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2. Overall Objectives

2.1. Main themes
The aim of the Parsifal team is to develop and exploit proof theory and type theory in the specification and
verification of computational systems.

• Expertise: the team conducts basic research in proof theory and type theory. In particular, the team is
developing results that help with automated deduction and with the manipulation and communication
of formal proofs.

• Design: based on experience with computational systems and theoretical results, the team develops
new logical principles, new proof systems, and new theorem proving environments.

• Implementation: the team builds prototype systems to help validate basic research results.

• Examples: the design and implementation efforts are guided by examples of specification and veri-
fication problems. These examples not only test the success of the tools but also drive investigations
into new principles and new areas of proof theory and type theory.
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The foundational work of the team focuses on structural and analytic proof theory, i.e., the study of formal
proofs as algebraic and combinatorial structures and the study of proof systems as deductive and computational
formalisms. The main focus in recent years has been the study of the sequent calculus and of the deep inference
formalisms.

An important research question is how to reason about computational specifications that are written in a
relational style. To this end, the team has been developing new approaches to dealing with induction, co-
induction, and generic quantification. A second important question is of canonicity in deductive systems, i.e.,
when are two derivations “essentially the same”? This crucial question is important not only for proof search,
because it gives an insight into the structure and an ability to manipulate the proof search space, but also for
the communication of proof objects between different reasoning agents such as automated theorem provers
and proof checkers.

Important application areas currently include:
• Meta-theoretic reasoning on functional programs, such as terms in the λ-calculus
• Reasoning about behaviors in systems with concurrency and communication, such as the π-calculus,

game semantics, etc.
• Combining interactive and automated reasoning methods for induction and co-induction
• Verification of distributed, reactive, and real-time algorithms that are often specified using modal

and temporal logics
• Representing proofs as documents that can be printed, communicated, and checked by a wide range

of computational logic systems.

2.2. Highlights of the Year
• Stefan Hetzl received his Habilitation 5 November 2012 from the Technical University of Vienna.
• Kaustuv Chaudhuri and Stefan Hetzl organized "Collegium Logicum 2012: Structural Proof Theory"

at Inria-Saclay.
• Dale Miller and Gopalan Nadathur (Professor at the University of Minnesota) published a book title

"Programming with higher-order logic" (June 2012, Cambridge University Press).

3. Scientific Foundations
3.1. General overview

There are two broad approaches for computational specifications. In the computation as model approach,
computations are encoded as mathematical structures containing nodes, transitions, and state. Logic is used
to describe these structures, that is, the computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed
to express propositions about the change in state.

The computation as deduction approach, in contrast, expresses computations logically, using formulas, terms,
types, and proofs as computational elements. Unlike the model approach, general logical apparatus such as cut-
elimination or automated deduction becomes directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical specifications that have been very fruitful:
• Proof normalization, which treats the state of a computation as a proof term and computation

as normalization of the proof terms. General reduction principles such as β-reduction or cut-
elimination are merely particular forms of proof normalization. Functional programming is based on
normalization [44], and normalization in different logics can justify the design of new and different
functional programming languages [30].

• Proof search, which views the state of a computation as a a structured collection of formulas,
known as a sequent, and proof search in a suitable sequent calculus as encoding the dynamics of
the computation. Logic programming is based on proof search [49], and different proof search
strategies can be used to justify the design of new and different logic programming languages [48].
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While the distinction between these two aspects is somewhat informal, it helps to identify and classify different
concerns that arise in computational semantics. For instance, confluence and termination of reductions are
crucial considerations for normalization, while unification and strategies are important for search. A key
challenge of computational logic is to find means of uniting or reorganizing these apparently disjoint concerns.

An important organizational principle is structural proof theory, that is, the study of proofs as syntactic,
algebraic and combinatorial objects. Formal proofs often have equivalences in their syntactic representations,
leading to an important research question about canonicity in proofs – when are two proofs “essentially the
same?” The syntactic equivalences can be used to derive normal forms for proofs that illuminate not only
the proofs of a given formula, but also its entire proof search space. The celebrated focusing theorem of
Andreoli [32] identifies one such normal form for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial structure of proofs can be further
explored with the use of deep inference; in particular, deep inference allows access to simple and manifestly
correct cut-elimination procedures with precise complexity bounds.

Type theory is another important organizational principle, but most popular type systems are generally
designed for either search or for normalization. To give some examples, the Coq system [56] that implements
the Calculus of Inductive Constructions (CIC) is designed to facilitate the expression of computational features
of proofs directly as executable functional programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [53] that is based on the LF type theory (a subsystem of the CIC),
is based on relational specifications in canonical form (i.e., without redexes) for which there are sophisticated
automated reasoning systems such as meta-theoretic analysis tools, logic programming engines, and inductive
theorem provers. In recent years, there has been a push towards combining search and normalization in the
same type-theoretic framework. The Beluga system [54], for example, is an extension of the LF type theory
with a purely computational meta-framework where operations on inductively defined LF objects can be
expressed as functional programs.

The Parsifal team investigates both the search and the normalization aspects of computational specifications
using the concepts, results, and insights from proof theory and type theory.

3.2. Design of two level-logic systems
The team has spent a number of years in designing a strong new logic that can be used to reason (inductively
and co-inductively) on syntactic expressions containing bindings. This work has been published is a series
of papers by McDowell and Miller [46] [45], Tiu and Miller [51] [57], and Gacek, Miller, and Nadathur [2]
[38]. Besides presenting formal properties of these logic, these papers also documented a number of examples
where this logic demonstrated superior approaches to reasoning about a number of complex formal systems,
ranging from programming languages to the λ-calculus and π-calculus.

The team has also been working on three different prototype theorem proving system that are all related to this
stronger logic. These systems are the following.

• Abella, which is an interactive theorem prover for the full logic.

• Bedwyr, which is a model checker for the “finite” part of the logic.

• Tac, which is a sophisticate tactic for automatically completing simple proofs involving induction
and unfolding.

