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2. Overall Objectives

2.1. Overall Objectives
FORMES stands for FORmal Methods for Embedded Systems. FORMES is aiming at making research advances
towards the development of safe and reliable embedded systems, by exploiting synergies between two different
approaches, namely (real time) hardware simulation and formal proofs development.

Embedded systems have become ubiquitous in our everyday life, ranging from simple sensors to complex
systems such as mobile phones, network routers, airplane, aerospace and defense apparatus. As embedded
devices include increasingly sophisticated hardware and software, the development of combined hardware
and software has become a key to economic success.

The development of embedded systems uses hardware with increasing capacities. As embedded devices
include increasingly sophisticated hardware running complex functions, the development of software for
embedded systems is becoming a critical issue for the industry. There are often stringent time to market
and quality requirements for embedded systems manufacturers. Safety and security requirements are satisfied
by using strong validation tools and some form of formal methods, accompanied with certification processes
such as DO178 or Common Criteria certification. These requirements for quality of service, safety and security
imply to have formally proved the required properties of the system before it is deployed.
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Within the context described above, the FORMES project aims at addressing the challenges of embedded
systems design with a new approach, combining fast hardware simulation techniques with advanced formal
methods, in order to formally prove qualitative and quantitative properties of the final system. This approach
requires the construction of a simulation environment and tools for the analysis of simulation outputs and
proofs of properties of the simulated system. We therefore need to connect simulation tools with code-
analyzers and easy-to-use theorem provers for achieving the following tasks:

• Enhance the hardware simulation technologies with new techniques to improve simulation speed,
and produce program representations that are adequate for formal analysis and proofs of the
simulated programs;

• Connect validation tools that can be used in conjunction with simulation outputs that can be exploited
using formal methods;

• Extend and improve the theorem proving technologies and tools to support the application to
embedded software simulation.

A main novelty of the project, besides improving the existing technologies and tools, relies in the application
itself: to combine simulation technologies with formal methods in order to cut down the development time for
embedded software and scale up its reliability. Apart from being a novelty, this combination is also a necessity:
proving very large code is unrealistic and will remain so for quite some time; and relying only on simulation
for assessing critical properties of embedded systems is unrealistic as well.

We assume that these properties can be localized in critical, but small, parts of the code, or dedicated hardware
models. This nevertheless requires scaling up the proof activity by an order of magnitude with respect to the
size of codes and the proof development time. We expect that it is realistic to rely on both combined. We plan to
rely on formal proofs for assessing properties of small, critical components of the embedded system that can be
analyzed independently of the environment. We rely on formal proofs as well for assessing correctness of the
elaboration of program representation abstractions. We rely on simulations for testing the whole embedded
system, and to formal proofs to verify the completeness of test sets. We rely on formal proofs again for
verifying the correct functioning of our tools. Proving properties of these various abstractions requires using a
certified, interactive theorem prover.

2.2. History
The project FORMES was created by union of three different smaller groups, the origin and interests of which
were somewhat different: a group working on simulation of embedded systems at CASIA since march 2007
under the leadership of Vania Joloboff; a second group working on user-assisted theorem proving under the
leadership of Jean-Pierre Jouannaud originated from the Inria project-teams LOGICAL at Inria-Saclay-Île-de-
France and PROTHEO at Inria-Lorraine; and a group working on model-checking and trustworthy computing
at Tsinghua University under the leadership of Gu Ming. The second group moved from France to Beijing in
September 2008. A previous 4 weeks visit of Jean-Pierre Jouannaud and Frédéric Blanqui in March 2008 had
been used to define the new project FORMES, and prepare its installation at Tsinghua university.

