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2. Overall Objectives

2.1. Research Themes
The team develops constructive, function-theoretic approaches to inverse problems arising in modeling and
design, in particular for electro-magnetic systems as well as in the analysis of certain classes of signals.

Data typically consist of measurements or desired behaviors. The general thread is to approximate them by
families of solutions to the equations governing the underlying system. This leads us to consider various inter-
polation and approximation problems in classes of rational and meromorphic functions, harmonic gradients,
or solutions to more general elliptic partial differential equations (PDE), in connection with inverse potential
problems. A recurring difficulty is to control the singularities of the approximants.

The mathematical tools pertain to complex and harmonic analysis, approximation theory, potential theory,
system theory, differential topology, optimization and computer algebra. Targeted applications include:

• identification and synthesis of analog microwave devices (filters, amplifiers),

• non-destructive control from field measurements in medical engineering (source recovery in
magneto/electro-encephalography), paleomagnetism (determining the magnetization of rock sam-
ples), and nuclear engineering (plasma shaping in tokamaks).

In each case, the endeavor is to develop algorithms resulting in dedicated software.
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3. Research Program

3.1. Introduction
Within the extensive field of inverse problems, much of the research by APICS deals with reconstructing
solutions of classical elliptic PDEs from their boundary behavior. Perhaps the most basic example of such a
problem is harmonic identification of a stable linear dynamical system: the transfer-function f is holomorphic
in the right half-pane, which means it satisfies there the Cauchy-Riemann equation ∂f = 0, and in principle f
can be recovered from its values on the imaginary axis, e.g. by Cauchy formula.

Practice is not nearly as simple, for f is only measured pointwise in the pass-band of the system which makes
the problem ill-posed [69]. Moreover, the transfer function is usually sought in specific form, displaying the
necessary physical parameters for control and design. For instance if f is rational of degree n, it satisfies
∂f =

∑n
1 ajδzj where the zj are its poles, and finding the domain of holomorphy (i.e. locating the zj)

amounts to solve a (degenerate) free-boundary inverse problem, this time on the left half-plane. To address
these questions, the team has developed a two-step approach as follows.

Step 1: To determine a complete model, that is, one which is defined for every frequency, in a
sufficiently flexible function class (e.g. Hardy spaces). This ill-posed issue requires regularization,
for instance constraints on the behavior at non-measured frequencies.
Step 2: To compute a reduced order model. This typically consists of rational approximation of the
complete model obtained in step 1, or phase-shift thereof to account for delays. Derivation of the
complete model is important to achieve stability of the reduced one.

Step 1 makes connection with extremal problems and analytic operator theory, see Section 3.3.1. Step 2
involves optimization, and some Schur analysis to parametrize transfer matrices of given Mc-Millan degree
when dealing with systems having several inputs and outputs, see Section 3.3.2.2. It also makes contact with
the topology of rational functions, to count critical points and to derive bounds, see Section 3.3.2. Moreover,
this step raises issues in approximation theory regarding the rate of convergence and whether the singularities
of the approximant (i.e. its poles) converge to the singularities of the approximated function; this is where
logarithmic potential theory becomes effective, see Section 3.3.3.

Iterating the previous steps coupled with a sensitivity analysis yields a tuning procedure which was first
demonstrated in [75] on resonant microwave filters.

Similar steps can be taken to approach design problems in the frequency domain, replacing measured behavior
by desired behavior. However, describing achievable responses from the design parameters at hand is generally
cumbersome, and most constructive techniques rely on rather specific criteria adapted to the physics of the
problem. This is especially true of circuits and filters, whose design classically appeals to standard polynomial
extremal problems and realization procedures from system theory [70], [59]. APICS is active in this field,
where we introduced the use of Zolotarev-like problems for microwave multi-band filter design. We currently
favor interpolation techniques because of their transparency with respect to parameter use, see Section 3.2.2.

In another connection, the example of harmonic identification quickly suggests a generalization of itself.
Indeed, on identifying C with R2, holomorphic functions become conjugate-gradients of harmonic functions
so that harmonic identification is, after all, a special case of a classical issue: to recover a harmonic function
on a domain from partial knowledge of the Dirichlet-Neumann data; portion of the boundary where data are
not available may be unknown, in which case we meet a free boundary problem. This framework for 2-D
non-destructive control was first advocated in [62] and subsequently received considerable attention. It makes
it clear how to state similar problems in higher dimensions and for more general operators than the Laplacian,
provided solutions are essentially determined by the trace of their gradient on part of the boundary which
is the case for elliptic equations 1 [78]. All these questions are particular instances of the so-called inverse

1There is a subtle difference here between dimension 2 and higher. Indeed, a function holomorphic on a plane domain is defined by its
non-tangential limit on a boundary subset of positive linear measure, but there are non-constant harmonic functions in the 3-D ball, C1

up to the boundary sphere, yet having vanishing gradient on a subset of positive measure of the sphere.
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potential problem, where a measure µ has to be recovered from knowledge of the gradient of its potential (i.e.,
the field) on part of a hypersurface (a curve in 2-D) encompassing the support of µ. For Laplace’s operator,
potentials are logarithmic in 2-D and Newtonian in higher dimensions. For elliptic operators with non constant
coefficients, the potential depends on the form of fundamental solutions and is less manageable because it is
no longer of convolution type. In any case, by construction, the operator applied to the potential yields back
the measure.

Inverse potential problems are severely indeterminate because infinitely many measures within an open set
produce the same field outside this set [68]. In step 1 above we implicitly removed this indeterminacy by
requiring that the measure be supported on the boundary (because we seek a function holomorphic throughout
the right half space), and in step 2 by requiring, say, in case of rational approximation that the measure be
discrete in the left half-plane. The same discreteness assumption prevails in 3-D inverse source problems.
To recap, the gist of our approach is to approximate boundary data by (boundary traces of) fields arising
from potentials of measures with specific support. Note this is different from standard approaches to inverse
problems, where descent algorithms are applied to integration schemes of the direct problem; in such methods,
it is the equation which gets approximated (in fact: discretized).

Along these lines, the team initiated the use of steps 1 and 2 above, along with singularity analysis, to
approach issues of nondestructive control in 2 and 3-D [44] [5], [2]. We are currently engaged in two kinds
of generalization, further described in Section 3.2.1. The first one deals with non-constant conductivities,
where Cauchy-Riemann equations for holomorphic functions are replaced by conjugate Beltrami equations
for pseudo-holomorphic functions; there we seek applications to inverse free boundary problems such as
plasma confinement in the vessel of a tokamak. The other one lies with inverse source problems for Laplace’s
equation in 3-D, where holomorphic functions are replaced by harmonic gradients, developing applications to
EEG/MEG and inverse magnetization problems in paleomagnetism, see Section 4.2.

The main approximation-theoretic tools developed by APICS to get to grips with issues mentioned so far are
outlined in Section 3.3. In Section 3.2 to come, we make more precise which problems are considered and for
which applications.

3.2. Range of inverse problems
3.2.1. Elliptic partial differential equations (PDE)

Participants: Laurent Baratchart, Slah Chaabi, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev,
Elodie Pozzi.

This work has benefited from collaboration with Alexander Borichev (Aix-Marseille University).

Reconstructing Dirichlet-Neumann boundary conditions for a function harmonic in a plane domain when these
are known on a strict subset E of the boundary, is equivalent to recover a holomorphic function in the domain
from its boundary values on E. This is the problem raised on the half-plane in step 1 of Section 3.1. It makes
good sense in holomorphic Hardy spaces where functions are determined by their values on boundary subsets
of positive linear measure, which is the framework for Problem (P ) in Section 3.3.1. Such problems naturally
arise in nondestructive testing of 2-D (or cylindrical) materials from partial electrical measurements on the
boundary. Indeed, the ratio between tangential and normal currents (so-called Robin coefficient) tells about
corrosion of the material. Solving Problem (P ) where ψ is chosen to be the response of some uncorroded piece
with identical shape allows one to approach such questions, and this was an initial application of holomorphic
extremal problems to non-destructive control [56], [60].

A recent application by the team deals with non-constant conductivity over a doubly connected domain, E
being the outer boundary. Measuring Dirichlet-Neumann data on E, we want to quantify how constant the
solution can be on the inner boundary. To this effect We define and study Hardy spaces of a conjugate Beltrami
equation, of which the conductivity equation is the compatibility condition (just like Laplace’s equation is the
compatibility condition of the Cauchy-Riemann system). This is done in references [4] and [13]. Then, solving
an obvious analog of Problem (P ) allows one to numerically check what we want. Further, the value of this
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extremal problem defines a criterion on inner boundaries, and subsequently a descent algorithm was set up to
improve the initial boundary into one where the solution is closer to being constant. This is a way to approach
a free boundary problem.

When the domain is regarded as separating the edge of a tokamak’s vessel from the plasma (rotational
symmetry makes this a 2-D problem), the procedure just described suits plasma control from magnetic
confinement. It was successfully applied in collaboration with CEA (the French nuclear agency) and the
University of Nice (JAD Lab.) to data from Tore Supra [61]. This procedure is fast because no numerical
integration of the underlying PDE is needed, as an explicit basis of solutions to the conjugate Beltrami equation
in terms of Bessel functions was found in this case. Generalizing this approach in a more systematic manner
into descent algorithms for boundary-value criteria using the gradient of a shape is an interesting perspective.

Three-dimensional versions of step 1 in Section 3.1 are also considered, namely to recover a harmonic function
(up to a constant) in a ball or a half-space from partial knowledge of its gradient on the boundary. Such
questions arise naturally in connection with neurosciences and medical imaging (electroencephalography,
EEG) or in paleomagnetism (analysis of rocks magnetization) [2] [14], [18], see Section 6.1. They are not
yet as developed as the 2-D case where the power of complex analysis is at work, but considerable progress
was made over the last years through methods of harmonic analysis and operator theory.

The team is also concerned with non-destructive control problems of localizing defaults such as cracks,
sources or occlusions in a planar or 3-dimensional domain, from boundary data (which may correspond to
thermal, electrical, or magnetic measurements). These defaults can be expressed as a lack of analyticity of
the solution of the associated Dirichlet-Neumann problem and we approach them using techniques of best
rational or meromorphic approximation on the boundary of the object [3], [8], see Sections 3.3.2 and 4.2. In
fact, the way singularities of the approximant relate to the singularities of the approximated function is an
all-pervasive theme in approximation theory, and for appropriate classes of functions like those expressed as
Cauchy integrals over certain extremal contours for the logarithmic potential, the location of the poles of a
best rational approximant can be used as an estimator of the singularities of the approximated function (see
Section 6.1). This circle of ideas is driving step 2 in Section 3.1.

A genuine 3-dimensional theory of approximation by discrete potentials, though, is still in its infancy.

3.2.2. Systems, transfer and scattering
Participants: Laurent Baratchart, Sylvain Chevillard, Sanda Lefteriu, Martine Olivi, Fabien Seyfert.