We are now in the process of attempting to make all of these system communicate properly. Given that these
systems have been authored by different team members at different times and for different reasons, they do
not formally share the same notions of syntax and proof. We are now working to revisit all of these systems
and revise them so that they all work on the same logic and so that they can share their proofs with each other.

Currently, Chaudhuri, Miller, and Accattoli are working with our technical staff member, Heath, to redesign
and restructure these systems so that they can cooperate in building proofs.
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3.3. Making the case for proof certificates
The team has been considering how it might be possible to define a universal format for proofs so that any
existing theorem provers can have its proofs trusted by any other prover. This is a rather ambitious project
and involves a great deal of work at the infrastructure level of computational logic. As a result, we have
put significant energies into considering the high-level objectives and consequences of deploying such proof
certificates.

Our current thinking on this point is roughly the following. Proofs, both formal and informal, are documents
that are intended to circulate within societies of humans and machines distributed across time and space in
order to provide trust. Such trust might lead a mathematician to accept a certain statement as true or it might
help convince a consumer that a certain software system is secure. Using this general definition of proof,
we have re-examined a range of perspectives about proofs and their roles within mathematics and computer
science that often appears contradictory.

Given this view of proofs as both document and object, that need to be communicated and checked, we have
attempted to define a particular approach to a broad spectrum proof certificate format that is intended as a
universal language for communicating formal proofs among computational logic systems. We identify four
desiderata for such proof certificates: they must be

1. checkable by simple proof checkers,

2. flexible enough that existing provers can conveniently produce such certificates from their internal
evidence of proof,

3. directly related to proof formalisms used within the structural proof theory literature, and

4. permit certificates to elide some proof information with the expectation that a proof checker can
reconstruct the missing information using bounded and structured proof search.

We consider various consequences of these desiderata, including how they can mix computation and deduction
and what they mean for the establishment of marketplaces and libraries of proofs. More specifics can be found
in Miller’s papers [8] and [47].

3.4. Combining Classical and Intuitionistic Proof Systems
In order to develop an approach to proof certificates that is as comprehensive as possible, one needs to handle
theorems and proofs in both classical logic and intuitionistic logic. Yet, building two separate libraries, one
for each logic, can be inconvenient and error-prone. An ideal approach would be to design a single proof
system in which both classical and intuitionistic proofs can exist together. Such a proof system should allow
cut-elimination to take place and should have a sensible semantic framework.

Liang and Miller have recently been working on exactly that problem. In their paper [7], they showed how
to describe a general setting for specifying proofs in intuitionistic and classical logic and to achieve one
framework for describing initial-elimination and cut-elimination for such these two logics. That framework
allowed for some mixing of classical and intuitionistic features in one logic. A more ambitious merging of
these logics was provided in their work on “polarized intuitionistic logic” in which classical and intuitionistic
connectives can be used within the same formulas [14].

3.5. Deep inference
Deep inference [40], [42] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to categorical proof theory.
Due to the deep inference design one can directly read off the morphism from the derivations. There is no
need for a counter-intuitive translation.



Project-Team PARSIFAL 5

The following research problems are investigated by members of the Parsifal team:
• Find deep inference system for richer logics. This is necessary for making the proof theoretic results

of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

3.6. Proof nets and atomic flows
Proof nets and atomic flows are abstract (graph-like) presentations of proofs such that all "trivial rule
permutations" are quotiented away. Ideally the notion of proof net should be independent from any syntactic
formalism, but most notions of proof nets proposed in the past were formulated in terms of their relation to the
sequent calculus. Consequently we could observe features like “boxes” and explicit “contraction links”. The
latter appeared not only in Girard’s proof nets [39] for linear logic but also in Robinson’s proof nets [55] for
classical logic. In this kind of proof nets every link in the net corresponds to a rule application in the sequent
calculus.

Only recently, due to the rise of deep inference, new kinds of proof nets have been introduced that take the
formula trees of the conclusions and add additional “flow-graph” information (see e.g., [4], [3] and [41]. On
one side, this gives new insights in the essence of proofs and their normalization. But on the other side, all the
known correctness criteria are no longer available.

This directly leads to the following research questions investigated by members of the parsifal team:
• Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for

doing proof search. An important property of deductive proof nets must be that the correctness can
be checked in linear time. For the classical logic proof nets by Lamarche and Straßburger [4] this
takes exponential time (in the size of the net).

• Studying the normalization of proofs in classical logic using atomic flows. Although there is no
correctness criterion they allow to simplify the normalization procedure for proofs in deep inference,
and additionally allow to get new insights in the complexity of the normalization.

4. Application Domains

4.1. Automated Theorem Proving
Automated theorem proving has traditionally focused on classical first-order logic, but non-classical logics are
increasingly becoming important in the specification and analysis of software. Most type systems are based on
(possibly second-order) propositional intuitionistic logic, for example, while resource-sensitive and concurrent
systems are most naturally expressed in linear logic.

The members of the Parsifal team have a strong expertise in the design and implementation of performant
automated reasoning systems for such non-classical logics. In particular, the Linprover suite of provers [35]
continue to be the fastest automated theorem provers for propositional and first-order linear logic.

Any non-trivial specification, of course, will involve theorems that are simply too complicated to prove
automatically. It is therefore important to design semi-automated systems that allow the user to give high
level guidance, while at the same time not having to write every detail of the formal proofs. High level proof
languages in fact serve a dual function – they are more readily comprehended by human readers, and they tend
to be more robust with respect to maintenance and continued evolution of the systems. Members of the Parsifal
team, in association with other Inria teams and Microsoft Research, have been building a heterogeneous semi-
automatic proof system for verifying distributed algorithms [36].
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On a more foundational level, the team has been developing many new insights into the structure of proofs
and the proof search spaces. Two directions, in particular, present tantalizing possibilities:

• The concept of multi-focusing [37] can be used to expose concurrency in computational behavior,
which can in turn be exploited to prune areas of the proof search space that explore irrelevant
interleavings of concurrent actions.

