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2. Overall Objectives
2.1. Introduction

Can a robot learn like a child? Can it learn new skills and new knowledge in an unknown and changing
environment? How can it discover its body and its relationships with the physical and social environment?
How can its cognitive capacities continuously develop without the intervention of an engineer? What can it
learn through natural social interactions with humans?

These are the questions that are being investigated in the FLOWERS research team at Inria Bordeaux Sud-
Ouest. Rather than trying to imitate the intelligence of adult humans like in the field of Artificial Intelligence,
we believe that trying to reconstruct the processes of development of the child’s mind will allow for more
adaptive, more robust and more versatile machines. This approach is called developmental robotics, or
epigenetic robotics, and imports concepts and theories from developmental psychology. As most of these
theories are not formalized, this implies a crucial computational modeling activity, which in return provides
means to assess the internal coherence of theories and sketch new hypothesis about the development of the
human child’s sensorimotor and cognitive abilities.

Our team focuses in particular on the study of developmental constraints that allow for efficient open-ended
learning of novel sensorimotor and interaction skills in embodied systems. In particular, we study constraints
that guide exploration in large sensorimotor spaces:

• Mechanisms of intrinsically motivated exploration and active learning, including artificial curiosity,
allowing in particular to self-organize developmental trajectories and collect efficiently learning
data;

• Mechanisms of adequately constrained optimization and statistical inference for sensorimotor skill
acquisition (e.g. for optimizing motor policies in real robots);

• Mechanisms for social learning, e.g. learning by imitation or demonstration, which implies both
issues related to machine learning and human-robot interaction;

• Constraints related to embodiment, in particular through the concept of morphological computation,
as well as the structure of motor primitives/muscle synergies that can leverage the properties of
morphology and physics for simplifying motor control and perception;

• Maturational constraints which, coupled with the other constraints, can allow the progressive release
of novel sensorimotor degrees of freedom to be explored;

We also study how these constraints on exploration can allow a robot to bootstrap multimodal perceptual
abstractions associated to motor skills, in particular in the context of modelling language acquisition as a
developmental process grounded in action.

Among the developmental principles that characterize human infants and can be used in developmental robots,
FLOWERS focuses on the following three principles:

• Exploration is progressive. The space of skills that can be learnt in real world sensorimotor spaces
is so large and complicated that not everything can be learnt at the same time. Simple skills are learnt
first, and only when they are mastered, new skills of progressively increasing difficulty become the
behavioural focus;

• Internal representations are (partially) not innate but learnt and adaptive. For example, the
body map, the distinction self/non-self and the concept of “object” are discovered through experience
with initially uninterpreted sensors and actuators, guided by experience, the overall pre-determined
connection structure of the brain, as well as a small set of simple innate values or preferences.

• Exploration can be self-guided and/or socially guided. On the one hand, internal and intrinsic
motivation systems regulate and organize spontaneous exploration; on the other hand, exploration
can be guided through social learning and interaction with caretakers.
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2.1.1. Research axis
The work of FLOWERS is organized around the following axis:

• Curiosity-driven exploration and sensorimotor learning: intrinsic motivation are mechanisms
that have been identified by developmental psychologists to explain important forms of spontaneous
exploration and curiosity. In FLOWERS, we try to develop computational intrinsic motivation sys-
tems, and test them on robots, allowing to regulate the growth of complexity in exploratory be-
haviours. These mechanisms are studied as active learning mechanisms, allowing to learn efficiently
in large inhomogeneous sensorimotor spaces;

• Cumulative learning of sensorimotor skills: FLOWERS develops machine learning algorithms
that can allow embodied machines to acquire cumulatively sensorimotor skills. In particular, we
develop optimization and reinforcement learning systems which allow robots to discover and learn
dictionaries of motor primitives, and then combine them to form higher-level sensorimotor skills.

• Natural and intuitive social learning: FLOWERS develops interaction frameworks and learning
mechanisms allowing non-engineer humans to teach a robot naturally. This involves two sub-themes:
1) techniques allowing for natural and intuitive human-robot interaction, including simple ergonomic
interfaces for establishing joint attention; 2) learning mechanisms that allow the robot to use the
guidance hints provided by the human to teach new skills;

• Discovering and abstracting the structure of sets of uninterpreted sensors and motors: FLOW-
ERS studies mechanisms that allow a robot to infer structural information out of sets of sensorimotor
channels whose semantics is unknown, for example the topology of the body and the sensorimotor
contingencies (propriocetive, visual and acoustic). This process is meant to be open-ended, progress-
ing in continuous operation from initially simple representations to abstract concepts and categories
similar to those used by humans.

• Body design and role of the body in sensorimotor and social development We study how the
physical properties of the body (geometry, materials, distribution of mass, growth, ...) can impact
the acquisition of sensorimotor and interaction skills. This requires to consider the body as an
experimental variable, and for this we develop special methodologies for designing and evaluating
rapidly new morphologies, especially using rapid prototyping techniques like 3D printing.

• Intelligent Tutoring Systems:FLOWERS develops methods for online personalization of teaching
sequences for educational software and MOOCs. This work builds on top of online optimization
methods and motivational research previously developed.

2.2. Highlights of the Year
In April 2013 at the International Conference on Robotics and Automation in Karlsruhe, Freek Stulp received
the “King-Sun Fu Best Paper Award of the IEEE Transactions on Robotics”. As T-RO has on of the highest
impact factors, this is considered to be the highest paper prize in robotics. It is the first time this prize has been
awarded to an article on machine learning.

The team has announced in october 2013 the open-source release of the Poppy humanoid robot. Poppy is to our
knowledge the first humanoid robot in the world to be at the same time open-source (hardware and software)
and based on 3D printing techniques. It is based on robust, flexible, easy-to-use hardware and software. Its
development aims at providing an affordable and hackable humanoid robot for science, education, art and
geeks. Poppy was initially made for our research project about understanding the role of morphology in biped
locomotion, and full-body physical and social interaction in robots and humans. The robot has generated
a huge enthusiasm from geeks, academic laboratories, and educational institutions, and within the first two
months already 200 beta-testers registered to rebuild their own copy of the robot. Dozens of articles appeared
on the internet and printed press, and the Poppy videos was viewed nearly 40k times. Web site: http://www.
poppy-project.org.

http://www.poppy-project.org
http://www.poppy-project.org
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The Flowers team made major achievements in diffusing science and technology towards the general public.
Pierre-Yves Oudeyer published a popular science book entitled "Aux sources de la parole" at Odile Jacob, and
was invited to talk about our research on major radio channels (e.g. France Inter, France Culture, France Info).
http://www.pyoudeyer.com/AuxSourcesDeLaParole.htm

The team also initiated the development of educational activities in "écoles primaires" and "collèges" to have
kids discover robotics and programming, as well as ran experiments in "école primaires" in Aquitaine to test
novel educational software to help children learn mathematics, and developped within the KidLearn ADT
project. This was achieved thanks to the arrival of Didier Roy, former math teacher in college, in the team.

The Flowers team is now coordinating the European project "Semi-autonomous 3rdHand" (coord. Manuel
Lopes). The goal is to develop a semi-autonomous robot assistant that acts as a third hand of a human worker
in factories, which may be a transformative technology for industry in the coming years. It aims to elaborate
techniques allowing to instruct even by an untrained layman worker, allow for efficient knowledge transfer
between tasks and enable a effective collaboration between a human worker with a robot third hand. http://
3rdhandrobot.eu

The Flowers team started the work on Intelligent Tutoring Systems. The project Kidlearn is a research
project studying how machine learning can be applied to intelligent tutoring systems. It aims at developing
methodologies and software which adaptively personalize sequences of learning activities to the particularities
of each individual student. First experiments were realized in elementary schools of Région Aquitaine, where
6-7 year old kids learnt elements of mathematics with our software. https://flowers.inria.fr/research/kidlearn/

An associated team, called Neurocuriosity, was created between Flowers and the Cognitive Neuroscience lab
of Jacqueline Gottlieb at Univ. Columbia, NY. The goal of this associated team is to investigate mechanisms
of spontaneous exploration and learning in humans by setting up experiments allowing to confirm or falsify
predictions made by computational models previously developped by the team. This constitutes a crucial
collaboration between developmental robotics and cognitive neuroscience. This joint work already led to a
major publication on curiosity and information seeking, in the prestigious Trends in Cognitive Science journal
(impact factor: 16.5).[10]

Thomas Cederborgs PhD thesis "A Formal Approach to Social Learning: Exploring Language Acquisition
Through Imitation" won the ”ThesAqt” prize, awarded by Region Aquitaine who gives this awards to excellent
theses in the region.

3. Research Program

3.1. Research Program
Research in artificial intelligence, machine learning and pattern recognition has produced a tremendous
amount of results and concepts in the last decades. A blooming number of learning paradigms - supervised,
unsupervised, reinforcement, active, associative, symbolic, connectionist, situated, hybrid, distributed learn-
ing... - nourished the elaboration of highly sophisticated algorithms for tasks such as visual object recognition,
speech recognition, robot walking, grasping or navigation, the prediction of stock prices, the evaluation of
risk for insurances, adaptive data routing on the internet, etc... Yet, we are still very far from being able to
build machines capable of adapting to the physical and social environment with the flexibility, robustness, and
versatility of a one-year-old human child.

Indeed, one striking characteristic of human children is the nearly open-ended diversity of the skills they
learn. They not only can improve existing skills, but also continuously learn new ones. If evolution certainly
provided them with specific pre-wiring for certain activities such as feeding or visual object tracking, evidence
shows that there are also numerous skills that they learn smoothly but could not be “anticipated” by biological
evolution, for example learning to drive a tricycle, using an electronic piano toy or using a video game joystick.
On the contrary, existing learning machines, and robots in particular, are typically only able to learn a single
pre-specified task or a single kind of skill. Once this task is learnt, for example walking with two legs, learning

http://www.pyoudeyer.com/AuxSourcesDeLaParole.htm
http://3rdhandrobot.eu
http://3rdhandrobot.eu
https://flowers.inria.fr/research/kidlearn/
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is over. If one wants the robot to learn a second task, for example grasping objects in its visual field, then
an engineer needs to re-program manually its learning structures: traditional approaches to task-specific
machine/robot learning typically include engineer choices of the relevant sensorimotor channels, specific
design of the reward function, choices about when learning begins and ends, and what learning algorithms
and associated parameters shall be optimized.

As can be seen, this requires a lot of important choices from the engineer, and one could hardly use the term
“autonomous” learning. On the contrary, human children do not learn following anything looking like that
process, at least during their very first years. Babies develop and explore the world by themselves, focusing
their interest on various activities driven both by internal motives and social guidance from adults who only
have a folk understanding of their brains. Adults provide learning opportunities and scaffolding, but eventually
young babies always decide for themselves what activity to practice or not. Specific tasks are rarely imposed
to them. Yet, they steadily discover and learn how to use their body as well as its relationships with the
physical and social environment. Also, the spectrum of skills that they learn continuously expands in an
organized manner: they undergo a developmental trajectory in which simple skills are learnt first, and skills of
progressively increasing complexity are subsequently learnt.

A link can be made to educational systems where research in several domains have tried to study how to
provide a good learning experience to learners. This includes the experiences that allow better learning, and
in which sequence they must be experienced. This problem is complementary to that of the learner that tries
to learn efficiently, and the teacher here has to use as efficienlty the limited time and motivational resources
of the learner. Several results from psychology [70] and neuroscience [10] have argued that the human brain
feels intrinsic pleasure in practicing activities of optimal difficulty or challenge. A teacher must exploit such
activities to create positive psychological states of flow [76].

A grand challenge is thus to be able to build robotic machines that possess this capability to discover, adapt and
develop continuously new know-how and new knowledge in unknown and changing environments, like human
children. In 1950, Turing wrote that the child’s brain would show us the way to intelligence: “Instead of trying
to produce a program to simulate the adult mind, why not rather try to produce one which simulates the child’s”
[133]. Maybe, in opposition to work in the field of Artificial Intelligence who has focused on mechanisms
trying to match the capabilities of “intelligent” human adults such as chess playing or natural language
dialogue [91], it is time to take the advice of Turing seriously. This is what a new field, called developmental
(or epigenetic) robotics, is trying to achieve [100] [135]. The approach of developmental robotics consists
in importing and implementing concepts and mechanisms from developmental psychology [107], cognitive
linguistics [75], and developmental cognitive neuroscience [95] where there has been a considerable amount
of research and theories to understand and explain how children learn and develop. A number of general
principles are underlying this research agenda: embodiment [72] [119], grounding [89], situatedness [66],
self-organization [131] [120], enaction [134], and incremental learning [73].

Among the many issues and challenges of developmental robotics, two of them are of paramount importance:
exploration mechanisms and mechanisms for abstracting and making sense of initially unknown sensorimotor
channels. Indeed, the typical space of sensorimotor skills that can be encountered and learnt by a developmen-
tal robot, as those encountered by human infants, is immensely vast and inhomogeneous. With a sufficiently
rich environment and multimodal set of sensors and effectors, the space of possible sensorimotor activities is
simply too large to be explored exhaustively in any robot’s life time: it is impossible to learn all possible skills
and represent all conceivable sensory percepts. Moreover, some skills are very basic to learn, some other very
complicated, and many of them require the mastery of others in order to be learnt. For example, learning to
manipulate a piano toy requires first to know how to move one’s hand to reach the piano and how to touch
specific parts of the toy with the fingers. And knowing how to move the hand might require to know how to
track it visually.

Exploring such a space of skills randomly is bound to fail or result at best on very inefficient learning [15].
Thus, exploration needs to be organized and guided. The approach of epigenetic robotics is to take inspiration
from the mechanisms that allow human infants to be progressively guided, i.e. to develop. There are two broad
classes of guiding mechanisms which control exploration:
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1. internal guiding mechanisms, and in particular intrinsic motivation, responsible of spontaneous
exploration and curiosity in humans, which is one of the central mechanisms investigated in
FLOWERS, and technically amounts to achieve online active self-regulation of the growth of
complexity in learning situations;

2. social learning and guidance, a learning mechanisms that exploits the knowledge of other agents
in the environment and/or that is guided by those same agents. These mechanisms exist in many
different forms like emotional reinforcement, stimulus enhancement, social motivation, guidance,
feedback or imitation, some of which being also investigated in FLOWERS;

3.1.1. Internal guiding mechanisms
In infant development, one observes a progressive increase of the complexity of activities with an associated
progressive increase of capabilities [107], children do not learn everything at one time: for example, they first
learn to roll over, then to crawl and sit, and only when these skills are operational, they begin to learn how to
stand. The perceptual system also gradually develops, increasing children perceptual capabilities other time
while they engage in activities like throwing or manipulating objects. This make it possible to learn to identify
objects in more and more complex situations and to learn more and more of their physical characteristics.

Development is therefore progressive and incremental, and this might be a crucial feature explaining the
efficiency with which children explore and learn so fast. Taking inspiration from these observations, some
roboticists and researchers in machine learning have argued that learning a given task could be made much
easier for a robot if it followed a developmental sequence and “started simple” [68] [80]. However, in these
experiments, the developmental sequence was crafted by hand: roboticists manually build simpler versions of
a complex task and put the robot successively in versions of the task of increasing complexity. And when they
wanted the robot to learn a new task, they had to design a novel reward function.

Thus, there is a need for mechanisms that allow the autonomous control and generation of the developmental
trajectory. Psychologists have proposed that intrinsic motivations play a crucial role. Intrinsic motivations
are mechanisms that push humans to explore activities or situations that have intermediate/optimal levels of
novelty, cognitive dissonance, or challenge [70] [76] [79]. The role and structure of intrinsic motivation in
humans have been made more precise thanks to recent discoveries in neuroscience showing the implication
of dopaminergic circuits and in exploration behaviors and curiosity [78] [92] [125]. Based on this, a number
of researchers have began in the past few years to build computational implementation of intrinsic motivation
[15] [117] [123] [69] [93] [105] [124]. While initial models were developed for simple simulated worlds,
a current challenge is to manage to build intrinsic motivation systems that can efficiently drive exploratory
behaviour in high-dimensional unprepared real world robotic sensorimotor spaces [117][15] [118] [122].
Specific and complex problems are posed by real sensorimotor spaces, in particular due to the fact that they
are both high-dimensional as well as (usually) deeply inhomogeneous. As an example for the latter issue,
some regions of real sensorimotor spaces are often unlearnable due to inherent stochasticity or difficulty, in
which case heuristics based on the incentive to explore zones of maximal unpredictability or uncertainty,
which are often used in the field of active learning [74] [90] typically lead to catastrophic results. The issue
of high dimensionality does not only concern motor spaces, but also sensory spaces, leading to the problem
of correctly identifying, among typically thousands of quantities, those latent variables that have links to
behavioral choices. In FLOWERS, we aim at developing intrinsically motivated exploration mechanisms that
scale in those spaces, by studying suitable abstraction processes in conjunction with exploration strategies.

