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2. Overall Objectives

2.1. Introduction
The main scientific objective of the VEGAS research team is to contribute to the development of an effective
geometric computing dedicated to non-trivial geometric objects. Included among its main tasks are the study
and development of new algorithms for the manipulation of geometric objects, the experimentation of algo-
rithms, the production of high-quality software, and the application of such algorithms and implementations
to research domains that deal with a large amount of geometric data, notably solid modeling and computer
graphics.

Computational geometry has traditionally treated linear objects like line segments and polygons in the plane,
and point sets and polytopes in three-dimensional space, occasionally (and more recently) venturing into the
world of non-linear curves such as circles and ellipses. The methodological experience and the know-how
accumulated over the last thirty years have been enormous.

For many applications, particularly in the fields of computer graphics and solid modeling, it is necessary
to manipulate more general objects such as curves and surfaces given in either implicit or parametric form.
Typically such objects are handled by approximating them by simple objects such as triangles. This approach
is extremely important and it has been used in almost all of the usable software existing in industry today. It
does, however, have some disadvantages. Using a tessellated form in place of its exact geometry may introduce
spurious numerical errors (the famous gap between the wing and the body of the aircraft), not to mention
that thousands if not hundreds of thousands of triangles could be needed to adequately represent the object.
Moreover, the curved objects that we consider are not necessarily everyday three-dimensional objects, but also
abstract mathematical objects that are not linear, that may live in high-dimensional space, and whose geometry
we do not control. For example, the set of lines in 3D (at the core of visibility issues) that are tangent to three
polyhedra span a piecewise ruled quadratic surface, and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic hypersurfaces.

http://www.loria.fr/equipes/vegas/
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Effectiveness is a key word of our research project. By requiring our algorithms to be effective, we imply that
the algorithms should be robust, efficient, and versatile. By robust we mean algorithms that do not crash on
degenerate inputs and always output topologically consistent data. By efficient we mean algorithms that run
reasonably quickly on realistic data where performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of objects that are general enough to cover
realistic situations and that account for the exact geometry of the objects, in particular when they are curved.

2.2. Highlights of the Year
BEST PAPER AWARD :
[18] Multinerves and Helly Numbers of Acyclic Families in Symposium on Computational Geometry -
SoCG ’12. É. C. DE VERDIÈRE, G. GINOT, X. GOAOC.

3. Application Domains

3.1. Computer graphics
We are interested in the application of our work to virtual prototyping, which refers to the many steps required
for the creation of a realistic virtual representation from a CAD/CAM model.

When designing an automobile, detailed physical mockups of the interior are built to study the design and
evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and
difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and
immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility,
and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work
on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the
scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the
simulations.

3.2. Solid modeling
Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed
somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms
and deal with many of the same issues. But while the computational geometry community has been mathe-
matically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer
ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the
middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are
of interest to us, let us mention: the description of geometric shapes, the representation of solids, the
conversion between different representations, data structures for graphical rendering of models and robustness
of geometric computations.

3.3. Fast prototyping
We work in collaboration with CIRTES on rapid prototyping. CIRTES, a company based in Saint-Dié-des-
Vosges, has designed a technique called Stratoconception©R where a prototype of a 3D computer model is
constructed by first decomposing the model into layers and then manufacturing separately each layer, typically
out of wood of standard thickness (e.g. 1 cm), with a three-axis CNC (Computer Numerical Controls) milling
machine. The layers are then assembled together to form the object. The Stratoconception©R technique is cheap
and allows fast prototyping of large models.

http://www.cirtes.fr/
http://www.cirtes.fr/
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When the model is complex, for example an art sculpture, some parts of the models may be inaccessible to the
milling machine. These inaccessible regions are sanded out by hand in a post-processing phase. This phase
is very consuming in time and resources. We work on minimizing the amount of work to be done in this
last phase by improving the algorithmic techniques for decomposing the model into layers, that is, finding a
direction of slicing and a position of the first layer.

4. Software
4.1. QI: Quadrics Intersection

QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of an
algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [10], [29], [30], [31]
and represents the first complete and robust solution to what is perhaps the most basic problem of solid
modeling by implicit curved surfaces.

QI is written in C++ and builds upon the LiDIA computational number theory library [24] bundled with
the GMP multi-precision integer arithmetic [23]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [10] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under the free for non-commercial use Inria license
and will be distributed under the QPL license in the next release. The implementation can also be queried via
a web interface [25].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.