• The use of bounded search, where the bounds can be shown to be complete by meta-theoretic
analysis, can be used to circumvent much of the non-determinism inherent in resource-sensitive
logics such as linear logic. The lack of proofs of a certain bound can then be used to justify the
presence or absence of properties of the encoded computations.

Much of the theoretical work on automated reasoning has been motivated by examples and implementations,
and the Parsifal team intends to continue to devote significant effort in these directions.

4.2. Mechanized Metatheory
There has been increasing interest in the use of formal methods to provide proofs of properties of programs
and programming languages. Tony Hoare’s Grand Challenge titled “Verified Software: Theories, Tools,
Experiments” has as a goal the construction of “verifying compilers” for a world where programs would
only be produced with machine-verified guarantees of adherence to specified behavior. Guarantees could be
given in a number of ways: proof certificates being one possibility.

The POPLMark challenge [33] envisions “a world in which mechanically verified software is commonplace:
a world in which theorem proving technology is used routinely by both software developers and programming
language researchers alike.” The proposers of this challenge go on to say that a “crucial step towards achieving
these goals is mechanized reasoning about language metatheory.”

The Parsifal team has developed several tools and techniques for reasoning about the meta-theory of program-
ming languages. One of the most important requirements for programming languages is the ability to reason
about data structures with binding constructs up to α-equivalence. The use of higher-order syntax and nom-
inal techniques for such data structures was pioneered by Miller, Nadathur and Tiu. The Abella system (see
Section 3.2) implements a refinement of a number of these ideas and has been used to give full solutions to
sections of the POPLMark challenge in addition to fully formal proofs of a number of other theorems in the
meta-theory of the λ-calculus.

Now that the Abella system has been in circulation among colleagues during the past couple of years, there
are many aspects of the methodology that now need to be addressed. During the summer of 2011, the team
employed three interns Carnegie Mellon University and McGill University to work on different aspects of
Abella. Particular focus was given to better ways to manipulate specification-logic contexts in the reasoning-
logic and with finding ways to have Abella output a proper proof object (different from the scripts that are
used to find a proof).

Our colleague Alwen Tiu from the Australian National University has also been building on our Bedwyr
model checking tool so that we can build on top of it his SPEC system for doing model checking of spi-
calculus expressions. We have adopted his enhancements to Bedwyr and are developing further improvements
within the context of the BATT project (see Section 5.2).

4.3. Proof Certificates
Members of the Parsifal team have shown how to specify a large variety of proof systems—including natural
deduction, the sequent calculus, and various tableau and free deduction systems—uniformly using either
focused linear logic [52], [50] or focused intuitionistic logic [43] as the meta-language. In the presence
of induction and co-induction, arbitrary finite computations can be embedded into single synthetic steps [34].
Additional work [8] shows that this same framework can also capture resolution refutations as well as Pratt
primality certificates.
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An important application then of this work in designing synthetic inference systems based on classical and
intuitionistic logic is that of designing a broad spectrum proof certificate. The definition of proof certificates
can be remarkably flexible within the simple setting of focused proofs.

The most important implications of such a certificate format would be that most of the worlds theorem provers
should be able to print out their proofs and communication them to other provers: these other provers could
then check such certificates by expanding the synthetic connectives they contain down into a small and fixed
set of “micro” inference rules.

4.4. Automated reasoning and SMT solving
Automated reasoning uses a broad range of techniques whose soundness and completeness relate to the
existence of proofs. The research programme of the ANR PSI project at Parsifal is to build a finer-grained
connection by specifying automated reasoning techniques as the step-by-step construction of proofs, as we
know it from proof theory and logic programming. The goal is to do this in a unifying framework, namely
proof-search in a polarized and focussed logic. One of the advantages of this is to combine those techniques
more easily. Another one is to envisage extending those techniques.

For instance, SAT-modulo-Theory problems require the combination of logical reasoning with domain-specific
decision procedures. So in the PSI project we study how to incorporate the call to decision procedures in proof-
theoretical framework like the focussed sequent calculus, and the proof-search mechanisms that are related to
it.

In the same spirit we also study how to handle existential variables and equality, for which specific automated
reasoning techniques have been designed (superposition / paramodulation calculi).

5. Software

5.1. Abella
Participants: Kaustuv Chaudhuri [correspondant], Matteo Cimini, Dale Miller.

Abella is an interactive theorem prover based on the two-level logic logic approach. It consists of a sophisti-
cated reasoning logic that supports induction, co-induction, and generic reasoning, and a specification logic
that is based on logic programming. Abella was initially designed to reason about simple second-order Lambda
Prolog programs, which is sufficient for the computational specifications.

During 2012, as part of the RAPT Associated Team, Chaudhuri and Yuting Wang (intern from Univ.
Minnesota) have been working on extending the expressive power of both levels of the Abella system. The
following modifications have been made.

• We have extended the specification logic to support the full Lambda Prolog, which can be used to
provide succinct higher-order specifications that tend to be unnatural and difficult to reason about
with only second-order Lambda Prolog programs.

• We have extended the type system of Abella from simple types to parametrically polymorphic types.
This is a significant improvement in the user-friendliness of the system as a lot of code does not have
to be manually monomorphised and duplicated any more.

• We have experimented with extending the type system of Abella even further to higher-order
predicate quantification. The theoretical basis of this work is a part of ongoing research, although
we already have a number of examples of practical benefits of this extension.

• Finally, several improvements have been made to Abella’s proof language to make the proofs more
robust and reusable. We intend to make a more drastic change to the proof language in the future
that will make proofs more declarative and high level.
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The core development of Abella has also been centralized, with a single canonical repository and a new web-
page: http://abella-prover.org. These resources are managed jointly by members of Parsifal and our colleagues
at the University of Minnesota.

The next version of Abella, version 2.0, is in beta testing with expected release early in 2013.

