
IN PARTNERSHIP WITH:
Centrum Wiskunde &
Informatica

Activity Report 2013

Project-Team ATEAMS

Analysis and Transformation based on
rEliAble tool coMpositionS

RESEARCH CENTER
Lille - Nord Europe

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Members . 1
2. Overall Objectives . 1

2.1. Presentation 1
2.2. Highlights of the Year 2

3. Research Program . 2
3.1. Research method 2
3.2. Software analysis 3
3.3. Refactoring and Transformation 4
3.4. The Rascal Meta-programming language 4
3.5. Domain-specific Languages 5

4. Software and Platforms . 6
4.1. MicroMachinations 6
4.2. Derric 6
4.3. Rascal 7
4.4. IDE Meta-tooling Platform 7
4.5. Ensō 8
4.6. LiveQL 9
4.7. QL-R-Kemi 9

5. New Results . 9
5.1. Empirical analyses of source code 9
5.2. Better parsing and disambiguation 10
5.3. Extensible Programming 10
5.4. DSLs for Games 10
5.5. DSLs for Questionnaires 10
5.6. Live Programming 10
5.7. Visualization and interaction 10
5.8. Guarded Coroutines 11
5.9. Data structures for meta programming 11

6. Partnerships and Cooperations . 11
6.1. National Initiatives 11

6.1.1. Master Software Engineering 11
6.1.2. Early Quality Assurance in Software Production 11
6.1.3. Model-Driven Engineering in Digital Forensics 11
6.1.4. Next Generation Auditing: Data-assurance as a service 11

6.2. European Initiatives 11
6.3. International Research Visitors 12

7. Dissemination . 12
7.1. Scientific Animation 12
7.2. Teaching - Supervision - Juries 14

7.2.1. Teaching 14
7.2.2. Supervision 14
7.2.3. Juries 15

7.3. Popularization 15
8. Bibliography .16

Project-Team ATEAMS

Keywords: Programming Languages, Formal Methods, Domain-Specific Languages, Software
Engineering, Meta-modeling

Creation of the Project-Team: 2009 July 01.

1. Members
Research Scientists

Jurgen Vinju [Team leader, CWI]
Paul Klint [CWI, Professor]
Tijs Van Der Storm [CWI]
Jan Van Eijck [CWI, Professor]
Robert Van Liere [CWI, Professor]

Engineers
Maarten Dijkema [CWI]
Bert Lisser [CWI]

PhD Students
Ali Afroozeh [CWI]
Paul Griffioen [CWI]
Pablo Inostroza Valdera [CWI]
Anastasia Izmaylova [CWI]
Davy Landman [CWI]
Michael Steindorfer [CWI]
Jeroen Van Den Bos [CWI, until Aug 2013]
Atze Van Der Ploeg [CWI]
Riemer Van Rozen [CWI]
Ashim Shahi [CWI]

Post-Doctoral Fellows
Mark Hills [CWI, until Sep 2013]
Floor Sietsma [CWI, until Dec 2013]
Sunil Simon [CWI, until Aug 2013]
Vadim Zaytsev [CWI, until Nov 2013]

Administrative Assistant
Sandrine Meilen [Inria]

2. Overall Objectives

2.1. Presentation
Software is very complex, and it seems to become more complex every year. Over the last decades, computer
science has delivered various insights how to organize software better. Via structured programming, modules,
objects, components and agents, these days software systems are more and more evolving into “systems of
systems” that provide services to each other. Each system is large, uses incompatible — new, outdated or
non-standard — technology and above all, exhibits failures.

2 Activity Report INRIA 2013

It is becoming more and more urgent to analyze the properties of these complicated, heterogeneous and very
large software systems and to refactor and transform them to make them simpler and to keep them up-to-
date. With the plethora of different languages and technology platforms it is becoming very difficult and very
expensive to construct tools to achieve this.

The main challenge of ATEAMS is to address this combination of a need for all kinds of novel analysis and
transformation tools and the existence of the diversity of programming environments. We do this by investing
in a virtual laboratory called “Rascal”. It is a domain specific programming language for source code analysis,
transformation and generation. Rascal is programming language parametric, such that it can be used to analyze,
transform or generated source code in any language. By combining concepts from both program analysis and
transformation into this language we can efficiently experiment with all kinds of tools and algorithms.

We now focus on three sub-problems. Firstly, we study software analysis: to extract information from existing
software systems and to analyze it. The extracted information is vital to construct sound abstract models that
can be used in further analysis. We apply these extraction techniques now to analyze (large bodies of) source
code: finding bugs and finding the causes of software complexity.

Secondly, we study refactoring: to semi-automatically improve the quality of a software system without
changing its behavior. Refactoring tools are a combination of analysis and transformations. Implementations
of refactoring tools are complex and often broken. We study better ways of designing refactorings and we
study ways to enable new (more advanced and useful) refactorings. We apply these refactorings now to isolate
design choices in large software systems and compare systems that are equal except a single design choice.

Finally, we study code generation from domain specific languages (DSLs). Here we also find a combination
of analysis and transformation. Designing, implementing and, very importantly, maintaining DSLs is costly.
We focus on application areas such as Computational Auditing and Digital Forensics to experiment with this
subject. In Computational Auditing we are focusing on modeling interactive questionnaires and in Digital
Forensics on optimization and specialization of file format recognition.

2.2. Highlights of the Year
• Paul Klint was Knighted Officer in the order of Oranje Nassau based on his contributions to science

and education.

• Paul Klint was appointed Research Fellow, Centrum Wiskunde & Informatica

3. Research Program

3.1. Research method
We are inspired by formal methods and logic to construct new tools for software analysis, transformation and
generation. We try and proof the correctness of new algorithms using any means necessary.

Nevertheless we mainly focus on the study of existing (large) software artifacts to validate the effectiveness of
new tools. We apply the scientific method. To (in)validate our hypothesis we often use detailed manual source
code analysis, or we use software metrics, and we have started to use more human subjects (programmers).

Note that we maintain ties with the CWI spinoff “Software Improvement Group” which services most of
the Dutch software industry and government and many European companies as well. This provides access to
software systems and information about software systems that is valuable in our research.

Project-Team ATEAMS 3

3.2. Software analysis
This research focuses on source code; to analyze it, transform it and generate it. Each analysis or transfor-
mation begins with fact extraction. After that we may analyze specific software systems or large bodies of
software systems. Our goal is to improve software systems by understanding and resolving the causes of soft-
ware complexity. The aoproach is captured in the EASY acronym: Extract Analyze SYnthesize. The first step
is to extract facts from source code. These facts are then enriched and refined in an analysis phase. Finally the
result is synthesized in the form of transformed or generated source code, a metrics report, a visualization or
some other output artifact.