3.1.2. Socially Guided and Interactive Learning
Social guidance is as important as intrinsic motivation in the cognitive development of human babies [107].
There is a vast literature on learning by demonstration in robots where the actions of humans in the
environment are recognized and transferred to robots [67]. Most such approaches are completely passive: the
human executes actions and the robot learns from the acquired data. Recently, the notion of interactive learning
has been introduced in [132], [71], motivated by the various mechanisms that allow humans to socially guide
a robot [121]. In an interactive context the steps of self-exploration and social guidances are not separated and
a robot learns by self exploration and by receiving extra feedback from the social context [132], [96] [106].
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Social guidance is also particularly important for learning to segment and categorize the perceptual space.
Indeed, parents interact a lot with infants, for example teaching them to recognize and name objects or
characteristics of these objects. Their role is particularly important in directing the infant attention towards
objects of interest that will make it possible to simplify at first the perceptual space by pointing out a segment
of the environment that can be isolated, named and acted upon. These interactions will then be complemented
by the children own experiments on the objects chosen according to intrinsic motivation in order to improve
the knowledge of the object, its physical properties and the actions that could be performed with it.

In FLOWERS, we are aiming at including intrinsic motivation system in the self-exploration part thus
combining efficient self-learning with social guidance [109], [110]. We also work on developing perceptual
capabilities by gradually segmenting the perceptual space and identifying objects and their characteristics
through interaction with the user [102] and robots experiments [94]. Another challenge is to allow for more
flexible interaction protocols with the user in terms of what type of feedback is provided and how it is provided
[98].

4. Application Domains

4.1. Applications
• Personal robotics. Many indicators show that the arrival of personal robots in homes and everyday

life will be a major fact of the 21st century. These robots will range from purely entertainment or
educative applications to social companions that many argue will be of crucial help in our aging
society. For example, UNECE evaluates that the industry of entertainment, personal and service
robotics will grow from $5.4Bn to $17.1Bn over 2008-2010. Yet, to realize this vision, important
obstacles need to be overcome: these robots will have to evolve in unpredictable homes and learn
new skills while interacting with non-engineer humans after they left factories, which is out of reach
of current technology. In this context, the refoundation of intelligent systems that developmental
robotics is exploring opens potentially novel horizons to solve these problems.

• Human-Robot Collaboration. Robots play a vital role for industry and ensure the efficient and
competitive production of a wide range of goods. They replace humans in many tasks which
otherwise would be too difficult, too dangerous, or too expensive to perform. However, the new
needs and desires of the society call for manufacturing system centered around personalized products
and small series productions. Human-robot collaboration could widen the use of robot in this new
situations if robots become cheaper, easier to program and safe to interact with. The most relevant
systems for such applications would follow an expert worker and works with (some) autonomy, but
being always under supervision of the human and acts based on its task models.

• Video games. In conjunction with entertainment robotics, a new kind of video games are developing
in which the player must either take care of a digital creature (e.g. Neopets), or tame it (e.g.
Nintendogs), or raise/accompany them (e.g. Sims). The challenges entailed by programming these
creatures share many features with programming personal/entertainment robots. Hence, the video
game industry is also a natural field of application for FLOWERS.

• Environment perception in intelligent vehicles. When working in simulated traffic environments,
elements of FLOWERS research can be applied to the autonomous acquisition of increasingly
abstract representations of both traffic objects and traffic scenes. In particular, the object classes
of vehicles and pedestrians are if interest when considering detection tasks in safety systems, as
well as scene categories (”scene context”) that have a strong impact on the occurrence of these
object classes. As already indicated by several investigations in the field, results from present-
day simulation technology can be transferred to the real world with little impact on performance.
Therefore, applications of FLOWERS research that is suitably verified by real-world benchmarks
has direct applicability in safety-system products for intelligent vehicles.
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• Automated Tutoring Systems. Optimal teaching and efficient teaching/learning environments can
be applied to aid teaching in schools aiming both at increase the achievement levels and the reduce
time needed. From a practical perspective, improved models could be saving millions of hours of
students’ time (and effort) in learning. These models should also predict the achievement levels of
students in order to influence teaching practices.

5. Software and Platforms

5.1. Perception Tools
Participants: David Filliat [correspondant], Natalia Lyubova, Louis-Charles Caron, Alexander Gepperth.

5.1.1. Perception Abstraction Engine
Participants: David Filliat [correspondant], Natalia Lyubova.

PAE (Perception Abstraction Engine) is a C++ library developed to provide a uniform interface to existing
visual feature detector such as SIFT, SURF, MSER, superpixels, etc... Its main goal is to be able to use
these various feature detectors in a "bag of feature" approach for applications such as robot localisation and
object recognition. Several approach are also implemented for the visual vocabularies, in particular the fast
incremental vocabularies developed in the team.

The library provide common C++ interfaces to feature detectors, visual features and visual vocabularies. A
factory approach make it possible to change the feature detectors and visual vocabularies types and parameters
through configuration strings, without the need to recompile. Some applications are also included in the library,
in particular topological robot localization (room recognition) and visual object recognition. An Urbi interface
is also provided for these modules.

5.1.2. Incremental object discovery
Participants: Natalia Lyubova [correspondant], David Filliat.

This software makes it possible to detect, model and recognize objects in a scenario of interaction between a
humanoid robot and a human teacher. It is based either on standard images, or on the kinect camera to take
advantage of the depth information. The software is written in C++ and relies mainly on PAE and OpenCV.

The software implements several modules: candidate object segmentation based on motion information,
keypoint-based object tracking, incremental object model construction integrating multiple features (keypoints
+ superpixels) and object categorisation based on mutual information with robot motors (making it possible
to segment robot parts, objects and humans). Based on all these modules, it is possible for the robot to learn
objects shown by a human partner and to improve the objects models by manipulating them when they are put
in front of the robot.

5.1.3. Object recognition from a 3-D point cloud
Participants: Louis-Charles Caron [correspondant], Alexander Gepperth, David Filliat.

This software scans the 3-D point cloud of a scene to find objects and match them against a database of known
objects. The process consists in 3 stages. The segmentation step finds the objects in the point cloud, the feature
extraction computes discriminating properties to be used in the classification stage for object recognition.

The segmentation is based on simple assumptions about the geometry of an indoor scene. Successive
RANSACs are used to find large planes, which correspond to the floor, ceiling and walls. The cloud is stripped
from the points belonging to these planes. The remaining points are clustered, meaning that close-by points
are considered to form a single object.

Objects are characterized by their shape and color. Color histograms and SIFT features are computed, using the
PAE library, to capture the visual appearance of the objects. Their shape is encoded by computing thousands
of randomly chosen SURFLET features to construct a relative frequency histrogram.
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Figure 1. System Overview of the Incremental object discovery Software.

An early classification is done using each of the 3 features separately. For the color features a bag of words
approach (from PAE) is used. For the shape feature, the minimum squared distance between the object’s
histogram and that of all objects in the database is calculated. Classification scores are then fused by a feed-
forward neural network to get the final result [81].

5.1.4. PEDDETECT: GPU-accelerated person detection demo
Participant: Alexander Gepperth [correspondant].

PEDDETECT implements real-time person detection in indoor or outdoor environments. It can grab image
data directly from one or several USB cameras, as well as from pre-recorded video streams. It detects mulitple
persons in 800x600 color images at frame rates of >15Hz, depending on available GPU power. In addition, it
also classifies the pose of detected persons in one of the four categories "seen from the front", "seen from the
back", "facing left" and "facing right". The software makes use of advanced feature computation and nonlinear
SVM techniques which are accelerated using the CUDA interface to GPU programming to achieve high frame
rates. It was developed in the context of an ongoing collaboration with Honda Research Institute USA, Inc.

5.1.5. A Python OptiTrack client
Participant: Pierre Rouanet [correspondant].

This python library allows you to connect to an OptiTrack from NaturalPoint (http://www.naturalpoint.com/
optitrack/). This camera permits the tracking of 3D markers efficiently and robustly. With this library, you can
connect to the Motive software used by the OptiTrack and retrieve the 3D position and orientation of all your
tracked markers directly from python.

5.2. Datasets
5.2.1. Choreography dataset 1 and 2

Participants: Olivier Mangin [correspondant], Haylee Fogg.

http://www.naturalpoint.com/optitrack/
http://www.naturalpoint.com/optitrack/
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These databases contain choreography motions recorded through a kinect device. In the first dataset, these
motions have a combinatorial structure: from a given set of primitive dance motions, choreographies are
constructed as simultaneous execution of some of these primitive motions. Primitive dance motions are chosen
from a total set of 48 motions and are spanned over one or two limbs, either the legs (e.g. walk, squat), left
or right arm (e.g. wave hand, punch) or both arms (e.g. clap in hands, paddle). Complex choreographies are
produced as the simultaneous demonstration of two or three of these primitive motion: either one for legs and
one for both arm, or one for legs and one for each arm. The dataset has been used in the experiments from
[104] for studying learning techniques allowing to identify dictionaries of motion primitives, and is publicly
available at https://flowers.inria.fr/choreography_database.html.

The second dataset only contains choreographies composed of a single motion. It contains 110 records of each
gesture from a set of 10 simple gestures and was used in the experiments from [53]. The dataset is publicly
available at https://flowers.inria.fr/choreo2.

5.2.2. Development on NoFish Platform
Participants: Paul Fudal [correspondant], Sao Mai Nguyen.

NoFish (fig. 2) platform is a setup used by Mai Nguyen to perform severals experiments following her PhD
work on social learning and intrinsic motivation. The setup consists to an ErgoRobot (fig. 3) with a fishing rod
attached to the tip and a cap made with a red juggling ball. The robot is plugged on an ethernet power-switch
used to turn it off if something wrong happens with the robot (for example : the robot try to go in a position
he cannot reach and its motors are forcing too much). Tracking the cap is made with Full HD camera on the
ceiling. At last, a video-projector prints informations on the floor (fig. 4) which helps for interactions between
humans and the robots.

Figure 2. Illustration of the NoFishPlatform

Controlling the robot is made using URBI 1 scripts allowing different control level from single motor control
to pre-programmed primitive (for example : reseting the robot or make it going to its starting position). URBI
is also used to perform action through the power-switch if the robot must be turned off.

Tracking the cap is made by a program written using OpenCV and keep up to date the cap’s coordinates by
sending them to URBI through a network socket.

1http://www.gostai.com/products/jazz/urbi/

https://flowers.inria.fr/choreography_database.html
https://flowers.inria.fr/choreo2
http://www.gostai.com/products/jazz/urbi/
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Figure 3. Illustration of NoFish ErgoRobot

Figure 4. NoFish cap and informations printed on the floor
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An other program written in JAVA and Processing 2 allows to print informations on the floor; it consists of
a server receiving through a network socket texts and shapes informations to print on the floor and a JAVA
object which can be used with compatible software. This component where really useful for giving simple
and direct information during an experiment and also during interaction between a human and the robot for
socially guided experiments.

The main program is written in Matlab and includes all the explained previous components and softwares. It
also includes a forward kinematic calculation module used to ensure a movement sent can be safely be played
by the robot to avoid it breaking himself; this module gives step by step informations of what will happen
when the robot will play the movement like, for example, if the fishing cap will touch the floor at the end or
not which permits to keep the robot safe and speed up experiments by ignoring dangerous moves for the robot
and useless ones for the deployed algorithm.

This setup were used by Sao Mai Nguyen to run experiments during her thesis on social learning and intrinsic
motivation

5.3. Learning algorithms
5.3.1. KidLearn

Participants: Manuel Lopes [correspondant], Benjamin Clement, Pierre-Yves Oudeyer, Didier Roy.

The KidLearn software provides and Intelligent Tutoring System that optimizes teaching sequences based on
the estimated level of each particular student [65]. We implemented a Game of Money that allows students,
ages 7-8, to learn how to use money. It includes 3 main components: i) a webserver that handles the requests
and stores the experiments in a databased; ii) a GUI that provides the interface for the game; and iii) the
optimization software.

Graphical interfaces in ITS can have unwanted side effects. For this reason, the interface was entirely designed
with the help of a didactician, with several specific design choices motivated by pedagogical, motivational and
attention requirements. For example, the interface, shown in Figure 5. is such that:

• display is as clear and simple as possible;

• there is no chronometer, so that students are not put under time pressure;

• coins and banknotes have realistic visual appearance, and their relative sizes are respected;

• display of prices use visual encodings commonly used in shops;

• the zone for receiving money is automatically cleared in case of error after the student submits it;

• automatic snapping of money and tokens icons in the reception zone, and automatic visual arrange-
ment;

• text quantity is kept to minimum;

Four principal regions are defined in the graphical interface, as shown in Figure 5. The first is the wallet
location where users can pick and drag the money to drop them on the repository location to make for the
correct price. The object and the price are present in the object location, where the price can the written
and/or spoken depending on the parameterization of the activity. The information location is using to display
information for the learners such as extra clues when they make a mistake (for which they have to press the
light bulb) and feedback. In order to improve the pedagogical success of the activity, the correct solution is
presented automatically to the students if they fail to compose the correct price after 3 trials.

5.3.2. RLPark - Reinforcement Learning Algorithms in JAVA
Participant: Thomas Degris [correspondant].

2http://processing.org

http://processing.org
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Figure 5. Example interface with four principal regions of interaction: wallet location, repository, object and price,
and feedback location.

RLPark is a reinforcement learning framework in Java. RLPark includes learning algorithms, state representa-
tions, reinforcement learning architectures, standard benchmark problems, communication interfaces for three
robots, a framework for running experiments on clusters, and real-time visualization using Zephyr. More pre-
cisely, RLPark includes:

• Online Learning Algorithms: Sarsa, Expected Sarsa, Q-Learning, On-policy and off-policy Actor-
Critic with normal distribution (continuous actions) and Boltzmann distribution (discrete action),
average reward actor-critic, TD, TD(λ), GTD(λ), GQ(λ), TDC

• State Representations: tile coding (with no hashing, hashing and hashing with mumur2), Linear
Threshold Unit, observation history, feature normalization, radial basis functions

• Interface with Robots: the Critterbot, iRobot Create, Nao, Puppy, Dynamixel motors

• Benchmark Problems: mountain car, swing-up pendulum, random walk, continuous grid world

An example of RLpark running an online learning experiment on a reinforcement learning benchmark problem
is shown in Figure 6.

RLPark was started in spring 2009 in the RLAI group at the university of Alberta (Canada) when Thomas
Degris was a postdoc in this group. RLPark is still actively used by RLAI. Collaborators and users include
Adam White, Joseph Modayil and Patrick Pilarski (testing) from the University of Alberta.

RLPark has been used by Richard Sutton, a professor and iCORE chair in the department of computing science
at the University of Alberta, for a demo in his invited talk Learning About Sensorimotor Data at the Neural
Information Processing Systems (NIPS) 2011 3. Patrick Pilarski used RLPark for live demos on television
(Breakfast Television Edmonton, CityTV, June 5th, 2012) and at TEDx Edmonton on Intelligent Artificial
Limbs4. So far, RLPark has been used in more than a dozens of publications (see http://rlpark.github.com/
publications.html for a list).

RLPark has been ported to C++ by Saminda Abeyruwan, a student of the University of Miami (United States
of America). The Horde architecture in RLPark has been optimized for GPU by Clément Gehring, a student
of the McGill University in Montreal (Canada).

Future developments include the implementation of additional algorithms (the Dyna architecture, back
propagation in neural networks, ...). A paper is under review for the JMLR Machine Learning Open Source
Software. Documentation and tutorials are included on the RLPark web site 5. RLPark is licensed under the
open source Eclipse Public License.

3http://webdocs.cs.ualberta.ca/~sutton/Talks/Talks.html#sensorimotor
4http://www.youtube.com/watch?v=YPc-Ae7zqSo
5http://rlpark.github.com

http://rlpark.github.com/publications.html
http://rlpark.github.com/publications.html
http://webdocs.cs.ualberta.ca/~sutton/Talks/Talks.html#sensorimotor
http://www.youtube.com/watch?v=YPc-Ae7zqSo
http://rlpark.github.com
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Figure 6. An example of an experiment in RLPark. Zephyr displays two views of a learned weight vector, an
animation of the problem, the current policy distribution learned by the algorithm and the reward obtained by the

algorithm. Videos are available at: http://rlpark.github.com.

5.3.3. DMP-BBO Matlab library
Participant: Freek Stulp [correspondant].

The dmp_bbo (Black-Box Optimization for Dynamic Movement Primitives) Matlab library is a direct
consequence of the insight that black-box optimization outperforms reinforcement learning when using
policies represented as Dynamic Movement Primitives. It implements several variants of the PIBB algorithm
for direct policy search. It is currently being used and extended by several FLOWERS members (Manuel
Lopes, Clément Moulin-Frier) and external collaborators (Jonas Buchli, Hwangbo Jemin of ETH Zurich).
This code was used for the following publications: [130], [127], [128].