5.2. Bedwyr
Participants: Quentin Heath, Dale Miller [correspondant].

During 2012, Quentin Heath has made the following important improvements to the Bedwyr model checking
system.

• The concrete syntaxs for Bedwyr and Abella have been unified. Now, both systems can load the
definitions and theorems developed in the other system. Eventually, we expect to have our model
checker (Bedwyr) and interactive theorem prover (Abella) share theories and proofs.

• The documentation, distribution, and testing of Bedwyr were all improved, greatly increasing the
usability of this system.

• The underlying support for logic has also been increased. In particular, the Bedwyr system contains
a tabling mechanism which is capable of remembering past successful proofs (it can even support a
finite failure as a successful proof of a negation). The most recent version of Bedwyr allows one
to actually program the table in rather sophisticated ways. For example, simple lemmas can be
loaded into the table and these lemmas can be used to greatly extend the range of what is tabled
(remembered). We are currently examining different trade-offs between different styles of reasoning
in the table (backchaining vs forwardchaining).

The work of Heath is being done in the context of the BATT ADJ project funded by Inria.

See also the web page http://slimmer.gforge.inria.fr/bedwyr/.

5.3. Psyche
Participants: Mahfuza Farooque, Stéphane Graham-Lengrand [correspondant].

Psyche (Proof-Search factorY for Collaborative HEuristics) is a modular programme for universal proof-
search in classical logic. The motivation is twofold:

On the one hand, prove some mathematics of the broadest range while making the most of problem-specific
techniques; On the other hand, gain high confidence about the correctness of the proofs produced without
having to rely on a proof-checker.

The architecture is that of an interaction between a trusted universal kernel and smart plugins that are meant
be efficient at solving certain kinds of problems:

The kernel contains the mechanisms for exploring the proof-search space in a sound and complete way, taking
into account branching and backtracking. The output of Psyche comes from the (trusted) kernel and is therefore
correct by construction. The plugins then drive the kernel by specifying how the branches of the search space
should be explored, depending on the kind of problem that is being treated. The quality of the plugin is then
measured by how fast it drives the kernel towards the final answer.

Version 1.0 of Psyche (released 4/9/2012) handles classical propositional logic, and its proof-search mecha-
nism is simply the incremental construction of proof-trees in the polarised and focussed sequent calculus. The
mechanism is driven by a plugin that emulates the behaviour of a SAT-solver (DPLL), with non-trivial features
such as the eager application of the Unit Propagation rule, conflict analysis, backjumping and clause learning.

Psyche’s input for that kind of SAT-problem is a file given in the standard DIMACS format.

See also the web page http://www.lix.polytechnique.fr/~lengrand/PSI/index.php?page=Psyche/index.

http://abella-prover.org
http://slimmer.gforge.inria.fr/bedwyr/
http://www.lix.polytechnique.fr/~lengrand/PSI/index.php?page=Psyche/index
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6. New Results

6.1. Recovering Proof Structures in the Sequent Calculus
Participants: Kaustuv Chaudhuri, Stefan Hetzl, Dale Miller.

The sequent calculus is often criticized as a proof syntax because it contains a lot of noise. It records the
precise minute sequence of operations that was used to construct a proof, even when the order of some proof
steps in the sequence is irrelevant and when some of the steps are unnecessary or involve detours. These
features lead to several technical problems: for example, cut-elimination in the classical sequent calculus LK,
as originally developed by Gentzen, is not confluent, and hence proof composition in LK is not associative.
Many people choose to discard the sequent calculus when attempting to design a better proof syntax with the
desired properties.

In recent years, there has been a project at Parsifal to recover some of these alternative proof syntaxes by
imposing a certain abstraction over sequent proofs. The earliest example of this was in [37], where we showed
a class of sequent proofs that were isomorphic to proof nets for multiplicative linear logic. In 2012, we were
able to obtain a similar result for first-order classical logic, wherein we defined a class of sequent proofs that are
isomorphic to expansion trees, a generalization of Herbrand disjunctions that is in some sense a minimalistic
notion of proof for classical logic. This result was published at the CSL 2012 conference [22] and a journal
version is in preparation.

Our technique for recovering these dramatically different proof structures directly in the sequent calculus
involves the use of maximal multi-focusing which gives a syntactic characterization of those sequent proofs
that: (1) have a “don’t care” ordering of proof steps where the order does not matter, and (2) groups larger
logical steps, called actions, into a maximally parallel form where only important orderings of actions are
recorded. This technique was pioneered at Parsifal, and we have barely scratched the surface of its applications.

6.2. Compact Proof Certificates By Bounded Contractions
Participant: Kaustuv Chaudhuri.

An important engineering question in the ProofCert project is that of communicating, manipulating, and
storing formal proof certificates. A fully detailed proof certificate, especially one generated by proof search,
can be very large. Using such proofs would require a high bandwidth interface between the proof producer
and consumer, which limits the scalability of the ensemble of proving systems approach. It is therefore natural
to ask if there are more compact formats for proof certificates. The ideal format would have a tunable level of
detail, so that the size of the certificates can be tailored to the application domain.

Suppose the proof consumer is equipped with some proof search capabilities. What then needs to be
transmitted to the consumer to guarantee that it can check a proof within desired complexity bounds? It turns
out that there is a systematic and general answer to this problem: use focusing and record only the “decision”
rules of focusing in the proof certificate. From a high level perspective, this answer is equivalent to designing
a proof system where the contraction rules are carefully bounded.

A proposal along these lines was published at the CPP 2012 conference [21]. In fact, this paper solves a harder
than necessary problem by building proof certificates for linear logic, where unconstrained proof search has
very high complexity even in the propositional fragment. The proposed solution is a spectrum of certificates
that trades off the size of the certificate for the complexity of checking the certificate. At one end we have a
very compact certificate that essentially amounts to a maximum depth of the proof, but reconstructing a proof
with only a depth bound tends to be infeasible as the search space grows super-exponentially with the depth.
Certificates at other end of the spectrum contain information about all the contractions in the proof; these
certificates can be checked deterministically, in time proportional to the size of the certificate. Moreover, there
is a simple abstraction mechanism between different levels of detail in this spectrum that allows for a proof
elaborator to alter the level of detail in the certificate.
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6.3. A Two-level Approach to Reasoning about Computation
Participant: Dale Miller.