FORMES is the acronym for FORmal Methods for Embedded Systems, and indeed we aim at combining in
this project formal methods of very different origins for analyzing embedded systems. We develop a software
SimSoC for simulating embedded systems, but we also develop other techniques and tools in order to analyze
and predict their behavior, and that of the software running on such systems. These techniques themselves
are of different origin, and are usually developed in different teams around the world. Verification techniques
based on model checking have been extensively and successfully used in the past to analyze hardware systems.
Decisions procedures, like SAT, are now common place to analyze specific software applications, such as
scheduling. Proof assistants are more and more employed to carry out formal proofs of correctness of security
protocols and more generally non-trivial pieces of software. One originality of our project is to COMBINE
all these techniques in order to achieve our goal: to design methods and tools allowing one to build reliable
software, also called trustworthy computing. In the next sections, we describe in more details these five areas,
and their relationship to FORMES.
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2.3. Highlights of the Year
The project has released a new version of its SimSoC simulation software, as an open source software release
0.8, available from http://gforge.inria.fr/projects/simsoc/

3. Research Program

3.1. Formal Proofs
Coq [52] is one of the most popular proof assistant, in the academia and in the industry. Based on the Calculus
of Inductive Constructions, Coq has three kinds of basic entities: objects are used for computations (data,
programs, proofs are objects); types express properties of objects; kinds categorize types by their logical
structure. Coq’s type checker can decide whether a given object satisfies a given type, and if a given type
has a logical structure expressed by a given kind. Because it is possible to (uniformly) define inductive types
such as lists, dependent types such as lists-of-length-n, parametric types such as lists-of-something, inductive
properties such as (even n) for some natural number n, etc, writing small specifications in Coq is an easy
task. Writing proofs is a harder (non automatable) task that must be done by the user with the help of tactics.
Automating proofs when possible is a necessary step for dissemination of these techniques, as is scaling up.
These are the problems we are interested in.

Modeling in Coq is not always as easy as argued. In Coq, a powerful, very useful mechanism identifies
expressions up to computation. For example, identifying two lists of identical content but respective lengths
m+ n and n+m is no problem if m and n are given integers, but does not work if m and n are unknowns,
since n+m = m+ n is a valid theorem of arithmetic which cannot be proved by mere computation. It follows
that the statement reverse(l :: l′) = reverse(l′) :: reverse(l) is not typable, :: standing for appending two
lists. This problem that seemingly innocent statements cannot be written in Coq because they do not type-check
has been considered a major open problem for years. Blanqui, Jouannaud and Strub have recently introduced
a new paradigm named Coq modulo Theories, in which computations do not operate only on closed terms
(as are 1 + 2 and 2 + 1) but on open expressions of a decidable theory (as is n+m = m+ n in Presburger
arithmetic). This work started with the PhD thesis of Pierre-Yves Strub 1 [51]. It addresses three problems at
once: decidable goals become solved automatically by a program taken from the shelves; writing specifications
and proofs becomes easier and closer to the mathematical practice; assuming that calls to a decision procedure
return a proof certificate in case of success, the correctness of a Coq proof now results from type checking
the proof as well as the various certificates generated along the proof. Trusting Coq becomes incremental,
resulting from trusting each certificate checker when added in turn to Coq’s kernel. The development of this
new paradigm is our first research challenge here.

Scaling up is yet another challenge. Modeling a large, complex software is a hard task which has been
addressed within the Coq community in two different ways. By developing a module system for Coq in
the OCaml style, which makes it possible to modularize proof developments and hence to develop modular
libraries. By developing a methodology for modeling real programs and proving their properties with Coq.
This methodology allows to translate a JavaCard (tool Krakatoa) or C (tool FRAMA-C) program into an ML-
like program. The correctness of this first step is ensured by proving in Coq verification conditions generated
along the translation. The correctness of the ML-like program annotated by the user is then done by Coq
via another tool called Why. This methodology and the associated tools are developed by the Inria project
PROVAL in association with CEA. Part of our second challenge is to reuse these tools to prove properties at
the source code level of programs used in an embedded application. As part of this effort, we are interested
in the development of termination tools and automatic provers, in particular an SMT prover which is indeed
complementary of our first challenge. The second part of the challenge is to ensure that these properties are
still satisfied by the machine code executed on the embedded CPU. Here, we are going to rely on a different
technology, certified compilers, and reuse the certified compilers from CLight (a well-chosen subset of C)

1The thesis was supported by the “Fondation EADS”.

http://gforge.inria.fr/projects/simsoc/
http://krakatoa.lri.fr
http://frama-c.com
http://why.lri.fr


4 Activity Report INRIA 2013

to ARM or PowerPC developed in the COMPCERT Inria project. We will be left with the development of
certified compilers from source languages which are frequently used for developing embedded applications
into CLight. These languages are either variants of C, or languages for the description of automata with timers
in the case of Programmable Logic Controllers.