The mother and father of fact extraction techniques are probably Lex, a scanner generator, and AWK, a
language intended for fact extraction from textual records and report generation. Lex is intended to read a
file character-by-character and produce output when certain regular expressions (for identifiers, floating point
constants, keywords) are recognized. AWK reads its input line-by-line and regular expression matches are
applied to each line to extract facts. User-defined actions (in particular print statements) can be associated with
each successful match. This approach based on regular expressions is in wide use for solving many problems
such as data collection, data mining, fact extraction, consistency checking, and system administration. This
same approach is used in languages like Perl, Python, and Ruby. Murphy and Notkin have specialized the
AWK-approach for the domain of fact extraction from source code. The key idea is to extend the expressivity
of regular expressions by adding context information, in such a way that, for instance, the begin and end of a
procedure declaration can be recognized. This approach has, for instance, been used for call graph extraction
but becomes cumbersome when more complex context information has to be taken into account such as
scope information, variable qualification, or nested language constructs. This suggests using grammar-based
approaches as will be pursued in the proposed project. Another line of research is the explicit instrumentation
of existing compilers with fact extraction capabilities. Examples are: the GNU C compiler GCC, the CPPX
C++ compiler, and the Columbus C/C++ analysis framework. The Rigi system provides several fixed fact
extractors for a number of languages. The extracted facts are represented as tuples (see below). The CodeSurfer
source code analysis tool extracts a standard collection of facts that can be further analyzed with built-in tools
or user-defined programs written in Scheme. In all these cases the programming language as well as the set of
extracted facts are fixed thus limiting the range of problems that can be solved.

The approach we are exploring is the use of syntax-related program patterns for fact extraction. An early
proposal for such a pattern-based approach is described in: a fixed base language (either C or PL/1 variant) is
extended with pattern matching primitives. In our own previous work on RScript we have already proposed
a query algebra to express direct queries on the syntax tree. It also allows the querying of information that
is attached to the syntax tree via annotations. A unifying view is to consider the syntax tree itself as “facts”
and to represent it as a relation. This idea is already quite old. For instance, Linton proposes to represent all
syntactic as well as semantic aspects of a program as relations and to use SQL to query them. Due to the lack
of expressiveness of SQL (notably the lack of transitive closure) and the performance problems encountered,
this approach has not seen wider use.

Parsing is a fundamental tool for fact extraction for source code. Our group has longstanding contributions
in the field of Generalized LR parsing and Scannerless parsing. Such generalized parsing techniques enable
generation of parsers for a wide range of existing (legacy) programming languages, which is highly relevant
for experimental research and validation.

Extracted facts are often refined, enriched and queried in the analysis phase. We propose to use a relational
formalization of the facts. That is, facts are represented as sets of tuples, which can then be queried using
relational algebra operators (e.g., domain, transitive closure, projection, composition etc.). This relational
representation facilitates dealing with graphs, which are commonly needed during program analysis, for
instance when processing control-flow or data-flow graphs. The Rascal language integrates a relational sub-
language by providing comprehensions over different kinds of data types, in combination with powerful
pattern matching and built-in primitives for computing (transitive/reflexive) closures and fixpoint computations
(equation solving).

4 Activity Report INRIA 2013

3.2.1. Goals
The main goal is to replace labour-intensive manual programming of fact extractors by automatic generation
based on concise and formal specification. There is a wide open scientific challenge here: to create a uniform
and generic framework for fact extraction that is superior to current more ad-hoc approaches, yet flexible
enough to be customized to the analysis case at hand. We expect to develop new ideas and techniques for
generic (language-parametric) fact extraction from source code and other software artifacts.

Given the advances made in fact extraction we are starting to apply our techniques to observe source code and
analyze it in detail.

3.3. Refactoring and Transformation
The second goal, to be able to safely refactor or transform source code can be realized in strong collaboration
with extraction and analysis.

Software refactoring is usually understood as changing software with the purpose of increasing its readability
and maintainability rather than changing its external behavior. Refactoring is an essential tool in all agile
software engineering methodologies. Refactoring is usually supported by an interactive refactoring tool and
consists of the following steps:

• Select a code fragment to refactor.
• Select a refactoring to apply to it.
• Optionally, provide extra parameter needed by the refactoring (e.g., a new name in a renaming).

The refactoring tool will now test whether the preconditions for the refactoring are satisfied. Note that this
requires fact extraction from the source code. If this fails the user is informed. The refactoring tool shows the
effects of the refactoring before effectuating them. This gives the user the opportunity to disable the refactoring
in specific cases.The refactoring tool applies the refactoring for all enabled cases. Note that this implies a
transformation of the source code. Some refactorings can be applied to any programming language (e.g.,
rename) and others are language specific (e.g., Pull Up Method). At http://www.refactoring.com an extensive
list of refactorings can be found.

There is hardly any general and pragmatic theory for refactoring, since each refactoring requires different static
analysis techniques to be able to check the preconditions. Full blown semantic specification of programming
languages have turned out to be infeasible, let alone easily adaptable to small changes in language semantics.
On the other hand, each refactoring is an instance of the extract, analyze and transform paradigm. Software
transformation regards more general changes such as adding functionality and improving non-functional prop-
erties like performance and reliability. It also includes transformation from/to the same language (source-to-
source translation) and transformation between different languages (conversion, translation). The underlying
techniques for refactoring and transformation are mostly the same. We base our source code transformation
techniques on the classical concept of term rewriting, or aspects thereof. It offers simple but powerful pat-
tern matching and pattern construction features (list matching, AC Matching), and type-safe heterogenous
data-structure traversal methods that are certainly applicable for source code transformation.

3.3.1. Goals
Our goal is to integrate the techniques from program transformation completely with relational queries.
Refactoring and transformation form the Achilles Heel of any effort to change and improve software. Our
innovation is in the strict language-parametric approach that may yield a library of generic analyses and
transformations that can be reused across a wide range of programming and application languages. The
challenge is to make this approach scale to large bodies of source code and rapid response times for
precondition checking.

3.4. The Rascal Meta-programming language
The Rascal Domain-Specific Language for Source code analysis and Transformation is developed by ATeams.
It is a language specifically designed for any kind of meta programming.

http://www.refactoring.com

Project-Team ATEAMS 5

Meta programming is a large and diverse area both conceptually and technologically. There are plentiful
libraries, tools and languages available but integrated facilities that combine both source code analysis
and source code transformation are scarce. Both domains depend on a wide range of concepts such as
grammars and parsing, abstract syntax trees, pattern matching, generalized tree traversal, constraint solving,
type inference, high fidelity transformations, slicing, abstract interpretation, model checking, and abstract state
machines. Examples of tools that implement some of these concepts are ANTLR, ASF+SDF, CodeSurfer,
Crocopat, DMS, Grok, Stratego, TOM and TXL. These tools either specialize in analysis or in transformation,
but not in both. As a result, combinations of analysis and transformation tools are used to get the job done.
For instance, ASF+SDF relies on RScript for querying and TXL interfaces with databases or query tools. In
other approaches, analysis and transformation are implemented from scratch, as done in the Eclipse JDT. The
TOM tool adds transformation primitives to Java, such that libraries for analysis can be used directly. In either
approach, the job of integrating analysis with transformation has to be done over and over again for each
application and this requires a significant investment.

We propose a more radical solution by completely merging the set of concepts for analysis and transformation
of source code into a single language called Rascal. This language covers the range of applications from pure
analyses to pure transformations and everything in between. Our contribution does not consist of new concepts
or language features per se, but rather the careful collaboration, integration and cross-fertilization of existing
concepts and language features.

3.4.1. Goals
The goals of Rascal are: (a) to remove the cognitive and computational overhead of integrating analysis and
transformation tools, (b) to provide a safe and interactive environment for constructing and experimenting with
large and complicated source code analyses and transformations such as, for instance, needed for refactorings,
and (c) to be easily understandable by a large group of computer programming experts. Rascal is not limited
to one particular object programming language, but is generically applicable. Reusable, language specific,
functionality is realized as libraries. As an end-result we envision Rascal to be a one-stop shop for source code
analysis, transformation, generation and visualization.