In a paper that appeared in the J. of Automated Reasoning, Gacek, Miller, and Nadathur [12] described the
foundations and architecture of a new interactive theorem prover capable of reasoning with rich collections of
inductive and coinductive relations. This prover, called Abella, also contains the “generic” quantifier ∇ that
provides a direct and elegant treatment of term-level binding.

A novel aspect of Abella is that it can define provability in various simple logics and can also reason about
provability in such logics. The current system includes a specification logic that is a (restricted) intuitionistic
logic programming language (a sublanguage of λProlog). The main logic of Abella is then the second logic,
called the reasoning logic, and it is capable of reasoning about provability in the specification language.

This approach to reasoning about computation has interesting applications. For example, the reasoning logic
is aware of the fact that the cut and substitution rules can be eliminated in the specification logic. As a
consequence, the notoriously difficult "substitution lemmas" that occur repeated in the study of operational
semantics are proved essentially for free (that is, they are an immediate consequence of cut-elimination).

In [17], Accattoli showed that when one reasons about the untyped λ-calculus, the specification logic is
often not needed. In particular, Accattoli reinterpreted the formalization by G. Huet of the meta-theory of
λ-calculus residuals in Abella and showed that the resulting meta-theory had a much more elegant and
natural specification than the one presented early by Huet in Coq. While the use of two-levels of logic
was not important for this particular (untyped) example, other aspects of Abella—relation specifications, ∇-
quantification, and strong induction principles—were critical for improving the expressivity of this prover.

6.4. A Non-local Method for Robustness Analysis of Floating Point Programs
Participants: Dale Miller, Ivan Gazeau.

Programs that must deal with floating point programs and their associate errors can have erratic behavior. In
particular, a program that yields outputs that depend continuously on their inputs (in an idealized arithmetic
setting) can behave non-continuously when using floating point arithmetic. There are few tools for reasoning
about program correctness in a setting that allows for such discontinuous operators.

In [23], Gazeau, Miller, and Palamidessi provide an approach to reason about some programs that are not
continuous. In that paper, they introduce the notion of “robustness”, which intuitively means that if the input
to the program changes less than a fixed small amount then the output changes only slightly. This notion
is useful in the analysis of rounding error for floating point programs because it helps to establish bounds
on output errors introduced by both measurement errors and by floating point computation. Compositional
methods often do not work since key constructs—like the conditional and the while-loop—are not robust.
The authors proposed a method for proving the robustness of a while-loop. This method is non-local in the
sense that instead of breaking the analysis down to single lines of code, it checks certain global properties of
its structure. This paper shows that both the CORDIC computation of the cosine and Dijkstra’s shortest path
algorithm are robust.

6.5. Herbrand Confluence
Participants: Stefan Hetzl, Lutz Straßburger.

It is well-known that cut-elimination in the sequent calculus for classical first-order logic is in its most general
form, is neither confluent nor strongly normalizing. But if one takes a coarser (and mathematically more
realistic) look at cut-free proofs, one can analyze which witnesses they choose for which quantifiers, or in
other words: one can only consider the Herbrand-disjunction of a cut-free proof. This yields a surprising
confluence result for a natural class of proofs: all (possibly infinitely many) normal forms of the non-erasing
cut reduction lead to the same Herbrand-disjunction. This result has been presented at CSL 2012 [25].
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6.6. Semi-Star-Autonomous Categories
Participants: Willem Heijltjes, Lutz Straßburger.

A curious aspect of Girard’s proof nets for multiplicative linear logic without units is that, despite being a
canonical representation of proof, their categorical semantics is not obvious—this in contrast to the situation
with units, where star-autonomous categories form a natural semantics, but no canonical proof nets are known.

In the middle of the past decade several proposals for a categorical semantics of proof nets, a notion of semi-
star-autonomous categories, were investigated: by Robin Houston and Dominic Hughes, by Kosta Došen, and
by François Lamarche and Lutz Straßburger.

The present effort by Willem Heijltjes and Lutz Straßburger completes the notion in such a way that proof nets
constitute the free semi-star-autonomous category.

6.7. Foundations and applications of explicit substitutions
Participant: Beniamino Accattoli.

Starting from the study of Linear Logic proof nets, a new approach to explicit substitutions for ł-calculus has
recently been introduced by Accattoli and D. Kesner [31]. This approach has been systematically explored by
Accattoli and his co-authors.

The rewriting theory of these new explicit substitutions at a distance has been studied in [11] and [16]. In
[11] Accattoli and Kesner study the preservation of λ-calculus strong normalization (PSN) when explicit
substitutions are extended with permutative axioms allowing to swap constructors in the term, generalizing
considerably the already difficult case of PSN with composition of substitutions. In [16] Accattoli developed
an abstract technique for proving factorizations theorems for generic explicit substitution calculi. The factor-
ization theorem for λ-calculus says that any reduction can be re-organized as an head reduction followed by a
non-head reduction.

In [16] it is shown how to prove this theorem in an uniform way for many explicit subsitutions calculi. The
technique emerged as a generalization of the proofs for explicit substitutions at a distance, which are simpler
than usual explicit substitutions and thus lead to cleaner and more compact arguments, easier to generalize.

Applications of explicit substitutions at a distance have been studied in [19], [18], [20]. In [19] Accattoli and
Dal Lago show that the length of the head reduction in calculi at a distance is a measure of time complexity.
More precisely, they show that such a quantity is polynomially related (in both directions) to the cost of
evaluating with Turing Machines. This result is an important step forward towards the solution of the long-
standing open problem of finding a time cost model for ł-calculus.