Through initial contacts with CNES, the French space agency, the team came to work on identification-for-
tuning of microwave electromagnetic filters used in space telecommunications (see Section 4.5). The problem
was to recover, from band-limited frequency measurements, the physical parameters of the device under
examination. The latter consists of interconnected dual-mode resonant cavities with negligible loss, hence its
scattering matrix is modeled by a 2× 2 unitary-valued matrix function on the frequency line, say the imaginary
axis to fix ideas. In the bandwidth around the resonant frequency, a modal approximation of the Helmholtz
equation in the cavities shows that this matrix is approximately rational, of Mc-Millan degree twice the number
of cavities.

This is where system theory enters the scene, through the so-called realization process mapping a rational
transfer function in the frequency domain to a state-space representation of the underlying system of linear
differential equations in the time domain. Specifically, realizing the scattering matrix allows one to construct
a virtual electrical network, equivalent to the filter, the parameters of which mediate in between the frequency
response and the geometric characteristics of the cavities (i.e. the tuning parameters).

Hardy spaces, in particular the Hilbert space H2, provide a framework to transform this classical ill-posed
issue into a series of regularized analytic and meromorphic approximation problems. The procedure sketched
in Section 3.1 now goes as follows:

1. infer from the pointwise boundary data in the bandwidth a stable transfer function (i.e. one which is
holomorphic in the right half-plane), that may be infinite dimensional (numerically: of high degree).
This is done by solving in the Hardy space H2 of the right half-plane a problem analogous to (P )
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in Section 3.3.1, taking into account prior assumptions or knowledge on the decay of the response
outside the bandwidth, see [19] for details.

2. From this stable model, a rational stable approximation of appropriate degree is computed. For this
a descent method is used on the relatively compact manifold of inner matrices of given size and
degree, using an original parametrization of stable transfer functions developed by the team [19].

3. From this rational model, realizations meeting certain constraints imposed by the technology in
use are computed. These constraints typically come from the nature and coupling topology of the
equivalent electrical network used to model the filter. This network is composed of resonators,
coupled to each other by some specific coupling graph. Performing this realization step for given
coupling topology can be recast, under appropriate compatibility conditions [7], as the problem of
solving a zero-dimensional multivariate polynomial system. To tackle this problem in practice, we
use Groebner basis techniques as well as continuation methods as implemented in the Dedale-HF
software (see Section 5.4).

Let us also mention that extensions of classical coupling matrix theory to frequency-dependent (reactive)
couplings have lately been carried-out [1] for wide-band design applications, although further study is needed
to make them computationally effective.

Subsequently APICS started investigating issues pertaining to filter design rather than identification. Given the
topology of the filter, a basic problem is to find the optimal response with respect to amplitude specifications in
frequency domain bearing on rejection, transmission and group delay of scattering parameters. Generalizing
the approach based on Chebyshev polynomials for single band filters, we recast the problem of multi-band
response synthesis in terms of a generalization of classical Zolotarev min-max problem [34] for rational
functions [10]. Thanks to quasi-convexity, the latter can be solved efficiently using iterative methods relying
on linear programming. These are implemented in the software easy-FF (see Section 5.5).

Investigations by the team have extended to design and identification of more complex microwave devices, like
multiplexers and routers, which connect several filters through wave guides. Schur analysis plays an important
role here, which is no surprise since scattering matrices of passive systems are of Schur type (i.e. contractive
in the stability region). The theory originates with the work of I. Schur [74], who devised a recursive test to
check for contractivity of a holomorphic function in the disk. Generalizations thereof turned out to be very
efficient to parametrize solutions to contractive interpolation problems subject to a well-known compatibility
condition (positive definiteness of the so-called Pick matrix) [36]. Schur analysis became quite popular in
electrical engineering, as the Schur recursion precisely describes how to chain two-port circuits.

Dwelling on this, members of the team contributed to differential parametrizations (atlases of charts) of loss-
less matrix functions [35][11], [9]. These are fundamental to our rational approximation software RARL2 (see
Section 5.1). Schur analysis is also instrumental to approach de-embedding issues considered in Section 6.3,
and provides further background to synthesis and matching problems for multiplexers. At the heart of the latter
lies a variant of contractive interpolation with degree constraint introduced in [65].

We also mention the role played by multi-point Schur analysis in the team’s investigation of spectral
representation for certain non-stationary discrete stochastic processes [41], [39].

More recently, in collaboration with UPV (Bilbao), our attention was driven by CNES, to questions of stability
relative to high-frequency amplifiers, see Section 7.2. Contrary to previously mentioned devices, these are
active components. The amplifier can be linearized at a functioning point and admittances of the corresponding
electrical network can be computed at various frequencies, using the so-called harmonic balance method. The
goal is to check for stability of this linearized model. The latter is composed of lumped electrical elements
namely inductors, capacitors, negative and positive reactors, transmission lines, and commanded current
sources. Research so far focused on determining the algebraic structure of admittance functions, and setting
up a function-theoretic framework to analyze them. In particular, much effort was put on realistic assumptions
under which a stable/unstable decomposition can be claimed inH2 ⊕H2 (see Section 6.4). Then, the unstable
part of the elements under examination is rational and one can provide the designer with valuable estimates of
stability using the general scheme sketched in Section 3.1.
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3.3. Approximation of boundary data
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Martine Olivi, Dmitry Ponomarev,
Elodie Pozzi, Fabien Seyfert.

The following people are collaborating with us on these topics: Bernard Hanzon (Univ. Cork, Ireland), Jean-
Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris), Jonathan Partington
(Univ. Leeds, UK), Ralf Peeters (Univ. Maastricht, NL), Edward Saff (Vanderbilt University, Nashville, USA),
Herbert Stahl (TFH Berlin), Maxim Yattselev (Purdue Univ. at Indianapolis, USA).

3.3.1. Best constrained analytic approximation
In dimension 2, the prototypical problem to be solved in step 1 of Section 3.1 may be described as: given a
domain D ⊂ R2, we want to recover a holomorphic function from its values on a subset of the boundary of
D. Using conformal mapping, it is convenient for the discussion to normalize D. So, in the simply connected
case, we fix D to be the unit disk with boundary the unit circle T . We denote by Hp the Hardy space of
exponent p which is the closure of polynomials in the Lp-norm on the circle if 1 ≤ p <∞ and the space of
bounded holomorphic functions inD if p =∞. Functions inHp have well-defined boundary values in Lp(T ),
which makes it possible to speak of (traces of) analytic functions on the boundary.

To find an analytic function in D approximately matching measured values f on a sub-arc K of T , we
formulate a constrained best approximation problem as follows.

(P ) Let 1 ≤ p ≤ ∞, K a sub-arc of T , f ∈ Lp(K), ψ ∈ Lp(T rK) and M > 0; find a
function g ∈ Hp such that ‖g − ψ‖Lp(TrK) ≤M and g − f is of minimal norm in Lp(K)
under this constraint.

Here ψ is a reference behavior capturing a priori assumptions on the behavior of the model off K, while
M is some admissible deviation from them. The value of p reflects the type of stability which is sought and
how much one wants to smoothen the data. The choice of Lp classes is well-adapted to handling point-wise
measurements.

To fix terminology we refer to (P ) as a bounded extremal problem. As shown in [43], [45], [51], for
1 < p ≤ ∞, the solution to this convex infinite-dimensional optimization problem can be obtained upon
iterating with respect to a Lagrange parameter the solution to spectral equations for some appropriate Hankel
and Toeplitz operators. These equations in turn involve the solution to the standard extremal problem below
[64]:

(P0) Let 1 ≤ p ≤ ∞ and ϕ ∈ Lp(T ); find a function g ∈ Hp such that g − ϕ is of minimal
norm in Lp(T ).

The case p = 1 of (P0) is essentially open.

Various modifications of (P ) have been studied in order to meet specific needs. For instance when dealing with
loss-less transfer functions (see Section 4.5), one may want to express the constraint on T rK in a point-wise
manner: |g − ψ| ≤M a.e. on T rK, see [47]. In this form, it comes close to (but still is different from) H∞

frequency optimization methods for control [66], [73].

The analog of Problem (P ) on an annulus, K being now the outer boundary, can be seen as a means to
regularize a classical inverse problem occurring in nondestructive control, namely recovering a harmonic
function on the inner boundary from Dirichlet-Neumann data on the outer boundary (see Sections 3.2.1, 4.2,
6.1.1, 6.2). It may serve as a tool to approach Bernoulli type problems where we are given data on the outer
boundary and we seek the inner boundary, knowing it is a level curve of the flux. Then, the Lagrange parameter
indicates which deformation should be applied on the inner contour in order to improve data fitting.

This is discussed in Sections 3.2.1 and 6.2 for more general equations than the Laplacian, namely isotropic
conductivity equations of the form div(σ∇u) = 0 where σ is non constant. In this case, the Hardy spaces in
Problem (P ) are those of a so-called conjugate or real Beltrami equation ∂f = ν∂f [67], which were studied
for 1 < p <∞ in [13], [4]. Expansions of solutions needed to constructively handle such issues have been
carried out in [61].
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Though originally considered in dimension 2, Problem (P ) carries over naturally to higher dimensions where
analytic functions get replaced by gradients of harmonic functions. Namely, given some open set Ω ⊂ Rn and
a Rn-valued vector V field on an open subset O of the boundary of Ω, we seek a harmonic function in Ω
whose gradient is close to V on O.

When Ω is a ball or a half-space, a convenient substitute of holomorphic Hardy spaces is provided by Stein-
Weiss Hardy spaces of harmonic gradients [77]. Conformal maps are no longer available in Rn for n > 2 and
other geometries have not been much studied so far. On the ball, the analog of Problem (P ) is

(P1) Let 1 ≤ p ≤ ∞ andB ⊂ Rn the unit ball. FixO an open subset of the unit sphere S ⊂ Rn.
Let further V ∈ Lp(O) and W ∈ Lp(S rO) be Rn-valued vector fields, and M > 0; find a
harmonic gradient G ∈ Hp(B) such that ‖G−W‖Lp(SrO) ≤M and G− V is of minimal
norm in Lp(O) under this constraint.

When p = 2, spherical harmonics offer a reasonable substitute to Fourier expansions and Problem (P1) was
solved in [2], together with its natural analog on a shell. The solution generalizes the Toeplitz operator
approach to bounded extremal problems [43], and constructive aspects of the procedure (harmonic 3-D
projection, Kelvin and Riesz transformation, spherical harmonics) were derived. An important ingredient is a
refinement of the Hodge decomposition allowing us to express a Rn-valued vector field in Lp(S), 1 < p <∞,
as the sum of a vector field in H(B), a vector field in Hp(Rn rB), and a tangential divergence free vector
field. If p = 1 or p =∞, Lp must be replaced respectively by the real Hardy space H1 and the bounded mean
oscillation space BMO, and H∞ should be modified accordingly. This decomposition was fully discussed in
[14] (for the case of the half-space) where it plays a fundamental role.