5.3.4. Self-calibration BCI - Matlab library
Participants: Jonathan Grizou [correspondant], Iñaki Iturrate, Luis Montesano, Manuel Lopes, Pierre-Yves
Oudeyer.

The Matlab software implements the algorithms described in [45]. It allows a robot to be instructed a new task
by a human using communicative signals initially totally unknown to the robot. It is currently extended and
improved in the context of EEG-based brain-machine interfaces (BMIs) [44].

It results in a BCI based control of sequential tasks with feedback signals that do not require any calibration
process. As a by-product, the method provides an unsupervised way to train a decoder with the same
performance of state-of-the-art supervised classifiers, while keeping the system operational and solving, with
a lower performance during the first steps, the unknown task. The algorithm has been tested with online
experiments (fig. 7), showing that the users were able to guide from scratch an agent to a desired position.

To improve the efficiency of the algorithm, we introduced a new planning method that uses the uncertainty
in the signal-target estimation. This planner is inspired by exploration methods with exploration bonuses that
allow guiding to reduce the uncertainty in an efficient way. We showed that trying to follow the best hypothesis
does not explore the space significantly to reduce uncertainty and thus identify the correct task. Only through

http://rlpark.github.com
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Figure 7. Results from the online BCI experiment for identifying the task. Evolution of the probability of the taught
task for each subject and run

an approach that plans how to reduce the uncertainty multiple steps ahead are we sure that the agent will reach
states that can only be explained by the correct hypothesis.

Figure 8. Comparison between different exploration methods. Planning wrt. uncertainty in noth task and signal
space is the most efficient method

5.3.5. PROPRE: simulation of developmental concept formation using PYTHON
Participant: Alexander Gepperth [correspondant].



16 Activity Report INRIA 2013

This simulation software implements the algorithms described in [86], [83]. It is available online under the
URL www.gepperth.net/downloads.html. The simulation is implemented in PYTHON for easy use, yet the
time-critical core functions are written in C.

5.3.6. pyStreamPlayer: synchronized replay of multiple sensor recordings and supplementary
data
Participant: Alexander Gepperth [correspondant].

This Python software is intended to facilitate the application of machine learning algorithms by avoiding to
work directly with an embodied agent but instead with data recorded in such an agent. Assuming that non-
synchronous data from multiple sensors (e.g., camera, Kinect, laser etc.) have been recorded according to
a flexible format defined by the pyStreamPlayer architecture, pyStreamPlayer can replay these data while
retaining the exact temporal relations between different sensor measurements. As long as the current task does
not involve the generation of actions, this software allows to process sensor data as if it was coming from
an agent which is usually considerably easier. At the same time, pyStreamPlayer allows to replay arbitrary
supplementary information such as, e.g., object information, as if it was coming from a sensor. In this way,
supervision information can be stored and accessed together with sensory measurements using an unified
interface. pyStreamPlayer has been used to facilitate real-world object recognition tasks, and several of the
major databases in this field (CalTech Pedestrian database, HRI RoadTraffic traffic objects database, CVC
person database, KITTI traffic objects database) have been converted to the pyStreamPlaer format and now
serve as a source of training and test data for learning algorithms.

pyStreamPlayer has been integrated into a ROS node as well, allowing th replay and transmission across
networks of distributed processes.

5.3.7. Multimodal: framework around the NMF algorithm for multimodal learning
Participant: Olivier Mangin [correspondant].

The pyhton code provides a minimum set of tools and associated libraries to reproduce the experiments on
[53], together with the choreography datasets. The code, publicly available at https://github.com/omangin/
multimodal, under the new BSD license, is primarily intended for reproduction of the mulimodal learning
experiment mentioned above. It is also expected that the public availability of the code encourages further
experimentation by other scientists with data coming from other domains, thus increasing both the impact
of the aforementioned publication and the knowledge on the algorithm behaviors. The nonnegative matrix
factorization algorithm used in the experiments will also soon be included as a third party project to http://
scikit-learn.org. Finally the code is currenlty being used by other members of the team and is expected to play
an important role in further collaborations.

5.3.8. Tools for curiosity-driven learning on a robotic arm
Participants: Pierre Rouanet [correspondant], Clément Moulin-Frier.

This library is intended to provide tools for experimenting how curiosity model can facilitate learning of
complex tasks such as manipulating objects. First, it provides high-level access to a robotic arm made of
dynamixel motors: forward and inverse kinematics, demonstrations recording. Then it wraps the IMLE [77]
library which we used for incremental and online learning of the sensorimotor mappings of the robot. Finally,
it implements curiosity-driven learning based on the maximization of the learning progress. This modelling
is based on recent works by Moulin-Frier and Oudeyer [54], [56], [55] proposing a probabilistic algorithmic
architecture unifying various principles of developmental robotics such as motor babbling, goal babbling and
curiosity-driven exploration. This architecture has already been successfully applied to model infant speech
acquisition in the previously cited papers.

5.4. Software Platforms
5.4.1. Meka robot plateform enhancement and maintenance

Participants: Antoine Hoarau [ADT Engineer Since Nov. 2012], Freek Stulp [Supervisor], David Filliat
[Supervisor].

https://github.com/omangin/multimodal
https://github.com/omangin/multimodal
http://scikit-learn.org
http://scikit-learn.org
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Autonomous human-centered robots, for instance robots that assist people with disabilities, must be able
to physically manipulate their environment. There is therefore a strong interest within the FLOWERS team
to apply the developmental approach to robotics in particular to the acquisition of sophisticated skills
for manipulation and perception. ENSTA-ParisTech has recently acquired a Meka (cf. 9) humanoid robot
dedicated to human-robot interaction, and which is perfectly fitted to this research. The goal of this project is
to install state-of-the-art software architecture and libraries for perception and control on the Meka robot, so
that this robot can be jointly used by FLOWERS and ENSTA. In particular, we want to provide the robot with
an initial set of manipulation skills.
The goal is to develop a set of demos, which demonstrate the capabilities of the Meka, and provide a basis on
which researchers can start their experiments.

The platform is evolving as the sofware (Ubuntu, ROS, our code) is constantly updated and requires some
maintenance so less is needed for later. A few demos were added, as the hand shaking demo, in which the
robot detects people via kinect and initiates a hand shake with facial expressions. This demo has been used to
setup a bigger human robot interaction experiment, currently tested on subjects at Ensta (cf. 10). The stacking
cups demo is more of a manipulation and vision demo : the robot detects its cups by their shape and color,
and tries to make a tower with it (cf. 12). This demo has required to manually update the old pr2 tabletop
object detector to the new ROS version, create a tool to semi-automatically calibrate the extrinsicts parameters
of the kinect, and different set of tools to catch objects from different angles (waiting for moveit to be fully
integrated). Finally, we’ve seen that the robot itself also needs some maintenance; some components broke (a
finger tendon), a welding got cold (in the arm) and a few cables experienced fatigue (led matrix and cameras)
(cf. 11).
I’ve also given a talk at Humanoid 2013 at Altanta and the University of Texas at Austin for my participation
on [61].

5.4.2. Experiment platform for multiparameters simulations
Participants: Fabien Benureau, Paul Fudal.

Simulations in robotics have many shortcommings. At the same time, they offer high customizability, rapidity
of deployment, abscence of failure, consistency across time and scalability. In the context of the PhD work of
Fabien Benureau, it was decided to investigate hypothesis first in simulation before moving to real hardware.
In order to be able to test a high number of different hypothesis, we developped a software platform that would
scale to the computing ressource available.

We designed simple continuous simulations around a of-the-shelf 2D physic engine and wrote a highly
modular platform that would automatically deploy experiments on cluster environments, with proper handling
of dependencies; our work investigate transfer learning, and some experiments’s input data is dependent of the
results of another.

So far, this platform and the university cluster has allowed to conduct thousands of simulations in parallel,
totaling more than 10 years of simulation time. It has led us to present many diverse experiments in our
published work [40], each repeated numerous times. It has allowed us to conduct a multi-parameter analysis
on the setup, which led to new insights, which are being presented in a journal article to be submitted in the
beginning of this year.

Because of its high modularity, this platform is proving to be highly flexible. We are currently adaptating it
to a modified, cluster-ready, version of the V-REP simulator. Those simulations will serve to back ones on
similar real-world hardware that are currently setup.

We have released the platform and the complete experiments code when we published the results of [40],
allowing to reproduce the results of the paper, and will continue to do so with each published work.

5.4.3. PyPot
Participants: Pierre Rouanet [correspondant], Matthieu Lapeyre.
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Figure 9. The Meka robot plateform acquired by ENSTA ParisTech
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Figure 10. Hand shake demo visualized on Rviz (ROS)

PyPot is a framework developed to make it easy and fast to control custom robots based on dynamixel motors.
This framework provides different levels of abstraction corresponding to different types of use. More precisely,
you can use PyPot to:

1. directly control robotis motors through a USB2serial device,
2. define the structure of your particular robot and control it through high-level commands,
3. define primitives and easily combine them to create complex behavior.

PyPot has been entirely written in Python to allow for fast development, easy deployment and quick scripting
by non-necessary expert developers. It can also benefits from the scientific and machine learning libraries
existing in Python. The serial communication is handled through the standard library and thus allows for rather
high performance (10ms sensorimotor loop). It is crossed-platform and has been tested on Linux, Windows
and Mac OS.

PyPot is part of the Poppy project (http://www.poppy-project.org) and has been released under an open source
license GPL V3. More details are available on PyPot website: https://github.com/poppy-project/pypot

5.5. Experimental Setups
5.5.1. Experimental Platform for User Study of Curiosity-driven Exploration

Participants: Pierre Rouanet [correspondant], Jonathan Grizou, Brice Miard, Julie Golliot.

This platform has been developed to investigate curiosity-driven behaviors and more precisely how humans
explore new sensori-motor spaces. It consists in several simple games where users control a 2D/3D shape
with the movements of their body. They have to discover the mapping between their movements and a shape
displayed on the screen and learn how to make the controlled shape match the target one (fig 13).

The software is entirelly written in Python. It includes a Kinect wrapper allowing the access of 3D position
of tracked skeleton joints. It provides a framework for creating new games based on the 2D drawing library
(pygame). It also includes a web server used to display game instructions, cut-scene videos and questionnaire.

http://www.poppy-project.org
https://github.com/poppy-project/pypot
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Figure 11. Maintenance is required on the robot

Figure 12. The stacking cup demo (video available at http://cogrob.ensta-paristech.fr)

http://cogrob.ensta-paristech.fr
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Figure 13. A screenshot representing the game interface as seen by the user.

5.6. Visualization Tools
5.6.1. Zephyr - Realtime Visualization in JAVA

Participant: Thomas Degris [correspondant].

Zephyr is a software to visualize numeric variables and data structure in real time and at different time
scale. Zephyr is practical because it requires only minimal changes in the code: it uses Java reflexivity to
automatically detect variables in the code to monitor and data structure with an associated dedicated view.
Zephyr can easily be extended with new plugins because it is based on the popular Eclipse Rich Client
Platform. Consequently, Zephyr takes advantage of an already existing and fully operational Eclipse plugins
for many of its functionalities. Finally, Zephyr is distributed with a Java python virtual machine named Jython
and a lisp implementation named Clojure. An example of a Zephyr screen is shown in Figure 14.

Zephyr was started in fall 2009 in the RLAI group at the university of Alberta (Canada) when Thomas Degris
was a postdoc in this group. Zephyr is still actively used by RLAI. Users include Adam White, Joseph Modayil
and Patrick Pilarski from the University of Alberta. Zephyr has been registered on the Eclipse marketplace
since October 2011. Documentation about Zephyr is included on its website: http://zephyrplugins.github.com.
Zephyr is licensed under the open source Eclipse Public License.

5.6.2. Experimental Setups for User Study of Alignment in Asymmetric Interactions
Participants: Jonathan Grizou [correspondant], Chloé Rozenbaum, Manuel Lopes, Katharina Rohlfing,
Pierre-Yves Oudeyer.

This platform has been developed to investigate alignement in asymmetric interactions. We consider a remote
construction task, where one user (user A) knows what to build but do not have access to the construction
site while its partner (user B) is at the site but do not know what to do. By constraining the communicative
channel between the two partners, we study how, and if, they will agree on a similar set of signals to convey
information and what type of information they tend to produce.

http://zephyrplugins.github.com
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Figure 14. Left: Zephyr showing the different steps of a video processing pipeline in real-time. Right: Zephyr
showing different data structure and variables of a reinforcement learning agent at different time scale. A video is

available at: http://zephyrplugins.github.com.

The experimental setup consist of box with button, a video recording system and two screens. User A can send
signals to user B by pressing buttons (fig. 15). Signals are displayed on a screen (fig. 15) at user B side. User
A is not aware of what is displayed on user B screen, neither user B is aware of the relation between button
presses and screen events. The video of user B construction scene is streamed to a screen at user B side.

The task consist of bulding arbitrary construction (fig. 15) using colored toy bricks (fig. 15).

Figure 15. Three examples of sign displayed on the learner screen; The box and the button use as an interface for
the teacher to communicate with the learner; Examples of construction presented to the teacher.

5.7. Hardware
5.7.1. Poppy Platform

Participants: Matthieu Lapeyre [correspondant], Pierre Rouanet, Jonathan Grizou, Pierre-Yves Oudeyer
[supervisor].

5.7.1.1. Main goals :

No current platform (Nao [87], Darwin Op [88], Nimbro Op [126], HRP-2, ...) does offer both a adapted
morphology in the sense of allowing physical interaction (safe, compliant, playful) and optimized for walking.
So to explore these challenges we have decided to build a new bio-inspired humanoid robotic platform, called

http://zephyrplugins.github.com
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Poppy, which provides some of the software and hardware features needed to explore both social interaction
and biped locomotion for personal robot. It presents the following main features to make it an interesting
platform to study how the combination of morphology and social interaction can help the learning:

• Design inspired from the study of the anatomy of the human body and its bio-mechanic
• Dynamic and reactive: we try to keep the weight of the robot as low as possible (geometry of the

pieces and smaller motors)
• Social interaction: screen for communication and permits physical interaction thanks to compliance
• Study of the morphology of the leg to improve the biped walking
• Practical platform: low cost, ease of use and easy to reproduce

5.7.1.2. Overview :

Poppy platform (Figure 16) is a humanoid, it is 84cm tall for 3 kg. It has a large sensor motors space including
25 dynamical motors (MX-28 and AX-12), force sensors under its feet and some extra sensors in the head: 2
HD-wide angle-cameras, stereo-micros and an inertial central unit (IMU 9DoF) plus a large LCD Screen (4
inch) for visual communication (e.g. emotions, instructions or debug). The mechanical parts were designed
and optimized to be as light as possible while maintaining the necessary strength. For this, the choice of a
lattice beam structure manufactured with 3Dprinting polyamide was used.

The poppy morphology is designed based on the actual human body. We have deeply studied the biomechanics
of the human body and have extracted some interesting features for humanoid robotics. This inspiration is
expressed in the whole structure (e.g. the limb proportions) and in particular in the trunk and legs.

Figure 16. a. Global view of the Poppy platform. b. Zoom on legs design

Poppy uses the bio-inspired trunk system introduced by Acroban [101]. These five motors allow it to reproduce
the main changes brought by the human spine. This feature allows the integration of more natural and
fluid motion while improving the user experience during physical interactions. In addition, the spine plays
a fundamental role in bipedal walking and postural balance by actively participating in the balancing of the
robot.
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The legs were designed to increase the stability and agility of the robot during the biped walking by combining
bio-inspired, semi-passive, lightweight and mechanical-computation features. We will now describe two
examples of this approach:

The architecture of the hips and thighs of Poppy uses biomechanical principles existing in humans. The human
femur is actually slightly bent at an angle of about 6 degrees. In addition, the implantation of the femoral head
in the hip is on the side. This results in a reduction of the lateral hip movement needed to move the center
of gravity from one foot to another and a decrease in the lateral falling speed. In the case of Poppy, the
inclination of its thighs by an angle of 6 degrees causes a gain of performance of more than 30% for the two
above mentioned points.

Another example is Poppy’s feet. Poppy has the particularity of having small feet compared to standard
humanoids. It has humanly proportioned feet (ie about 15% of its total size).It is also equipped with compliant
toes joints (see Figure 17.a). We believe that this feet involve two keys features to obtain a human-like
and efficient walking gait. However, that raises problems regarding balance because the support polygon is
reduced. We decided to add pressure sensors under each foot in order to get accurate feedback of the current
state of the robot (see Figure 17.b).

Figure 17. Poppy feet use actual children shoes combine with a compliant feet, toes (a.) and pressure sensors (b.)

5.7.1.3. Open source release :

To allow the distribution in the robotic community, we have decided to make Poppy an open platform. So the
software and the hardware are open source. They have each a repository. The PyPot library is under GPLV3
license and is available on a bitbucket repository (https://github.com/poppy-project/pypot). The hardware,
Solidworks files and STL needed to print the robot are available under a Creative Commons BY+SA+NC
license on a private GrabCAD Workbench repository. People can request access to the hardware repository on
the Poppy website (http://www.poppy-project.org/open-platform/).