In [20] Accattoli and Paolini apply substitutions at a distance in a call-by-value setting. They show that in this
new framework there is a natural characterization of solvability, an important notion related to denotational
semantics and the representation of partial recursive functions. In [26] (a work presented to a workshop and
currently submitted to the post-proceedings of the workshop) Accattoli shows the tight relations between the
framework in [20] and linear logic proof nets, providing a new characterization of the proof nets representing
the call-by-value λ-calculus.

Finally, in [18] Accattoli and Kesner introduce a calculus generalizing many different extensions of λ-calculus
with permutations, appeared in various contexts (studies about call-by-value, postponing of reductions,
monadic languages, etc) and prove confluence and preservation of strong normalization, exploiting and
extending their own results in [11].

6.8. Sequent Calculus with Calls to a Decision Procedure
Participants: Mahfuza Farooque, Stéphane Lengrand.
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In the PSI project, we have designed a version of the focussed sequent calculus (for first-order classical logic)
that can call external decision procedures. Since the last Activity Report, we have finished proving the essential
meta-theory for it: soundness, invertibility of asynchronous rules, cut-elimination, the fact that polarities do
not affect provability but only the shape of proofs, and finally completeness.

The first properties are the object of [27], while the latter ones have been obtained later in 2012.

A side-product of this meta-theory is a technical device that could be used to encode other techniques from
automated reasoning like connection tableaux.

Secondly, we have encoded the SMT-solving algorithm DPLL(T) as the incremental construction of proof-
trees in that sequent calculus [29], [28]. A very interesting aspect of the encodings is that the basic rules of
DPLL(T) makes use of cuts on atoms in sequent calculus, while the advanced jrules (e.g. backjumping) makes
use of general cuts. This sheds a new light on the computational speed-ups that those advanced rules provide.

We have done the encoding for two distinct presentations of DPLL(T) in the literature, and we have formalised
the connection between those two descriptions [29].

6.9. Martin-Löf Identity Type in the Category of Small Categories
Participant: François Lamarche.

For the last five or six years there has been a surge of interest in finding models for the identity type in
Martin-Löf type theory, and it has been clear for some time that there was a tight connection with path
objects in abstract homotopy theory. A lot of proposals have been made, but there are very few semantics
that fit the necessary requirements of having dependent products and also an identity type which is fully stable
under substitution. The most famous model of the sort is the one proposed by Voevodsky, in his Univalent
Foundations project, which uses for base category the category of simplicial sets and models dependent
types by the means of Kan Fibrations. In [13] François Lamarche proposes another such model, where
the base category is the category of small categories, and dependent types are modelled with Grothendieck
bifibrations (maps between categories that are Grothendieck fibrations as well as their duals between the
opposite categories). The full requirements of modelling Martin-Löf type theory are met. Calculations show
that the model shows some amount of degeneracy “in dimensions above 2” for the associativity of equality
(which should not be strict in any dimension), which is a great improvement over the models on strict
groupoids and strict ω-groupoids. The construction that models the identity type is a concrete path functor
for categories. It is showing itself to be very useful in homotopy theory.

7. Partnerships and Cooperations

7.1. European Initiatives
7.1.1. FP7 Projects
7.1.1.1. Proofcert

Title: ProofCert: Broad Spectrum Proof Certificates

Type: IDEAS

Instrument: ERC Advanced Grant (Advanced)

Duration: January 2012 - December 2016

Coordinator: Inria (France)

See also: https://team.inria.fr/parsifal/proofcert/

https://team.inria.fr/parsifal/proofcert/
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Abstract: The ProofCert proposal aims at building a foundation that will allow a broad spectrum of
formal methods—ranging from automatic model checkers to interactive theorem provers—to work
together to establish formal properties of computer systems. This project starts with a wonderful
gift to us from decades of work by logicians and proof theorist: their efforts on logic and proof
has given us a universally accepted means of communicating proofs between people and computer
systems. Logic can be used to state desirable security and correctness properties of software and
hardware systems and proofs are uncontroversial evidence that statements are, in fact, true. The
current state-of-the-art of formal methods used in academics and industry shows, however, that the
notion of logic and proof is severely fractured: there is little or no communication between any two
such systems. Thus any efforts on computer system correctness is needlessly repeated many times in
the many different systems: sometimes this work is even redone when a given prover is upgraded. In
ProofCert, we will build on the bedrock of decades of research into logic and proof theory the notion
of proof certificates. Such certificates will allow for a complete reshaping of the way that formal
methods are employed.

7.1.2. Collaborations in European Programs, except FP7
7.1.2.1. STRUCTURAL: ANR blanc International

Participants: Kaustuv Chaudhuri, Nicolas Guenot, Willem Heijltjes, François Lamarche, Dale Miller, Lutz
Straßburger.

Title: Structural and computational proof theory

Duration: 01/01/2011 – 31/12/2013

Partners:

University Paris VII, PPS (PI: Michel Parigot)

Inria Saclay–IdF, EPI Parsifal (PI: Lutz Straßburger)

University of Innsbruck, Computational Logic Group (PI: Georg Moser)

Vienna University of Technology, Theory and Logic Group (PI: Matthias Baaz)

Total funding by the ANR: 242 390,00 EUR (including 12 000 EUR pôle de compétivité: SYS-
TEMTIC Paris région)

This project is a consortium of four partners, two French and two Austrian, who are all internationally
recognized for their work on structural proof theory, but each coming from a different tradition. One of the
objective of the project is build a bridge between these traditions and develop new proof-theoretic tools and
techniques of structural proof theory having a strong potential of applications in computer science, in particular
at the level of the models of computation and the extraction of programs and effective bounds from proofs.