Problem (P1) is under investigation in the case p =∞, where even the case where O = S is pending because
a substitute of the Adamjan-Arov-Krein theory [71] is still to be built in dimension greater than 2.

Such problems arise in connection with source recovery in electro/magneto encephalography and paleomag-
netism, as discussed in Sections 3.2.1 and 4.2.

3.3.2. Best meromorphic and rational approximation
The techniques explained in this section are used to solve step 2 in Section 3.2 via conformal mapping and
subsequently are instrumental to approach inverse boundary value problems for Poisson equation ∆u = µ,
where µ is some (unknown) distribution.

3.3.2.1. Scalar meromorphic and rational approximation

Let as beforeD designate the unit disk, and T the unit circle. We further putRN for the set of rational functions
with at most N poles in D, which allows us to define meromorphic functions in Lp(T ) as traces of functions
in Hp +RN .

A natural generalization of Problem (P0) is:

(PN ) Let 1 ≤ p ≤ ∞, N ≥ 0 an integer, and f ∈ Lp(T ); find a function gN ∈ Hp +RN such
that gN − f is of minimal norm in Lp(T ).

Only for p =∞ and continuous f it is known how to solve (PN ) in closed form. The unique solution is given
by AAK theory (named after Adamjan, Arov and Krein), that connects the spectral decomposition of Hankel
operators with best approximation in Hankel norm [71]. This theory allows one to express gN in terms of the
singular vectors of the Hankel operator with symbol f . The continuity of gN as a function of f only holds for
norms finer than uniform.

The case p = 2 is of special importance. In particular when f ∈ H2
, the Hardy space of exponent 2 of the

complement of D in the complex plane (by definition, h(z) belongs to H
p

if, and only if h(1/z) belongs to
Hp), then (PN ) reduces to rational approximation. Moreover, it turns out that the associated solution gN ∈ RN

has no pole outside D, hence it is a stable rational approximant to f . However, in contrast with the situation
when p =∞, this approximant may not be unique.
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The former Miaou project (predecessor of APICS) has designed an adapted steepest-descent algorithm for the
case p = 2 whose convergence to a local minimum is guaranteed; until now it seems to be the only procedure
meeting this property. Roughly speaking, it is a gradient algorithm that proceeds recursively with respect to the
order N of the approximant, in a compact region of the parameter space [38]. Although it has proved effective
in all applications carried out so far (see Sections 4.2, 4.5), it is not known whether the absolute minimum can
always be obtained by choosing initial conditions corresponding to critical points of lower degree (as is done
by the RARL2 software, Section 5.1).

In order to establish global convergence results, APICS has undertaken a deeper study of the number and
nature of critical points, in which tools from differential topology and operator theory team up with classical
approximation theory. The main discovery is that the nature of the critical points (e.g., local minima, saddle
points...) depends on the decrease of the interpolation error to f as N increases [48]. Based on this, sufficient
conditions have been developed for a local minimum to be unique. These conditions are hard to use in practice
because they require strong estimates of the approximation error. These are often difficult to obtain for a given
function, and are usually only valid for large N . Examples where uniqueness or asymptotic uniqueness has
been proved this way include transfer functions of relaxation systems (i.e. Markov functions) [52] and more
generally Cauchy integrals over hyperbolic geodesic arcs [54] and certain entire functions [50].

An analog to AAK theory has been carried out for 2 ≤ p <∞ [51]. Although not computationally as
powerful, it can be used to derive lower bounds [29] and to analyze the behavior of poles. When 1 ≤ p < 2,
Problem (PN ) is still fairly open.

A common feature to all these problems is that critical point equations express non-Hermitian orthogonality
relations for the denominator of the approximant. This makes connection with interpolation theory [55], [53]
and is used in an essential manner to assess the behavior of the poles of the approximants to functions with
branchpoint-type singularities, which is of particular interest for inverse source problems (cf. Sections 5.6
and 6.1).

In higher dimensions, the analog of Problem (PN ) is best approximation of a vector field with gradients
of potentials generated by N point masses instead of meromorphic functions. This issue is by no means
fully understood, and is an exciting line of research. It is connected with spectral properties of certain
operators generalizing classical Toeplitz and Hankel ones, and to constructive approaches to so-called weak
factorizations of div-curl type for real Hardy functions.

Certain constrained rational approximation problems, of special interest in identification and design of passive
systems, arise when putting additional requirements on the approximant, for instance that it should be smaller
than 1 in modulus. Such questions have attracted significant attention of members of the team (see Section 4.5).
For instance, convergence properties of multi-point Schur approximants, which are rational interpolants
preserving contractivity of a function, were analyzed in [41]. Such approximants are useful in prediction
theory of stochastic processes, but since they interpolate inside the domain of holomorphy they are of limited
use in frequency design.

In another connection, the generalization to several arcs of classical Zolotarev problems [72] is an achievement
by the team which is useful for multi-band synthesis [10]. Still, though the modulus of the response is
the first concern in filter design, variation of the phase must nevertheless remain under control to avoid
unacceptable distortion of the signal. This specific but important issue has less structure and was approached
using constrained optimization; a dedicated code has been developed under contract with the CNES (see
Section 5.5).

3.3.2.2. Matrix-valued rational approximation

Matrix-valued approximation is necessary for handling systems with several inputs and outputs, and it
generates substantial additional difficulties with respect to scalar approximation, theoretically as well as
algorithmically. In the matrix case, the McMillan degree (i.e. the degree of a minimal realization in the System-
Theoretic sense) generalizes the degree.
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The problem we consider is now: let F ∈ (H2)
m×l and n an integer; find a rational matrix of size m× l

without poles in the unit disk and of McMillan degree at most n which is nearest possible to F in (H2)
m×l.

Here the L2 norm of a matrix is the square root of the sum of the squares of the norms of its entries.

The scalar approximation algorithm [38], mentioned in Section 3.3.2.1, generalizes to the matrix-valued
situation [63]. The first difficulty here consists in the parametrization of transfer matrices of given McMillan
degree n, and the inner matrices (i.e. matrix-valued functions that are analytic in the unit disk and unitary
on the circle) of degree n. The latter enter the picture in an essential manner as they play the role of the
denominator in a fractional representation of transfer matrices (using the so-called Douglas-Shapiro-Shields
factorization). The set of inner matrices of given degree has the structure of a smooth manifold that allows one
to use differential tools as in the scalar case. In practice, one has to produce an atlas of charts (parametrization
valid in a neighborhood of a point), and we must handle changes of charts in the course of the algorithm.
Such parametrization can be obtained from interpolation theory and Schur type algorithms, the parameters
being interpolation vectors or matrices ( [35], [9], [11]). Some of them are particularly interesting to compute
realizations and achieve filter synthesis ([9] [11]). For rational approximation software codes developed by the
team, see Section 5.1.

Difficulties relative to multiple local minima naturally arise in the matrix-valued case as well, and deriving
criteria that guarantee uniqueness is even more difficult than in the scalar case. The case of rational functions
of sought degree or small perturbations thereof (the consistency problem) was solved in [49]. The case of
matrix-valued Markov functions, the first example beyond rational functions, was treated in [37].

Let us stress that the algorithms mentioned above are first to handle rational approximation in the matrix case
in a way that converges to local minima, while meeting stability constraints on the approximant.

3.3.3. Behavior of poles of meromorphic approximants
Participant: Laurent Baratchart.

The following persons did collaborate with us on this subject: Herbert Stahl (TFH Berlin), Maxim Yattselev
(Purdue Univ. at Indianapolis, USA).

We refer here to the behavior of poles of best meromorphic approximants, in the Lp-sense on a closed curve,
to functions f defined as Cauchy integrals of complex measures whose support lies inside the curve. If
one normalizes the contour to be the unit circle T , we are back to the framework of Section 3.3.2.1 and to
Problem (PN ); invariance of the problem under conformal mapping was established in [5]. Research so far
has focused on functions whose singular set inside the contour is zero or one-dimensional.

Generally speaking, the behavior of poles is particularly important in meromorphic approximation to obtain
error rates as the degree goes large and to tackle constructive issues like uniqueness. As explained in
Section 3.2.1, we consider this issue in connection with approximation of the solution to a Dirichlet-Neumann
problem, so as to extract information on the singularities. The general theme is thus how do the singularities
of the approximant reflect those of the approximated function? This approach to inverse problem for the 2-D
Laplacian turns out to be attractive when singularities are zero- or one-dimensional (see Section 4.2). It can be
used as a computationally cheap initialization of more precise but heavier numerical optimizations.

As regards crack detection or source recovery, the approach in question boils down to analyzing the behavior
of best meromorphic approximants of a function with branch points. For piecewise analytic cracks, or in the
case of sources, we were able to prove ([5], [6], [40]), that the poles of the approximants accumulate on some
extremal contour of minimum weighted energy linkings the singular points of the crack, or the sources [44].
Moreover, the asymptotic density of the poles turns out to be the Green equilibrium distribution of this contour
in D, hence puts heavy charge around the singular points (in particular at the endpoints) which are therefore
well localized if one is able to approximate in sufficiently high degree (this is where the method could fail).

The case of two-dimensional singularities is still an outstanding open problem.

It is interesting that inverse source problems inside a sphere or an ellipsoid in 3-D can be attacked with
the above 2-D techniques, as applied to planar sections (see Section 6.1). This is at work in the software
FindSources3D, see Section 5.6.
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3.3.4. Miscellaneous
Participant: Sylvain Chevillard.

Sylvain Chevillard, joined team in November 2010. His coming resulted in APICS hosting a research activity
in certified computing, centered on the software Sollya of which S. Chevillard is a co-author, see Section 5.7.
On the one hand, Sollya is an Inria software which still requires some tuning to a growing community of users.
On the other hand, approximation-theoretic methods at work in Sollya are potentially useful for certified
solutions to constrained analytic problems described in Section 3.3.1. However, developing Sollya is not a
long-term objective of APICS.

4. Application Domains

4.1. Introduction
These domains are naturally linked to the problems described in Sections 3.2.1 and 3.2.2. By and large,
they split into a systems-and-circuits part and an inverse-source-and-boundary-problems part, united under
a common umbrella of function-theoretic techniques described in Section 3.3.

4.2. Inverse source problems in EEG
Participants: Laurent Baratchart, Kateryna Bashtova, Juliette Leblond.

This work is done in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena Project-Team,
and Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines de Paris).

Solving overdetermined Cauchy problems for the Laplace equation on a spherical layer (in 3-D) in order to
extrapolate incomplete data (see Section 3.2.1) is a necessary ingredient of the team’s approach to inverse
source problems, in particular for applications to EEG since the latter involves propagating the initial
conditions through several layers of different conductivities, from the boundary down to the center of the
domain where the singularities (i.e. the sources) lie. Then, once propagated to the innermost sphere, it turns
out that that traces of the boundary data on 2-D cross sections (disks) coincide with analytic functions in the
slicing plane, that has branched singularities inside the disk [3]. These singularities are related to the actual
location of the sources (namely, they reach in turn a maximum in modulus when the plane contains one of the
sources). Hence, we are back to the 2-D framework of Section 3.3.3 where approximately recovering these
singularities can be performed using best rational approximation. The goal is to produce a fast but already
good enough initial guess on the number and location of the sources in order to run heavier descent algorithms
on the direct problem, which are more precise but computationally costly, and often fail to converge if not
properly initialized.

