in 2012 and 2013.

	[bookmark: uid88] A. Cohen is the chair of the DAC 2013 ESS1 TPC subcommittee, and
was the co-chair of the DAC 2012 ESS1&2 TPC subcommittee.

	[bookmark: uid89] A. Cohen is the program chair of ETAPS CC 2014.

	[bookmark: uid90] A. Cohen is a member of the program committee of the following
conferences: ICS 2012, ETAPS CC 2013, PPoPP 2013 external review
committee.

	[bookmark: uid91] A. Cohen is the co-general chair of the ICPP-EMS 2013 workshop
(with ICPP).

	[bookmark: uid92] A. Cohen is a member of the program committee of the following
workshops: IMPACT 2012 and 2013 (with HiPEAC), HiRES 2013 (with
HiPEAC), GPGPU 2012 and 2013 (with ASPLOS), COSMIC 2013 (with CGO),
PLC 2012 and 2013 (with IPDPS), ICPP-EMS 2012 (with ICPP).

	[bookmark: uid93] L. Mandel, member of the program committee of the Journées
Francophones des Langages Applicatifs (JFLA 2012).

[bookmark: uid94] Invited Presentations

	[bookmark: uid95] A. Cohen was a keynote speaker at the IMPACT 2013 workshop (with HiPEAC)
“Adopt a Polyhedral Compiler!”, July 2011.

	[bookmark: uid96] A. Cohen gave an invited presentation at AMD Bangalore titled
“Languages and Compilers for Productivity and Efficiency”, June 2012.

	[bookmark: uid97] A. Cohen gave a Priti Shankar seminar at the Indian Institute of
Science, CSA department, titled “Polyhedral Compilation Off the
Beaten Path”, June 2012.

	[bookmark: uid98] M. Pouzet gave an invited presentation at the Int. Conference on Complex Systems,
Design & Management (CSDM), Dec. 2011.

	[bookmark: uid99] M. Pouzet gave an invited presentation at the “Séminaire
MaMux”, IRCAM, Paris. Feb. 2012.

[bookmark: uid100] Section:
 Dissemination
Teaching - Supervision - Juries

[bookmark: uid101] Teaching

	[bookmark: uid102] Licence: “Systèmes” (L3), L. Mandel (42h), Université
Paris-Sud 11, France

	[bookmark: uid103] Licence: “Systèmes et réseaux” (L3), M. Pouzet (24h),
L. Mandel (24h), École Normale Supérieure, France

	[bookmark: uid104] Licence: “Langages de programmation et compilation” (L3),
L. Mandel (24h), École Normale Supérieure, France

	[bookmark: uid105] Master Parisien de Recherche en Informatique (MPRI):
“Synchronous systems” (M2), M. Pouzet (12h),
J. Vuillemin (6h), L. Mandel (6h), École Normale Supérieure
and Université Paris Diderot, France

	[bookmark: uid106] Licence: “From Algorithm to Circuit” (L3), J. Vuillem
(64h), École Normale Supérieure, France

	[bookmark: uid107] Master Parisien de Recherche en Informatique (MPRI):
“Semantics and tools for multicore programming” (M2),
A. Cohen (9h), F. Zappa Nardelli (13.5h), École Normale
Supérieure and Université Paris Diderot, France

	[bookmark: uid108] Marc Pouzet is “responsable du concours d'entrée à l'ENS”, for
the Computer Science department (since Sept. 2010).

	[bookmark: uid109] Marc Pouzet is director of studies (directeur des études) of the
Computer Science department (since Sept. 2012).

[bookmark: uid110] Supervision

	[bookmark: uid111] M2: R. Morisset (ENS), Correctness of optimisations in the
C11/C++11 memory model, september 2012;

	[bookmark: uid112] M2: P. Pawan (IIT Kanpur, India), Hunting concurrency compiler
bugs, september 2012;

	[bookmark: uid113] M2: F. Gindraud (ENS Lyon), definition, code generation, and
formal verification of a software controlled cache coherence
protocol;

	[bookmark: uid114] M2: B. Arnoux (École Polytechnique, Telecom ParisTech), globally
adressable memory model for data-flow execution.