On one side, there is the tradition coming from mathematics, which is mainly concerned with first-order
logic, and studies, e.g., Herbrand’s theorem, Hilbert’s epsilon-calculus, and Goedel’s Dialectica interpretation.
On the other side, there is the tradition coming from computer science, which is mainly concerned with
propositional systems, and studies, e.g., Curry-Howard isomorphism, algebraic semantics, linear logic, proof
nets, and deep inference. A common ground of both traditions is the paramount role played by analytic proofs
and the notion of cut elimination. We will study the inter-connections of these different traditions, in particular
we focus on different aspects and developments in deep inference, the Curry-Howard correspondence, term-
rewriting, and Hilbert’s epsilon calculus. As a byproduct this project will yield a mutual exchange between the
two communities starting from this common ground, and investigate, for example, the relationship between
Herbrand expansions and the computational interpretations of proofs, or the impact of the epsilon calculus on
proof complexity.
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Besides the old, but not fully exploited, tools of proof theory, like the epsilon-calculus or Dialectica interpre-
tation, the main tool for our research will be deep inference. Deep inference means that inference rules are
allowed to modify formulas deep inside an arbitrary context. This change in the application of inference rules
has drastic effects on the most basic proof theoretical properties of the systems, like cut elimination. Thus,
much of the early research on deep inference went into reestablishing these fundamental results of logical
systems. Now, deep inference is a mature paradigm, and enough theoretical tools are available to think to
applications. Deep inference provides new properties, not available in shallow deduction systems, namely full
symmetry and atomicity, which open new possibilities at the computing level that we intend to investigate
in this project. We intend to investigate the precise relation between deep inference and term rewriting, and
hope to develop a general theory of analytic calculi in deep inference. In this way, this project is a natural
continuation of the ANR project INFER which ended in May 2010.

7.1.2.2. PHC Procope: From Proofs to Counterexamples for Programming
Participants: Kaustuv Chaudhuri, Nicolas Guenot, Willem Heijltjes, Lutz Straßburger.

Title: From Proofs to Counterexamples for Programming

Duration: 01/01/2012 – 31/12/2013

German Partner: University of Bonn, Institute for Computer Science (Department III)

Finding counterexamples is an endeavor which is as important as proving theorems. But while the latter
has seen a huge amount of research effort—we have nowadays a large quantity of tools for automated and
interactive theorem proving—the former has mainly been neglegted by proof theorists. One of the reasons is
that finding counterexamples or countermodels has been considered a model theoretical activity, rather than
a proof theoretical one. Only recently, researchers have begun to explore the well-known duality between
"proof search" and "search for countermodels" in a purely proof theoretical way. The main objective of this
collaboration is to develop the necessary proof theory for automatically generating such counterexamples in a
more general setting.

7.1.2.3. PHC Germaine de Staël: Extending the Realm of the Curry-Howard-Correspondence
Participants: Nicolas Guenot, Willem Heijltjes, Lutz Straßburger.

Title: Extending the Realm of the Curry-Howard-Correspondence

Duration: 01/01/2011 – 31/12/2012

Swiss Partner: University of Bern, Institut für Informatik und angewandte Mathematik (IAM)

The Curry-Howard correspondence between proofs and programs is probably the most interesting and
surprising connection between mathematics and computer science. It was discovered in the 1960s, but its main
development started in the 1980s. The basis of the correspondence is a correspondence between intuitionistic
proofs and typed functional programs (written as terms of lambda-calculus).

Our goal is to develop such a correspondence for new formalisms, like hypersequents, nested sequents and
deep inference, in order to better understand their proofs and, we hope, either to discover new programming
constructs or to give a new logical interpretation to existing ones.

7.2. International Initiatives
7.2.1. Inria Associate Teams
7.2.1.1. RAPT

Participants: Beniamino Accattoli, Kaustuv Chaudhuri, Quentin Heath, Dale Miller, Yuting Wang.

Title: Applying Recent Advances in Proof Theory for Specification and Reasoning

Inria principal investigator: Kaustuv Chaudhuri

International Partner:

Institution: McGill University (Canada)
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Laboratory: School of Computer Science

Researcher: Prof. Brigitte Pientka

International Partner:

Institution: Carnegie Mellon University (United States)

Laboratory: Department of Computer Science

Researcher: Prof. Frank Pfenning

International Partner:

Institution: University of Minnesota (United States)

Laboratory: Department of Computer Science and Engineering

Researcher: Prof. Gopalan Nadathur

Duration: 2011 - 2013

See also: http://www.lix.polytechnique.fr/~kaustuv/rapt/

Many aspects of computation systems, ranging from operational semantics, interaction, and various
forms of static analysis, are commonly specified using inference rules, which themselves are formal-
ized as theories in a logical framework. While such a use of logic can yield sophisticated, compact,
and elegant specifications, formal reasoning about these logic specifications presents a number of
difficulties. The RAPT project will address the problem of reasoning about logic specifications by
bringing together three different research teams, combining their backgrounds in type theory, proof
theory, and the building of computational logic systems. We plan to develop new methods for spec-
ifying computation that allow for a range of specification logics (eg, intuitionistic, linear, ordered)
as well as new means to reason inductively and co-inductively with such specifications. New imple-
mentations of reasoning systems are planned that use interactive techniques for deep meta-theoretic
reasoning and fully automated procedures for a range of useful theorems.

7.2.2. Inria International Partners
7.2.2.1. Eternal: Inria ARC

Participants: Kaustuv Chaudhuri, Dale Miller, Lutz Straßburger.