Numerical experiments give very good results on simulated data and we are now engaged in the process of
handling real experimental magneto-encephalographic data, see also Sections 5.6 and 6.1, in collaboration with
the Athena team at Inria Sophia Antipolis, neuroscience teams in partner-hospitals (la Timone, Marseille), and
the BESA company (Munich).

4.3. Inverse magnetization problems
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev.

Generally speaking, inverse potential problems similar to the one in Section 4.2 appear naturally in connection
with systems governed by Maxwell’s equation in the quasi-static approximation regime. In particular, they
arise in magnetic reconstruction issues. A specific application is to geophysics, whose study led us to form an
Inria Associate Team (“IMPINGE” for Inverse Magnetization Problems IN GEosciences) together with MIT
and Vanderbilt University.
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To set up the context, recall that the Earth’s geomagnetic field is generated by convection of the liquid
metallic core (geodynamo) and that rocks become magnetized by the ambient field as they are formed or after
subsequent alteration. Their remanent magnetization provides records of past variations of the geodynamo,
which is used to study important processes in Earth sciences like motion of tectonic plates and geomagnetic
reversals. Rocks from Mars, the Moon, and asteroids also contain remanent magnetization which indicates the
past presence of core dynamos. Magnetization in meteorites may even record fields produced by the young
sun and the protoplanetary disk which may have played a key role in solar system formation.

For a long time, paleomagnetic techniques were only capable of analyzing bulk samples and compute their
net magnetic moment. The development of SQUID microscopes has recently extended the spatial resolution
to submillimeter scales, raising new physical and algorithmic challenges. This associate team aims at tackling
them, experimenting with the SQUID microscope set up in the Paleomagnetism Laboratory of the department
of Earth, Atmospheric and Planetary Sciences at MIT. Typically, pieces of rock are sanded down to a thin slab,
and the magnetization has to be recovered from the field measured on a parallel plane at small distance above
the slab.

Mathematically speaking, both inverse source problems for EEG from Section 4.2 and inverse magnetization
problems described presently amount to recover the (3-D valued) quantity m (primary current density in case
of the brain or magnetization in case of a thin slab of rock) from measurements of the vector potential:∫

Ω

divm(x′) dx′

|x−x′|
, (1)

outside the volume Ω of the object, from Maxwell’s equations. The big difference is that the distribution m is
located in a volume in the case of EEG, and on a plane in the case of rock magnetization. This results in quite
different identifiability properties, see [14] and Section 6.1.2.

4.4. Free boundary problems
Participants: Laurent Baratchart, Juliette Leblond, Slah Chaabi.

The team has engaged in the study of problems with variable conductivity σ, governed by a 2-D equation
of the form div(σ∇u) = 0. Such equations are in one-to-one correspondence with real parts of solutions to
conjugate-Beltrami equations ∂f = ν∂f , so that complex analysis is a tool to study them, see [4], [13], [28].
This research was prompted by issues in plasma confinement for thermonuclear fusion in a tokamak, more
precisely with the extrapolation of magnetic data on the boundary of the chamber from the outer boundary
of the plasma, which is a level curve for the poloidal flux solving the original div-grad equation. Solving
this inverse problem of Bernoulli type is of importance to determine the appropriate boundary conditions to
be applied to the chamber in order to shape the plasma [58]. This research was started in collaboration with
CEA-IRFM (Cadarache) and the Laboratoire J.-A. Dieudonné at the Univ. of Nice-SA. Within the team, it is
now expanding to cover Dirichlet-Neumann problems for larger classes of conductivities, cf. in particular, the
PhD thesis of S. Chaabi [12], [28], jointly supervised with the CMI-LATP at the Aix-Marseille University.
(see Section 6.2).

4.5. Identification and design of microwave devices
Participants: Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.

This work is done in collaboration with Stéphane Bila (XLIM, Limoges) and Jean-Paul Marmorat (Centre de
mathématiques appliquées (CMA), École des Mines de Paris).

One of the best training grounds for the research of the team in function theory is the identification and design
of physical systems for which the linearity assumption works well in the considered range of frequency, and
whose specifications are made in the frequency domain. This is the case of electromagnetic resonant systems
which are of common use in telecommunications.
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In space telecommunications (satellite transmissions), constraints specific to on-board technology lead to the
use of filters with resonant cavities in the microwave range. These filters serve multiplexing purposes (before
or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically coupled by irises
(orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the Maxwell equations,
forcing the tangent electrical field along the body of the cavity to be zero. A deeper study of the Helmholtz
equation states that essentially only a discrete set of wave vectors is selected. In the considered range of
frequency, the electrical field in each cavity can be seen as being decomposed along two orthogonal modes,
perpendicular to the axis of the cavity (other modes are far off in the frequency domain, and their influence
can be neglected).

Figure 1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes
within the cavity, so that 16 quantities must be optimized. Quantities such as the diameter and length of the

cavities, or the width of the 11 slits are fixed during the design phase.

Each cavity (see Figure 1) has three screws, horizontal, vertical and midway (horizontal and vertical are two
arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all cavities
show the same orientation, and when the directions of the irises are the same, as well as the input and output
slits). Since the screws are conductors, they act more or less as capacitors; besides, the electrical field on the
surface has to be zero, which modifies the boundary conditions of one of the two modes (for the other mode,
the electrical field is zero hence it is not influenced by the screw), the third screw acts as a coupling between
the two modes. The effect of the iris is to the contrary of a screw: no condition is imposed where there is a hole,
which results in a coupling between two horizontal (or two vertical) modes of adjacent cavities (in fact the iris
is the union of two rectangles, the important parameter being their width). The design of a filter consists in
finding the size of each cavity, and the width of each iris. Subsequently, the filter can be constructed and tuned
by adjusting the screws. Finally, the screws are glued. In what follows, we shall consider a typical example, a
filter designed by the CNES in Toulouse, with four cavities near 11 GHz.

Near the resonance frequency, a good approximation of the Maxwell equations is given by the solution of
a second order differential equation. One obtains thus an electrical model for our filter as a sequence of
electrically-coupled resonant circuits, and each circuit will be modeled by two resonators, one per mode,
whose resonance frequency represents the frequency of a mode, and whose resistance represent the electric
losses (current on the surface).
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In this way, the filter can be seen as a quadripole, with two ports, when plugged on a resistor at one end
and fed with some potential at the other end. We are then interested in the power which is transmitted and
reflected. This leads to defining a scattering matrix S, that can be considered as the transfer function of a stable
causal linear dynamical system, with two inputs and two outputs. Its diagonal terms S1,1, S2,2 correspond to
reflections at each port, while S1,2, S2,1 correspond to transmission. These functions can be measured at
certain frequencies (on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is
16 in the example), and the key step consists in expressing the components of the equivalent electrical circuit
as a function of the Sij (since there are no formulas expressing the lengths of the screws in terms of parameters
of this electrical model). This representation is also useful to analyze the numerical simulations of the Maxwell
equations, and to check the design, particularly the absence of higher resonant modes.

In fact, resonance is not studied via the electrical model, but via a low-pass equivalent circuit obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e. the underlying system may
not have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:
• measuring the scattering matrix of the filter near the optimal frequency over twice the pass band

(which is 80MHz in the example).
• Solving bounded extremal problems for the transmission and the reflection (the modulus of he

response being respectively close to 0 and 1 outside the interval measurement, cf. Section 3.3.1).
This provides us with a scattering matrix of order roughly 1/4 of the number of data points.

• Approximating this scattering matrix by a rational transfer-function of fixed degree (8 in this
example) via the Endymion or RARL2 software (cf. Section 3.3.2.2).

• A realization of the transfer function is thus obtained, and some additional symmetry constraints are
imposed.

• Finally one builds a realization of the approximant and looks for a change of variables that eliminates
non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
the group of orthogonal complex matrices (symmetry forces this type of transformation).

Figure 2. Nyquist Diagram. Rational approximation (degree 8) and data - S22.

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relative L2 error is less than 10−3. This is illustrated by a reflection diagram (Figure 2).
Non-physical couplings are less than 10−2.

The above considerations are valid for a large class of filters. These developments have also been used for the
design of non-symmetric filters, useful for the synthesis of repeating devices.
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The team also investigates problems relative to the design of optimal responses for microwave devices. The
resolution of a quasi-convex Zolotarev problems was for example proposed, in order to derive guaranteed
optimal multi-band filter’s responses subject to modulus constraints [10]. This generalizes the classical single
band design techniques based on Chebyshev polynomials and elliptic functions. These techniques rely on the
fact that the modulus of the scattering parameters of a filters, say |S1,2|, admits a simple expression in terms
of the filtering function D = |S1,1|/|S1,2| namely,

|S1,2|2 =
1

1 +D2
.

The filtering function appears to be the ratio of two polynomials p1/p2, the numerator of the reflection and
transmission scattering factors, that can be chosen freely. The denominator q is obtained as the unique stable
and unitary polynomial solving the classical Feldtkeller spectral equation:

qq∗ = p1p
∗
1 + p2p

∗
2.

The relative simplicity of the derivation of a filter’s response under modulus constraints is due to the possibility
of "forgetting" about Feldtkeller’s equation, and express all design constraints in terms of the filtering function
D. This no longer the case when considering the synthesis N -port devices for N > 3, like multiplexers,
routers power dividers or when considering the synthesis of filters under matching conditions. The efficient
derivation of multiplexers responses is one of the team’s active recent research area, where techniques based
on constrained Nevanlinna-Pick interpolation problems are being considered (see Section 6.3.1).

5. Software and Platforms

5.1. RARL2
Participant: Martine Olivi [corresponding participant].

Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées
(CMA), École des Mines de Paris).

RARL2 (Réalisation interne et Approximation Rationnelle L2) is a software for rational approximation (see
Section 3.3.2.2) http://www-sop.inria.fr/apics/RARL2/rarl2.html.

The software RARL2 computes, from a given matrix-valued function in H
2m×l

, a local best rational
approximant in the L2 norm, which is stable and of prescribed McMillan degree (see Section 3.3.2.2). It
was initially developed in the context of linear (discrete-time) system theory and makes an heavy use of the
classical concepts in this field. The matrix-valued function to be approximated can be viewed as the transfer
function of a multivariable discrete-time stable system. RARL2 takes as input either:

• its internal realization,

• its first N Fourier coefficients,

• discretized (uniformly distributed) values on the circle. In this case, a least-square criterion is used
instead of the L2 norm.