	[bookmark: uid115] M1: C. Lecourt (École Polytechnnique), numerical receipies and examples
for Zélus.

	[bookmark: uid116] M2: G. Baudart (École normale supérieure, Cachan),
A synchronous semantics and implementation for Antescofo.

[bookmark: uid117] Juries

	[bookmark: uid118] A. Cohen was a reviewer of the following PhD theses:
Nicolas Benoit (January 2012, Université de Versailles St-Quentin),
Artur Pietrek (October 2012, Université Joseph Fourier),
Mehdu Amini (November 2012, MINES ParisTech),
Selma Saidi (November 2012, Université Joseph Fourier),
Dmitry Nadezhkin (December 2012, Leiden University, The Netherlands).

	[bookmark: uid119] A. Cohen was a committee member of the following PhD theses:
Delphine Demange (October 2012, École Normale Supérieure de Cachan
– Université Européenne de Bretagne), Quentin Colombet (December
2012, École Normale Supérieure de Lyon).

	[bookmark: uid120] A. Cohen was a committee member of the following Habilitation
theses: Gaël Thomas (December 2012, Université Pierre et Marie
Curie), Cédric Bastoul (December 2012, Université Paris Sud).

	[bookmark: uid121] M. Pouzet was the President of the following PhD. thesis:
Peter Schrammel (October 2012, Université de Grenoble).

[bookmark: uid122] Section:
 Dissemination
Popularization

	[bookmark: uid123] L. Mandel and M. Pouzet, were invited to give a lecture at IRCAM in the Master
of “Acoustique, Traitement du signal, Informatique, Appliqués à la
Musique”. Nov. 2010, Nov. 2011, and Nov. 2012.

 Bibliography
[bookmark: year]Publications of the year
Articles in International Peer-Reviewed Journal
	[1][bookmark: parkas-2012-bid50]
	A. Benveniste, T. Bourke, B. Caillaud, M. Pouzet.
Non-Standard Semantics of Hybrid Systems Modelers, in: Journal of Computer and System Sciences (JCSS), 2012, vol. Special issue in honor of Amir Pnueli.

 	[2][bookmark: parkas-2012-bid49]
	D. Das, R. Upadrasta, B. Dupont De Dinechin.
Efficient Liveness Computation Using Merge Sets and DJ-Graphs, in: ACM Transactions on Architecture and Code Optimization, January 2012, vol. 8, no 4. [
DOI : 10.1145/2086696.2086706]
http://hal.inria.fr/hal-00647369

 	[3][bookmark: parkas-2012-bid47]
	J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, P. Sewell, S. Jagannathan.
CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency, in: JACM, 2012, to appear.

International Peer-Reviewed Conference/Proceedings
	[4][bookmark: parkas-2012-bid51]
	M. Bachir, A. Cohen, S.-A.-A. TOUATI.
On the Effectiveness of Register Moves to Minimise Post-Pass Unrolling in Software Pipelined Loops, in: HPCS 2012 : International Conference on High Performance Computing & Simulation, Madrid, Spain, IEEE, ACM (editors), Pr Waleed Smari, July 2012.
http://hal.inria.fr/hal-00716183

 	[5][bookmark: parkas-2012-bid48]
	M. Batty, K. Memarian, S. Owens, S. Sarkar, P. Sewell.
Clarifying and Compiling C/C++ Concurrency: from C++11 to POWER, in: POPL 2012, 2012.

 	[6][bookmark: parkas-2012-bid45]
	E. Brier, Q. Fortier, R. Korkikian, D. Naccache, G. O. de Almeida, A. Pommellet, K. W. Magld, A. H. Ragab, J. Vuillemin.
Defensive Leakage Camouflage, in: CARDIS 12, 2013, to appear.

 	[7][bookmark: parkas-2012-bid52]
	L. Gérard, A. Guatto, C. Pasteur, M. Pouzet.
A modular memory optimization for synchronous data-flow languages: application to arrays in a lustre compiler, in: Proceedings of the 13th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and Theory for Embedded Systems, Beijing, China, ACM, 2012, p. 51–60. [
DOI : 10.1145/2248418.2248426]
http://hal.inria.fr/hal-00728527

 	[8][bookmark: parkas-2012-bid41]
	L. Mandel, F. Plateau.
Scheduling and Buffer Sizing of n-Synchronous Systems: Typing of Ultimately Periodic Clocks in Lucy-n, in: Eleventh International Conference on Mathematics of Program Construction (MPC 2012), Madrid, Spain, June 2012.