The platform is currently under beta-testing meaning that we let the community grows little by little to ensure
a good support of interesting projects.

For now, there are about 200 people on the GrabCAD project. They have access to all files needed to print
the robot. There is also about 60 beta testers. They have access to a private section on the website with
documentation and a forum for support.

Several of them are already doing a great work both by reporting bugs and managing to build the robot outside
the lab. We are trying to work closely with them as they are a great source of feedback to improve the platform
before a more wide distribution.

5.7.1.4. Impact in the community

Poppy has been release open source the 15/10/2013. The announcement has been done by Pierre Yves Oudeyer
during the Lift 2013 conference. To prepare this event, the website and a overview video were made. The video,
accessible here (http://vimeo.com/76917854) has reached about 40K views until now.

https://github.com/poppy-project/pypot
http://www.poppy-project.org/open-platform/
http://vimeo.com/76917854
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A part of the audience are technology-enthusiast people (about 50% on grabCAD), interested by the fact Poppy
is 3D printable and so, highly customizable. More interesting, we received a large number of beta request from
various applications domains (see 18) around the world (see 19).

Figure 18. The 60 selected beta testers profiles chart.

5.7.1.4.1. Education:

We receive a lot of request from Fablab around the world (France, USA, New-Zeland, South Africa,...). All
have great educational projects for teaching robotics, mechanics and computer science to children. Some of
them are close beta testers and we have weekly interactions. In the same topic, several schools, engineering
schools and universities showed interest to use Poppy as experimental support. One of our close beta tester is
a Bordeaux high school. They are planning to use Poppy as support for mechanics, computer sciences but also
architecture or philosophy.

5.7.1.4.2. Art:

A current art project is under construction. A residence with an artist, a dancer and us will take place on
the 24/02/2014 to the 05/03/2014. It comes to artistically invest humanoid robotics and thereby examine the
relationship of the body to the digital world. The encounter between art and science generates potential new
ideas for both disciplines who find themselves at the crossroads of questions relating to the gesture, movement
and body. The Poppy Project is focused on morphological and motor aspects in a context human-robot
interface. The look of an artist and the movements of a dancer are testing this interface with an unprecedented
and direct manere.

5.7.1.4.3. Research:

A large number of researchers showed interest in the platform. Most of them are interested to use it as
a experimental tool. They want to address challenges such as balance and walking control, use of force
controlled motors, explore human-robot interactions. On this last topic, the Bristol robotic lab target to use
tele-operation to investigate what factors are important in terms of appearance and behaviour for credible and
trustworthy interaction. For this purpose, they will develop functional hands for gesture and grasping task.

5.7.1.5. Next step:

We are currently working with beta testers on several improvements to make Poppy more accessible, more
easy to use and more polyvalent. Two internship students will arrive on the project to work on the embedded
electronic and on the feet design. We are targeting to release the final version during the summer 2014. Also
we are thinking about the creation of a "Poppy pack" including all necessary components and tools to easily
build the robot.
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Figure 19. Where are located the beta testers?
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Another very important point is the community management. We are currently adding new collaborative tools
on the Poppy website. These tools are tested with beta testers. The challenge is to offer the good tools to provide
an efficient support to future users and to encourage people to contribute. This work is done in collaboration
with Stephane Ribas (D2T inria Grenoble).

6. New Results

6.1. Robotic and Computational Models of Human Development
6.1.1. Computational models of information-seeking, curiosity and attention

Participants: Pierre-Yves Oudeyer, Manuel Lopes.

An associated team, called Neurocuriosity, was created between Flowers and the Cognitive Neuroscience lab
of Jacqueline Gottlieb at Univ. Columbia, NY. The goal of this associated team is to investigate mechanisms
of spontaneous exploration and learning in humans by setting up experiments allowing to confirm or falsify
predictions made by computational models previously developped by the team. This constitutes a crucial
collaboration between developmental robotics and cognitive neuroscience. This joint work already led to a
major publication on curiosity and information seeking, in the prestigious Trends in Cognitive Science journal
(impact factor: 16.5). [27]
Abstract: Intelligent animals devote much time and energy to exploring and obtaining information, but
the underlying mechanisms are poorly understood. We review recent developments on this topic that have
emerged from the traditionally separate fields of machine learning, eye movements in natural behavior, and
studies of curiosity in psychology and neuroscience. These studies show that exploration may be guided by
a family of mechanisms that range from automatic biases toward novelty or surprise to systematic searches
for learning progress and information gain in curiosity-driven behavior. In addition, eye movements reflect
visual information searching in multiple conditions and are amenable for cellular-level investigations. This
suggests that the oculomotor system is an excellent model system for understanding information-sampling
mechanisms.

6.1.1.1. Formalizing Imitation Learning
Participants: Thomas Cederborg, Pierre-Yves Oudeyer.

An original formalization of imitation learning was elaborated. Previous attempts to systematize imitation
learning has been limited to categorizing different types of demonstrator goals (for example defining success
in terms of the sequential joint positions of a dance, or in terms of environmental end states), and/or been
limited to a smaller subset of imitation (such as learning from tele-operated demonstrations). The formalism
proposed attempts to describe a large number of different types of learning algorithms using the same notation.
Any type of algorithm that modifies a policy based on observations of a human, is treated as an interpretation
hypothesis of this behavior. One example would be an update algorithm that updates a policy, partially based on
the hypothesis that the demonstrator succeeds at demonstrations with probability 0.8, or an update algorithm
that assumes that a scalar value is an accurate evaluation of an action compared to the latest seven actions.
The formalism aims to give a principled way of updating these hypotheses, either rejecting some of a set of
hypotheses regarding the same type of behavior, or set of parameters of an hypothesis. Any learning algorithm
that modifies policy based on observations of a human that wants an agent to do something or act in some way,
is describable as an interpretation hypothesis. If the learning algorithm is static, this simply corresponds to an
hypothesis that is not updated based on observations. A journal article [26].

6.1.1.2. Self-Organization of Early Vocal Development in Infants and Machines: The Role of Intrinsic Motivation
Participants: Clément Moulin-Frier, Sao Mai Nguyen, Pierre-Yves Oudeyer.
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We bridge the gap between two issues in infant development: vocal development and intrinsic motivation. We
propose and experimentally test the hypothesis that general mechanisms of intrinsically motivated spontaneous
exploration, also called curiosity-driven learning, can self-organize developmental stages during early vocal
learning and explain several aspects observed in infants (Figure 20). We introduce a computational model of
intrinsically motivated vocal exploration, which allows the learner to autonomously structure its own vocal
experiments, and thus its own learning schedule, through a drive to maximize competence progress. This
model relies on a physical model of the vocal tract, the auditory system and the agent’s motor control, as well
as vocalizations of social peers. We present computational experiments that show how such a mechanism can
explain the adaptive transition from vocal self-exploration with little influence from the speech environment,
to a later stage where vocal exploration becomes influenced by vocalizations of peers (Figure 21). Within
the initial self-exploration phase, we show that a sequence of vocal production stages self-organizes, and
shares properties with data from infant developmental psychology: the vocal learner first discovers how
to control phonation, then focuses on vocal variations of unarticulated sounds, and finally automatically
discovers and focuses on babbling with articulated proto-syllables (Figure 22). As the vocal learner becomes
more proficient at producing complex sounds, imitating vocalizations of peers starts to provide high learning
progress explaining an automatic shift from self-exploration to vocal imitation.

This work has been recently accepted in the journal Frontiers in Psychology, Cognitive Science [30].

0-3 mo:
squeals, growls, 
yeals ...

3-7 mo:
quasi-vowels

7-10 mo:
language-independent
proto-syllables

10 mo:
influence by 
ambient language

12 mo:
first words

Approximate age

Figure 20. Rapid view of the first year of infant vocal development.
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Figure 21. Our model displays an adaptive transition from vocal self-exploration with little influence from the
speech environment, to a later stage where vocal exploration becomes influenced by vocalizations of peers.
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Figure 22. Within the self-exploration phase, our model first discovers how to control phonation, then focuses on
vocal variations of unarticulated sounds, and finally automatically discovers and focuses on babbling with

articulated proto-syllables.

6.1.1.3. Emergent Proximo-Distal Motor Development through Adaptive Exploration, applied to Reaching and Vocal
Learning
Participants: Freek Stulp, Pierre-Yves Oudeyer, Jules Brochard, Clément Moulin-Frier.

Life-long robot learning in the high-dimensional real world requires guided and structured exploration
mechanisms. In this developmental context, we have investigated the use of the PI2-CMAES episodic
reinforcement learning algorithm, which is able to learn high-dimensional motor tasks through adaptive
control of exploration. By studying PI2-CMAES in a reaching task on a simulated arm, we observe
two developmental properties. First, we show how PI2-CMAES autonomously and continuously tunes the
global exploration/exploitation trade-off, allowing it to re-adapt to changing tasks. Second, we show how
PI2-CMAES spontaneously self-organizes a maturational structure whilst exploring the degrees-of-freedom
(DOFs) of the motor space. In particular, it automatically demonstrates the so-called proximo-distal maturation
observed in humans: after first freezing distal DOFs while exploring predominantly the most proximal DOF,
it progressively frees exploration in DOFs along the proximo-distal body axis. These emergent properties
suggest the use of PI2-CMAES as a general tool for studying reinforcement learning of skills in life-long
developmental learning contexts. This work was published in the Paladyn Journal of Behavioral Robotics
[36].

This model of emergent developmental freezing and unfreezing of degrees of freedom was then applied to
infant vocal development. For this aim, we used an articulatory synthesizer which is a computer model of the
human vocal tract and the ear. While testing different possibilities, the algorithm eventually creates learning
structures, which are more efficient that random motor babbling. Using the algorithm with a vocal synthesizer,
we show that it can reproduce a babbling infant’s characteristic: the predominance of the jaw over the other
articulators, namely the canonical babbling.

This is the first study to our knowledge of emergent maturation in speech. Without presupposing any biological
or social constraint, we give a new explanation of the jaw predominance in babbling, based on freezing and
freeing the degrees of freedom in an adaptive maturation scheme to improve learning. This provides an original
hypothesis regarding the emergence of canonical babbling in infant vocal development.

This last work was performed during the internship of Jules Brochard in 2013 and a journal article is currently
being written.
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6.1.2. COSMO (“Communicating about Objects using Sensory-Motor Operations”): a
Bayesian modeling framework for studying speech communication and the emergence
of phonological systems
Participants: Clément Moulin-Frier, Jean-Luc Schwartz, Julien Diard, Pierre Bessiã¨re.

This work began with the PhD thesis of Clement Moulin-Frier at GIPSA-Lab, Grenoble, France, supervised by
Jean-Luc Schwartz (GIPSA-Lab, CNRS), Julien Diard (LPNC, CNRS) and Pierre Bessière (College de France,
CNRS). A few papers were finalized during his post-doc at FLOWERS in 2012. Firstly, an international journal
paper based on the PhD thesis work of Raphael Laurent (GIPSA-Lab), extending Moulin-Frier’s model, was
published [108], as well as a commentary in Behavioral and Brain Sciences [97]. Both these papers provide
computational arguments based on a sensory-motor cognitive model to feed the age-old debate of motor vs.
auditory theories of speech perception. Secondly, in another journal paper under the submission process,
we attempt to derive some properties of phonological systems (the sound systems of human languages)
from the mere properties of speech communication. We introduce a model of the cognitive architecture of a
communicating agent, called COSMO (for “Communicating about Objects using Sensory-Motor Operations”)
that allows expressing in a probabilistic way the main theoretical trends found in the speech production and
perception literature. This allows a computational comparison of these theoretical trends, helping to identify
the conditions that favor the emergence of linguistic codes. We present realistic simulations of phonological
system emergence showing that COSMO is able to predict the main regularities in vowel, stop consonant and
syllable systems in human languages.

This work is currently under consideration as a target article for a special issue in an international journal.
Pierre-Yves Oudeyer joined this process as a member of the editing committee.

6.1.3. Recognizing speech in a novel accent: the Motor Theory of Speech Perception reframed
Participants: Clément Moulin-Frier, Michael Arbib.

Clément Moulin-Frier engaged this work with Michael Arbib during his 6-month visit in 2009 at the USC
Brain Project, University of Southern California, Los Angeles, USA, during his PhD thesis at Gipsa-Lab,
Grenoble. He continues to write a journal article during his post-doc in the Flowers team in 2012-2013. This
paper has been published recently in Biological Cybernetics [29], in which we offer a novel computational
model of foreign-accented speech adaptation, together with a thorough analysis of its implications with respect
to the motor theory of speech perception.

6.2. Life-Long Robot Learning and Development of Motor and Social Skills
6.2.1. Active Learning and Intrinsic Motivation
6.2.1.1. Active Learning of Inverse Models with Goal Babbling

Participants: Adrien Baranes, Pierre-Yves Oudeyer.

We have continued to elaborate and study our Self-Adaptive Goal Generation - Robust Intelligent Adaptive
Curiosity (SAGG-RIAC) architecture as an intrinsically motivated goal exploration mechanism which allows
active learning of inverse models in high-dimensional redundant robots. Based on active goal babbling, this
allows a robot to efficiently and actively learn distributions of parameterized motor skills/policies that solve
a corresponding distribution of parameterized tasks/goals. The architecture makes the robot sample actively
novel parameterized tasks in the task space, based on a measure of competence progress, each of which triggers
low-level goal-directed learning of the motor policy parameters that allow to solve it. For both learning and
generalization, the system leverages regression techniques which allow to infer the motor policy parameters
corresponding to a given novel parameterized task, and based on the previously learnt correspondences
between policy and task parameters.
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We have conducted experiments with high-dimensional continuous sensorimotor spaces in three different
robotic setups: 1) learning the inverse kinematics in a highly-redundant robotic arm, 2) learning omnidirec-
tional locomotion with motor primitives in a quadruped robot 2324, 3) an arm learning to control a fishing
rod with a flexible wire. We show that 1) exploration in the task space can be a lot faster than exploration in
the actuator space for learning inverse models in redundant robots; 2) selecting goals maximizing competence
progress creates developmental trajectories driving the robot to progressively focus on tasks of increasing
complexity and is statistically significantly more efficient than selecting tasks randomly, as well as more ef-
ficient than different standard active motor babbling methods; 3) this architecture allows the robot to actively
discover which parts of its task space it can learn to reach and which part it cannot.
This work was published in the journal Robotics and Autonomous Systems [25].

Figure 4: A robot can learn to walk just by exploring smartly a sensorimotor
space. In the experiment. a progress-driven kernel controls the movement of the
di�erent motors of a four-legged robot. For each motor, it chooses the period,
the phase and the amplitude of a sinusoidal signal. The prediction system tries
to predict the e�ect of the di�erent set of parameters in the way the image
captured by a camera placed on the robot’s head is modified. This indirectly
reflects the movement of its torso. At each iteration the kernel produces the
values for the next parameter set in order to maximize the reduction of the
prediction error.
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Figure 23. Experimenting SAGG-RIAC for learning an inverse model for omnidirectional locomotion of a
quadruped robot. The quadruped robot is controlled using 24 dimensional motor synergies parameterized with 24

continuous values : 12 for the amplitudes and 12 others for the phases of a sinusoid tracked by each motor.
Experiments consider a task space u, v, α which corresponds to the 2D position and orientation of the quadruped.

6.2.1.2. Learning Exploration Strategies in Model-based Reinforcement Learning
Participants: Manuel Lopes, Todd Hester, Peter Stone, Pierre-Yves Oudeyer.

We studied how different exploration algorithms can be combine and selected at runtime. Typically the
user must hand-tune exploration parameters for each different domain and/or algorithm that they are using.
We introduced an algorithm called leo for learning to select among different exploration strategies on-line.
This algorithm makes use of bandit-type algorithms to adaptively select exploration strategies based on the
rewards received when following them. We show empirically that this method performs well across a set of
five domains In contrast, for a given algorithm, no set of parameters is best across all domains. Our results
demonstrate that the leo algorithm successfully learns the best exploration strategies on-line, increasing the
received reward over static parameterizations of exploration and reducing the need for hand-tuning exploration
parameters [46].

6.2.1.3. Active Inverse Reinforcement Learning through Generalized Binary Search
Participants: Manuel Lopes, Francisco Melo.



32 Activity Report INRIA 2013

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Reaching Error

D
is

ta
nc

e

Number of Actions (time steps)

SAGG-RIAC
SAGG-Random

ACTUATOR-Random
ACTUATOR-RIAC

100000
1

6

3

2

4

5

Figure 24. Evolution of the quality of the learnt inverse model for the quadruped robot experiment, depending on
various exploration strategies (measured as mean error over a set of uniformly distributed goals generated

independantly from learning trials).