3.5. Domain-specific Languages
Our final goal is centered around Domain-specific languages (DSLs), which are software languages tailored to
a specific problem domain. DSLs can provide orders of magnitude improvement in terms of software quality
and productivity. However, the implementation of DSLs is challenging and requires not only thorough knowl-
edge of the problem domain (e.g., finance, digital forensics, insurance, auditing etc.), but also knowledge of
language implementation (e.g., parsing, compilation, type checking etc.). Tools for language implementation
have been around since the archetypical parser generator YACC. However, many of such tools are character-
ized by high learning curves, lack of integration of language implementation facets, and lead to implementa-
tions that are hard to maintain. This line of research focuses on two topics: improve the practice and experience
of DSL implementation, and evaluate the success of DSLs in industrial practice.

Language workbenches [24] are integrated environments to facilitate the development of all aspects of DSLs.
This includes IDE support (e.g., syntax coloring, outlining, reference resolving etc.) for the defined languages.
Rascal can be seen as a language workbench that focuses on flexibility, programmability and modularity. DSL
implementation is, in essence, an instance of source code analysis and transformation. As a result, Rascal’s
features for fact extraction, analysis, tree traversal and synthesis are an excellent fit for this area. An important
aspect in this line of research is bringing the IDE closer to the source code. This will involve investigation of
heterogeneous representations of source code, by integrating graphical, tabular or forms-based user interface
elements. As a result, we propose Rascal as a feature-rich workbench for model-driven software development.

The second component of this research is concerned with evaluating DSLs in industrial contexts. This means
that DSLs constructed using Rascal will be applied in real-life environments so that expected improvements
in quality, performance, or productivity can be observed. We already have experience with this in the domain
of digital forensics, computational auditing and games.

6 Activity Report INRIA 2013

3.5.1. Goals
The goal of this research topic is to improve the practice of DSL-based software development through language
design and tool support. A primary focus is to extend the IDE support provided by Rascal, and to facilitate
incremental, and iterative design of DSLs. The latter is supported by new (meta-)language constructs for
extending existing language implementations. This will require research into extensible programming and
composition of compilers, interpeters and type checkers. Finally, a DSL is never an island: it will have to
integrate with (third-party) source code, such as host language, libraries, runtime systems etc. This leads to
the vision of multi-lingual programming environments [22]. .

4. Software and Platforms
4.1. MicroMachinations

Participant: Riemer Van Rozen [correspondent].
Characterization: A-2-up3, SO-4, SM-2-up3, EM-3, SDL-3-up4, OC-DA-3-CD-3-MS-3-TPM-3.
WWW:
Objective: To create an integrated, live environment for modeling and evolving game economies. This

will allow game designers to experiment with different strategies to realize game mechanics. The
environment integrates with the SPIN model checker to prove properties (reachability, liveness). A
runtime system for executing game economies allows MicroMachinations models to be embedded
in actual games.

Users: Game designers
Impact: One of the important problems in game software development is the distance between game

design and implementation in software. MicroMachinations has the potential to bridge this gap by
providing live design tools that directly modify or create the desired software behaviors.

Competition: None.
Engineering: The front-end of MicroMachinations is built using the Rascal language workbench, includ-

ing visualization, model checking, debugging and standard IDE features. The runtime library is
implemented in C++ and will be evaluated in the context of industrial game design.

Publications: [28]

4.1.1. Novelties
• Development on MMLib was started which allows the execution of game economies directly within

games.

4.2. Derric
Participants: Tijs Van Der Storm, Jeroen Van Den Bos [correspondent].

Characterization: A-2-up3, SO-4, SM-2-up3, EM-3, SDL-3-up4, OC-DA-3-CD-3-MS-3-TPM-3.
WWW: http://www.derric-lang.org
Objective: Encapsulate all the variability in the construction of so-called “carving” algorithms, then

generate the fastest and most accurate implementations. Carving algorithms recover information
that has been deleted or otherwise scrambled on digital media such as hard-disks, usb sticks and
mobile phones.

Users: Digital forensic investigation specialists
Impact: Derric has the potential of revolutionizing the carving area. It does in 1500 lines of code what

other systems need tens of thousands of lines for with the same accuracy. Derric will be an enabler
for faster, more specialized and more successful location of important evidence material.

Competition: Derric competes in a small market of specialized open-source and commercial carving
tools.

Engineering: Derric is a Rascal program of 1.5 kloc designed by two persons.
Publications: [35], [34][14], [16], [15]

http://www.derric-lang.org

Project-Team ATEAMS 7

4.2.1. Novelties
• Construction of a 1TB benchmark based on Wikipedia images.
• The Derric DSL for digital forensics now features Trinity, a runtime IDE to debug file format

descriptions [35].

4.3. Rascal
Participants: Paul Klint, Jurgen Vinju [correspondent], Tijs Van Der Storm, Jeroen Van Den Bos, Mark Hills,
Bert Lisser, Atze Van Der Ploeg, Vadim Zaytsev, Anastasia Izmaylova, Michael Steindorfer, Ali Afroozeh,
Ashim Shahi.

Characterization: A5, SO-4, SM-4, EM-4, SDL-4-up5, OC-DA-3-CD-3-MS-3-TPM-3.
WWW: http://www.rascal-mpl.org
Objective: Provide a completely integrated programming language parametric meta programming lan-

guage for the construction of any kind of meta program for any kind of programming language:
analysis, transformation, generation, visualization.

Users: Researchers in model driven engineering, programming languages, software engineering, software
analysis, as well as practitioners that need specialized tools.

Impact: Rascal is making the mechanics of meta programming into a non-issue. We can now focus on
the interesting details of the particular fact extraction, model, source analysis, domain analysis as
opposed to being distracted by the engineering details. Simple things are easy in Rascal and complex
things are manageable, due to the integration, the general type system and high-level programming
features.

Competition: There is a plethora of meta programming toolboxes and frameworks available, ranging from
plain parser generators to fully integrated environments. Rascal is distinguished because it is a
programming language rather than a specification formalism and because it completely integrates
different technical domains (syntax definition, term rewriting, relational calculus). For simple tools,
Rascal competes with scripting languages and for complex tools it competes context-free general
parser generators, with query engines based on relational calculus and with term rewriting and
strategic programming languages.

Engineering: Rascal is about 100 kLOC of Java code, designed by a core team of three and with a team
of around 8 phd students and post-docs contributing to its design, implementation and maintenance.
The goal is to work towards more bootstrapping and less Java code as the project continues.

Publications: [7], [6], [8], [5], [6]

4.3.1. Novelties
• A new language-parametric model to represent software projects, called M3 [38].
• Performance improvements of the Rascal interpreter throughout.
• Initial version of a compiler for Rascal, based on new language construct guarded coroutines.
• Origin tracking for values and expressions of type string.
• A library for accessing and analyzing Excel and Word documents.
• Improvements to the Rascal IDE: better output handling, hyper linked source code locations in the

console, dedicated project explorer view.
• Content completion for DSLs implemented in Rascal.
• Significant improvements to the Rascal static type checker.
• Experiments with improved GLL parsing (Iguana).
• Several new example DSL implementations to illustrate Rascal as a language workbench: Marvol, a

DSL for controlling NAO robots, and two implementations of a DSL for questionnaires (DemoQLes
and QL-R-Kemi).