 	[9][bookmark: parkas-2012-bid44]
	J. Vuillemin.
The least diagram of a Boolean function, in: Boole Conference, volume 3 of Luminy 12, 2012.

Workshops without Proceedings
	[10][bookmark: parkas-2012-bid39]
	L. Mandel, C. Pasteur.
Réactivité des systèmes coopératifs : le cas de ReactiveML, in: Vingt-quatrièmes Journées Francophones des Langages Applicatifs, Aussois, France, February 2013.

Internal Reports
	[11][bookmark: parkas-2012-bid55]
	B. Diouf, A. Cohen, F. Rastello.
A Polynomial Spilling Heuristic: Layered Allocation, Inria, July 2012, no RR-8007, 23 p.
http://hal.inria.fr/hal-00713693

 	[12][bookmark: parkas-2012-bid56]
	A. Pop, A. Cohen.
Control-Driven Data Flow, Inria, July 2012, no RR-8015, 36 p.
http://hal.inria.fr/hal-00717906

 	[13][bookmark: parkas-2012-bid54]
	A. Pop, A. Cohen.
Expressiveness and Data-Flow Compilation of OpenMP Streaming Programs, Inria, June 2012, no RR-8001, 28 p.
http://hal.inria.fr/hal-00710409

Other Publications
	[14][bookmark: parkas-2012-bid53]
	G. Baudart.
Antescofo : Vers une programmation synchrone, Master ATIAM, Université Pierre et Marie Curie (UPMC) et IRCAM, Paris, September 2012, 46 p.
http://hal.inria.fr/hal-00730443

 	[15][bookmark: parkas-2012-bid46]
	R. Morisset, P. Pawan, F. Zappa Nardelli.
Compiler Testing via a Theory of Sound Optimisations in the C11/C++11 memory model, 2012, submitted.

 	[16][bookmark: parkas-2012-bid43]
	J. Vuillemin.
De l'algorithme au circuit intégré, 2012, Notes de cours de l'Ecole Normale Supérieure, pages 1-310, ENS.

[bookmark: References]References in notes
	[17][bookmark: parkas-2012-bid7]
	D. Biernacki, J.-L. Colaço, G. Hamon, M. Pouzet.
Clock-directed Modular Code Generation of Synchronous Data-flow Languages, in: ACM International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Tucson, Arizona, June 2008.

 	[18][bookmark: parkas-2012-bid10]
	F. Boussinot, R. de Simone.
The SL synchronous language, in: IEEE Transaction on Software Engineering, 1996.

 	[19][bookmark: parkas-2012-bid0]
	P. Caspi, M. Pouzet.
Synchronous Kahn Networks, in: ACM SIGPLAN International Conference on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

 	[20][bookmark: parkas-2012-bid6]
	P. Caspi, M. Pouzet.
A Co-iterative Characterization of Synchronous Stream Functions, in: Coalgebraic Methods in Computer Science (CMCS'98), Electronic Notes in Theoretical Computer Science, March 1998, Extended version available as a VERIMAG tech. report no. 97–07 at www.lri.fr/pouzet.

 	[21][bookmark: parkas-2012-bid15]
	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
Synchroning Periodic Clocks, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[22][bookmark: parkas-2012-bid16]
	A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, M. Pouzet.
N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems, in: ACM International Conference on Principles of Programming Languages (POPL'06), Charleston, South Carolina, USA, January 2006.

 	[23][bookmark: parkas-2012-bid28]
	A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache.
Facilitating the Search for Compositions of Program Transformations, in: Intl. Conf. on Supercomputing (ICS'05), Boston, Massachusetts, June 2005, p. 151–160.

 	[24][bookmark: parkas-2012-bid32]
	A. Cohen, S. Girbal, O. Temam.
A Polyhedral Approach to Ease the Composition of Program Transformations, in: Euro-Par'04, Pisa, Italy, LNCS, Springer-Verlag, August 2004, no 3149, p. 292–303.