4.2. Isotop: Topology and Geometry of Planar Algebraic Curves
ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from Inria Paris - Rocquencourt. It is based on the
method described in [28] which incorporates several improvements over previous methods. In particular, our
approach does not require generic position.

Isotop is registered at the APP (June 15th 2011) with reference IDDN.FR.001.240007.000.S.P.2011.000.10000.
This version is competitive with other implementations (such as ALCIX and INSULATE developed at MPII
Saarbrücken, Germany and TOP developed at Santander Univ., Spain). It performs similarly for small-degree
curves and performs significantly better for higher degrees, in particular when the curves are not in generic
position.

We are currently working on an improved version integrating our new bivariate polynomial solver [27].

4.3. CGAL: Computational Geometry Algorithms Library
Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

http://www.cgal.org
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In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. we want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, we contributed a model of the Univariate Algebraic Kernel concept for algebraic
computations [26] (see Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency
of the computation of arrangements of polynomial functions in CGAL [32]. We are currently developing a
model of the Bivariate Algebraic Kernel based on our new bivariate polynomial solver [27]. This work is done
in collaboration with F. Rouillier at Inria Paris - Rocquencourt and L. Peñaranda at the university of Athens.

4.4. Fast_polynomial: fast polynomial evaluation software
The library fast_polynomial 1 provides fast evaluation and composition of polynomials over several types of
data. It is interfaced for the computer algebra system sage. This software is meant to be a first step toward a
certified numerical software to compute the topology of algebraic curves and surfaces. It can also be useful as
is and is submitted for integration in the computer algebra system Sage.

This software is focused on fast online computation, multivariate evaluation, modularity, and efficiency.

Fast online computation. The library is optimized for the evaluation of a polynomial on several point arguments
given one after the other. The main motivation is numerical path tracking of algebraic curves, where a given
polynomial criterion must be evaluated several thousands of times on different values arising along the path.

Multivariate evaluation. The library provides specialized fast evaluation of multivariate polynomials with
several schemes, specialized for different types such as mpz big ints, boost intervals with hardware precision,
mpfi intervals with any given precision, etc.

Modularity. The evaluation scheme can be easily changed and adapted to the user needs. Moreover, the code
is designed to easily extend the library with specialization over new C++ objects.

Efficiency. The library uses several tools and methods to provide high efficiency. First, the code uses templates,
such that after the compilation of a polynomial for a specific type, the evaluation performance is equivalent
to low-level evaluation. Locality is also taken into account: the memory footprint is minimized, such that an
evaluation using the classical Hörner scheme will useO(1) temporary objects and divide and conquer schemes
will use O(log(n)) temporary objects, where n is the degree of the polynomial. Finally, divide and conquer
schemes can be evaluated in parallel, using a number of threads provided by the user.

5. New Results

5.1. Classical computational geometry
5.1.1. Complexity analysis of random geometric structures made simpler

Average-case analysis of data-structures or algorithms is commonly used in computational geometry when the
more classical worst-case analysis is deemed overly pessimistic. Since these analyses are often intricate, the
models of random geometric data that can be handled are often simplistic and far from "realistic inputs".

1http://trac.sagemath.org/sage_trac/ticket/13358

http://trac.sagemath.org/sage_trac/ticket/13358
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In a joint work with Olivier Devillers and Marc Glisse (Inria GEOMETRICA) [20], we presented a new simple
scheme for the analysis of geometric structures. While this scheme only produces results up to a polylog
factor, it is much simpler to apply than the classical techniques and therefore succeeds in analyzing new input
distributions related to smoothed complexity analysis. We illustrated our method on two classical structures:
convex hulls and Delaunay triangulations. Specifically, we gave short and elementary proofs of the classical
results that n points uniformly distributed in a ball in Rd have a convex hull and a Delaunay triangulation of
respective expected complexities Θ̃(n((d+1)/(d−1))) and Θ̃(n). We then prove that if we start with n points
well-spread on a sphere, e.g. an (ε, κ)-sample of that sphere, and perturb that sample by moving each point
randomly and uniformly within distance at most δ of its initial position, then the expected complexity of the

convex hull of the resulting point set is Θ̃(
√

(n)
(1−1/d)

δ−(d−1)/(4d)).

5.1.2. On the monotonicity of the expected number of facets of a random polytope
Let K be a compact convex body in Rd, let Kn be the convex hull of n points chosen uniformly and
independently in K, and let fi(Kn) denote the number of i-dimensional faces of Kn.