4.4. IDE Meta-tooling Platform
Participants: Jurgen Vinju [correspondent], Michael Steindorfer.

http://www.rascal-mpl.org

8 Activity Report INRIA 2013

IMP, the IDE meta tooling platform is an Eclipse plugin developed mainly by the team of Robert M. Fuhrer
at IBM TJ Watson Research institute. It is both an abstract layer for Eclipse, allowing rapid development of
Eclipse based IDEs for programming languages, and a collection of meta programming tools for generating
source code analysis and transformation tools.

Characterization: A5, SO-3, SM4-up5, EM-4, SDL-5, DA-2-CD-2-MS-2-TPM-2

WWW: https://github.com/impulse-org/

Objective: The IDE Meta Tooling Platform (IMP) provides a high-level abstraction over the Eclipse API
such that programmers can extend Eclipse with new programming languages or domain specific
languages in a few simple steps. IMP also provides a number of standard meta tools such as a parser
generator and a domain specific language for formal specifications of configuration parameters.

Users: Designers and implementers of IDEs for programming languages and domain specific languages.
Also, designers and implementers of meta programming tools.

Impact: IMP is popular among meta programmers especially for it provides the right level of abstraction.

Competition: IMP competes with other Eclipse plugins for meta programming (such as Model Driven
Engineering tools), but its API is more general and more flexible. IMP is a programmers framework
rather than a set of generators.

Engineering: IMP is a long-lived project of many contributors, which is managed as an Eclipse incubation
project at eclipse.org. Currently we are moving the project to Github to explore more different
ways of collaboration.

Publications: [2]

4.4.1. Novelties
• The IMP program database (PDB) was completely redesigned.

4.5. Ensō
Participant: Tijs Van Der Storm [correspondent].

Characterization: A5, SO-4, SM-3-up-4, EM-2-up-4, SDL-4, OC-DA-4-CD-4-MS-4-TPM-4

WWW: http://www.enso-lang.org

Objective: Together with Prof. Dr. William R. Cook of the University of Texas at Austin, and Alex
Loh, Tijs van der Storm has been designing and implementing a new programming system, called
Ensō. Ensō is theoretically sound and practical reformulation of model-based development. It is
based on model-interpretation as opposed to model transformation and code generation. Currently,
the system already supports models for schemas (data models), web applications, context-free
grammars, diagram editors and security.

Users: All programmers.

Impact: Ensō has the potential to revolutionize the activity of programming. By looking at model driven
engineering from a completely fresh perspective, with as key ingredients interpreters and partial
evaluation, it may make higher level (domain level) program construction and maintenance as
effective as normal programming.

Competition: Ensō competes as a programming paradigm with model driven engineering tools and
generic programming and languages that provide syntax macros and language extensions.

Engineering: Ensō is a completely self-hosted system in 7000 lines of code.

Publications: [12], [17], [11]

https://github.com/impulse-org/
http://www.enso-lang.org

Project-Team ATEAMS 9

4.5.1. Novelties
• A compiler for a dedicated Ensō language, which targets JavaScript.
• Added a demo based on the LWC’13 questionnaire language assignment.

4.6. LiveQL
Participant: Tijs Van Der Storm [correspondent].

Characterization: A1, SO-3, SM-1, EM-2, SDL-4, OC-DA-4-CD-4-MS-4-TPM-4
WWW: https://github.com/cwi-swat/liveql
Objective: Experimenting with live programming concepts and techniques in the context of domain

specific languages (DSLs).
Users: End-user programmers.
Impact: LiveQL is an experiment in making a DSL “live”, i.e. any change to the DSL program is

immediately reflected in the running program. This has the potential to widen the audience of DSL
users to include end-user programmers.

Competition: The end-goal is to provide live end-user programming environments with domain-specific
checking and optimization. The most similar tools are spreadsheet applications. However, these are
still quite general.

Engineering: LiveQL is built in Java, using the ANTLR parser generator.
Publications: [36]

4.7. QL-R-Kemi
Participant: Tijs Van Der Storm [correspondent].

Characterization: A1, SO-3, SM-1, EM-2, SDL-4, OC-DA-4-CD-4-MS-4-TPM-4
WWW: https://github.com/cwi-swat/QL-R-Kemi
Objective: Demonstrate the language workbench features of the Rascal meta programming language and

environment. Investigate domain specific language application in the domain of questionnaires and
surveys.

Users: Students, scientists.
Impact: Questionnaires are common in social science, tax administration and statistics. Discovering the

right abstractions for describing questionnaires has the potential to significantly improve the practice
of constructing questionnaire software.

Competition: Traditional survey tools are often wizard-based, lack computational capabilities and lack a
formal foundation. The same language is built in a number of different language workbenches which
served as a benchmark to compare such tools [24].

Engineering: Uses all features of the Rascal language workbench.
Publications: [24]

5. New Results
5.1. Empirical analyses of source code

Rascal was used to perform empirical investigations of existing source code bases. First of all, Davy Landman
performed an analysis of project management source code to investigate if domain knowledge is present in
source code and, if so, how easy it is to extract that knowledge [26]. An earlier experiment in static analysis of
PHP code was finalized by Mark Hills. The result is a deep study of feature usage in a large number of well-
known PHP projects [25]. Vadim Zaytsev conducted an experiment to recognize micro-patterns in grammars
and meta-models [32]. Finally, Jeroen van den Bos performed a deep empirical study to find out as to how
far a domain-specific language facilitates evolution [34]. The results showed that the Derric DSL did indeed
cover most evolution scenarios, but there is still room for improving the language. In all cases Rascal proved
to be instrumental in performing the experiments.

https://github.com/cwi-swat/liveql
https://github.com/cwi-swat/QL-R-Kemi

10 Activity Report INRIA 2013

5.2. Better parsing and disambiguation
Ali Afroozeh worked on a new implementation of GLL parsing, called Iguana. Unlike traditional parser
generators, Iguana adopted the interpretive approach that is also used in the Ensō parser. This experiment
is still ongoing, but the new parser is expected to be integrated into Rascal beginning of 2014. Additionally, a
longstanding problem of disambiguation using operator precedence was solved [23]. Traditional approaches
are either not safe (i.e. they make the language smaller), or they do not support complex precedence rules as
found in, for instance, OCaml.

5.3. Extensible Programming
Modular and extensible implementation of languages could have major impact on how DSLs will be imple-
mented. Anastasia Izmaylova continued here work on improving the extensibility of Rascal’s module system,
by providing open recursive function combinators.

Extensible programming is traditionally plagued by what has become known as “the expression problem”,
which captures the fact that most programming languages either support extension of data variants, or
extension of operations, but not both. Object Algebras are simple solution to this problem. In [30] we have
extended this model to support feature-oriented programming. These results are currently being integrated into
the Ensō system.

5.4. DSLs for Games
In collaboration with the Hogeschool van Amsterdam, Riemer van Rozen developed a workbench for
MicroMachinations, a DSL for game economies [28]. Completely built using Rascal, this DSL environment
features syntax highlighting, static analysis, interactive simulation, and SPIN-based model-checking of process
models describing the economy of a game. The project shows the versatility of Rascal as a language workbench
for the development of DSLs.