 	[25][bookmark: parkas-2012-bid18]
	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Abstraction of Clocks in Synchronous Data-flow Systems, in: The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS), Bangalore, India, December 2008.

 	[26][bookmark: parkas-2012-bid20]
	A. Cohen, L. Mandel, F. Plateau, M. Pouzet.
Relaxing Synchronous Composition with Clock Abstraction, 2009, Workshop on Hardware Design using Functional languages (HFL 09) - ETAPS.
http://www.lri.fr/~plateau/hfl09/

 	[27][bookmark: parkas-2012-bid5]
	J.-L. Colaço, G. Hamon, M. Pouzet.
Mixing Signals and Modes in Synchronous Data-flow Systems, in: ACM International Conference on Embedded Software (EMSOFT'06), Seoul, South Korea, October 2006.

 	[28][bookmark: parkas-2012-bid4]
	J.-L. Colaço, B. Pagano, M. Pouzet.
A Conservative Extension of Synchronous Data-flow with State Machines, in: ACM International Conference on Embedded Software (EMSOFT'05), Jersey city, New Jersey, USA, September 2005.

 	[29][bookmark: parkas-2012-bid1]
	J.-L. Colaço, M. Pouzet.
Clocks as First Class Abstract Types, in: Third International Conference on Embedded Software (EMSOFT'03), Philadelphia, Pennsylvania, USA, october 2003.

 	[30][bookmark: parkas-2012-bid2]
	J.-L. Colaço, M. Pouzet.
Type-based Initialization Analysis of a Synchronous Data-flow Language, in: International Journal on Software Tools for Technology Transfer (STTT), August 2004, vol. 6, no 3, p. 245–255.

 	[31][bookmark: parkas-2012-bid3]
	P. Cuoq, M. Pouzet.
Modular Causality in a Synchronous Stream Language, in: European Symposium on Programming (ESOP'01), Genova, Italy, April 2001.

 	[32][bookmark: parkas-2012-bid23]
	P. Feautrier.
Some Efficient Solutions to the Affine Scheduling Problem, Part II, multidimensional time, in: Intl. J. of Parallel Programming, December 1992, vol. 21, no 6, p. 389-420, See also Part I, one dimensional time, 21(5):315–348.

 	[33][bookmark: parkas-2012-bid27]
	A. Gamatié, E. Rutten, H. Yu, P. Boulet, J.-L. Dekeyser.
Synchronous Modeling and Analysis of Data Intensive Applications, in: EURASIP Journal on Embedded Systems, 2008.

 	[34][bookmark: parkas-2012-bid29]
	S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam.
Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies, in: Intl. J. of Parallel Programming, June 2006, vol. 34, no 3, p. 261–317, Special issue on Microgrids.

 	[35][bookmark: parkas-2012-bid25]
	A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, T. Risset.
Hardware Design Methodology with the Alpha Language, in: FDL'01, Lyon, France, September 2001.

 	[36][bookmark: parkas-2012-bid24]
	H. Leverge, C. Mauras, P. Quinton.
The Alpha language and its use for the design of systolic arrays, in: J. of VLSI Signal Processing, 1991, vol. 3, p. 173–182.

 	[37][bookmark: parkas-2012-bid12]
	L. Mandel, F. Benbadis.
Simulation of Mobile Ad hoc Network Protocols in ReactiveML, in: Proceedings of Synchronous Languages, Applications, and Programming (SLAP'05), Edinburgh, Scotland, Electronic Notes in Theoretical Computer Science, April 2005, Workshop ETAPS 2005.

 	[38][bookmark: parkas-2012-bid9]
	L. Mandel.
Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la programmation réactive, Université Paris 6, 2006.

 	[39][bookmark: parkas-2012-bid19]
	L. Mandel, F. Plateau, M. Pouzet.
Lucy-n: a n-Synchronous Extension of Lustre, in: 10th International Conference on Mathematics of Program Construction (MPC'10), Manoir St-Castin, Québec, Canada, Springer LNCS, June 2010.