We contributed the first aggressive active learning algorithm for nonseparable multi-class classification. We
generalize an existing active learning algorithm for binary classification [116] to the multi-class setting, and
identify mild conditions under which the proposed method provably retains the main properties of the original
algorithm, namely consistency and sample complexity. In particular, we show that, in the binary case, our
method reduces to the original algorithm of [116]. We then contribute an extension of our method to multi-
label settings, identify its main properties and discuss richer querying strategies. We conclude the paper with
two illustrative application examples. The first application features a standard text-classification problem. The
second application scenario features a learning from demonstration setting. In both cases we demonstrate the
advantage of our active sampling approach against random sampling. We also discuss the performance of the
proposed approach in terms of the derived theoretical bounds.

6.2.1.4. Exploration strategies in developmental robotics: a unified probabilistic framework
Participants: Clément Moulin-Frier, Pierre-Yves Oudeyer.

We present a probabilistic framework unifying two important families of exploration mechanisms recently
shown to be efficient to learn complex non-linear redundant sensorimotor mappings. These two explorations
mechanisms are: 1) goal babbling, 2) active learning driven by the maximization of empirically measured
learning progress. We show how this generic framework allows to model several recent algorithmic archi-
tectures for autonomous exploration. Then, we propose a particular implementation using Gaussian Mixture
Models, which at the same time provides an original empirical measure of the competence progress. Finally,
we perform computer simulations on two simulated setups: the control of the end effector of a 7-DoF arm
and the control of the formants produced by an articulatory synthesizer. We are able to reproduce previous
results from [25] with the advantages of a clean and compact probabilistic framework to efficiently express,
implement and compare various exploration strategies on developmental robotics setups.

This work was published in three international conferences [54], [56], [55].
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6.2.1.5. Autonomous Reuse of Motor Exploration Trajectories
Participants: Fabien Benureau, Pierre-Yves Oudeyer.

We developped an algorithm for transferring exploration strategies between tasks that share a common motor
space in the context of lifelong autonomous learning in robotics. In such context sampling is costly, and
exploration can take a long time before finding interesting, learnable data about a task. Our algorithm shows
that we can significantly reduce sampling by reusing past data of other learned tasks, with no need of external
knowledge or specific task structure. The algorithm does not transfer observations, or make assumptions
about how the learning is conducted. Instead, only selected motor commands are transferred between tasks,
chosen autonomously according to an empirical measure of learning progress. We show that on a wide variety
of variations from a source task, such as changing the object the robot is interacting with or altering the
morphology of the robot, this simple and flexible transfer method increases early performance significantly in
the new task. We also investigate the limitation of this algorithm on specific situations.

This work has been published at ICDL, in Osaka [40].

6.2.2. Learning and optimization of motor policies
6.2.2.1. Off-Policy Actor-Critic

Participants: Thomas Degris, Martha White, Richard Sutton.

Actor–critic architectures are an interesting candidate for learning with robots: they can represent complex
stochastic policies suitable for robots, they can learn online and incrementally and their per-time-step
complexity scales linearly with the number of learned weights. Moreover, interesting connections have been
identified in the existing literature with neuroscience. Until recently, however, practical actor–critic methods
have been restricted to the on-policy setting, in which the agent learns only about the policy it is executing.

In an off-policy setting, on the other hand, an agent learns about a policy or policies different from the one
it is executing. Off-policy methods have a wider range of applications and learning possibilities. Unlike on-
policy methods, off-policy methods are able to, for example, learn about an optimal policy while executing an
exploratory policy, learn from demonstration, and learn multiple tasks in parallel from a single sensory-motor
interaction with an environment. Because of this generality, off-policy methods are of great interest in many
application domains.

We have presented the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is
online and incremental, and its per-time-step complexity scales linearly with the number of learned weights.
We have derived an incremental, linear time and space complexity algorithm that includes eligibility traces
and empirically show better or comparable performance to existing algorithms on standard reinforcement-
learning benchmark problems. This work was was reproduced independently by Saminda Abeyruwan from
the University of Miami.

6.2.2.2. Auto-Actor Critic
Participant: Thomas Degris.

As mentioned above, actor–critic architectures are an interesting candidate for robots to learn new skills in
unknown and changing environments. However, existing actor–critic architectures, as many machine learning
algorithms, require manual tuning of different parameters to work in the real world. To be able to systematize
and scale-up skill learning on a robot, learning algorithms need to be robust to their parameters. The Flowers
team has been working on making existing actor–critic algorithms more robust to make them suitable to
a robotic setting. Results on standard reinforcement learning benchmarks are encouraging. This work will
be submitted to international conference related with reinforcement learning. Interestingly, the methods
developed in this work also offer a new formalism to think about different existing themes of Flowers research
such as curiosity and maturational constraints.
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6.2.2.3. Deterministic Policy Gradient Algorithms

Thomas Degris and colleagues from UCL and Deepming have consider deterministic policy gradient algo-
rithms for reinforcement learning with continuous actions. The deterministic pol- icy gradient has a particu-
larly appealing form: it is the expected gradient of the action-value func- tion. This simple form means that
the deter- ministic policy gradient can be estimated much more efficiently than the usual stochastic pol- icy
gradient. To ensure adequate exploration, we introduce an off-policy actor-critic algorithm that learns a deter-
ministic target policy from an exploratory behaviour policy. We demonstrate that deterministic policy gradient
algorithms can significantly outperform their stochastic counter- parts in high-dimensional action spaces. [58]

6.2.2.4. Relationship between Black-Box Optimization and Reinforcement Learning
Participant: Freek Stulp.

Policy improvement methods seek to optimize the parameters of a policy with respect to a utility function.
There are two main approaches to performing this optimization: reinforcement learning (RL) and black-box
optimization (BBO). In recent years, benchmark comparisons between RL and BBO have been made, and
there has been several attempts to specify which approach works best for which types of problem classes.

We have made several contributions to this line of research by: 1) Defining four algorithmic properties that
further clarify the relationship between RL and BBO. 2) Showing how the derivation of ever more powerful RL
algorithms displays a trend towards BBO. 3) Continuing this trend by applying two modifications to the state-
of-the-art PI2 algorithm, which yields an algorithm we denote PIBB. We show that PIBB is a BBO algorithm,
and, more specifically, that it is a special case of the state-of-the-art CMAES algorithm. 4) Demonstrating that
the simpler PIBB achieves similar or better performance than PI2 on several evaluation tasks. 5) Analyzing
why BBO outperforms RL on these tasks. These contributions have been published on HAL [129], and in
Paladyn: Journal of Behavioral Robotics [36].

6.2.2.5. Probabilistic optimal control: a quasimetric approach
Participants: Steve N’Guyen, Clément Moulin-Frier, Jacques Droulez.

During his previous post-doc at the Laboratoire de Physiologie de la Perception et de l’Action (College de
France, Paris), Clément Moulin-Frier joined Jacques Droulez and Steve N’Guyen to work on an alternative
and original approach of probabilistic optimal control called quasimetric. A journal paper was published in
PLoS ONE in December 2013 [31], where the authors propose a new approach dealing with decision making
under uncertainty.

6.2.3. Social learning and intrinsic motivation
6.2.3.1. Socially Guided Intrinsic Motivation for Skill Learning

Participants: Sao Mai Nguyen, Pierre-Yves Oudeyer.

We have explored how social interaction can bootstrap the learning of a robot for motor learning. We first
studied how simple demonstrations by teachers could have a bootstrapping effect on autonomous exploration
with intrinsic motivation by building a learner who uses both imitation learning and SAGG-RIAC algorithm
[25], and thus designed the SGIM-D (Socially Guided Intrinsic Motivation by Demonstration) algorithm
[32], [24], [32] [114], [111]. We then investigated on the reasons of this bootstrapping effect [113], to show
that demonstrations by teachers can both enhance more tasks to be explored, as well as favor more easily
generalized actions to be used. This analysis is generalizable for all algorithms using social guidance and
goal-oriented exploration. We then proposed to build a strategic learner who can learn multiple tasks and
with multiple strategies. An overview and theoretical study of multi-task, multi-strategy Strategic Learning is
presented in [99]. We also forsook to build a learning algorithm for more natural interaction with the human
users. We first designed the SGIM-IM algorithm so that it can determine itself when it should ask for help from
the teacher while trying to explore autonomously as long as possible so as to use as little of the teacher’s time
as possible [112]. After tackling with the problem of how and when to learn, we also investigated an active
learner who can determine who to ask for help: in the case of two teachers available, SGIM-IM can determine
which strategy to adopt between autonomous exploration and learning by demonstration, and which teacher
enhances most learning progress for the learner [115], and ask him for help.
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Figure 25. Illustration of SGIM-D and SGIM-IM algorithms
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Figure 26. Illustration of SGIM-D and SGIM-IM algorithms

Figure 27. Illustration of SGIM-D and SGIM-IM algorithms
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While the above results have been shown in simulation environments: of a simple deterministic air hockey
game (fig. 25), and a stochastic fishing experiment with a real-time physical simulator (fig. 26), we are now
building the experimental setup of the fishing experiment in order to carry out the experiments with naive
users.

6.2.3.2. Adaptive task execution for implicit human-robot coordination
Participants: Ievgen Perederieiev, Manuel Lopes, Freek Stulp.

We began a project which goal is to study how computational models of multi-agent systems can be applied
in situations where one agent is a human. We aim at applications where robots collaborate with humans for
achieving complex tasks..

A very important capability for efficient collaborative work is the mutual agreement of a task and the ability
to predict the behavior of others. We address such aspect by studying methods that increase the predictability
of the robot actions. An efficient motor execution becomes the one that not just optimize speed and minimizes
energy but also the one that improves the reliability of the team behavior. We are studying policy gradient
methods and working on policy improvement algorithms (PI2, CEM and CMAES). A feasibility study
will consider a simple task between a robot and a person where the goal is to coordinate the way a set of three
colored buttons is pressed.

6.2.4. Unsupervised learning of motor primitives
6.2.4.1. Clustering activities

Participants: Manuel Lopes, Luis Montesano, Javier Almingol.

Learning behaviors from data has applications in surveillance and monitoring systems, virtual agents and
robotics among others. In our approach, ww assume that in a given unlabeled dataset of multiple behaviors, it
is possible to find a latent representation in a controller space that allows to generate the different behaviors.
Therefore, a natural way to group these behaviors is to search a common control system that generate them
accurately.

Clustering behaviors in a latent controller space has two major challenges. First, it is necessary to select the
control space that generate behaviors. This space will be parameterized by a set of features that will change for
different behaviors. Usually, each controller will minimize a cost function with respect to several task features.
The latent representation is in turn defined by the selected features and their corresponding weight. Second,
an unknown number of such controllers is required to generate different behaviors and the grouping must be
based on the ability of the controller to generate the demonstrations using a compact set of controllers.

We propose a Dirichlet Process based algorithm to cluster behaviors in a latent controller space which encodes
the dynamical system generating the observed trajectories. The controller uses a potential function generated
as a linear combination of features. To enforce sparsity and automatically select features for each cluster
independently, we impose a conditional Laplace prior over the controller parameters. Based on this models,
we derive a sparse Dirichlet Process Mixture Model (DPMM) algorithm that estimates the number of behaviors
and a sparse latent controller for each of them based on a large set of features [38].

6.2.4.2. Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Reinforcement Control
Participants: Olivier Mangin, Pierre-Yves Oudeyer.

We have elaborated and illustrated a novel approach to learning motor skills from demonstration. This
approach combines ideas from inverse reinforcement learning, in which actions are assumed to solve a
task, and dictionary learning. In this work we introduced a new algorithm that is able to learn behaviors
by assuming that the observed complex motions can be represented in a smaller dictionary of concurrent
tasks. We developed an optimization formalism and show how we can learn simultaneously the dictionary and
the mixture coefficients that represent each demonstration. We presented results on a toy problem and shown
that our algorithm finds an efficient set of primitive tasks where naive approaches such as PCA and using a
dictionary built from random examples fail to achieve the same tasks. These results that where presented as
[60], extend the ones from [103].
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(a) (b) (c) (d) (e)

Figure 28. EIFPD dataset. (a) Trajectories of the EIFPD to be clustered (color is non-informative). (b-d)
correspondence matrix for the 474 trajectories for the labeled ground truth, the KMeans in measurement space and
the DPMM, respectively. (e) Reconstructed trajectories from the initial point using the estimated parameters of the

DPMM algorithm. Due to the large number of clusters (37), colors are repeated for different clusters.

6.2.4.3. Interaction of Maturation and Intrinsic Motivation for Developmental Learning of Motor Skills in Robots
Participants: Adrien Baranes, Pierre-Yves Oudeyer.

We have introduced an algorithmic architecture that couples adaptively models of intrinsic motivation and
physiological maturation for autonomous robot learning of new motor skills. Intrinsic motivation, also called
curiosity-driven learning, is a mechanism for driving exploration in active learning. Maturation denotes here
mechanisms that control the evolution of certain properties of the body during development, such as the
number and the spatio-temporal resolution of available sensorimotor channels. We argue that it is useful
to introduce and conceptualize complex bidirectional interactions among these two mechanisms, allowing
to actively control the growth of complexity in motor development in order to guide efficiently exploration
and learning. We introduced a model of maturational processes, taking some functional inspiration from the
myelination process in humans, and show how it can be coupled in an original and adaptive manner with the
intrinsic motivation architecture SAGG-RIAC (Self-Adaptive Goal Generation - Robust Intelligent Adaptive
Curiosity algorithm), creating a new system, called McSAGG-RIAC. We then conducted experiments to
evaluate both qualitative and quantitative properties of these systems when applied to learning to control
a high-dimensional robotic arm, as well as to learning omnidirectional locomotion in a quadruped robot
equipped with motor synergies. We showed that the combination of active and maturational learning can
allow to gain orders of magnitude in learning speed as well as reach better generalization performances. A
journal article is currently being written.

6.3. Autonomous and Social Perceptual Learning
6.3.1. The Impact of Human-Robot Interfaces on the Learning of Visual Objects

Participants: Pierre Rouanet, Pierre-Yves Oudeyer, Fabien Danieau, David Filliat.

We have continued and finalized a large-scale study of the impact of interfaces allowing non-expert users to
efficiently and intuitively teach a robot to recognize new visual objects. We identified challenges that need to
be addressed for real-world deployment of robots capable of learning new visual objects in interaction with
everyday users. We argue that in addition to robust machine learning and computer vision methods, well-
designed interfaces are crucial for learning efficiency. In particular, we argue that interfaces can be key in
helping non-expert users to collect good learning examples and thus improve the performance of the overall
learning system. Then, we have designed four alternative human-robot interfaces: three are based on the use
of a mediating artifact (smartphone, wiimote, wiimote and laser), and one is based on natural human gestures
(with a Wizard-of-Oz recognition system). These interfaces mainly vary in the kind of feedback provided to
the user, allowing him to understand more or less easily what the robot is perceiving, and thus guide his way of
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providing training examples differently. We then evaluated the impact of these interfaces, in terms of learning
efficiency, usability and user’s experience, through a real world and large scale user study. In this experiment,
we asked participants to teach a robot twelve different new visual objects in the context of a robotic game. This
game happens in a home-like environment and was designed to motivate and engage users in an interaction
where using the system was meaningful. We then analyzed results that show significant differences among
interfaces. In particular, we showed that interfaces such as the smartphone interface allows non-expert users
to intuitively provide much better training examples to the robot, almost as good as expert users who are
trained for this task and aware of the different visual perception and machine learning issues. We also showed
that artifact-mediated teaching is significantly more efficient for robot learning, and equally good in terms of
usability and user’s experience, than teaching thanks to a gesture-based human-like interaction.
This work was published in the IEEE Transactions on Robotics [34].

Figure 29. Smartphone Interface. To make the robot collect a new learning example, users have to first draw the
robot’s attention toward the object they want to teach through simple gestures. Once the robot sees the object, they
touch the head of the robot to trigger the capture. Then, they directly encircle the area of the image that represents
the object on the screen. The selected area is then used as the new learning example. The combination of the video

stream and the gestures facilitate the achievement of joint attention.

Figure 30. Wiimote + laser pointer interface. With this interface users can draw the robot’s attention with a laser
pointer toward an object. The laser spot is automatically tracked by the robot. They can ensure that the robot

detects the spot thanks to haptic feedback on the Wiimote. Then, they can touch the head of the robot to trigger the
capture of a new learning example. Finally, they encircle the object with the laser pointer to delimit its area which

will be defined as the new learning example.

6.3.2. Developmental object learning through manipulation and human demonstration
Participants: Natalia Lyubova, David Filliat.

The goal of this work is to design a visual system for a humanoid robot. We used a developmental approach that
allows a humanoid robot to continuously and incrementally learn entities through interaction with a human
partner in a first stage before categorizing these entities into objects, humans or robot parts and using this
knowledge to improve objects models by manipulation in a second stage. This approach does not require
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Figure 31. The real world environment designed to reproduce a typical living room. Many objects were added in
the scene in order to make the environment cluttered.