5.5. DSLs for Questionnaires
In the context of computational auditing we have intensified our research on DSLs for questionnaires.
It was proposed by Tijs van der Storm as the benchmark task for the Language Workbench Challenge
2013 (LWC’13), which has resulted in a thorough overview and qualitative comparison of language
workbenches [24]. As a side-effect, there are now two publicly available Rascal implementations of the ques-
tionnaire DSL (QL-R-Kemi and Demoqles). A first step has been made to collect all implementations to create
a “chrestomathy” for further study and dissemination of language workbench concepts and DSL implementa-
tion patterns. Other results include a formal semantics of the dynamics of questionnaires [21], and an initial
prototype of a questionnaire model for modeling the Dutch Tax Income filing application by Pablo Inostroza
Valdera.

5.6. Live Programming
Live programming aims to bring the dynamic execution of programs closer to the programmer, ideally
almost obliterating the gap between editing and executing the program. We are working on applying such
principles in the context of DSLs. This has lead to two results: a live programming environment for a DSL for
questionnaires [36], and Trinity, a data-driven IDE for Derric [35]. Riemer van Rozen has worked on applying
similar techniques to MicroMachinations, so that game economies can be adapted at runtime.

5.7. Visualization and interaction
Atze van der Ploeg worked on designing new algorithms and abstractions in the domain of visualization and
abstraction. His first result is a fast algorithm for drawing non-layered, tidy trees [20]. DeForm is a library for
the declarative specification of resolution-independent 2D graphics [27]. In [31] he proposed a reformulation
of the traditional functional reactive programming (FRP) framework, which is both simple and efficient to
implement.

Project-Team ATEAMS 11

5.8. Guarded Coroutines
Anastasia Izmaylova and Paul Klint have built an initial version of a compiler for Rascal. The performance
improvements with respect to the interpreter are impressive. Moreover, the design of compiler is based on
a new construct for implementing languages with complex backtracking and pattern matching semantics:
guarded coroutines. This construct will be instrumental in extending the Rascal language with new kinds of
control-flow and concurrency.

5.9. Data structures for meta programming
The efficiency of many meta programs is dependent on the internal data structures used to represent collections,
trees, relations etc. Michael Steindorfer has worked on comparing the performance of various persistent
collection libraries (e.g., those used in Rascal, Clojure, and Scala). This has lead to a redesign of the PDB
collection library that underlies the data structures of Rascal. Furthermore, he developed the Orpheus tool, an
object redunancy profiler to assess the effects of maximal sharing.

6. Partnerships and Cooperations

6.1. National Initiatives
6.1.1. Master Software Engineering

ATEAMS is the core partner in the Master Software Engineering at Universiteit van Amsterdam. This master
is a collaboration between SWAT/ATEAMS, Universiteit van Amsterdam, Vrije Universiteit and Hogeschool
van Amsterdam.

6.1.2. Early Quality Assurance in Software Production
The EQUA project is a collaboration among Hogeschool van Amsterdam (main partner) Centrum Wiskunde &
Informatica (CWI), Technisch Universiteit Delft, Laboratory for Quality of Software (LaQuSo), Info Support,
Software Improvement Group (SIG), and Fontys Hogeschool Eindhoven.

6.1.3. Model-Driven Engineering in Digital Forensics
In this project ATEAMS works with the Dutch National Forensics Institute on next generation carving software
for recovering evidence from damaged or erased data storage media.

6.1.4. Next Generation Auditing: Data-assurance as a service
This collaboration between Centrum Wiskunde & Informatic (CWI) PriceWaterhouseCoopers (PWC), Belast-
ingdienst (National Tax Office), and Computational Auditing, is to enable research in the field of computational
auditing.

6.2. European Initiatives
6.2.1. FP7 Projects

OSSMETER aims to extend the state-of-the-art in the field of automated analysis and measurement of open-
source software (OSS), and develop a platform that will support decision makers in the process of discovering,
comparing, assessing and monitoring the health, quality, impact and activity of open-source software. The
project started in October 2012. ATEAMS contributes to this project by focusing on software analysis and
related areas.

12 Activity Report INRIA 2013

6.3. International Research Visitors
6.3.1. Visits of International Scientists

• Oscar Nierstrasz, PhD, Professor - Professor of Computer Science at the Institute of Computer
Science (IAM) of the University of Bern

• Anya Helene Bagge, PhD - University of Bergen, Norway

• Sebastian Erdweg, PhD - TU Darmstadt

6.3.1.1. Internships

• Kevin van der Vlist

• Davy Meers

• Wouter Kwakernaak

• Jimi van der Woning

• Ioana Rucareanu

• Ioannis Tzanellis

• George Marminidis

• Vlad Lep

• Dimitrios Kyritsis

• Chris Mulder

7. Dissemination

7.1. Scientific Animation
• Jan van Eijck : Member of the NWO committee “Vrije Competitie” for Computer Science.

• Jan van Eijck : Member of the Advisory Board (‘Raad van Advies’) of the Artificial Intelligence
Curriculum, University of Groningen (since Summer 2013).

• Jan van Eijck : Program committee Tenth International Conference on Computational Semantics
(IWCS) University of Potsdam, Germany, March 2013

• Jan van Eijck : Program committee LORI-4 (4th International Workshop on Logic, Rationality and
Interaction),

• Jan van Eijck : Program committee TTNLS-2014 (Type Theory for Natural Language Semantics)

• Jan van Eijck : Editor of Journal of Logics and their Applications (new IfCoLog journal with open
access, to be published by College Publications).

• Jan van Eijck : Reviewer Artificial Intelligence

• Jan van Eijck : Reviewer ESSLLI

• Jan van Eijck : Reviewer Journal of Semantics,

• Jan van Eijck : Reviewer Journal of Logic and Computation

• Jan van Eijck : Reviewer Fundamenta Informaticae

• Jan van Eijck : Reviewer Synthese,

• Jan van Eijck : Reviewer Journal of Philosophical Logic

• Jan van Eijck : Reviewer Journal of Logic Language and Information

• Jan van Eijck : Reviewer Cambridge University Press

• Jan van Eijck : Reviewer Studia Logica.

Project-Team ATEAMS 13

• Mark Hills : Program committee Working Conference on Reverse Engineering (WCRE/CSMR)
Tool-track

• Mark Hills : Reviewer International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC)

• Mark Hills : Program committee CALCO Tools
• Paul Klint : Editor Science of Computer Programming
• Paul Klint : Editor Springer Service Science Book Series
• Paul Klint : Visiting Professor University of London, Royal Holloway
• Paul Klint : Treasurer European Association for Programming Languages and Systems (EAPLS)
• Paul Klint : Steering committee member ETAPS
• Paul Klint : Board member Instituut voor Programmatuur en Architectuur (IPA)
• Paul Klint : External advisor PlanComps project (UK)
• Paul Klint : Full Professor at UvA, Software Engineering Chair
• Paul Klint : Director Master Software Engineering, UvA
• Paul Klint : Program committee Software Language Engineering (SLE)
• Paul Klint : Program committee Scalable Language Specifications (SLS 2013)
• Paul Klint : Program committee WasDETT 2013
• Paul Klint : Program committee CSMR WCRE ERA 2014
• Paul Klint : EAPLS PhD Awards 2013
• Atze van der Ploeg : Reviewer Journal of Universal Computer Science
• Tijs van der Storm : Program committee International Workshop on Advanced Software Develop-

ment Tools and Techniques - (WASDeTT)
• Tijs van der Storm : Program committee International Conference on Generative Programming:

Concepts & Experiences (GPCE)
• Tijs van der Storm : Program committee Working Conference on Reverse Engineering