Title: Interactive Resource Analysis

webpage: http://eternal.cs.unibo.it/

Inria principal investigator: Dale Miller

Inria Partner:

Institution: Inria

Team: FOCUS

Researcher: Ugo Dal Lago

Inria Partner:

Institution: Inria

Team: pi.r2

Researcher: Pierre-Louis Curien

Duration: 2011 - 2013

http://www.lix.polytechnique.fr/~kaustuv/rapt/
http://eternal.cs.unibo.it/
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This project aims at putting together ideas from Implicit Computational Complexity and Interactive
Theorem Proving, in order to develop new methodologies for handling quantitative properties related
to program resource consumption, like execution time and space. The task of verifying and certifying
quantitative properties is undecidable as soon as the considered programming language gets close
to a general purpose language. So, full-automatic techniques in general cannot help in classifying
programs in a precise way with respect to the amount of resources used and moreover in several
cases the programmer will not gain any relevant information on his programs. In particular, this
is the case for all the techniques based on the study of structural constraints on the shape of
programs, like many of those actually proposed in the field of implicit computational complexity.
To overcome these limitations, we aim at combining the ideas developed in the linear logic approach
to implicit computational complexity with the ones of interactive theorem proving, getting rid of
the intrinsic limitations of the automatic techniques. In the obtained framework, undecidability
will be handled through the system’s user, who is asked not only to write the code, but also to
drive the semi-automatic system in finding a proof for the quantitative properties of interest. In
order to reduce the user effort and allow him to focus only on the critical points of the analysis,
our framework will integrate implicit computational complexity techniques as automatic decision
procedures for particular scenarios. Moreover, in order to be widely applicable, the modularity of the
framework will permit to deal with programs written in different languages and to consider different
computational resources. The kind of study proposed by this project has been almost neglected so
far. Here, we aim at providing such a framework for both theoretic investigations and for testing in
practice the effectiveness of the approach.

7.3. International Research Visitors
7.3.1. Visits of International Scientists

Brigitte Pientka, Associate Professor, McGill University
February 21 – 24

Gopalan Nadathur, Professor, University of Minnesota
July 10 – 12

Elaine Pimentel, Associate Professor, Universidade Federal de Minas Gerais
June 6 – July 17

Chuck Liang, Professor, Hofstra University
March 6 – May 6 and December 17 – 24

7.3.2. Internships
Yuting WANG (May – August)

Subject: Development of the Abella theorem prover.

Institution: University of Minnesota (United States)

Florence Clerc (March – July)

Subject: Relating double-negation translations and focused proof systems

Institution: Master Parisien de Recherche en Informatique

Zakaria Chihani (April – September)

Subject: Proof certificates for some basic proof systems in classical logic

Institution: Master Parisien de Recherche en Informatique

7.3.3. Visits to International Teams
Stefan Hetzl has visited the Vienna University of Technology four times, for a total of 36 days, within
the framework of the FWF/ANR Structural project.
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8. Dissemination

8.1. Scientific Animation
8.1.1. Organization

Dale Miller served as Program Committee Chair for the following three meetings: CPP 2012:
Second International Conference on Certified Programs and Proofs, 13-15 December, Kyoto, Japan;
IJCAR 2012: International Joint Conference on Automated Reasoning, Manchester, UK, June; FICS
2012: Fixed Points in Computer Science (a satellite workshop of ETAPS 2012), Tallinn, Estonia, 24
March.

Dale Miller served on the Program Committees of the following three meetings: LFMTP’12: Work-
shop on Logical Frameworks and Meta-Languages: Theory and Practice, 9 September, Copenhagen,
Denmark; LAM 2012: Fifth International Workshop on Logics, Agents, and Mobility, June, Ham-
burg, Germany; LPAR-18: The 18th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. Merida, Venezuela, 11-15 March.

Dale Miller organized the Special Session on Structural Proof Theory and Computing at the 2012
Annual Meeting of the Association of Symbolic Logic (ASL), Madison, Wisconsin, 31 March - 3
April.

Kaustuv Chaudhuri and Stefan Hetzl organized the Collegium Logicum 2012 workshop at Inria
Saclay during 15–16 November

Kaustuv Chaudhuri and Brigitte Pientka organized the RAPT/PROMIS workshop in Montreal,
Canada, during 14–18 October

8.1.2. Invited Talks
Dale Miller gave an invited talk at the Journees nationales du GDR-IM, 25-26 January 2012,
University of Paris 7.

Dale Miller gave an invited talk at the ANR-DFG Hypothese Workshop titled Different Aspects of
Proof Theory, ENS Paris, 3 May 2012.

Dale Miller gave research talks at the following venues: Summer Workshop on Proof Theory,
Pisa, Italy, 12-15 June; CHocCoLa seminar, ENS Lyon, 15 March; Workshop on Certificates
and Computation, ITU Copenhagen, 12 March; Department of Mathematics, Carnegie Mellon
University, 5 April.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Licence : Stéphane Graham-Lengrand teaches 50 hours (eq. TD) in L3 at Ecole Polytechnique in the
course “INF431: Algorithmique et programmation”.

Master : Dale Miller taught 12 hours at MPRI (Master Parisien de Recherche en Informatique) in
the Course 2-1: Logique linéaire et paradigmes logiques du calcul.

Master : Stéphane Graham-Lengrand teaches 36 hours (eq. TD) in M1 at Ecole Polytechnique in the
course “INF551: Computer-aided reasoning”, and 15 hours (eq. TD) in M2 at Master Parisien de
Recherche en Informatique (MPRI) on “Curry-howard correspondence for classical logic”.

8.2.2. Supervision
PhD in progress :

1. Zakaria Chihani, since October 2012, supervisor: Dale Miller

2. Mahfuza Farooque, since October 2010, co-supervisor: Stéphane Graham-Lengrand

http://team.inria.fr/parsifal/meetings/cl2012
http://complogic.cs.mcgill.ca/promis/seminar.php
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3. Ivan Gazeau, since October 2009, co-supervisor: Dale Miller

4. Nicolas Guenot, since October 2008, supervisor: Lutz Straßburger

5. Hernán-Pablo Vanzetto, since October 2010, co-supervisor: Kaustuv Chaudhuri

8.2.3. Juries
Dale Miller served as a reporter for the habilitation of Stefan Hetzl (Fall 2012) and was the president
of the jury for the habilitation of Frédéric Blanqui, 13 July 2012.

Dale Miller served as a member of the PhD jury for Robert Simmons, Carnegie Mellon University,
22 October 2012. He was also “rapporteur” for the PhD of Nicolas Pouillard, University of Paris 7,
13 January 2012.
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