Figure 32. iCub performing curiosity-driven exploration and active recognition of visual objects in 3D
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prior knowledge about the appearance of the robot, the human or the objects. The proposed perceptual system
segments the visual space into proto-objects, analyses their appearance, and associates them with physical
entities. Entities are then classified based on the mutual information with proprioception and on motion
statistics. The ability to discriminate between the robot’s parts and a manipulated object then allows to update
the object model with newly observed object views during manipulation. We evaluate our system on an iCub
robot, showing the independence of the self-identification method on the robot’s hands appearances by wearing
different colored gloves. The interactive object learning using self-identification shows an improvement in the
objects recognition accuracy with respect to learning through observation only [52], [51].

6.3.3. A Comparison of Geometric and Energy-Based Point Cloud Semantic Segmentation
Methods
Participants: Mathieu Dubois, Alexander Gepperth, David Filliat.

The software we developped for object segmentation and recognition rely on a geometric segmentation of
the space. We tested alternative methods for this semantic segmentation task in which the goal is to find
some relevant classes for navigation such as wall, ground, objects, etc. Several effective solutions have been
proposed, mainly based on the recursive decomposition of the point cloud into planes. We compare such a
solution to a non-associative MRF method inspired by some recent work in computer vision.

The results [42] shows that the geometric method gives superior results for the task of semantic segmentation in
particular for the object class. This can be explained by the fact that it incorporates a lot of domain knowledge
(namely that indoor environments are made of planes and that objects lie on top of them). However, MRF
segmentation gives interesting results and has several advantages. First most of it’s components can be used
for other purpose or in other, less constrained, environments where domain knowledge is not available. For
instance we could try to recognize more precisely the objects. Second it requires less tuning since most
parameters are learned from the database. Third, it uses the appearance information which could help to
identify different types of ground or wall (this was one of the goal in the CAROTTE challenge). Last but not
least, as it gives a probabilistic output, it allows the robot to draw hypothesis on the environment and adapt its
behavior. Therefore we think it is interesting to investigate improvements to improve the exploitation of the
structure of the point clouds.

6.3.4. Efficient online bootstrapping of sensory representations
Participant: Alexander Gepperth.

This work [86] is a simulation-based investigation exploring a novel approach to the open-ended formation
of multimodal representations in autonomous agents. In particular, we addressed here the issue of transfer-
ring (bootstrapping) features selectivities between two modalities, from a previously learned or innate ref-
erence representation to a new induced representation. We demonstrated the potential of this algorithm by
several experiments with synthetic inputs modeled after a robotics scenario where multimodal object repre-
sentations are bootstrapped from a (reference) representation of object affordances, focusing particularly on
typical challenges in autonomous agents: absence of human supervision, changing environment statistics and
limited computing power. We proposed an autonomous and local neural learning algorithm termed PROPRE
(projection-prediction) that updates induced representations based on predictability: competitive advantages
are given to those feature-sensitive elements that are inferable from activities in the reference representation,
the key ingredient being an efficient online measure of predictability controlling learning. We verified that the
proposed method is computationally efficient and stable, and that the multimodal transfer of feature selectivity
is successful and robust under resource constraints. Furthermore, we successfully demonstrated robustness to
noisy reference representations, non-stationary input statistics and uninformative inputs.

6.3.5. Simultaneous concept formation driven by predictability
Participants: Alexander Gepperth, Louis-Charles Caron.
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This work [83] was conducted in the context of developmental learning in embodied agents who have
multiple data sources (sensors) at their disposal. We developed an online learning method that simultaneously
discovers meaningful concepts in the associated processing streams, extending methods such as PCA, SOM
or sparse coding to the multimodal case. In addition to the avoidance of redundancies in the concepts derived
from single modalities, we claim that meaningful concepts are those who have statistical relations across
modalities. This is a reasonable claim because measurements by different sensors often have common cause
in the external world and therefore carry correlated information. To capture such cross-modal relations while
avoiding redundancy of concepts, we propose a set of interacting self-organization processes which are
modulated by local predictability. To validate the fundamental applicability of the method, we conducted a
plausible simulation experiment with synthetic data and found that those concepts which are predictable from
other modalities successively ”grow”, i.e., become overrepresented, whereas concepts that are not predictable
become systematically under-represented. We additionally explored the applicability of the developed method
to real-world robotics scenarios.

6.3.6. The contribution of context: a case study of object recognition in an intelligent car
Participants: Alexander Gepperth, Michael Garcia Ortiz.

In this work [84], we explored the potential contribution of multimodal context information to object detection
in an ”intelligent car”. The used car platform incorporates subsystems for the detection of objects from local
visual patterns, as well as for the estimation of global scene properties (sometimes denoted scene context or
just context) such as the shape of the road area or the 3D position of the ground plane. Annotated data recorded
on this platform is publicly available as the a ”HRI RoadTraffic” vehicle video dataset, which formed the basis
for the investigation. In order to quantify the contribution of context information, we investigated whether it
can be used to infer object identity with little or no reference to local patterns of visual appearance. Using
a challenging vehicle detection task based on the ”HRI RoadTraffic” dataset, we trained selected algorithms
(context models) to estimate object identity from context information alone. In the course of our performance
evaluations, we also analyzed the effect of typical real-world conditions (noise, high input dimensionality,
environmental variation) on context model performance. As a principal result, we showed that the learning of
context models is feasible with all tested algorithms, and that object identity can be estimated from context
information with similar accuracy as by relying on local pattern recognition methods. We also found that the
use of basis function representations [1] (also known as ”population codes” allows the simplest (and therefore
most efficient) learning methods to perform best in the benchmark, suggesting that the use of context is feasible
even in systems operating under strong performance constraints.

6.3.7. Co-training of context models for real-time object detection
Participant: Alexander Gepperth.

In this work [85], we developed a simple way to reduce the amount of required training data in context-based
models of real- time object detection and demonstrated the feasibility of our approach in a very challenging
vehicle detection scenario comprising multiple weather, environment and light conditions such as rain, snow
and darkness (night). The investigation is based on a real-time detection system effectively composed of two
trainable components: an exhaustive multiscale object detector (signal-driven detection), as well as a module
for generating object-specific visual attention (context models) controlling the signal-driven detection process.
Both parts of the system require a significant amount of ground-truth data which need to be generated by
human annotation in a time-consuming and costly process. Assuming sufficient training examples for signal-
based detection, we showed that a co-training step can eliminate the need for separate ground-truth data to train
context models. This is achieved by directly training context models with the results of signal-driven detection.
We demonstrated that this process is feasible for different qualities of signal-driven detection, and maintains
the performance gains from context models. As it is by now widely accepted that signal-driven object detection
can be significantly improved by context models, our method allows to train strongly improved detection
systems without additional labor, and above all, cost.
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6.4. Robot Multimodal Learning of Language and Action
6.4.1. Learning semantic components from sub-symbolic multi-modal perception

Participants: Olivier Mangin, Caio Tomazelli Da Silva Oliveira, Pierre-Yves Oudeyer.

Perceptual systems often include sensors from several modalities. However, existing robots do not yet
sufficiently discover patterns that are spread over the flow of multimodal data they receive. In this work
we establish a framework to learns multimodal components from perception. We use a nonnegative matrix
factorization algorithm to learn a dictionary of components that represent meaningful elements present in the
multimodal perception, without providing the system with a symbolic representation of the semantics. In [53]
we illustrate this framework by showing how a learner discovers word-like components from observation of
gestures made by a human together with spoken descriptions of the gestures, and how it captures the semantic
association between the two. These experiments were further extended during the internship of Caio Tomazelli
Da Silva Oliveira. Importantly these experiments provide an example of language grounding into perception,
and feature global understanding of a linguistic task without requiring its compositional understanding. The
code of the experiments from [53] as well as the motion dataset have been made publicly available to improve
the reproducibility of the experiments.

6.4.2. Curiosity-driven exploration and interactive learning of visual objects with the ICub
robot
Participants: Mai Nguyen, Natalia Lyubova, Damien Gerardeaux-Viret, David Filliat, Pierre-Yves Oudeyer.

We studied how various mechanisms for cognition and learning, such as curiosity, action selection, imitation,
visual learning and interaction monitoring, can be integrated in a single embodied cognitive architecture. We
have conducted an experiment with the iCub robot for active recognition of objects in 3D through curiosity-
driven exploration, in which the robot can manipulate the robot or ask a human user to manipulate objects
to gain information and recognise better objects (fig. 27). For this experiment carried out within the MACSi
project, we address the problem of learning to recognise objects in a developmental robotics scenario. In a
life-long learning perspective, a humanoid robot should be capable of improving its knowledge of objects
with active perception. Our approach stems from the cognitive development of infants, exploiting active
curiosity-driven manipulation to improve perceptual learning of objects. These functionalities are implemented
as perception, control and active exploration modules as part of the Cognitive Architecture of the MACSi
project. We integrated a bottom-up vision system based on swift feature points and motor-primitive based
robot control with the SGIM-ACTS algorithm (Socially Guided Intrinsic Motivation with Active Choice of
Task and Strategy as the active exploration module. SGIM-ACTS is a strategic learner who actively chooses
which task to concentrate on, and which strategy is better according to this task. It thus monitors the learning
progress for each strategy on all kinds of tasks, and actively interacts with the human teacher. We obtained
an active object recognition approach, which exploits curiosity to guide exploration and manipulation, such
that the robot can improve its knowledge of objects in an autonomous and efficient way. Experimental results
show the effectiveness of our approach: the humanoid iCub is now capable of deciding autonomously which
actions must be performed on objects in order to improve its knowledge, requiring a minimal assistance from
its caregiver. This work constitutes the base for forthcoming research in autonomous learning of affordances.
This work have been published in a conference [57] and in a journal paper [28].

6.4.3. Imitation Learning and Language
Participants: Thomas Cederborg, Pierre-Yves Oudeyer.

We have studied how context-dependant imitation learning of new skills and language learning could be
seen as special cases of the same mechanism. We argue that imitation learning of context-dependent skills
implies complex inferences to solve what we call the ”motor Gavagai problem”, which can be viewed as a
generalization of the so-called ”language Gavagai problem”. In a full symbolic framework where percepts and
actions are continuous, this allows us to articulate that language may be acquired out of generic sensorimotor
imitation learning mechanisms primarily dedicated at solving this motor Gavagai problem. Through the use
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of a computational model, we illustrate how non-linguistic and linguistic skills can be learnt concurrently,
seamlessly, and without the need for symbols. We also show that there is no need to actually represent the
distinction between linguistic and non-linguistic tasks, which rather appears to be in the eye of the observer
of the system. This computational model leverages advanced statistical methods for imitation learning, where
closed-loop motor policies are learnt from human demonstrations of behaviours that are dynamical responses
to a multimodal context. A novelty here is that the multimodal context, which defines what motor policy
to achieve, includes, in addition to physical objects, a human interactant which can produce acoustic waves
(speech) or hand gestures (sign language). This was published in [26].

6.4.4. Learning to Interpret the Meaning of Teaching Signals in Socially Guided Robot
Learning
Participants: Manuel Lopes, Jonathan Grizou, Thomas Cederborg, Pierre-Yves Oudeyer.

We elaborated an algorithm to bootstrap shared understanding in a human-robot interaction scenario where the
user teaches a robot a new task using teaching instructions yet unknown to it. In such cases, the robot needs
to estimate simultaneously what the task is and the associated meaning of instructions received from the user.
For this work, we consider a scenario where a human teacher uses initially unknown spoken words, whose
associated unknown meaning is either a feedback (good/bad) or a guidance (go left, right, ...). We present
computational results, within an inverse reinforcement learning framework, showing that a) it is possible to
learn the meaning of unknown and noisy teaching instructions, as well as a new task at the same time, b) it
is possible to reuse the acquired knowledge about instructions for learning new tasks, and c) even if the robot
initially knows some of the instructions’ meanings, the use of extra unknown teaching instructions improves
learning efficiency. Published articles: [43], [45].

An extension to the use of brain signals has been made [44]. Do we need to explicitly calibrate Brain Machine
Interfaces (BMIs)? Can we start controlling a device without telling this device how to interpret brain signals?
Can we learn how to communicate with a human user through practical interaction? It sounds like an ill posed
problem, how can we control a device if such device does not know what our signals mean? This paper argues
and present empirical results showing that, under specific but realistic conditions, this problem can be solved.
We show that a signal decoder can be learnt automatically and online by the system under the assumption that
both, human and machine, share the same a priori on the possible signals’ meanings and the possible tasks
the user may want the device to achieve. We present results from online experiments on a Brain Computer
Interface (BCI) and a Human Robot Interaction (HRI) scenario.

6.4.5. Active Learning for Teaching a Robot Grounded Relational Symbols
Participants: Johannes Kulick, Tobias Lang, Marc Toussaint, Manuel Lopes.

The present work investigates an interactive teaching scenario, where a human aims to teach the robot
symbols that abstract geometric (relational) features of objects. There are multiple motivations for this
scenario: First, state-of-the-art methods for relational Reinforcement Learning demonstrated that we can
successfully learn abstracting and well-generalizing probabilistic relational models and use them for goal-
directed object manipulation. However, these methods rely on given grounded action and state symbols and
raise the classical question Where do the symbols come from? Second, existing research on learning from
human-robot interaction has focused mostly on the motion level (e.g., imitation learning). However, if the
goal of teaching is to enable the robot to autonomously solve sequential manipulation tasks in a goal-directed
manner, the human should have the possibility to teach the relevant abstractions to describe the task and let the
robot eventually leverage powerful relational RL methods (see Figure 33). We formalize human-robot teaching
of grounded symbols as an Active Learning problem, where the robot actively generates geometric situations
that maximize his information gain about the symbol to be learnt. We demonstrate that the learned symbols
can be used in a relational RL framework for the robot to learn probabilistic relational rules and use them to
solve object manipulation tasks in a goal-directed manner. [47].
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Figure 33. Active learning of symbol descriptions on a real world robot.

6.5. Robot Design and Morphological Computation
6.5.1. The Poppy Humanoid Robot: Leg Design for Biped Locomotion

Participants: Matthieu Lapeyre, Pierre Rouanet, Pierre-Yves Oudeyer.

In this paper introduced for Poppy as a novel humanoid robotic platform designed to jointly address three
central goals of humanoid robotics: 1) study the role of morphology in biped locomotion; 2) study full-
body compliant physical human-robot interaction; 3) be robust while easy and fast to duplicate to facilitate
experimentation. The taken approach relies on functional modeling of certain aspects of human morphology,
optimizing materials and geometry, as well as on the use of 3D printing techniques. In this article, we have
focused on the presentation of the design of specific morphological parts related to biped locomotion: the hip,
the thigh, the limb mesh and the knee. We also presented an initial experiments showing properties of the robot
when walking with the physical guidance of a human. [50].

6.5.2. Poppy Humanoid Platform: Experimental Evaluation of the Role of a Bio-inspired
Thigh Shape
Participants: Matthieu Lapeyre, Pierre Rouanet, Pierre-Yves Oudeyer.

In this paper, we present an experimental evaluation of the role of the morphology in the Poppy humanoid
platform. More precisely, we have investigated the impact of the bio-inspired thigh, bended of 6o, on the
balance and biped locomotion. We compare this design with a more traditional straight thigh. We describe
both the theoretical model and real experiments showing that the bio-inspired thigh allows the reduction of
falling speed by almost 60% (single support phase) and the decrease of the lateral motion needed for the mass
transfer from one foot to the other by 30% (double support phase). We also present an experiment where the
robot walks on a treadmill thanks to the social and physical guidance of expert users and we show that the
bended thigh reduces the upper body motion by about 45% indicating a more stable walk.[48].

6.5.3. Morphological computation and body intelligence
6.5.3.1. Comparative Study of the Role of Trunk in Human and Robot Balance Control

Participants: Matthieu Lapeyre [correspondant], Christophe Halgand, Jean-Renã© Cazalet, Etienne Guillaud,
Pierre-Yves Oudeyer.
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Figure 34. Five pictures have been taken while Poppy was walking and were stacked to obtain a qualitative view of
the difference in the walking behavior in function of the morphology of the thigh.



Project-Team FLOWERS 47

Numerous studies in the field of functional motor rehabilitation were devoted to understanding the functioning
of members but few are interested in the coordination of the trunk muscles and the relationship between axial
and appendicular motricity which is essential in maintaining balance during travel. Acquiring new knowledge
on this subject is a prerequisite in the development of new therapeutic strategies to restore motor function
to the overall development of robotic orthosis that would assist the movement. Many robotic orthosis using
EMG signals were unfortunately using few joints [82] and a system for controlling a multi articulated spine has
not yet been developed. We propose here to use a multidisciplinary approach to define the neuro-mechanical
principles where an axial system is operating in synergy with human and robot limbs.