In a joint work with Olivier Devillers and Marc Glisse (Inria GEOMETRICA) and Matthias Reitzner (Univ.
Osnabruck) [21], we showed that for planar convex sets, E(f0(Kn)) is increasing in n. In dimension d ≥ 3

we prove that if limn→∞
E(fd−1(Kn))

Anc = 1 for some constants A and c > 0 then the function E(fd−1(Kn))
is increasing for n large enough. In particular, the number of facets of the convex hull of n random points
distributed uniformly and independently in a smooth compact convex body is asymptotically increasing. Our
proof relies on a random sampling argument.

5.1.3. Embedding geometric structures
We continued working this year on the problem of embedding geometric objects on a grid of R3. Essentially all
industrial applications take, as input, models defined with a fixed-precision floating-point arithmetic, typically
doubles. As a consequence, geometric objects constructed using exact arithmetic must be embedded on a
fixed-precision grid before they can be used as input in other software. More precisely, the problem is, given
a geometric object, to find a similar object representable with fixed-precision floating-point arithmetic, where
similar means topologically equivalent, close according to some distance function, etc. We are working on the
problem of rounding polyhedral subdivisions on a grid of R3, where the only known method, due to Fortune
in 1999, considers a grid whose refinement depends on the combinatorial complexity of the input, which does
not solve the problem at hand. This project is joint work with Olivier Devillers (Inria Geometrica) and William
Lenhart (Williams College, USA) who was in sabbatical in our team in 2012.

5.2. Non-linear computational geometry
5.2.1. Geometry of robotic mechanisms

Parallel manipulators are a family of mechanisms, the geometry of which is difficult to compute in general.
The use of algebraic methods allowed us to describe precisely the geometry of the configurations of different
specific parallel manipulators, in collaboration with researchers from the IRCCyN laboratory in Nantes.

More precisely, moving a parallel robot toward specific parametric values can break it. A challenge is to
describe this set of singularities. This was adressed for a planar mechanism with three degrees of freedom in
[16] and a spatial mechanism with six degrees of freedom in [12].

Then, a more challenging question arises naturally. Given a familly of mechanisms parametrized by some
construction variables, is it possible to find a mechanism that has no singularities? A method based on Gröbner
bases was proposed in [17] for a specific family of planar parallel robot with two degrees of freedom.
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5.2.2. Solving bivariate systems and topology of algebraic curves
In the context of our algorithm Isotop for computing the topology of algebraic curves [28], we study the bit
complexity of solving a system of two bivariate polynomials of total degree d with integer coefficients of
bitsize τ . We focus on the problem of computing a Rational Univariate Representation (RUR) of the solutions,
that is, roughly speaking, a univariate polynomial and two rational functions which map the roots of the
polynomial to the two coordinates of the solutions of the system.

We work on an algorithm for computing RURs with worst-case bit complexity inO(d8 + d7τ + d5τ2) (where
polylogarithmic factors are omitted). In addition, we show that certified approximations of the real solutions
can be computed from this representation with O(d8 + d7τ) bit operations. It should be stressed that our
algorithm is deterministic and that it makes no genericity assumption.

When τ ∈ O(d2), this complexity decreases by a factor d2 the best known upper bound for computing Rational
Univariate Representations of such systems and it matches the recent best known complexity (Emeliyanenko
and Sagraloff, 2012) for “only” computing certified approximations of the solutions. This shows, in particular,
that computing RURs of bivariate systems is in a similar class of (known) complexity as computing certified
approximations of one of the variables of its real solutions.

This work is on-going and is done in collaboration with Fabrice Rouillier (Inria Ouragan).

5.3. Combinatorics and combinatorial geometry
5.3.1. Multinerves and Helly numbers of acyclic families

The nerve of a family of sets is a simplicial complex that records the intersection pattern of its subfamilies.
Nerves are widely used in computational geometry and topology, because the nerve theorem guarantees that
the nerve of a family of geometric objects has the same topology as the union of the objects, if they form a
good cover.

In a joint work with Éric Colin de Verdière (CNRS-ENS) and Grégory Ginot (Univ. Paris 6) we relaxed the
good cover assumption to the case where each subfamily intersects in a disjoint union of possibly several
homology cells, and we proved a generalization of the nerve theorem in this framework, using spectral
sequences from algebraic topology. We then deduced a new topological Helly-type theorem that unifies
previous results of Amenta, Kalai and Meshulam, and Matoušek. This Helly-type theorem is used to (re)prove,
in a unified way, bounds on transversal Helly numbers in geometric transversal theory.