(WCRE/CSMR) Tool-track
• Tijs van der Storm : Reviewer ACM Conference on Object-Oriented Programming Systems, Lan-

guages and Applications (OOPSLA)
• Tijs van der Storm : Reviewer ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL)
• Tijs van der Storm : Member working group IFIP TC2 WGLD 2.16: Working Group on Language

Design
• Tijs van der Storm : Reviewer Science of Computer Programming
• Tijs van der Storm : Reviewer Journal of Systems and Software
• Tijs van der Storm : Co-organizer Lorentz Workshop on Language Interaction Design (LIXD)
• Tijs van der Storm : Co-organizer 1st Dutch Conference on Software Development Automation

(SDA’13)
• Tijs van der Storm : Co-organizer CWI Scientific Meetings
• Tijs van der Storm : Organizer Normalized Systems Seminar
• Jurgen Vinju : Member steering committee IEEE International Workshop on Source Code Analysis

and Manipulation (SCAM)
• Jurgen Vinju : General Chair IEEE International Workshop on Source Code Analysis and Manipu-

lation (SCAM)
• Jurgen Vinju : Observer IFIP TC2 Working Group 2.3 Programming Methodology

14 Activity Report INRIA 2013

• Jurgen Vinju : Program chair International Workshop on Advanced Software Development Tools
and Techniques - (WASDeTT)

• Jurgen Vinju : Program committee International Conference on Model Transformation - (ICMT)

• Jurgen Vinju : Program committee chair WCRE/CSMR Tool Track

• Jurgen Vinju : Organizer International Workshop on Parsing@SLE

• Jurgen Vinju : Program committee WCRE/CSMR ERA track

• Vadim Zaytsev : Steering committee Seminar Series on Advanced Techniques & Tools for Software
Evolution (SATToSE)

• Vadim Zaytsev : Program commitee Software Quality Management (SQM)

• Vadim Zaytsev : Program commitee IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM)

• Vadim Zaytsev : Program commitee Extreme Modeling Workshop (XM)

• Vadim Zaytsev : Judging commitee ACM Student Research Competition

• Vadim Zaytsev : Program committee co-chair Working Conference on Reverse Engineering
(WCRE/CSMR) Tool-track

• Vadim Zaytsev : Reviewer Science of Computer Programming

• Vadim Zaytsev : Workshop co-chair Open and Original Problems in Software Language Engineering
(OOPSLE)

• Vadim Zaytsev : Social media co-chair ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS)

• Vadim Zaytsev: Colloquium organiser of Programming Environment Meetings (PEM)

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Master : Jurgen Vinju, Paul Klint, Software Evolution, 6 EC, Universiteit van Amsterdam, The
Netherlands

Master : Tijs van der Storm, Jurgen Vinju, Software Construction, 6 EC, Universiteit van Amsterdam,
The Netherlands

Master : Jan van Eijck, Bert Lisser, Vadim Zaytsev, Software Testing, 6 EC, Universiteit van
Amsterdam, The Netherlands

Master : Jan van Eijck, Functional Algorithm Specification, 6 EC, Universiteit van Amsterdam, The
Netherlands

7.2.2. Supervision
PhD in progress : Paul Griffioen, Next Generation Computational Auditing, started 2011, supervisors
Paul Klint, Philip Elsas

PhD in progress : Anastasia Izmaylova, A General Language Parametric Framework for Software
Refactoring, started 2011, supervisors Paul Klint, Jurgen Vinju

PhD in progress : Jeroen van den Bos, Digital Forensics Software Engineering, started 2010,
supervisors Paul Klint, Tijs van der Storm

PhD in progress : Atze van der Ploeg, Rapid Language Parametric Prototyping of Software Visual-
ization and Exploration, started 2011, supervisor Paul Klint, Tijs van der Storm

PhD in progress : Davy Landman, Recovery and Synthesis of Domain Specific Language Design,
started 2011, supervisors Jurgen Vinju, Paul Klint, supervisors Jurgen Vinju .

Project-Team ATEAMS 15

PhD in progress : Riemer van Rozen, Software Engineering Principles for the Gaming Domain,
started 2011, supervisor Paul Klint, Tijs van der Storm
PhD in progress : Ali Afroozeh, Ambiguity and Disambiguation for Context-free Grammars, started
2012, supervisor Jurgen Vinju
PhD in progress : Pablo Inostroza Valdera, Rich UIs for Domain-Specific Languages, started 2013,
supervisor Tijs van der Storm
PhD in progress : Ashim Shahi, Principled Quality Assessment of Software, started 2012, supervisor
Paul Klint, Jurgen Vinju
PhD in progress : Michael Steindorfer, Scaling meta-programming to data-programming, started
2012, supervisor Paul Klint, Jurgen Vinju

Paul Klint, Jurgen Vinju, Tijs van der Storm, Mark Hills, Jeroen van den Bos and Jan van Eijck together also
supervised more than 30 master thesis projects for Universiteit van Amsterdam in 2013.

7.2.3. Juries
• Jan van Eijck, PhD: Arno Bastenhof, Universiteit Utrecht, The Netherlands
• Jan van Eijck, PhD: Frédéric Moisan, Université de Toulouse, France
• Paul Klint, Phd: Romulo Goncalvez, Universiteit van Amsterdam, The Netherlands
• Jurgen Vinju, PhD: C.P.T. de Gouw, Universiteit Leiden, The Netherlands.

7.3. Popularization
• Jan van Eijck : “Why Learn Haskell?”, Talk for UvA Programming Summer School, Amsterdam,

July 2, 2013.
• Paul Klint, Davy Landman: “Hoe ontstond de eerste computer?” (“The origin of the first computer”),

Public lecture for broad audience, NEMO, Amsterdam.
• Paul Klint, “How to test a meta-program?”, invited talk at the Workshop on Scalable Language

Specification (SLS 2013).
• Paul Klint, "BaMa: Key to the Future?”, invited talk at IW1010: 10 Years of UvA Information

Sciences, Amsterdam
• Paul Klint, “Understanding the Quality of Open Source Projects”, invited talk at SATToSe, Bern
• Davy Landman : “What Does Control Flow Really Look Like? Eyeballing the Cyclomatic Com-

plexity Metric”, poster and presentation at ICT.OPEN (NWO networking event).
• Michael Steindorfer : “Object Redundancy Profiling in Java”, poster and presentation at ICT.OPEN

(NWO networking event).
• Tijs van der Storm : “Domain-specific languages”, Guest lecture Bachelor Computer Science,

Universiteit van Amsterdam
• Tijs van der Storm : “Opportunities and Risks of MDD – The case of Derric: a DSL for digital

forensics”, Presentation at CodeGeneration 2013.
• Tijs van der Storm : “Implementing Domain-specific languages using Rascal”, Invited Presentation

at Sioux: Source of your technology.
• Tijs van der Storm, Kevin van der Vlist, Jimi van der Woning : “Questionnaires in Rascal”,

participation Language Workbench Challenge 2013 (LWC’13).
• Tijs van der Storm, Alex Loh, “Questionnaires in Ensō”, participation Language Workbench Chal-

lenge 2013 (LWC’13).
• Tijs van der Storm : “QL: a language for questionnaires”, assignment description LWC’13.
• Tijs van der Storm : “Software Development Automation Research: Collaboration with Industry”,

presentation at the 1st Dutch conference on Software Development Automation (SDA’13).