To bring us a theoretical framework, we chose to study the reactions of the Acroban humanoid robot. Including
5 joints in the trunk, Acroban can reproduce in part the fluid movements of the human body [101] and
especially to test its behavior when its trunk is held fixed or his arms are no longer used for rebalance. To
disrupt postural balance in humans and robots, we have developed a low cost mobile platform (see Figure
35). This platform is made up of a broad stable support (0.8x5m) mounted on a skateboard having a power
of 800W. The substitution of the initial order of skate by an embedded microcontroller allows us to generate
mono-axial perturbations precise intensity and duration to ensure repeatability of the disturbance. We capture
movements (Optitrack 250Hz) and record the acceleration of the platform (accelerometer embedded 2kHz),
the center of pressure (WiiBalanceBoard 60Hz), and electromyography (EMG).

Figure 35. Experimental setup for comparative study of the role of the trunk in human and robot balance control

The experimental device (mobile platform and synchronized recordings) is operational. Preliminary experi-
ments have allowed us to refine the profiles of disturbance on the robot Acroban. The analysis of preliminary
results is in progress. Following this study, we hope to improve the modeling of the motor system in humans
and robotic simulation as a basis for the development of robotic orthosis axial system. Second, the results
provide a basis for improved balancing of Acroban primitives but also the development of future humanoid
robots.

6.6. Educational Technologie
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6.6.1. KidLearn: Adaptive Personalization of Educational Content with Machine Learning
Kidlearn is a research project studying how machine learning can be applied to intelligent tutoring systems. It
aims at developing methodologies and software which adaptively personalize sequences of learning activities
to the particularities of each individual student. Our systems aim at proposing to the student the right activity
at the right time, maximizing concurrently his learning progress and its motivation. In addition to contributing
to the efficiency of learning and motivation, the approach is also made to reduce the time needed to design ITS
systems.

Intelligent Tutoring System (ITS) are computer environments designed to guide students in their learning.
Through the proposal of different activities, it provides teaching experience, guidance and feedback to improve
learning. The FLOWERS team has developed several computational models of artificial curiosity and intrinsic
motivation based on research on psychology that might have a great impact for ITS. Results showed that
activities with intermediate levels of complexity, neither too easy nor too difficult but just a little more
difficult that the current level, provide better teaching experiences. The system is based on the combination
of three approaches. First, it leverages Flowers team’s recent models of computational models of artificial
curiosity and intrinsic motivation based on research in psychology and neuroscience. One overview can be
be found in [27]. Second, it uses state-of-the-art Multi-Arm Bandit (MAB) techniques to efficiently manage
the exploration/exploitation challenge of this optimization process. Third, it leverages expert knowledge to
constrain and bootstrap initial exploration of the MAB, while requiring only coarse guidance information of
the expert and allowing the system to deal with didactic gaps in its knowledge. In 2013, we have run a first
pilot experiment in elementary schools of Région Aquitaine, where 7-8 year old kids could learn elements of
mathematics thanks to an educational software that presented the right exercises at the right time to maximize
learning progress. A report is available at: http://arxiv.org/pdf/1310.3174v1.pdf.

6.7. Other applications
6.7.1. Real-time Reaction-Diffusion Simulation: a Machine Learning Technique

Participants: Thomas Degris, Nejib Zemzemi.

Carmen is an Inria team working on modeling the electrical activity of the human heart. Their models are
mainly based on reaction-diffusion equations. These methods are expansive in terms of computational costs
which limits their use in practice. More specifically, some recent chirurgical intervention techniques on the
heart (atrial ablation) requires to identify the source of the electrical wave. Finding such sources requires an
optimization procedure. Using classical methods, this procedure is very heavy computationally.

In this project, our goal is to reduce the computational cost using supervised learning techniques. The idea
is to replace the incremental resolution of partial differential equations by more suitable data structures for
real-time running. Starting from data generated by simulating different excitations scenari on a human atria,
this data is afterwords used as a training data set for machine learning algorithms. This approach will allow a
faster optimization procedure.

This work is in collaboration with Nejib Zemzemi from the Inria Carmen team. This project is in preliminary
steps.

6.7.2. Appearance-based segmentation of indoors/outdoors sequences of spherical views
Participant: David Filliat.

In collaboration with Patrick Rives and Alexandre Chapoulie from the Arobas team at Inria Sophia-Antipolis,
we developped a method for environment segmentation based on spherical views [41]. Navigating in large
scale, complex and dynamic environments requires reliable representations able to capture metric, topological
and semantic aspects of the scene for supporting path planing and real time motion control. In a previous work,
we addressed metric and topological representations thanks to a multi-cameras system which allows building
of dense visual maps of large scale 3D environments. The map is a set of locally accurate spherical panoramas
related by 6dof poses graph. The work presented here is a further step toward a semantic representation. We

http://arxiv.org/pdf/1310.3174v1.pdf
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aim at detecting the changes in the structural properties of the scene during navigation. Structural properties
are estimated online using a global descriptor relying on spherical harmonics which are particularly well-
fitted to capture properties in spherical views. A change-point detection algorithm based on a statistical
Neyman-Pearson test allows us to find optimal transitions between topological places. Results are presented
and discussed both for indoors and outdoors experiments.

6.7.3. Modelling Stop Intersection Approaches using Gaussian Processes
Participant: David Filliat.

In collaboration with Javier-Ibanez Guzman and Alexandre Armand from Renault, we developped an approach
toward the development of an electronic co-pilot adapted to the driver behavior [39]. Indeed, each driver reacts
differently to the same traffic conditions, however, most Advanced Driving Assistant Systems (ADAS) assume
that all drivers are the same. This work proposes a method to learn and to model the velocity profile that the
driver follows as the vehicle decelerates towards a stop intersection. Gaussian Processes (GP), a machine
learning method for non-linear regressions are used to model the velocity profiles. It is shown that GP are
well adapted for such an application, using data recorded in real traffic conditions. GP allow the generation
of a normally distributed speed, given a position on the road. By comparison with generic velocity profiles,
benefits of using individual driver patterns for ADAS issues are presented.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. Advanced platform for Urban Mobility (PAMU

Participant: David Filliat.

Development of a planning algorithm on a autonomous electric car for Renault SAS. We developped a planning
module in order to produce global plans to reach a goal specified in a digital map and to perform local reactive
planning to avoid dynamic obstacles. This module is integrated in the PAMU autonomous vallet parking
developped by Renault with several academic partners.

7.2. Bilateral Grants with Industry
7.2.1. Development of an Contextual electronic copilot for driving assistance

Participant: David Filliat.

Financing of the CIFRE PhD grant of Alexandre Armand by Renault SAS with the goal of developping an
Contextual electronic copilot for driving assistance based on the learning of the behavior of the driver.

8. Partnerships and Cooperations

8.1. Scientific Collaborations (outside consortium projects)
8.1.1. Collaboration and technological transfer with Laboratoire de Physiologie de la

Perception et de l’Action (LPPA)
A collaboration is in progress with Jacques Droulez and Steve Nguyen from Laboratoire de Physiologie de
la Perception et de l’Action (LPPA), Paris. Poppy represents for them a humanoid platform very interesting
because it is relatively flexible and versatile, with more similar proportions to that of humans, which facilitate
comparison with the experimental results obtained in humans. The laboratory will evaluate this platform
probabilistic methods of control of balance and locomotion.
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In the short term the first experimental project with Poppy will test methods of management support, in the
case of restoration of balance, in the case of walking to correct or prepare a change of direction. This project
will be initiated in the framework of a long internship of master 2 that starts in January. In the future, we
would also like to evaluate motor controllers compliant, and learning algorithms. This collaboration involves
Matthieu Lapeyre and Pierre-Yves Oudeyer.

8.1.2. Collaborations with Gipsa-Lab, Laboratoire de Psychologie et de Neurocognition
(LPNC) and Laboratoire de Physiologie de la Perception et de l’Action (LPPA)
Clément Moulin-Frier is continuing his collaborative work with people he worked with during his PhD thesis
at GIPSA-Lab, LPNC and LPPA. See the section entitled “COSMO (Communicating about Objects using
Sensory-Motor Operations): a Bayesian modeling framework for studying speech communication and the
emergence of phonological systems” for more information. He is also continuing his collaborative work with
people he worked with during his post-doc in 2011 at LPPA. See the section entitled “Probabilistic optimal
control: a quasimetric approach” for more information.

8.1.3. Collaboration with the Computer Science Department of the University of Zaragoza
A collaboration is in progress with Iñaki Iturrate and Luis Montesano at Zaragoza University, Spain. We
aim a develloping a calibration free Brain Computer Interaction system through the use and extension of
learning algorithm developped in the team [43], [45], [44]. We focus our effort on error related potentials that
occur in the brain while observing or performing a task. They supposedly play a role in human learning as
implicit feedback signals that evaluate the correctness or unexpectedness of received stimuli. Our goal is to
automatically and reliably detect and classify these signals to provide feedback to artificial systems (e.g. a
robot) that learn how to interact and adapt themselves to the user intentions and preferences.

8.2. Regional Initiatives
8.2.1. FUI ROBOT POPULI

This project leaded by Awabot (http://www.awabot.com) funded from 2012 to 2014 aims to investigate,
prototype, and test new applications and interactions between the robot and the user to move from niche
markets to the general public. This project builds on the theories of Geoffrey Moore (Crossing the Chasm),
putting the user at the center of the product design and following the vision of a playful robot and connected
to the cloud, where the robot is an interface for advanced interactive entertainment of the future. It brings
together partners with complementary expertise to develop and / or adapt and integrate technological bricks
missing to fulfill such a vision. Our goal in this project is to develop a robust and low cost navigation system
based on RGB-D cameras.

Partners : ARTEFACTS STUDIO, LIRIS, ENSTA ParisTech, GAMAGORA (Université Lyon 2)

8.2.2. PSPC ROMEO 2
This project leaded by Aldebaran Robotics (http://www.aldebaran-robotics.com/) funded from 2012 to 2016
by OSEO aims at developping a humanoid robot for assisting people. The contribution of FLOWERS and
ENSTA ParisTech are in the area of human-robot interaction, learning by demonstration, perception and
semantic mapping.

Partners : ALL4TEC, Inria, CNRS, VOXLER, SPIROPS, ISIR, UVSQ, CEA LIST, ENSTA ParisTech,
STRATE COLLEGE, TELECOM PARISTECH, ASSOCIATION APPROCHE

Web site: http://www.aldebaran-robotics.com/fr/Projets/romeo.html

http://www.awabot.com
http://www.aldebaran-robotics.com/
http://www.aldebaran-robotics.com/fr/Projets/romeo.html
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8.3. National Initiatives
8.3.1. ANR MACSi

An ANR Project (MACSi, ANR Blanc 0216 02), coordinated by ISIR/Univesity Paris VI (Olivier Sigaud),
on developmental robotics (motor learning, visual learning, and exploration algorithms on the ICub robot)
continued. The MACSi project is a developmental robotics project based on the iCub humanoid robot and the
Urbi open source software platform. It is funded an as ANR Blanc project from 2010 to 2013. The project
addresses four fundamental challenges, led by four partners:

• How can a robot learn efficient perceptual representations of its body and of external objects
given initially only low-level perceptual capabilities? Challenge leader : Inria-ENSTA-ParisTech
FLOWERS (Paris).

• How can a robot learn motor representations and use them to build basic affordant reaching and
manipulation skills? Challenge leader : ISIR-UPMC-Paris 6 (Paris). ISIR hosts the iCub humanoid
robot on which the achievements will be evaluated.

• What guidance heuristics should be used to explore vast sensorimotor spaces in unknown changing
bodies and environments? Challenge leader : Inria-ENSTA-ParisTech FLOWERS (Bordeaux).

• How can mechanisms for building efficient representations/abstractions, mechanisms for learning
manipulation skills, and guidance mechanisms be integrated in the same experimental robotic
architecture and reused for different robots? Challenge leader : GOSTAI company (Paris).

Web site: http://macsi.isir.upmc.fr/

8.4. European Initiatives
8.4.1. FP7 Projects
8.4.1.1. 3rd HAND

Type: COOPERATION
Defi:ICT-2013.2.1 Robotics, Cognitive Systems & Smart Spaces, Symbiotic Interaction
Instrument: Collaborative project
Objectif: Target a) Intelligent robotics systems
Duration: October 2013 - September 2017
Coordinator: Inria, France
Partner: Universitaet Darmstadt, Germany
Partner: Stuttgart University, Germany
Partner: University of Innsbruck, Austria
Inria contact: Manuel Lopes
Abstract: Robots have been essential for keeping industrial manufacturing in Europe. Most factories
have large numbers of robots in a fixed setup and few programs that produce the exact same product
hundreds of thousands times. The only common interaction between the robot and the human worker
has become the so-called ”emergency stop button”. As a result, re-programming robots for new or
personalized products has become a key bottleneck for keeping manufacturing jobs in Europe. The
core requirement to date has been the production in large numbers or at a high price. Robot-based
small series production requires a major breakthrough in robotics: the development of a new class
of semi-autonomous robots that can decrease this cost substantially. Such robots need to be aware
of the human worker, alleviating him from the monotonous repetitive tasks while keeping him in the
loop where his intelligence makes a substantial difference.

In this project, we pursue this breakthrough by developing a semi-autonomous robot assistant
that acts as a third hand of a human worker. It will be straightforward to instruct even by an

http://macsi.isir.upmc.fr/
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untrained layman worker, allow for efficient knowledge transfer between tasks and enable a effective
collaboration between a human worker with a robot third hand. The main contributions of this
project will be the scientific principles of semi-autonomous human-robot collaboration, a new semi-
autonomous robotic system that is able to: i) learn cooperative tasks from demonstration; ii) learn
from instruction; and iii) transfer knowledge between tasks and environments.

8.4.1.2. ERC EXPLORERS

Instrument: ERC Starting Grant

Duration: December 2009 - November 2014

Coordinator: Pierre-Yves Oudeyer, Inria.

Abstract: In spite of considerable and impressive work in artificial intelligence, machine learning,
and pattern recognition in the past 50 years, we have no machine capable of adapting to the physical
and social environment with the flexibility, robustness and versatility of a 6-months old human
child. Instead of trying to simulate directly the adult’s intelligence, EXPLORERS proposes to focus
on the developmental processes that give rise to intelligence in infants by re-implementing them
in machines. Framed in the developmental/epigenetic robotics research agenda, and grounded in
research in human developmental psychology, its main target is to build robotic machines capable
of autonomously learning and re-using a variety of skills and know-how that were not specified at
design time, and with initially limited knowledge of the body and of the environment in which it
will operate. This implies several fundamental issues: How can a robot discover its body and its
relationships with the physical and social environment? How can it learn new skills without the
intervention of an engineer? What internal motivations shall guide its exploration of vast spaces of
skills? Can it learn through natural social interactions with humans? How to represent the learnt
skills and how can they be re-used? EXPLORERS attacks directly those questions by proposing a
series of scientific and technological advances: 1) we will formalize and implement sophisticated
systems of intrinsic motivation, responsible of organized spontaneous exploration in humans, for
the regulation of the growth of complexity of learning situations; 2) intrinsic motivation systems
will be used to drive the learning of forward/anticipative sensorimotor models in high-dimensional
multimodal spaces, as well as the building of reusable behavioural macros; 3) intrinsically motivated
exploration will be coupled with social guidance from non-engineer humans; 4) an information-
theoretic framework will complement intrinsically motivated exploration to allow for the inference of
body maps; 5) we will show how learnt basic sensorimotor skills can be re-used to learn the meaning
of early concrete words, pushing forward human-robot mutual understanding. Furthermore, we will
setup large scale experiments, in order to show how these advances can allow a high-dimensional
multimodal robot to learn collections of skills continuously in a weeks-to-months time scale. This
project not only addresses fundamental scientific questions, but also relates to important societal
issues: personal home robots are bound to become part of everyday life in the 21st century, in
particular as helpful social companions in an aging society. EXPLORERS’ objectives converge to
the challenges implied by this vision: robots will have to be able to adapt and learn new skills in the
unknown homes of users who are not engineers.

8.5. International Initiatives
8.5.1. Inria Associate Teams
8.5.1.1. NEUROCURIOSITY

Title: NeuroCuriosity

Inria principal investigator: Manuel Lopes

International Partner (Institution - Laboratory - Researcher):

Columbia Neuroscience (United States) - Jacqueline Goetlieb

Duration: 2013 - 2015
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One of the most striking aspects of human behavior is our enormous curiosity, drive for exploration.
From a child feverishly examining a new toy with its hands and its eyes, to a tourist exploring
a new city, to a scientist studying the brain, humans incessantly want to know. This exuberant
curiosity shapes our private and social lives, and is arguably a key cognitive feature that allows
our species to understand, control and alter our world. We aim to develop a novel unified biological
and computational theory, which explains curiosity in the domain of visual exploration and attention
as a deliberate decision motivated by learning progress. This theory will build and improve upon
pioneer computational models of intrinsic motivation elaborated in developmental robotics, and
be empirically evaluated in the context of visual exploration in monkeys through behavioral and
brain imaging techniques. This will be the first attempt at a biological-computational framework
of intrinsic motivation and perceptual exploration and their underlying cognitive mechanisms. This
collaboration involves Pierre-Yves Oudeyer and Manuel Lopes on the Inria side, and Jacqueline
Gottlieb and Adrien Baranes on Univ. Columbia side.