It thus performs model reduction in case 1) and 2) and frequency data identification in case 3). In the case of
band-limited frequency data, it could be necessary to infer the behavior of the system outside the bandwidth
before performing rational approximation (see Section 3.2.2). An appropriate Möbius transformation allows
to use the software for continuous-time systems as well.

http://www-sop.inria.fr/apics/RARL2/rarl2.html
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The method is a steepest-descent algorithm. A parametrization of MIMO systems is used, which ensures that
the stability constraint on the approximant is met. The implementation, in Matlab, is based on state-space
representations.

The number of local minima can be rather high so that the choice of an initial point for the optimization can
play a crucial role. Two methods can be used: 1) An initialization with a best Hankel approximant. 2) An
iterative research strategy on the degree of the local minima, similar in principle to that of RARL2, increases
the chance of obtaining the absolute minimum by generating, in a structured manner, several initial conditions.

RARL2 performs the rational approximation step in our applications to filter identification (see Section 4.5)
as well as sources or cracks recovery (see Section 4.2). It was released to the universities of Delft, Maastricht,
Cork and Brussels. The parametrization embodied in RARL2 was also used for a multi-objective control
synthesis problem provided by ESTEC-ESA, The Netherlands. An extension of the software to the case of
triple poles approximants is now available. It provides satisfactory results in the source recovery problem and
it is used by FindSources3D (see Section 5.6).

5.2. RGC
Participant: Fabien Seyfert [corresponding participant].

Status: A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées
(CMA), École des Mines de Paris).

The identification of filters modeled by an electrical circuit that was developed by the team (see Section 4.5)
led us to compute the electrical parameters of the underlying filter. This means finding a particular realization
(A,B,C,D) of the model given by the rational approximation step. This 4-tuple must satisfy constraints that
come from the geometry of the equivalent electrical network and translate into some of the coefficients in
(A,B,C,D) being zero. Among the different geometries of coupling, there is one called “the arrow form”
[57] which is of particular interest since it is unique for a given transfer function and is easily computed. The
computation of this realization is the first step of RGC. Subsequently, if the target realization is not in arrow
form, one can nevertheless show that it can be deduced from the arrow-form by a complex- orthogonal change
of basis. In this case, RGC starts a local optimization procedure that reduces the distance between the arrow
form and the target, using successive orthogonal transformations. This optimization problem on the group of
orthogonal matrices is non-convex and has many local and global minima. In fact, there is not even uniqueness
of the filter realization for a given geometry. Moreover, it is often relevant to know all solutions of the problem,
because the designer is not even sure, in many cases, which one is being handled. The assumptions on the
reciprocal influence of the resonant modes may not be equally well satisfied for all such solutions, hence some
of them should be preferred for the design. Today, apart from the particular case where the arrow form is the
desired form (this happens frequently up to degree 6) the RGC software provides no guarantee to obtain a
single realization that satisfies the prescribed constraints. The software Dedale-HF (see Section 5.4), which is
the successor of RGC, solves with guarantees this constraint realization problem.

5.3. PRESTO-HF
Participant: Fabien Seyfert [corresponding participant].

Status: Currently under development. A stable version is maintained.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for microwave filters http://www-
sop.inria.fr/apics/Presto-HF. In order to allow the industrial transfer of our methods, a Matlab-based toolbox
has been developed, dedicated to the problem of identification of low-pass microwave filter parameters. It
allows one to run the following algorithmic steps, either individually or in a single shot:
• determination of delay components caused by the access devices (automatic reference plane adjust-

ment),
• automatic determination of an analytic completion, bounded in modulus for each channel,
• rational approximation of fixed McMillan degree,
• determination of a constrained realization.

http://www-sop.inria.fr/apics/Presto-HF
http://www-sop.inria.fr/apics/Presto-HF
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For the matrix-valued rational approximation step, Presto-HF relies on RARL2 (see Section 5.1), a rational
approximation engine developed within the team. Constrained realizations are computed by the RGC software.
As a toolbox, Presto-HF has a modular structure, which allows one for example to include some building
blocks in an already existing software.

The delay compensation algorithm is based on the following strong assumption: far off the passband, one can
reasonably expect a good approximation of the rational components of S11 and S22 by the first few terms of
their Taylor expansion at infinity, a small degree polynomial in 1/s. Using this idea, a sequence of quadratic
convex optimization problems are solved, in order to obtain appropriate compensations. In order to check the
previous assumption, one has to measure the filter on a larger band, typically three times the pass band.

This toolbox is currently used by Thales Alenia Space in Toulouse, Thales airborn systems and a license
agreement has been recently negotiated with TAS-Espagna. XLIM (University of Limoges) is a heavy user
of Presto-HF among the academic filtering community and some free license agreements are currently being
considered with the microwave department of the University of Erlangen (Germany) and the Royal Military
College (Kingston, Canada).

5.4. Dedale-HF
Participant: Fabien Seyfert [corresponding participant].

Status: Currently under development. A stable version is maintained.

Dedale-HF is a software dedicated to solve exhaustively the coupling matrix synthesis problem in reasonable
time for the users of the filtering community. For a given coupling topology, the coupling matrix synthesis
problem (C.M. problem for short) consists in finding all possible electromagnetic coupling values between
resonators that yield a realization of given filter characteristics. Solving the latter problem is crucial during
the design step of a filter in order to derive its physical dimensions as well as during the tuning process where
coupling values need to be extracted from frequency measurements (see Figure 3).

Dedale-HF consists in two parts: a database of coupling topologies as well as a dedicated predictor-corrector
code. Roughly speaking each reference file of the database contains, for a given coupling topology, the
complete solution to the C.M. problem associated to particular filtering characteristics. The latter is then used
as a starting point for a predictor-corrector integration method that computes the solution to the C.M. problem
of the user, i.e. the one corresponding to user-specified filter characteristics. The reference files are computed
off-line using Groebner basis techniques or numerical techniques based on the exploration of a monodromy
group. The use of such a continuation technique combined with an efficient implementation of the integrator
produces a drastic reduction, by a factor of 20, of the computational time.

Access to the database and integrator code is done via the web on http://www-sop.inria.fr/apics/Dedale/WebPages.
The software is free of charge for academic research purposes: a registration is however needed in order to
access full functionality. Up to now 90 users have registered world wide (mainly: Europe, U.S.A, Canada and
China) and 4000 reference files have been downloaded.

A license of this software has been sold end of 2011, to TAS-Espagna, in order for it to tune filters with
topologies having multiple solutions. The use of Dedale-HF is here coupled with that of Presto-HF.

5.5. easyFF
Participant: Fabien Seyfert.

Status: A stable version is maintained.

This software has been developed by Vincent Lunot (Taiwan Univ.) during his PhD. He still continues to
maintain it.

http://www-sop.inria.fr/apics/Dedale
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Figure 3. Overall scheme of the design and tuning process of a microwave filter.
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EasyFF is a software dedicated to the computation of complex, and in particular multi-band, filtering functions.
The software takes as input, specifications on the modulus of the scattering matrix (transmission and rejection),
the filter’s order and the number of transmission zeros. The output is an "optimal" filtering characteristic in
the sense that it is the solution of an associated min-max Zolotarev problem. Computations are based on a
Remez-type algorithm (if transmission zeros are fixed) or on linear programming techniques if transmission
zeros are part of the optimization [10].

5.6. FindSources3D
Participant: Juliette Leblond [corresponding participant].

Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena
Project-Team, and with Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines
de Paris).

FindSources3D 2 is a software dedicated to source recovery for the inverse EEG problem, in 3-layer
spherical settings, from point-wise data (see http://www-sop.inria.fr/apics/FindSources3D/). Through the
algorithm described in [8] and Section 4.2, it makes use of the software RARL2 (Section 5.1) for the
rational approximation step in plane sections. The data transmission preliminary step (“cortical mapping”)
is solved using boundary element methods through the software OpenMEEG (its CorticalMapping features)
developed by the Athena Team (see http://www-sop.inria.fr/athena/software/OpenMEEG/). A new release
of FindSources3D is now available, which is being demonstrated and distributed to the medical team we
maintain contact with (hosp. la Timone, Marseille). A further release is currently under development, due to
the strong interest for this software by the German firm BESA GmbH (see http://www.besa.de/), involved in
EEG software for research and clinical applications, and a deeper collaboration with this company has been
started this year. Figure 4 shows the good results of a two sources distribution recovered by FindSources3D
from potential values at electrodes on a sphere (scalp) generated by BESA’s simulator, and then back to a more
realistic head geometry. There, the achieved localization error is small enough, and FindSources3D provides
suitable initial guess to heavier dedicated recovery tools, along with an estimation of the number of sources
which may be incorporated to the software as an additional functionality (at the moment, the user is still
involved in this estimation). Taking into account several time instants will be considered next.

Figure 4. Recovered 2 sources by FindSources3D (courtesy of BESA).

5.7. Sollya
Participant: Sylvain Chevillard [corresponding participant].

2CeCILL license, APP version 2.0 (2012): IDDN.FR.001.45009.001.S.A.2009.000.10000

http://www-sop.inria.fr/apics/FindSources3D/
http://www-sop.inria.fr/athena/software/OpenMEEG/
http://www.besa.de/
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Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Christoph Lauter (LIP6) and Mioara Joldeş (LAAS).

Sollya is an interactive tool where the developers of mathematical floating-point libraries (libm) can experi-
ment before actually developing code. The environment is safe with respect to floating-point errors, i.e. the
user precisely knows when rounding errors or approximation errors happen, and rigorous bounds are always
provided for these errors.

Among other features, it offers a fast Remez algorithm for computing polynomial approximations of real
functions and also an algorithm for finding good polynomial approximants with floating-point coefficients to
any real function. It also provides algorithms for the certification of numerical codes, such as Taylor Models,
interval arithmetic or certified supremum norms.

It is available as a free software under the CeCILL-C license at http://sollya.gforge.inria.fr/.

6. New Results

6.1. Source recovery problems
Participants: Laurent Baratchart, Kateryna Bashtova, Sylvain Chevillard, Juliette Leblond, Dmitry Pono-
marev.

This section is concerned with inverse problems for 3-D Poisson-Laplace equations. Though the geometrical
settings differ in the 2 sections below, the characterization of silent sources (that give rise to a vanishing
potential at measurement points) is one of the common problems to both which has been recently achieved in
the magnetization setup, see [14].

6.1.1. Application to EEG
This work is conducted in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena Project-
Team, and with Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines de Paris).

In 3-D, functional or clinical active regions in the cortex are often modeled by point-wise sources that
have to be localized from measurements on the scalp of a potential satisfying a Laplace equation (EEG,
electroencephalography). In the work [3] it was shown how to proceed via best rational approximation on a
sequence of 2-D disks cut along the inner sphere, for the case where there are at most 2 sources. Last year, a
milestone was reached in the research on the behavior of poles in best rational approximants of fixed degree
to functions with branch points [6], to the effect that the technique carries over to finitely many sources (see
Section 4.2).