16 Activity Report INRIA 2013

• Jurgen Vinju : “Modularity”, Guest lecture Bachelor Computer Science, Universiteit van Amster-
dam

• Jurgen Vinju : “Software Analysis and Transformation with Rascal” , Presentation NBIC BioAssist
meeting (BioAssist)

• Jurgen Vinju, Tijs van der Storm, Atze van der Ploeg, Anastasia Izmaylova, Ali Afroozeh : CWI
Open Day, demonstration of NAO robot programming to children using dedicated DSL “Marvol”.

• Jurgen Vinju, Tijs van der Storm, Atze van der Ploeg : “CWI In Bedrijf” (CWI and Industry) ,
demonstration of Rascal language workbench using the NAO robot DSL “Marvol”.

• Vadim Zaytsev : “A Snappy Introduction to Metaprogramming in Rascal”, RedDevCon’13.
• Vadim Zaytsev : “Modeling Software Structures with GrammarLab”, Tutorial at MoDELS’13.

8. Bibliography
Major publications by the team in recent years

[1] B. BASTEN. Tracking Down the Origins of Ambiguity in Context-Free Grammars, in "Seventh International
Colloquium on Theoretical Aspects of Computing (ICTAC 2010)", A. CAVALCANTI, D. DEHARBE, M.-C.
GAUDEL, J. WOODCOCK (editors), Springer, September 2010, vol. 6255, pp. 76-90

[2] P. CHARLES, R. M. FUHRER, S. M. SUTTON JR, E. DUESTERWALD, J. VINJU. Accelerating the Creation
of Customized, Language-Specific IDEs in Eclipse, in "Proceedings of the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009", S.
ARORA, G. T. LEAVENS (editors), 2009

[3] JAN VAN. EIJCK, C. UNGER. , Computational Semantics with Functional Programming, Cambridge University
Press, September 2010

[4] S. ERDWEG, T. STORM, M. VOELTER, M. BOERSMA, R. BOSMAN, W. R. COOK, A. GERRITSEN, A.
HULSHOUT, S. KELLY, A. LOH, G. KONAT, P. J. MOLINA, M. PATATNIK, R. POHJONEN, E. SCHINDLER,
K. SCHINDLER, R. SOLMI, V. VERGU, K. B. VLIST, G. WACHSMUTH, J. M. WONING. The State Of The
Art In Language Workbenches. Conclusions From The Language Workbench Challenge, in "Proceedings of
the International Conference on Software Language Engineering (SLE, 2013)", Indianapolis, USA, 2013,
http://hal.inria.fr/hal-00923386

[5] M. HILLS, P. KLINT, J. VINJU. Meta-Language Support For Type-Safe Access To External Resources, in "Pre-
Proceedings of the 5th International Conference on Software Language Engineering", Dresden, Netherlands,
K. CZARNECKI, G. HEDIN (editors), Fakultät Informatik, Technische Universität Dresden, 2012, pp. 370 -
389, http://hal.inria.fr/hal-00756878

[6] M. HILLS, P. KLINT, J. VINJU. Program Analysis Scenarios In Rascal, in "Proceedings of the International
Workshop on Rewriting Logic and its Applications (WRLA, 2012)", Talinn, Estonia, F. DURÁN (editor),
Springer, 2012, vol. 7571, pp. 10 - 30, An invited paper for WRLA 2012, describing our work on program
analysis and comparing our approach to approaches based on rewriting logic semantics, http://hal.inria.fr/hal-
00756880

[7] M. HILLS, P. KLINT, J. VINJU. Scripting A Refactoring With Rascal And Eclipse, in "Proceedings of the 5th
Workshop on Refactoring Tools 2012", Rapperswil, Switzerland, P. SOMMERLAD (editor), ACM, 2012, pp.
40 - 49, http://hal.inria.fr/hal-00756879

http://hal.inria.fr/hal-00923386
http://hal.inria.fr/hal-00756878
http://hal.inria.fr/hal-00756880
http://hal.inria.fr/hal-00756880
http://hal.inria.fr/hal-00756879

Project-Team ATEAMS 17

[8] M. HILLS, P. KLINT, T. VAN DER STORM, J. VINJU. A One-Stop Shop For Software Evolution Tool
Construction, in "ERCIM News", 2012, no 88, pp. 11 - 12, http://hal.inria.fr/hal-00756876

[9] P. KLINT, T. VAN DER STORM, J. VINJU. RASCAL: A Domain Specific Language for Source Code Analysis
and Manipulation, in "IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’09)",
Los Alamitos, CA, USA, 2009, pp. 168-177, http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28

[10] P. KLINT, T. VAN DER STORM, J. VINJU. EASY Meta-programming with Rascal, in "Generative and
Transformational Techniques in Software Engineering III", J. FERNANDES, R. LÄMMEL, J. VISSER, J.
SARAIVA (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2011, vol. 6491, pp.
222-289, http://dx.doi.org/10.1007/978-3-642-18023-1_6

[11] A. LOH, T. VAN DER STORM, J. W. COOK. Managed Data: Modular Strategies For Data Abstraction,
in "Proceedings of the ACM international symposium on New ideas, new paradigms, and reflections on
programming and software 2012", Tucson, United States, ACM, 2012, pp. 179 - 194, http://hal.inria.fr/hal-
00756886

[12] B. C. D. S. OLIVEIRA, T. STORM, A. LOH, W. R. COOK. Feature-Oriented Programming With Object
Algebras, in "Proceedings of the European Conference on Object-Oriented Programming (ECOOP, 2013)",
2013, http://hal.inria.fr/hal-00923387

[13] J. J. VINJU, M. W. GODFREY. What does control flow really look like? Eyeballing the Cyclomatic Complexity
Metric, in "Ninth IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM’12)", IEEE Computer Society, 2012

[14] J. VAN DEN BOS, T. VAN DER STORM. Bringing Domain-Specific Languages to Digital Forensics, in
"Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu
, HI, USA, May 21-28, 2011", Honolulu, United States, ACM, 2011, pp. 671-680, http://hal.inria.fr/hal-
00644687/en

[15] J. VAN DEN BOS, T. VAN DER STORM. Domain-Specific Languages For Better Forensic Software, in "ERCIM
News", 2012, vol. 2012, no 90, http://hal.inria.fr/hal-00756885

[16] J. VAN DEN BOS, T. VAN DER STORM. Domain-Specific Optimization In Digital Forensics, in "Proceedings
of the International Conference on Model Transformation (ICMT, 2012)", Prague, Czech Republic, Z. HU, J.
DE LARA (editors), Springer, 2012, vol. 7307, pp. 121 - 136, http://hal.inria.fr/hal-00756891

[17] T. VAN DER STORM, J. W. COOK, A. LOH. Object Grammars: Compositional & Bidirectional Mapping
Between Text and Graphs, in "Software Language Engineering", Dresden, Germany, K. CZARNECKI, G.
HEDIN (editors), September 2012, http://hal.inria.fr/hal-00758627

Publications of the year
Articles in International Peer-Reviewed Journals

[18] F. A. G. SIETSMA, K. R. APT. Common Knowledge In Email Exchanges, in "ACM Transactions on
Computational Logic", 2013, vol. 14, no 3, pp. 1 - 23, http://hal.inria.fr/hal-00923396

http://hal.inria.fr/hal-00756876
http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1007/978-3-642-18023-1_6
http://hal.inria.fr/hal-00756886
http://hal.inria.fr/hal-00756886
http://hal.inria.fr/hal-00923387
http://hal.inria.fr/hal-00644687/en
http://hal.inria.fr/hal-00644687/en
http://hal.inria.fr/hal-00756885
http://hal.inria.fr/hal-00756891
http://hal.inria.fr/hal-00758627
http://hal.inria.fr/hal-00923396