This work was presented at SoCG 2012 [18], where it received one of the two “best paper” awards.

5.3.2. Set systems and families of permutations with small traces
In a joint work with Otfried Cheong (KAIST, South Korea) and Cyril Nicaud (Univ. Marne-La-Vallée), we
studied two problems of the following flavor: how large can a family of combinatorial objects defined on
a finite set be if its number of distinct “projections” on any small subset is bounded? We first consider set
systems, where the “projections” is the standard notion of trace, and for which we generalized Sauer’s Lemma
on the size of set systems with bounded VC-dimension. We then studied families of permutations, where
the “projections” corresponds to the notion of containment used in the study of permutations with excluded
patterns, and for which we delineated the main growth rates ensured by projection conditions. One of our
motivations for considering these questions is the “geometric permutation problem” in geometric transversal
theory, a question that has been open for two decades.

This work was published in the European Journal of Combinatorics [13].

5.3.3. Simplifying inclusion-exclusion formulas
Let F = {F1, F2, ..., Fn} be a family of n sets on a ground set X , such as a family of balls in Rd. For
every finite measure µ on X , such that the sets of F are measurable, the classical inclusion-exclusion formula
asserts that µ(F1 ∪ F2 ∪ • • • ∪ Fn) =

∑
I:∅ 6=I⊆[n] (−1)

|I|+1
µ(∩i∈IFi); that is, the measure of the union is

expressed using measures of various intersections. The number of terms in this formula is exponential in n,



Project-Team VEGAS 7

and a significant amount of research, originating in applied areas, has been devoted to constructing simpler
formulas for particular families F .

In a joint work with Jiří Matoušek, Pavel Paták, Zuzana Safernová and Martin Tancer (Charles Univ.,
Prague) [22] we provided the apparently first upper bound valid for an arbitrary F : we showed that every
system F of n sets with m nonempty fields in the Venn diagram admits an inclusion-exclusion formula with
mO((logn)2) terms and with±1 coefficients, and that such a formula can be computed in mO((logn)2) expected
time. We also constructed systems of n sets on n points for which every valid inclusion-exclusion formula has
the sum of absolute values of the coefficients at least Ω(n3/2).

6. Partnerships and Cooperations

6.1. National Initiatives
6.1.1. ANR

The ANR blanc PRESAGE brings together computational geometers (from the VEGAS and GEOMETRICA
projects of Inria) and probabilistic geometers (from Universities of Rouen, Orléans and Poitiers) to tackle
new probabilistic geometry problems arising from the design and analysis of geometric algorithms and
data structures. We focus on properties of discrete structures induced by or underlying random continuous
geometric objects.

This is a four year project, with a total budget of 400kE, that started on Dec. 31st, 2011. It is coordinated by
Xavier Goaoc (VEGAS).

6.2. International Research Visitors
6.2.1. Visits of International Scientists

William J. Lenhart, Williams College (USA), one year sabbatical until July 2012.

Boris Aronov, from NYU-Poly, visited the VEGAS project for 2 weeks in October.

Martin Tancer, Pavel Paták and Zuzana Safernová, from Charles Univ. in Prague, visited the VEGAS project
for 1 week in August.

Hyo-Sil Kim (postdoc at POSTECH, South Korea) and Jae-Soon Ha (PhD student at KAIST, South Korea)
visited the VEGAS project for 2 weeks in February.

7. Dissemination

7.1. Scientific Animation
Program and Paper Committee:

• Sylvain Lazard: Program committee of the ACM Symposium on Computational Geometry 2012
(SoCG’12) and of the European Workshop on Computational Geometry (EuroCG’12).

• Sylvain Petitjean: Program committee of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR’12).

Editorial responsibilities:

• Xavier Goaoc: Editor of the Journal of Computational Geometry.

• Sylvain Petitjean: Editor of Graphical Models (Elsevier).



8 Activity Report INRIA 2012

Workshop organizations:

• Sylvain Lazard co-organized with S. Whitesides (Victoria University) the 11th Inria - McGill -
Victoria Workshop on Computational Geometry 2 (Bellairs Research Institute of McGill University)
in Feb. (1 week workshop on invitation).

• Xavier Goaoc was co-organiser of the Journées de Géométrie Algorithmique 2012 (http://jga2012.
fr). This event gathered the french community of computational geometry (50-60 participants) for
one week.