 	[40][bookmark: parkas-2012-bid40]
	L. Mandel, F. Plateau, M. Pouzet.
Lucy-n: a n-Synchronous Extension of Lustre, in: Tenth International Conference on Mathematics of Program Construction (MPC 2010), Québec, Canada, June 2010.
http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf

 	[41][bookmark: parkas-2012-bid42]
	L. Mandel, F. Plateau, M. Pouzet.
Static Scheduling of Latency Insensitive Designs with Lucy-n, in: International Conference on Formal Methods in Computer-Aided Design (FMCAD), Austin, Texas, USA, October 30 – November 2 2011.

 	[42][bookmark: parkas-2012-bid8]
	L. Mandel, M. Pouzet.
ReactiveML, a Reactive Extension to ML, in: ACM International Conference on Principles and Practice of Declarative Programming (PPDP), Lisboa, July 2005.

 	[43][bookmark: parkas-2012-bid11]
	F. Maraninchi, N. Berthier, O. Bezet, G. Funchal.
Writing Simulators with Synchronous Languages, 2008, Synchron 2008: International Open Workshop on Synchronous Programming.

 	[44][bookmark: parkas-2012-bid21]
	C. Miranda, A. Pop, P. Dumont, A. Cohen, M. Duranton.
Erbium: A Deterministic, Concurrent Intermediate Representation to Map Data-Flow Tasks to Scalable, Persistent Streaming Processes, in: Intl. Conf. on Compilers Architectures and Synthesis for Embedded Systems (CASES'10), October 2010.

 	[45][bookmark: parkas-2012-bid37]
	J.-B. Note, M. Shand, J. Vuillemin.
Realtime video pixel matching, in: International Conference on Field Programmable Logic and Applications, 2006, p. 507 – 512.

 	[46][bookmark: parkas-2012-bid38]
	J.-B. Note, J. Vuillemin.
Towards automatically compiling efficient FPGA hardware, in: International Workshop on Design and Functional Languages, IEEE, 2007, p. 115 – 124.

 	[47][bookmark: parkas-2012-bid22]
	F. Plateau.
Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.
http://www.lri.fr/~plateau

 	[48][bookmark: parkas-2012-bid33]
	S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, N. Vasilache.
GRAPHITE: Loop Optimizations Based on the Polyhedral Model for GCC, in: Proc. of the 4þ GCC Developper's Summit, Ottawa, Canada, June 2006.

 	[49][bookmark: parkas-2012-bid31]
	L.-N. Pouchet, C. Bastoul, A. Cohen, J. Cavazos.
Iterative Optimization in the Polyhedral Model: Part II, Multidimensional Time, in: ACM Conf. on Programming Language Design and Implementation (PLDI'08), Tucson, Arizona, June 2008.

 	[50][bookmark: parkas-2012-bid30]
	L.-N. Pouchet, C. Bastoul, A. Cohen, N. Vasilache.
Iterative Optimization in the Polyhedral Model: Part I, One-Dimensional Time, in: Intl. Symp. on Code Generation and Optimization (CGO'07), San Jose, California, March 2007.

 	[51][bookmark: parkas-2012-bid36]
	L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan.
Combined Iterative and Model-driven Optimization in an Automatic Parallelization Framework, in: ACM Supercomputing Conf. (SC'10), New Orleans, Lousiana, November 2010, 11 p.

 	[52][bookmark: parkas-2012-bid14]
	P. Raymond, Y. Roux, E. Jahier.
Lutin: a language for specifying and executing reactive scenarios, in: EURASIP Journal on Embedded Systems, 2008, vol. 2008, Article ID 753821.

 	[53][bookmark: parkas-2012-bid13]
	L. Samper, F. Maraninchi, L. Mounier, L. Mandel.
GLONEMO: Global and Accurate Formal Models for the Analysis of Ad hoc Sensor Networks, in: Proceedings of the First International Conference on Integrated Internet Ad hoc and Sensor Networks (InterSense'06), Nice, France, May 2006.

 	[54][bookmark: parkas-2012-bid26]
	J. Soula, P. Marquet, J.-L. Dekeyser, A. Demeure.
Compilation principle of a specification language dedicated to signal processing, in: Intl. Conf. on Parallel Computing Technologies, Novosibirsk, Russia, LNCS, Springer-Verlag, September 2001, vol. 2127, p. 358–370.