In this connection, a dedicated software “FindSources3D” is being developed, in collaboration with the team
Athena and the CMA. We took on this year algorithmic developments, prompted by recent and promising
contacts with the firm BESA (see Section 5.6), namely automatic detection of the number of sources (which is
left to the user at the moment) and simultaneous processing of data from several time instants. It appears that in
the rational approximation step, multiple poles possess a nice behavior with respect to branched singularities.
This is due to the very physical assumptions on the model (for EEG data, one should consider triple poles).
Though numerically observed in [8], there is no mathematical justification so far why multiple poles generate
such strong accumulation of the poles of the approximants. This intriguing property, however, is definitely
helping source recovery. It is used in order to automatically estimate the “most plausible” number of sources
(numerically: up to 2, at the moment).

In connection with the work [14] related to inverse magnetization issues (see Section 6.1.2), the characteri-
zation of silent sources for EEG has been carried out [42]. These are sums of (distributional) derivatives of
Sobolev functions vanishing on the boundary.

http://sollya.gforge.inria.fr/
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In a near future, magnetic data from MEG (magneto-encephalography) will become available along with EEG
data; indeed, it is now possible to use simultaneously corresponding measurement devices, in order to measure
both electrical and magnetic fields. This should enhance the accuracy of our source recovery algorithms.

Let us mention that discretization issues in geophysics can also be approached by such techniques. Namely,
in geodesy or for GPS computations, one is led to seek a discrete approximation of the gravitational potential
on the Earth’s surface, from partial data collected there. This is the topic of a beginning collaboration with
physicist colleagues (IGN, LAREG, geodesy). Related geometrical issues (finding out the geoid, level surface
of the gravitational potential) are worthy of consideration as well.

6.1.2. Magnetization issues
This work is carried out in the framework of the “équipe associée Inria” IMPINGE, comprising Eduardo
Andrade Lima and Benjamin Weiss from the Earth Sciences department at MIT (Boston, USA) and Douglas
Hardin and Edward Saff from the Mathematics department at Vanderbilt University (Nashville, USA),

Localizing magnetic sources from measurements of the magnetic field away from the support of the magneti-
zation is the fundamental issue under investigation by IMPINGE The goal is to determine magnetic properties
of rock samples (e.g. meteorites or stalactites) from fine field measurements close to the sample that can nowa-
days be obtained using SQUIDs (supraconducting coil devices). Currently, rock samples are cut into thin slabs
and the magnetization distribution is considered to lie in a plane, which makes for a somewhat less indetermi-
nate framework than EEG as regards inverse problems because “less” magnetizations can produce the same
field (for the slab has no inner volume).

The magnetization operator is the Riesz potential of the divergence of the magnetization, see (1). Last year, the
problem of recovering a thin plate magnetization distribution from measurements of the field in a plane above
the sample led us to an analysis of the kernel of this operator, which we characterized in various functional
and distributional spaces [14]. Using a generalization of the Hodge decomposition, we were able to describe
all magnetizations equivalent to a given one. Here, equivalent means that the magnetizations generate the
same field from above and from below if, say, the slab is horizontal. When magnetizations have bounded
support, which is the case for rock samples, we proved that magnetizations equivalent from above are also
equivalent from below, but this is no longer true for unbounded supports. In fact, even for unidirectional
magnetizations, uniqueness of a magnetization generating a given field depends on the boundedness of the
support, as we proved that any magnetization is equivalent from above to a unidirectional one (with infinite
support in general). This helps explaining why methods in the Fourier domain (which essentially loose track
of the support information) do encounter problems. It also shows that information on the support must be used
in a crucial way to solve the problem.

This year, we produced a fast inversion scheme for magnetic field maps of unidirectional planar geological
magnetization with discrete support located on a regular grid, based on discrete Fourier transform [18]. Figures
5, 6, 7 and 8 show an example of reconstruction. As the just mentioned article shows, the Fourier approach
is computationally attractive but undergoes aliasing phenomena that tend to offset its efficiency. In particular,
estimating the total moment of the magnetization sample seems to require data extrapolation techniques which
are to take place in the space domain. This is why we have started to study regularization schemes based on
truncation of the support in connection with singular values analysis of the discretized problem.

In a joint effort by all members of IMPINGE, we set up a heuristics to recover dipolar magnetizations, using
a discrete least square criterion. At the moment, it is solved by a singular value decomposition procedure of
the magnetization-to-field operator, along with a regularization technique based on truncation of the support.
Preliminary experiments on synthetic data give quite accurate results to recover the net moment of a sample,
see the preliminary document http://www-sop.inria.fr/apics/IMPINGE/Documents/NotesSyntheticExample.
pdf. We also ran the procedure on real data (measurements of the field generated by Lunar spherules) for
which the net moment can be estimated by other methods. The net moment thus recovered matches well the
expected moment.

http://www-sop.inria.fr/apics/IMPINGE/Documents/NotesSyntheticExample.pdf
http://www-sop.inria.fr/apics/IMPINGE/Documents/NotesSyntheticExample.pdf
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5 mm

Figure 5. Inria’s logo were printed on a piece of paper. The ink of the letters “In” were magnetized along a
direction D1. The ink of the letters “ria” were magnetized along another direction D2 (almost orthogonal to D1).
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Figure 6. The Z-component of the magnetic field generated by the sample is measured by a SQUID microscope. The
measure is performed 200µm above the sample.
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Figure 7. The field measured in Figure 6 is inversed, assuming that the sample is uni-dimensionally magnetized
along the direction D1. The letters “In” are fairly well recovered while the rest of the letters is blurred (because the

hypothesis about the direction of magnetization is false for “ria”).
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Figure 8. The field measured in Figure 6 is inversed, assuming that the sample is uni-dimensionally magnetized
along the direction D2. The letters “ria” are fairly well recovered while the rest of the letters is blurred (because

the hypothesis about the direction of magnetization is false for “In”).
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This shows that the technique we use to reduce the support, which is based on thresholding contributions of
dipoles to the observations, is capable of eliminating some nearly silent dipole distributions which flaw the
singular value analysis. In order to better understand the geometric nature of such distributions, and thus affirm
theoretical bases to the above mentioned heuristics, we raised the question of determining an eigenbasis for the
positive self adjoint operator mapping a L2 magnetization on a rectangle to the field it generates on a rectangle
parallel to the initial one. Once ordered according to decreasing eigenvalues, such a basis should retain “as
much information as possible” granted the order of truncation.

This is not such an easy problem and currently, in the framework of the PhD thesis of D. Ponomarev, we
investigate a simplified two-dimensional analog, defined via convolution of a function on a segment with
the Poisson kernel of the upper half-plane and then restriction to a parallel segment in that half-plane.
Surprisingly perhaps, this issue was apparently not considered in spite of its natural character and the fact that
it makes contact with classical spectral theory. Specifically, it amounts to spectral representation of certain
compressed Toeplitz operators with exponential-of-modulus symbols. Beyond the bibliographical research
needed to understand the status of this question, only preliminary results have been attained so far.

6.2. Boundary value problems
Participants: Laurent Baratchart, Slah Chaabi, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev,
Elodie Pozzi.

This work was the occasion of collaborations with Alexander Borichev (Aix-Marseille University), Jonathan
Partington (Univ. Leeds, UK), and Emmanuel Russ (Univ. Grenoble, IJF).

6.2.1. Generalized Hardy classes
As we mentioned in Section 4.4 2-D diffusion equations of the form div(σ∇u) = 0 with real non-negative
valued conductivity σ can be viewed as compatibility relations for the so-called conjugate Beltrami equation:
∂f = ν∂f with ν = (1− σ)/(1 + σ) [4]. Thus, the conjugate Beltrami equation is a means to replace the
initial second order diffusion equation by a first order system of two real equations, merged into a single
complex one. Hardy spaces under study here are those of this conjugate Beltrami equation: they are comprised
of solutions to that equation in the considered domain whose Lp means over curves tending to the boundary
of the domain remain bounded. They will for example replace holomorphic Hardy spaces in Problem (P )
when dealing with non-constant (isotropic) conductivity. Their traces merely lie in Lp (1 < p <∞), which
is suitable for identification from point-wise measurements, and turn out to be dense on strict subsets of
the boundary. This allows one to state Cauchy problems as bounded extremal issues in Lp classes of
generalized analytic functions, in a reminiscent manner of what was done for analytic functions as discussed
in Section 3.3.1.

The study of such Hardy spaces for Lipschitz σ was reduced in [4] to that of spaces of pseudo-holomorphic
functions with bounded coefficients, which were apparently first considered on the disk by S. Klimentov.
Typical results here are that solution factorize as esF , where F is a holomorphic Hardy function while s is
in the Sobolev space W 1,r for all r <∞ (Bers factorization), and the analog to the M. Riesz theorem which
amounts to solvability of the Dirichlet problem for the initial conductivity equation with Lp boundary data
for all p ∈ (1,∞). Over the last two years, the case of W 1,q conductivities over finitely connected domains,
q > 2, has been carried out in [13] [61].

In 2013, completing a study begun last year in the framework of the PhD of S. Chaabi, we established similar
results in the case where log σ lies in W 1,2, which corresponds to the critical exponent in Vekua’s theory
of pseudo-holomorphic functions. This is completely new, and apparently the first example of a solvable
Dirichlet problem with Lp boundary data where the conductivity can be both unbounded an vanishing at some
places. Accordingly, solutions may also be unbounded inside the domain of the equation, that is, the maximum
principle no longer holds. The proof develops a refinement of the Bers factorization based on Muckenhoupt
weights and on an original multiplier theorem for logW 1,2 functions. A paper on this topic has been submitted
[28].
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The PhD work of S. Chaabi (defended December 2) contains further work on the Weinstein equation and
certain generalizations thereof. This equation results from 2-D projection of Laplace’s equation in the presence
of rotation symmetry in 3-D. In particular, it is the equation governing the free boundary problem of plasma
confinement in the plane section of a tokamak. A method dwelling on Fokas’s approach to elliptic boundary
value problems has been developed which uses Lax pairs and solves for a Riemann-Hilbert problem on a
Riemann surface. It was used to devise semi-explicit forms of solutions to Dirichlet and Neumann problems
for the conductivity equation satisfied by the poloidal flux.

In another connection, the conductivity equation can also be regarded as a static Schrödinger equation for
smooth coefficients. In particular, a description of laser beam propagation in photopolymers can be crudely
approximated by a stationary two-dimensional model of wave propagation in a medium with negligible change
of refractive index. In this setting, Helmholtz equation is approximated by a linear Schrödinger equation with
one spatial coordinate as evolutionary variable. This phenomenon can be described by a non-stationary model
that relies on a spatial nonlinear Schrödinger (NLS) equation with time-dependent refractive index. A model
problem has been considered in [20], when the rate of change of refractive index is proportional to the squared
amplitude of the electric field and the spatial domain is a plane.