• Xavier Goaoc was co-organiser of Algorithms & Permutations 2012 (http://igm.univ-mlv.fr/AlgoB/
algoperm2012/). This event gathered ∼ 70 participants from theoretical computer science for two
days.

• Xavier Goaoc organized a workshop on interactions between stochastic and computational geome-
tries (http://webloria.loria.fr/~goaoc/ANR-Presage/meetings.html) where 21 participants, on invita-
tion, worked for a week on research problems at the interface between stochastic and computational
geometries.

Other responsibilities:

• Sylvain Lazard: Head of the Inria Nancy-Grand Est PhD and Post-doc hiring committee (since 2009).
Member of the Bureau du Département Informatique de Formation Doctorale of the École Doctorale
IAE+M (since 2009). Member of the hiring committee for St Dié assistant professor position. Chargé
de formation par la recherche for Inria Nancy-Grand Est.

• Laurent Dupont: Responsible of admissions of IUT Charlemagne, University Nancy 2 (September
2011- September 2012). Member of Commission Pédagogique Nationale Infocom/SRC (since
2011). Member of Commission Information Scientifique (Inria/Loria).

• Xavier Goaoc: Chair of the Inria COST-GTRI committee (since 2011).

• Guillaume Moroz: Member of the organizing committee of the Olympiades académiques de math-
ématiques. Vice delegate of the Commission des Utilisateurs des Moyens Informatiques pour la
Recherche. Invited to give a course at Young researcher School EJCIM 2012 and doctoral school of
science and technology of Versailles.

• Sylvain Petitjean: Until August: Scientific delegate of Inria Nancy Grand-Est and chairman of
its Project committee (since 2009). Member of the Executive committee of Inria Nancy Grand-
Est, member of its Commission des développements technologiques. Member of Inria’s Evaluation
committee. Since September: Acting director of the Inria Nancy Grand-Est. Member of Inria’s
Executive committee.

• Marc Pouget: Member of the CGAL Editorial Board (since 2008).

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Master: Marc Pouget and Xavier Goaoc, Introduction à la géométrie algorithmique, 10.5 HETD,
M1, École Nationale Supérieure de Géologie, France

Master: Xavier Goaoc, Recherche opérationnelle, 25 HETD, M1, École des Mines de Nancy.

Master: Xavier Goaoc, Pépites en géométrie algorithmique, 4.5 HETD, M1, École des Mines de
Nancy.

Licence: Laurent Dupont, Systèmes de Gestion de Bases de Données Avancé, 40h, Université de
Lorraine (IUT Charlemagne).

Licence:Laurent Dupont, Concepts et Outils Internet, 40h, Université de Lorraine (IUT Charle-
magne).

2Workshop on Computational Geometry

http://jga2012.fr
http://jga2012.fr
http://igm.univ-mlv.fr/AlgoB/algoperm2012/
http://igm.univ-mlv.fr/AlgoB/algoperm2012/
http://webloria.loria.fr/~goaoc/ANR-Presage/meetings.html
http://www.loria.fr/~everett/McGill-ISA/Bellairs-2012/report.html
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Licence: Laurent Dupont, Programmation Objet et Évènementielle, 40h, Université de Lorraine (IUT
Charlemagne).
Licence: Laurent Dupont, Rich Internet Applications, 40h, Université de Lorraine (IUT Charle-
magne).
Licence: Laurent Dupont and Yacine Bouzidi, Programmation de Sites Web Dynamiques, 68h,
Université de Lorraine (IUT Charlemagne).
Licence: Laurent Dupont and Yacine Bouzidi, Algorithmique, 76h, Université de Lorraine (IUT
Charlemagne).
Licence: Sylvain Lazard, Algorithms and Complexity, 25h, L3, Université de Lorraine.

7.2.2. Supervision
PhD in progress : Yacine Bouzidi, Résolution de systèmes algébriques bivariés et topologie de
courbes planes, started in October 2010, Sylvain Lazard et Marc Pouget
PhD in progress : Fabien Mathieu, Simulation numériques 3D pour le prototypage rapide par
Stratoconception, thèse CIFRE with CIRTES, started in February 2012 and stopped in September
2012 for administrative reasons, Sylvain Lazard.

7.2.3. Juries
• Xavier Goaoc was on the reading and defense committees of the thesis of Daniela Maftuleac, Aix-

Marseille Univ, Juin 2012.
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