 	[55][bookmark: parkas-2012-bid35]
	K. Trifunović, A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelski, S. Pop, J. Sjödin, R. Upadrasta.
GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral Compilation, in: GCC Research Opportunities Workshop (GROW'10), Pisa, Italy, January 2010.

 	[56][bookmark: parkas-2012-bid34]
	K. Trifunović, D. Nuzman, A. Cohen, A. Zaks, I. Rosen.
Polyhedral-Model Guided Loop-Nest Auto-Vectorization, in: Parallel Architectures and Compilation Techniques (PACT'09), Raleigh, North Carolina, September 2009.

 	[57][bookmark: parkas-2012-bid17]
	J. Vuillemin.
On Circuits and Numbers, Digital, Paris Research Laboratory, 1993.

OEBPS/uid61.xhtml
[bookmark: uid61] Section:
 Partnerships and Cooperations

National Initiatives

[bookmark: uid62] ANR

ANR WMC project (program “jeunes chercheuses, jeunes chercheurs”),
2012–2016, 200 Keuros. F. Zappa Nardelli is the main investigator.

ANR Boole project (program “action blanche”), 2009-2014.

ANR Partout (program “defis”), 2009-2012.

ANR CAFEIN, 2013-2015.

Action d'envergure Synchronics, 2008-2012. The action was driven by Alain Girault
(Inria, PopArt, Grenoble) and Marc Pouzet (Inria, Parkas, Paris-Rocquencourt), to
focus on “langages for embedded systems”. This has been instrumental in driving
our new research on hybrid system modelers.

[bookmark: uid63] Competitivity Clusters

FUI project OpenGPU, 2008–2012.

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid64.xhtml
[bookmark: uid64] Section:
 Partnerships and Cooperations

International Research Visitors

[bookmark: uid65] Visits of International Scientists

September, 27 - October, 3, Peter Sewell (U. Cambridge) visited the
Parkas team for collaboration with F. Zappa Nardelli and R. Morisset.

October, 6-13, Mike Hicks (U. Maryland) visited the Département
d'informatique of the ENS.

January, 18-20, P. Sadayappan (Ohio State U.) visited the team to
work with Tobias Grosser and Sven Verdoolaege. Similar visits took
place in July and December.

June-July 2013. Stephen Edwards (Columbia U.) was invited by ENS to spend a month
in the team.

[bookmark: uid66] Internships

January-July, Pankaj Pawan (IIT Kanpur) was intern student (M2) under
the supervision of F. Zappa Nardelli.

May-September, Robin Morisset (ENS Ulm) was intern student (M2) under
the supervision of F. Zappa Nardelli.

May-September, Fran cois Gindraud (ENS Ulm) was intern student (M2) under
the supervision of A. Cohen.

December 2011-November 2012, Mehdi Dogguy was post-doc funded by the
ANR Partout grant. Mehdi Dogguy worked on the static analysis of
ReactiveML programs and was supervised by L. Mandel.

April-July 2012, Cyprien Lecourt (École Polytechnique) was intern student (M1)
under the supervision of M. Pouzet.

April-September 2012, Guillaume Baudart (École normale supérieure
de Cachan) was intern student (M2) under the supervision of
M. Pouzet. Guillaume was a student from IRCAM and the supervision was
joint with Florent Jacquemart (Inria Paris-Rocquencourt and IRCAM).

[bookmark: uid67] Visits to International Teams

Louis Mandel spent 7 weeks in the team of Vijay Saraswat at IBM
T.J. Watson. He worked on the type system of the X10 language.

Albert Cohen and Tobias Grosser visited Prof. Uday Bondhugula at the
Indian Institute of Science (IISc), CSA department, for 4 days and 2
weeks, respectively. Tobias Grosser gave a lecture/tutorial on
optimizing compilation in LLVM to IISc students and AMD engineers.

OEBPS/IMG/math_image_1.png

OEBPS/IMG/iTunesArtwork.png
Activity Report 2012
Project-Team parkas

Parallélisme de Kahn
Synchrone

IN COLLABORATION WITH: Dépariementdinformatique de [Ecole Normale Supérieure