We have also studied composition operators on generalized Hardy spaces in the framework of [13]. In the work
[32] submitted for publication, we provide necessary and/or sufficient conditions on the composition map,
depending on the geometry of the domains, ensuring that these operators are bounded, invertible, isometric or
compact.

6.2.2. Best constrained analytic approximation
Several questions about the behavior of solutions to the bounded extremal problem (P ) of Section 3.3.1 have
been considered. For instance, truncated Toeplitz operators have been studied in [17], that can be used to
quantify robustness properties of our resolution schemes in H2 and to establish error estimates. Moreover we
considered additional interpolation constraints on the disk in Problem (P ), and derived new stability estimates
for the solution [46]. Such interpolation constraints arise naturally in inverse boundary problems like plasma
shaping in last generation tokamaks, where some measurements are performed inside the chamber 4.4. Of
course the version studied so far is much simplified, as it must be carried over to non-constant conductivities
and annular geometries.

6.3. Synthesis of compact multiplexers and de-embedding of multiplexers
Participants: Martine Olivi, Sanda Lefteriu, Fabien Seyfert.

This work has been done in collaboration with Stéphane Bila (XLIM, Limoges, France), Hussein Ezzedin
(XLIM, Limoges, France), Damien Pacaud (Thales Alenia Space, Toulouse, France), Giuseppe Macchiarella
(Politecnico di Milano, Milan, Italy), and Matteo Oldoni (Siae Microelettronica, Milan, Italy).

6.3.1. Synthesis of compact multiplexers
We focused our research on multiplexer with a star topology. These are comprised of a centralN -port junction,
and of filters plugged on all but common ports (see Figure 9). A possible approach to synthesis of the
multiplexer’s response is to postulate that each filter channel has to match the multiplexer at nk frequencies
(nk being the order of the filter) while rejecting the energy at mk other frequencies (mk being the order the
transmission polynomial of the filter). The desired synthesis can then be cast into computing of a collection
of filter’s responses matching the energy as prescribed and rejecting it at specified frequencies when plugged
simultaneously on the junction. Whether such a collection exists is one of the main open issues facing co-
integration of systems in electronics. Investigating the latter led us to consider the simpler problem of matching
a filter, on a frequency-varying load, while rejecting energy at fixed specified frequencies. If the order of the
filter is n this amounts to fix a given transmission polynomial r and to solve for a unitary polynomial pmeeting
interpolation conditions of the form:

j = 1 · · ·n, p

q
(wj) = γj , |γj | < 1
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where q is the unique monic Hurwitz polynomial satisfying the Feldtkeller equation

qq∗ = pp∗ + rr∗.

This problem can be seen as an extended Nevanlinna-Pick interpolation problem, which was considered in [65]
when the interpolation frequencies lie in the open left half-plane. Last year we conjectured the existence and
uniqueness of a solution, which were eventually proved true this year when r has no roots on the imaginary
axis. We already communicated on the subject (9.1), and a scientific report as well as an article are being
written on this result [30]. The proof relies on the local invertibility of an evaluation map that is established
using a differential argument and the structure of particular Pick matrices. The case where r has zeros on
the imaginary axis is of great interest, and though existence then holds again uniqueness is still not well-
understood: it is conjectured that under minor restrictions on the localization of the γ′ks (typically off an
algebraic subvariety) the main results still hold.

This research lies at heart of our collaboration with CNES on multiplexer synthesis and the core of the starting
ANR project COCORAM on co-integration of filters and antennas (see Section 8.1.1).

6.3.2. De-embedding of multiplexers
Let S be the external scattering parameters of a multiplexer composed of a N -port junction with response T
andN − 1 filters with responses F1, · · ·FN−1 as plotted on Figure 9. The de-embbeding problem concerns the
recovery of the Fk and can be considered under different hypotheses. Last year we studied the de-embedding
problem where S and T are known [76] but no particular structure on the Fk is assumed. It was shown that for a
generic junction T and for N > 3 the de-embedding problem has a unique solution. It was however observed
that in practice the junction’s response is far from being generic (as it is usually obtained by assembly of
smaller T -junctions) which renders the problem extremely sensitive to measurement noise. It was also noticed
that in practical applications, scattering measurements of the junction are hardly available.

It was therefore natural to consider following de-embedding problem. Given S the external scattering
measurement of the multiplexer, and under the assumptions:

• the Fk are rational of known McMillan degree,

• the coupling geometry of their circuital realization is known,

what can be said about the filter’s responses ? It was shown that under the above hypotheses, in particular with
no a priori knowledge of T , the filter’s responses are identifiable up to a constant chain matrix chained at their
second port (nearest to the junction) [24]. It was also shown that this uncertainty bears only on the resonant
frequency of the last cavity of each filter, as well as on their output coupling. Most of the filters’ important
parameters can therefore be recovered. The approach is constructive and relies on rational approximation of
certain external scattering parameters, and on an extraction procedure similar to Darlington’s synthesis for
filters. Software developments have been pursued to implement the latter and practical studies are under way
with data furnished by Thales Alenia Space and by Siae Microelettronica. A medium term objective is to
extend the Presto-HF (5.3) software to de-embedding problems for multiplexers and more general multi-ports.

This work is pursued in collaboration with Thales Alenia Space, Siae Microelettronica, XLIM and CNES in
particular under contract with CNES on compact N -port synthesis (see Section 7.1).

6.4. Detection of the instability of amplifiers
Participants: Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.

This work is conducted in collaboration with Jean-Baptiste Pomet from the McTao team. It is a continuation of
a collaboration with CNES and the University of Bilbao.The goal is to help developing amplifiers, in particular
to detect instability at an early stage of the design.
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Figure 9. Multiplexer made of a junction T and filtering devices F1, F2 · · ·FN

Currently, electrical engineers from the University of Bilbao, under contract with CNES (the French Space
Agency), use heuristics to diagnose instability before the circuit is physically implemented. We intend to set
up a rigorously founded algorithm, based on properties of transfer functions of such amplifiers which belong
to particular classes of analytic functions.

In non-degenerate cases, non-linear electrical components can be replaced by their first order approximation
when studying stability to small perturbations. Using this approximation, diodes appear as perfect negative
resistors and transistors as perfect current sources controlled by the voltages at certain points of the circuit.

In previous years, we had proved that the class of transfer functions which can be realized with such ideal
components and standard passive components (resistors, selfs, capacitors and transmission lines) is rather large
since it contains all rational functions in the variable and in the exponentials thereof. This makes possible to
design circuits that are unstable, although they have no pole in the right half-plane. This remains true even
if a high resistor is put in parallel of the circuit, which is rather unusual. These pathological examples are
unrealistic, though, because they assume that non-linear elements continue to provide gain even at very high
frequencies. In practice, small capacitive and inductive effects (negligible at moderate frequencies) make these
components passive for very high frequencies.

In 2013, we showed that under this simple assumption that there are small inductive and capacitive effects in
active components, the class of transfer functions of realistic circuits is much smaller than in previous situation.
Our main result is that a realistic circuit is unstable if and only if it has poles in the right half-plane. Moreover,
there can only be finitely many of them. Besides this result, we also generalized our description of the class
of transfer functions achievable with ideal components, to include the case of transmission lines with loss. An
article is currently being written on this subject.

6.5. Rational and meromorphic approximation
Participants: Laurent Baratchart, Sylvain Chevillard.

This work has been done in collaboration with Herbert Stahl (Beuth-Hochsch.), Maxim Yattselev (Purdue
Univ. at Indianapolis, USA), Tao Qian (Univ. Macao).

We published last year an important result in approximation theory, namely the counting measure of poles
of best H2 approximants of degree n to a function analytically continuable, except over finitely many
branchpoints lying outside the unit disk, converges to the Green equilibrium distribution of the compact set
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of minimal Green capacity outside of which the function is single valued [6] (see also [21]). This result
warrants source recovery techniques used in Section 6.1.1. We considered this year a similar problem for best
uniform meromorphic approximants on the unit circle (so-called AAK approximants after Adamjan, Arov and
Krein), in the case where the function may have poles and essential singularities. The technical difficulties are
considerable, and though a line of attack has been adopted we presently struggle with the proof.

We also studied partial realizations, or equivalently Padé approximants to transfer functions with branchpoints.
Identification techniques based on partial realizations of a stable infinite-dimensional transfer function are
known to often provide unstable models, but the question as to whether this is due to noise or to intrinsic
instability was not clear. This year, we published a paper showing that, in the case of 4 branchpoints, the pole
behavior generically has deterministic chaos to it [15].

We also considered the issue of lower bounds in rational approximation. Prompted by renewed interest for
linearizing techniques such as vector fitting in the identification community, we studied linearized errors in
light of the topological approach in [51], to find that, when properly normalized, they give rise to lower
bounds in L2 rational approximation. Moreover, these make contact with AAK theory which furnishes more,
easily computable lower bounds. This is an interesting finding, for lower bounds are usually difficult to
get in approximation and though quite helpful to get an appraisal of what can be hoped for in modeling.
Dwelling on this, we established for the first time lower bounds in L2 rational approximation to some badly
L∞ approximable functions (Blaschke products) and showed equivalence, up to a constant, of best L2 and
L∞ approximation to functions with branchpoints (such as those appearing in inverse source problems for
EEG, see Section 6.1.1). An article on this subject is currently submitted for publication in the Journal of
Approximation Theory [29].

6.6. Tools for numerically guaranteed computations
Participant: Sylvain Chevillard.

The overall and long-term goal is to enhance the quality of numerical computations. The progress made during
year 2013 is the following:
• Publication of a work with Marc Mezzarobba (who was with Aric project-team at that time, and who

is now with LIP6) about the efficient evaluation of the Airy Ai(x) function when x is moderately
large [22]. The Taylor series of the Airy Ai function (as many others such as, e.g., Bessel functions
or erf) is ill-conditioned when x is not small. To overcome this difficulty, we extend a method by
Gawronski, Müller and Reinhard, known to solve the issue in the case of the error function erf.
We rewrite Ai(x) as G(x)/F (x) where F and G are two functions with well-conditioned series.
However, the coefficients ofG turn out to obey a three-terms ill-conditioned recurrence. We evaluate
this recurrence using Miller’s backward algorithm with a rigorous error analysis. Function Ai is an
example, but ideally the process could be automated to handle some appropriate class of functions
in a future work.

• A more general endeavor is to develop a tool that helps developers of libms in their task. This is
performed by the software Sollya 3, developed in collaboration with C. Lauter (Université Pierre
et Marie Curie) and M. Joldeş (LAAS). In 2013, we released version version 4.0 (in May) and 4.1
(in November) of Sollya. Among other things these releases make available to the user all features
of Sollya as a C library. They also introduce the possibility of computing Chebyshev models, and
a generalization of Remez algorithm allowing the user to compute a L∞ best approximation of a
real-valued function on a bounded real interval by any linear combination of given functions.