18 Activity Report INRIA 2013

[19] F. A. G. SIETSMA, D. J. N. EIJCK. Action Emulation Between Canonical Models, in "Journal of Philosophical
Logic", 2013, vol. 42, no 6, pp. 905 - 925, http://hal.inria.fr/hal-00923395

[20] A. J. VAN DER PLOEG. Drawing Non-Layered Tidy Trees In Linear Time, in "Software – Practice and
Experience", 2013, http://hal.inria.fr/hal-00923389

[21] D. J. N. VAN EIJCK, T. VAN DER STORM. Understanding Information Update In Questionnaires, in "Science
of Computer Programming", 2013, http://hal.inria.fr/hal-00923384

[22] T. VAN DER STORM, J. J. VINJU. Towards Multilingual Programming Environments, in "Science of Computer
Programming", 2013, http://hal.inria.fr/hal-00923385

International Conferences with Proceedings

[23] A. AFROOZEH, M. G. J. VAN DEN BRAND, A. JOHNSTONE, E. SCOTT, J. J. VINJU. Safe Specification
Of Operator Precedence Rules, in "Proceedings of the International Conference on Software Language
Engineering (SLE, 2013)", K. CZARNECKI, G. HEDIN (editors), 2013, http://hal.inria.fr/hal-00923391

[24] S. ERDWEG, T. VAN DER STORM, M. VOELTER, M. BOERSMA, R. BOSMAN, W. R. COOK, A. GERRIT-
SEN, A. HULSHOUT, S. KELLY, A. LOH, G. KONAT, P. J. MOLINA, M. PALATNIK, R. POHJONEN, E.
SCHINDLER, K. SCHINDLER, R. SOLMI, V. VERGU, K. B. VAN DER VLIST, G. WACHSMUTH, J. M. VAN
DER WONING. The State Of The Art In Language Workbenches. Conclusions From The Language Workbench
Challenge, in "Proceedings of the International Conference on Software Language Engineering (SLE, 2013)",
2013, http://hal.inria.fr/hal-00923386

[25] M. A. HILLS, P. KLINT, J. J. VINJU. An Empirical Study Of PHP Feature Usage, in "Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA, 2013)", M. PEZZE, M. HARMAN
(editors), 2013, http://hal.inria.fr/hal-00923390

[26] P. KLINT, D. LANDMAN, J. J. VINJU. Exploring The Limits Of Domain Model Recovery, in "29th IEEE
International Conference on Software Maintenance (ICSM), 2013", IEEE Computer Society, 2013, pp. 120 -
129, http://hal.inria.fr/hal-00923392

[27] P. KLINT, A. J. VAN DER PLOEG. A Library For Declarative Resolution-Independent 2D Graphics, in
"Proceedings of the Practical Aspects of Declarative Languages (PADL, 2013)", 2013, http://hal.inria.fr/hal-
00923381

[28] P. KLINT, R. VAN ROZEN. Micro-Machinations: A DSL For Game Economies, in "Proceedings of the
International Conference on Software Language Engineering (SLE, 2013)", M. ERWIG, R. F. PAIGE, E.
VAN WYK (editors), Lecture Notes in Computer Science, Springer, 2013, vol. 8225, pp. 36 - 55, http://hal.
inria.fr/hal-00923383

[29] R. LÄMMEL, V. ZAYTSEV. Language Support For Megamodel Renarration, in "Proceedings of the Extreme
Modeling Workshop (XM, 2013)", J. DE LARA, D. DI RUSCIO, A. PIERANTONIO (editors), 2013, http://
hal.inria.fr/hal-00923398

[30] B. C. D. S. OLIVEIRA, T. VAN DER STORM, A. LOH, W. R. COOK. Feature-Oriented Programming With
Object Algebras, in "Proceedings of the European Conference on Object-Oriented Programming (ECOOP,
2013)", 2013, http://hal.inria.fr/hal-00923387

http://hal.inria.fr/hal-00923395
http://hal.inria.fr/hal-00923389
http://hal.inria.fr/hal-00923384
http://hal.inria.fr/hal-00923385
http://hal.inria.fr/hal-00923391
http://hal.inria.fr/hal-00923386
http://hal.inria.fr/hal-00923390
http://hal.inria.fr/hal-00923392
http://hal.inria.fr/hal-00923381
http://hal.inria.fr/hal-00923381
http://hal.inria.fr/hal-00923383
http://hal.inria.fr/hal-00923383
http://hal.inria.fr/hal-00923398
http://hal.inria.fr/hal-00923398
http://hal.inria.fr/hal-00923387

Project-Team ATEAMS 19

[31] A. J. VAN DER PLOEG. Monadic Functional Reactive Programming, in "Proceedings of the ACM SIGPLAN
Haskell Symposium", C. SHAN (editor), 2013, http://hal.inria.fr/hal-00923382

[32] V. ZAYTSEV. Micropatterns In Grammars, in "Proceedings of the International Conference on Software
Language Engineering (SLE, 2013)", M. ERWIG, R. F. PAIGE, E. VAN WYK (editors), 2013, http://hal.
inria.fr/hal-00923399

[33] V. ZAYTSEV. Pending Evolution Of Grammars, in "Proceedings of the Extreme Modeling Workshop (XM,
2013)", J. DE LARA, D. DI RUSCIO, A. PIERANTONIO (editors), 2013, http://hal.inria.fr/hal-00923397

[34] J. VAN DEN BOS, T. VAN DER STORM. A Case Study In Evidence-Based DSL Evolution, in "Proceedings of
the 9th European Conference on Modelling Foundations and Applications", P. VAN GORP, T. RITTER, L. M.
ROSE (editors), Lecture Notes in Computer Science, Springer, 2013, vol. 7949, pp. 207 - 219, http://hal.inria.
fr/hal-00923401

[35] J. VAN DEN BOS, T. VAN DER STORM. TRINITY: An IDE For The Matrix, in "Proceedings of the 28th
IEEE International Conference on Software Maintenance", IEEE, 2013, pp. 520 - 523, http://hal.inria.fr/hal-
00923400

[36] T. VAN DER STORM. Semantic Deltas For Live DSL Environments, in "Proceedings of the International
Workshop on Live Programming (LIVE, 2013)", 2013, http://hal.inria.fr/hal-00923388

Research Reports

[37] P. R. GRIFFIOEN. , Type Inference For Linear Algebra With Units Of Measurement, 2013, no SwAT-1302,
pp. 1 - 32, http://hal.inria.fr/hal-00923380

[38] A. IZMAYLOVA, P. KLINT, A. SHAHI, J. J. VINJU. , M3: An Open Model For Measuring Code Artifacts,
2013, no arXiv-1312.1188, pp. 1-2, http://hal.inria.fr/hal-00923379

http://hal.inria.fr/hal-00923382
http://hal.inria.fr/hal-00923399
http://hal.inria.fr/hal-00923399
http://hal.inria.fr/hal-00923397
http://hal.inria.fr/hal-00923401
http://hal.inria.fr/hal-00923401
http://hal.inria.fr/hal-00923400
http://hal.inria.fr/hal-00923400
http://hal.inria.fr/hal-00923388
http://hal.inria.fr/hal-00923380
http://hal.inria.fr/hal-00923379