8.6. International Research Visitors
8.6.1. Visits of International Scientists

• Jan Peters, Technische Universitaet Darmstadt

• Marc Toussaint, Stuttgart University

• Justus Piater, University of Innsbruck

• Luis Montesano, University of Zaragoza

• Michael Mistry, Lecturer in Robotics, Intelligent Robotics Lab, University of Birmingham

• Andrej Gams, Post-doc, Biorobotics Laboratory, EPFL

• Adrien Baranes, Columbia University, NY, US

• Katharina Rohlfing, Bielefeld University, Germany

• Yannis Demiris, Imperial College, UK

• Andrew Barto, Univ. Massachussets at Amherst, US

8.6.1.1. Internships

• Jules Brochard, Emergent Proximo-Distal Maturation through Adaptive Exploration

• Axel Davy, Safe exploration in MDPs

• Julie Golliot, Experimental Platform for User Study of Curiosity-driven Exploration

• Brice Miard, Experimental Platform for User Study of Curiosity-driven Exploration

• Chloé Rozenbaum, Learning Simultaneously New Tasks and Feedback Models in Socially Guided
Robot Learning

• Caio Tomazelli Da Silva Oliveira, Multimodal learning of speech-action-video primitives

8.6.2. Visits to International Teams
PY Oudeyer visited Gottlieb’s Cognitive Neuroscience lab at Columbia University, NY, US; CITEC at
Bielefeld University, Germany.

F. Stulp visited the Max Planck Institute for Intelligent Systems (Stefan Schaal) in Tuebingen, Germany.

In May 2013, Matthieu Lapeyre visited the Bristol Robotic Lab to present the Poppy robot. A close
collaboration will begin in 2014, in particular they will hire an engineer to design grasping hand for Poppy.

In May 2013, Jonathan Grizou visited Iñaki Iturrate and Luis Montesano at Zaragoza University, Spain.

In July 2013, Manuel Lopes visit the lab of Andrea Thomaz at Georgia Tech.
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In August 2013, Clément Moulin-Frier visited the Honda Research Center in Tokyo as well as Pr. Sawada
at Kagawa University, Japan. He gave talks in both labs. He also visited the Intelligent Robotics Laboratory
directed by Prof. Hiroshi Ishiguro and Asada Laboratory directed by Prof. Minoru Asada, in Osaka. In October
2013 he visited the Developmental Neuromechanics & Communication Lab at Princeton University, USA.

In August 2013, Fabien Benureau, Olivier Mangin, Mai Nguyen and Jonathan Grizou, visited the Intelligent
Robotics Laboratory directed by Prof. Hiroshi Ishiguro, Osaka; the Humanoid Robotics Institute directed
by Prof. Atsuo Takanishi, Tokyo; Intelligent Systems and Informatics Laboratory directed by Prof. Yasuo
Kuniyoshi, Tokyo; and Asada Laboratory directed by Prof. Minoru Asada, Osaka.

In October 2013, Manuel Lopes, Clément Moulin-Frier and Mai Nguyen visited the Cognitive Neuroscience
lab of Jacqueline Gottlieb in New York.

9. Dissemination

9.1. Editorial Activities
9.1.1. Editorial boards

Pierre-Yves Oudeyer has been editor of IEEE CIS Newsletter on AMD, and Fabien Benureau has been
associate editor.

Pierre-Yves Oudeyer has been of journals IEEE TAMD, International Journal of Social Robotics, and Frontiers
in Neurorobotics.

PY Oudeyer is member of the IEEE CIS Technical Committee on Autonomous Mental Development. (Key
instance for the organization of the IEEE ICDL conference series).

M. Lopes is member of the steering committee of the IEEE RAS TC on Robot Learning.

D. Filliat has been associate editor for the IROS 2013 conference.

9.1.2. PC committees and reviewing
• PY Oudeyer has been reviewer for journals (Proceedings of IEEE, Topics in Cognitive Science,

Frontiers in Psychology, ), member of conference program committees (Humanoids 2013, ICDL-
Epirob 2013, IROS 2013, ICRA 2013), and reviewer and expert for several European projects of the
ICT Program.

• D Filliat has been member of the evaluation committee for the ANR Apprentissages program,
member of the program committee for the REACTS workshop, reviewer for the Autonomous Robots
journal and reviewer for conferences (ECMR,ICRA,IROS,IV).

• Jonathan Grizou has been reviewer for ICDL-Epirob 2013 and Robotica 2013 conferences.
• Clément Moulin-Frier has been reviewer for the ICDL-Epirob 2013 conference and the IEEE

Transactions on Autonomous Mental Development journal.
• Alexander Gepperth has been reviewer for IROS 2013, ITSC 2013, IJCNN 2013, for the journals

Cognitive Computation, Transactions on Intelligent Transportation systems, Neuroco;puting, Neural
Networks and Neural Processing Letters. He has been program committe member for IJCNN 2013.

• Freek Stulp was reviewer for journals (IEEE Transactions on Robotics, Autonomous Robots, IEEE
Transactions on Autonomous Mental Development, Journal of Intelligent and Robotic Systems),
conferences (International Joint Conference on Neural Networks (IJCNN), IEEE International
Conference on Intelligent Robots and Systems (IROS), IEEE International Conference on Robotics
and Automation (ICRA), IEEE Humanoids), and member of the program committee of ICRA.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching
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License: Introduction à Matlab, 21 heures. L3 - ENSTA ParisTech (Alexander Gepperth)

License: Traitement numérique du signal , 21 heures. L3 - ENSTA ParisTech (Alexander Gepperth)

Master: Apprentissage Autonomme, 6 heurs. M2, ENSEIRB - Bordeaux (Pierre-Yves Oudeyer).

Master: Apprentissage Autonomme, 6 heurs. M2, ENSEIRB - Bordeaux (Manuel Lopes).

Master: Robotique de Compagnie, 6 heurs. M2, ENSTA - Paris Tech (Manuel Lopes).

Master: Robotique Mobile, 24 heures. M2, ENSTA - ParisTech (David Filliat).

Master: Vision pour la robotique, 12 heures. M2, University Pierre et Marie Curie (David Filliat).

License: Introduction to Matlab, 21 heures. L3, ENSTA - ParisTech (David Filliat).

Licence 2: Graphe, Langage, Cryptologie, 21 heures. Pole Universitaire Francais de Ho Chi Minh
Ville

Master: Option Robotique, Projet Robot Autonome, 32 heures. ENSEIRB, Bordeaux, France.

Licence: Mathématique, 20 heures, niveau (L1), Université de Bordeaux (Olivier Mangin)

Licence: Infomatique, Introduction à la robotique, 30 heures, niveau (L3), Université de Bordeaux
(Olivier Mangin et Fabien Bénureau)

9.2.2. Supervision
PhD finished: Mai Nguyen, Bootstrapping Intrinsically Motivated Learning with Human Demon-
stration, defended nov. 2013 (superv. Pierre-Yves Oudeyer).

PhD finished: Thomas Cederborg, A unified view of context-dependant skill learning and language
acquisition, defended dec. 2013 (superv. Pierre-Yves Oudeyer).

PhD finished: Natalia Lyubova, A developmental approach to perception for a humanoid robot [23],
defended october 30th, 2013 (superv. David Filliat).

PhD in progress: Louis-Charles Caron, Developmental learning in multimodal sensory-motor loops,
started january 2012 (superv. Alexander Gepperth).

PhD in progress: Guillaume Duceux, Navigation and exploration based on RGB-D cameras, started
october 2011 (superv. David Filliat).

PhD in progress: Alexandre Armand, Contextual electronic copilot for driving assistance, started
feb. 2011 (superv. David Filliat)

PhD in progress: Matthieu Lapeyre, Developmental constraints for biped humanoid walking, started
oct. 2010 (superv. Pierre-Yves Oudeyer and Olivier Ly).

PhD in progress: Fabien Benureau, Cumulative, hierarchical and intrinsically motivated learning of
robot skills, started oct. 2010 (superv. Pierre-Yves Oudeyer).

PhD in progress: Jonathan Grizou, Fluid simultaneous learning of task and feedback models, started
oct. 2011 (superv. Manuel Lopes and Pierre-Yves Oudeyer).

PhD in progress: Olivier Mangin, Learning of sensorimotor primitives with Non-Negative Matrix
Factorization, started oct. 2010 (superv. Pierre-Yves Oudeyer).

PhD in progress: Ievgen Perederieiev, Adaptive task execution for implicit human-robot coordina-
tion, started oct. 2012 (superv. Manuel Lopes).

PhD in progress: Thibaut Munzer, Learning from Instruction, started oct. 2013 (superv. Manuel
Lopes).

PhD in progress: Yuxin Chen, Interactive learning of objects and names on a humanoid robot, started
oct. 2013 (superv. David Filliat).

9.2.3. Juries
Edouard Klein (Manuel Lopes, 2013, examinateur) Contributions à l’apprentissage par renforcement
inverse, supervised by Yann Guermeur and Matthieu Geist, Université de Lorraine, France
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Pedro Sequeira (Manuel Lopes, 2013, examinateur) Socio-Emotional Reward Design for Intrinsi-
cally Motivated Learning Agents, supervised by Ana Paiva and Francisco Melo, Instituto Superior
Técnico, Portugal

Hemanth Korrapati (03/07/13, David Filliat, Examinateur) : Loop Closure for Topological Mapping
and Navigation with Omnidirectional Images. Université Blaise Pascal - Clermont-Ferrand II,
Youcef Mezouar (Dir.)

Cédric Meyer (14/06/13, David Filliat, Examinateur) : Théorie de vision dynamique et application à
la robotique mobile. Université Pierre et Marie Curie, Ryad Benosman (Dir.)

Srikrishna Bhat (22/01/13, David Filliat, Rapporteur) : Visual words for pose computation. Univer-
sité de Lorraine (22/01/2013), Marie-Odile Berger (Dir.)

Beata Gryzb (04/13, PY Oudeyer, Rapporteur): Grounding spatial awareness in sensorimotor repre-
sentations: an interdisciplinary approach, Univ. Madrid, Spain

Xavier Hinault (01/12, PY Oudeyer, Rapporteur): Réseau de neurones récurrent pour le traitement de
séquences abstraites et de structures grammaticales, avec une application aux interactions homme-
robot, Univ. Lyon 1, France.

Antoine de Rengervé (12/13, PY Oudeyer, Rapporteur): Apprentissage interactif en robotique
autonome : vers de nouveaux types d’IHM, Univ. Cergy Pontoise.

Michael Garcia Ortiz (7/2013, A.Gepperth, Rapporteur): Driver behavior prediction, Univ. de
Bielefeld (Allemagne)

Sarra Jlassi (28/11/13, Freek Stulp, Examinateur) : Formulation et Etude des Problemes de Com-
mande en Co-manipulation Robotique. Laboratoire des Signaux et Systemes, Supelec (Dir. Yacine
Chitour)

9.3. Popularization and Outreach
9.3.1. Popular Science Publications

Pierre-Yves Oudeyer published a popular science book entitled "Aux sources de la parole" at Odile Jacob,
http://www.pyoudeyer.com/AuxSourcesDeLaParole.htm

9.3.2. Popular Science Radio Broadcast
PY Oudeyer participated to several popular science radio broadcast:

France Culture (28th october 2013), La parole et l’ordinateur, Interview avec Stéphane Delogeorges, émission
Continent Sciences. http://www.franceculture.fr/emission-continent-sciences-la-parole-et-l-ordinateur-2013-
10-28

France Inter (27 octobre) Le langage: une auto-organisation ? Interview avec Stéphane Paoli, émission 3D, le
journal. http://www.franceinter.fr/emission-3d-le-journal-ou-va-lhumanite-et-langage-une-auto-organisation

RFI (Sept. 2013) Comment s’invente le langage ? (Interview 55 mn), Emission "Autour de la question" de
Caroline Lachowsky.http://www.rfi.fr/emission/20130909-1-comment-s-invente-le-langage

9.3.3. Popular Science Talks
Musée des Arts et Métiers (7 nov. 2013) Aux sources de la parole, Parole d’auteurs, rencontre avec PY Oudeyer
animée par Daniel Fiévet (France Inter).

9.3.4. Museum Exhibitions, Science Festivals and Public Demonstrations
9.3.4.1. Educatec-Educatice

Kidlearn have been presented on Educatec-Educatice exhibition the 20,21 and 22 November 2013. This
exhibition was held in Paris and grouped together 220 education professional and more than 12000 visitors. It
was an opportunity to present Kidlearn project and create contact for potential partnership.

http://www.pyoudeyer.com/AuxSourcesDeLaParole.htm
http://www.franceculture.fr/emission-continent-sciences-la-parole-et-l-ordinateur-2013-10-28
http://www.franceculture.fr/emission-continent-sciences-la-parole-et-l-ordinateur-2013-10-28
http://www.franceinter.fr/emission-3d-le-journal-ou-va-lhumanite-et-langage-une-auto-organisation
http://www.rfi.fr/emission/20130909-1-comment-s-invente-le-langage
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9.3.4.2. Cap Sciences exhibition on “Brain and Cognition”

Cap Sciences is an organization in Bordeaux to promote and to communicate about science to the public.
Cap Sciences is preparing an exhibit about the brain starting in February 2013. The Flowers team will
contribute to this exposition by setting up a booth to explain the complexity of the processing required for
intelligent artificial systems (e.g. robots) to transform observations from the environment to actions done in
this environment, such processing being done continuously by all living beings, most notably by nervous
systems and brains. To explain this idea, the Flowers team is working on a game for the visitors of the exhibit:
a player has to drive forward a mobile robot, specifically an iRobot Roomba, while avoiding obstacles. The
difficulty for the visitor in this game is that the player is not able to watch the robot in its environment: the
player has to control it using only the sensory-information displayed on a computer screen. The player wins
when the robot has traveled a given distance in a straight line and in limited time without bumping into an
obstacle. This exhibit will start in February 2013 and last for a year. After that, it may move to different
locations. More than 100,000 visitors are expected in Cap Sciences, half of them will come from elementary
schools. The data generated by the robot and the visitors will be logged and will be available for research on
life long learning with robots.

9.3.4.3. NOVAQT

Poppy and Kidlearn have been presented in the NOVAQT exhibition the 5, 6 and 7 December 2013. This
exhibition was held in Bordeaux and brought together a selection of 108 innovations created in the region
Aquitaine. It was a chance to present our research to 3 different public: industry, education and general public.
Feedbacks were very enthusiastic and we have found several potential collaborations with local actors.

9.3.4.4. Fète de la science

On october 13th, the team organised robotics demonstrations for the "Fete de la science" in ENSTA ParisTech.
We demontrated physical human-robot interaction using the Meka robot, object segmentation and recognition
through a Kinect camera and navigation and mapping with a Pioneer robot. Around 300 people participated in
the event.

9.3.5. Education towards the younger
The team also initiated the development of educational activities in "écoles primaires" et "collèges" to have
kids discover robotics and programming, as well as ran experiments in "école primaires" in Aquitaine to test
novel educational software to help children learn mathematics, and developped within the KidLearn ADT
project. This was achieved thanks to the arrival of Didier Roy, former math teacher in college, in the team.
Our mediation of robotics activities aim primarily at students, teachers and schools. We focused on three
approaches :

• A website, consisting of video presentation of researchers Flowers team, news related to robotics ,
questions / answers, ready activities for teachers for their students , a directory of links, videos, and
pages for “robotics in schools stories " where teachers and students come to post texts, photos and
videos to show what happens in robotics in their establishments. A forum is available for researchers
to ask questions. We also test robotic kits to be able to provide advices on choices.

• Direct support of schools . For example, we went to Nevers in high school Follereau present what
robotics is, interact with students, discuss robotic upcoming events in their school. We subsequently
asked to provide technical assistance in the context of robotic operations in the school. We offer
activities and we provide technical and educational advice. We move, if needed, in schools or propose
meetings by videoconference .

• We formed a working group of a dozen people, most of whom are teachers in primary and secondary
and special education (training for disabled adults returning to education ) . This group meets
regularly to discuss activities, share experiences within schools and consider a robotic curriculum
from primary to the end of schooling.
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We also participated in Educatec- Educatice event in Paris where education professionals told great interest
in robotic activities in education. We participated in the symposium Didacstic didapro in Clermont -Ferrand,
about mediation of digital sciences . We worked with cluster Aquitaine Robotics to develop a reflection on the
teaching of robotics.

9.3.6. Press, TV and Web coverage
https://flowers.inria.fr/press/
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