7. Bilateral Contracts and Grants with Industry

7.1. Contract CNES-Inria-XLIM
3http://sollya.gforge.inria.fr/

http://sollya.gforge.inria.fr/
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Contract (reference Inria: 7066, CNES: 127 197/00) involving CNES, XLIM and Inria, focuses on the
development of synthesis procedures forN -ports microwave devices. The objective is here to derive analytical
procedures for the design of multiplexers and routers as opposed to the classical "black box optimization"
which is usually employed in this field (for N ≥ 3). Emphasis at the moment bears on so-called “star-
topologies”.

7.2. Contract CNES-Inria-UPV/EHU
Contract (reference CNES: RS10/TG-0001-019) involving CNES, University of Bilbao (UPV/EHU) and Inria
whose objective is to set up a methodology for testing the stability of amplifying devices. The work at Inria
concerns the design of frequency optimization techniques to identify the linearized response and analyze the
linear periodic components.

8. Partnerships and Cooperations
8.1. National Initiatives
8.1.1. ANR

The ANR (Astrid) project COCORAM (Co-design et co-intégration de réseaux d’antennes actives multi-
bandes pour systèmes de radionavigation par satellite) has been accepted and will officially start January
2014. We are associated in this project with three other teams from XLIM (Limoges University), specialized
respectively on filters, antennas and amplifiers. The core idea of the project is to work on the co-integration of
various microwave devices in the context of GPS satellite systems and in particular for us to work on matching
problems (see Section 6.3.1).

8.2. European Initiatives
8.2.1. Collaborations with Major European Organizations

APICS is part of the European Research Network on System Identification (ERNSI) since 1992.
Subject: System identification concerns the construction, estimation and validation of mathematical
models of dynamical physical or engineering phenomena from experimental data.

8.3. International Initiatives
8.3.1. Inria Associate Teams
8.3.1.1. IMPINGE

Title: Inverse Magnetization Problems IN GEosciences.
Inria principal investigator: Laurent Baratchart
International Partner (Institution - Laboratory - Researcher):

MIT - Department of Earth, Atmospheric and Planetary Sciences (United States) - Ben-
jamin Weiss

Duration: 2013 - 2015
See details at : http://www-sop.inria.fr/apics/IMPINGE/
The purpose of the associate team IMPINGE is to develop efficient algorithms to recover the
magnetization distribution of rock slabs from measurements of the magnetic field above the slab
using a SQUID microscope (developed at MIT). The US team also involves a group at Vanderbilt
Univ.

8.3.2. Inria International Partners
8.3.2.1. Declared Inria International Partners

NSF CMG collaborative research grant DMS/0934630, “Imaging magnetization distributions in geological
samples”, with Vanderbilt University and the MIT (USA).

http://www-sop.inria.fr/apics/IMPINGE/
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Cyprus NF grant “Orthogonal polynomials in the complex plane: distribution of zeros, strong asymptotics
and shape reconstruction”.

PHC Utique CMCU (led by Fédération Denis Poisson, Univ. Orléans), “Harmonic analysis and applications”.

8.3.2.2. Informal International Partners

As mentioned in Sections 5.6 and 6.1.1, a cooperation with the German firm BESA 4 has started this year,
which includes Athena Team (Inria Sophia-Antipolis-Méditerranée) and Centre de Mathématiques Appliquées
of École des Mines de Paris. It is expected to be formalized soon, so as to include several developments of the
software FindSources3D as well as a co-advised PhD.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Douglas Hardin (Vanderbilt University, Nashville, USA, Jun 2013)

• Matteo Oldoni (Siae Microelettronica, Milano, Italy, Nov 2013)

• Vladimir Peller (Michigan University, East Lansing, from May until Jun 2013)

• Yannick Privat (CNRS, Univ. P. et M. Curie, Paris, Dec 2013).

• Tao Qian (University of Macau, Taipa, China, Jul 2013)

• Edward Saff (Vanderbilt University, Nashville, USA, from May until Jun 2013)

• Michael Stessin (New York state University at Albany, USA, Jun 2013)

• Nikos Stylianopoulos (Univ. of Cyprus).

• Ian Sloan (University of New South Wales, Sydney, Australia, Jun. 2013).

• Maxim Yattselev (Indiana University–Purdue University, Indianapolis, USA, Mar 2013)

8.4.1.1. Internships

• K. Bashtova, Master 2 Mathmods - UNSA (6 months), Inverse source problems for elecromagnetic
fields, with physical applications.

8.5. List of international and industrial partners
• Collaboration under contract with Thales Alenia Space (Toulouse, Cannes, and Paris), CNES

(Toulouse), XLIM (Limoges), University of Bilbao (Universidad del País Vasco / Euskal Herriko
Unibertsitatea, Spain).

• Regular contacts with research groups at UST (Villeneuve d’Asq), Universities of Bordeaux-I (Tal-
ence), Orléans (MAPMO), Aix-Marseille (CMI-LATP), Nice Sophia Antipolis (Lab. JAD), Grenoble
(IJF and LJK), Paris 6 (P. et M. Curie, Lab. JLL), Paris Diderot (LAREG-IGN), CWI (the Nether-
lands), MIT (Boston, USA), Vanderbilt University (Nashville USA), Steklov Institute (Moscow),
Michigan State University (East-Lansing, USA), Texas A&M University (College Station USA),
State University of New-York (Albany, USA), University of Oregon (Eugene, USA), Politecnico
di Milano (Milan, Italy), University of Trieste (Italy), RMC (Kingston, Canada), University of
Leeds (UK), of Maastricht (The Netherlands), of Cork (Ireland), Vrije Universiteit Brussel (Bel-
gium), TU-Wien (Austria), TFH-Berlin (Germany), ENIT (Tunis), KTH (Stockholm), University of
Cyprus (Nicosia, Cyprus), University of Macau (Macau, China), BESA company (Munich), SIAE
Microelettronica (Milano).

• The project is involved in the GDR-project AFHP (CNRS), in the ANR (Astrid program) project
COCORAM (with XLIM, Limoges, and DGA), in a EMS21-RTG NSF program (with MIT, Boston,
and Vanderbilt University, Nashville, USA), in the Associate Inria Team IMPINGE (with MIT,
Boston), and in a CSF program (with University of Cyprus).

4http://www.besa.de/

http://www.besa.de/
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9. Dissemination

9.1. Scientific Animation
• F. Seyfert was invited to give a talk at the department "Optimization and System Theory" of KTH

University (Stockholm, Sweden), on "Generalized Nevanlinna-Pick interpolation on the boundary"
• J. Leblond and D. Ponomarev gave communications at the 11th International Conference on

Mathematical and Numerical Aspects of Wave Propagation (WAVES 2013), Tunis, June (http://www.
lamsin.tn/waves13/). J. Leblond was invited to give a communication at the Workshop on Control and
Observation of Nonlinear Control Systems with Application to Medicine (CONCSAM), Honolulu,
Hawaii, Sept. (http://math.hawaii.edu/control2013/).

• M. Olivi gave a talk at the SSSC 2013 conference in Grenoble (France) [25] and presented a poster
at the ERNSI 2013 conference in Nancy (France).

• E. Pozzi gave communications at the Spring School in Functional and Harmonic analysis and
Operator theory, Lens (may), at the Workshop in Operator Theory, Harmonic and Complex Analysis,
Lille (may), and at the seminar of the Lab. J.-A. Dieudonné, Université Nice-Sophia Antipolis.

• L. Baratchart was an invited speaker at the workshop "Inverse Problems and Nonlinear Equations",
May, Palaiseau. He was an invited speaker at the workshop "Frames and Bases in Banach Spaces of
Holomorphic Functions”, October, Bordeaux. He was an invited speaker at the conference in honor
of A.A. Gonchar, November, Steklov Institute, Moscow. He was a speaker at CMFT 2013 (Shantou,
China). He was an invited speaker at the seminar in Guangzhou University (China), the University
of Bordeaux (LMB)and of Grenoble (Laboratoire J. Kuntzmann). He was a visitor at the University
of Macao, MIT, and the University of Cyprus.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master, PhD: J. Leblond, Inverse source problems, 3h, Franco-German summer school for inverse
problems and PDE, Univ. Brême, All.

9.2.2. Supervision
PhD: S. Chaabi, Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et
autres conductivités non-bornées, defended Dec.2d, 2013 (advisors: L. Baratchart, A. Borichev).
PhD in progress: D. Ponomarev, Inverse problems for planar conductivity and Schrödinger PDEs,
since Nov. 2012 (advisors: J. Leblond, L. Baratchart).
PhD in progress: M. Caenepeel, A hierarchical framework for design oriented modeling, since Feb.
2013 (advisors: Y. Rolain, M. Olivi, F. Seyfert).

9.2.3. Juries
• L. Baratchart was a referee of the PhD. manuscript of J. Vayssettes (Univ. Poitiers).
• J. Leblond was a member of the hiring committee for a professor in applied mathematics, Univ.

Lorraine, and of the PhD jury of A. Blandinières (Univ. Lyon), R. Tytgat (Aix-Marseille University),
and A. Abdelmoula (Univ. Rennes, reviewer).

• M. Olivi was a member (reviewer) of the HdR jury of Sylvie Icart (Université de Nice-Sophia
Antipolis, March).

9.3. Popularization
• J. Leblond is a member of the Committee MASTIC. She gave a communication within the “Café-in”

of the Research Center (Sept.).

http://www.lamsin.tn/waves13/
http://www.lamsin.tn/waves13/
http://math.hawaii.edu/control2013/
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• M. Olivi is co-president with I. Castellani of the Committee MASTIC (Commission d’Animation
et de Médiation Scientifique) https://project.inria.fr/mastic/. She is responsible for Scientific Media-
tion. She held a booth at the APMEP conference 2013 in Marseille (France).

• E. Pozzi was a member of the Committee MASTIC.
• S. Chevillard published a popularization blog post on the website “Mathémαtiques de la

planète Terre 2013” (http://mpt2013.fr/) about the problem of inverse magnetization of rocks
(cf. Section 4.3)

9.4. Community services
• L. Baratchart is a member of the Editorial Boards of Constructive Methods and Function Theory and

Complex Analysis and Operator Theory. He is Inria’s representative at the “conseil scientifique” of
the Aix-Marseille University.

• S. Chevillard is representative at the “comité de centre” and at the “comité des projets” (Research
Center Inria-Sophia). He was a member of the work-group “Books” whose assignment was to
propose different scenarios regarding the future of the books currently stored at the library of the
research center.

• J. Leblond is an elected member of the “Conseil Scientifique” of Inria. She is one of the two
researchers in charge of the mission “Conseil et soutien aux chercheurs” within the Research Center.
She is a member of the “Comité de Suivi National PRPS - QVT” (Prévention des Risques Psycho-
Sociaux et la Qualité de Vie au Travail).

• M. Olivi is responsible for scientific mediation and co-president of the committee MASTIC.
• F. Seyfert is a member of CUMIR at Inria Sophia-Antipolis-Méditerrannée.
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