Our last challenge is to rely on certified tools only. In particular, we decided to certify in Coq all extensions of
Coq developed in the project: the core logic of CoqMT (a Calculus of Inductive Constructions incorporating
Presburger arithmetic) has been certified with Coq. Of course, Coq itself cannot be reduced to CIC anymore,
which makes the certification of the real logic of CoqMT a major challenge. The most critical parts of the
simulator will also be certified. As for compilers, there are two ways to certify tools: either, the code is proved
correct, or it outputs a certificate that can be checked. The second approach demands less man-power, and has
the other advantage to be compatible with the use of tools taken from the shelves, provided these tools are
open-source since they must be equipped with a mechanism for generating certificates. This is the approach
we will favor for the theories to be used in CoqMT, as well as for the SMT prover to be developed. For the
simulator SimSoC itself, we shall probably combine both approaches.

3.2. Rewriting
Rewriting is at the heart of proof systems, since mathematical proofs are made of reasonning steps, expressed
by the typing rules of a given proof system, and computational steps, expressed by its rewrite rules. The
certification of a proof system involves, in particular, proving three main properties of its rewrite rules:
subject reduction (rewriting should preserve types), confluence (computations should be deterministic), and
termination (computations must always terminate). The fact that falsity is not provable in a given proof system
follows from the previous properties. These meta-theoretical proofs are indeed very complex, depending
on both the typing rules and the rewrite rules, and require expertise in both rewriting and type theory. To
maintain this combined expertise in FORMES, we carry out theoretical activities in these areas, even if they
may sometimes appear remotely connected to the mainstream of our work on the verification of embedded
systems.

Indeed, our goal is not only to maintain our expertise, but also to develop certification tools aiming at
automating these meta-theoretical proofs. Such tools participate to the so-called POPLmark challenge.
Building such tools requires new results allowing to check subject-reduction, confluence and termination of
higher-order calculi that are found in proof systems like the Calculus of Inductive Constructions on which
Coq is based. Since subject-reduction is usually easy to check and consistency follows from the others, we are
mostly interested in confluence and termination here.

Termination is an undecidable property of rewriting, even in its first-order incarnation. There are many
(interactive) methods for proving termination of first-order rewrite rules, but a single method for proving
termination of higher-order calculi equipped with polymorphic types, the so-called reducibility candidates
method. Unfortunately, this method is extremely complex. The challenge here is to provide with an easy-to-use
method which uses the reducibility candidates for its justification. Our approach is to define an order on terms
which allows to reduce the termination property of computations to a comparison between the lefthand and
righthand sides of the rewrite rules present in the proof system. Such an order must of course be well-founded,
which should be proved thanks to the reducibility candidates method which becomes therefore hidden to the
user who needs to carry out the comparisons only.

Our second challende is confluence. There are two approaches here, depending whether confluence can be
proved after termination, or must be proved before in case confluence must be used in the termination proof
(as is often the case with systems equipped with dependent types). In the first case, we basically know how to
proceed, this is described next in the new results section. However, our results do not cover the whole spectrum
of typing disciplines as of today. The second case is much more difficult. We have made some progress here
too for the simple case of first-order rewriting, thanks to the recent notion of decreasing diagrams due to van
Oostrom [55]. Decreasing diagrams can be interpreted as a way to carry out confluence proofs in the non-
terminating case in a way which mimics how they are carried out in the terminating case. As a consequence,
there should not be any difference anymore in the future in the way confluence proofs are carried out. This

http://compcert.inria.fr
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unified framework has been carried out so far for abstract rewriting, that is for binary relations on an abstract
set. Our challenge is to extend this unified framework to concrete rewriting, that is rewriting on terms generated
by rewrite rules. We are still far from this objective, which is a hard, but exciting, research challenge.

3.3. Verification
Model checking is an automatic formal verification technique [30]. In order to apply the technique, users
have to formally specify desired properties on an abstract model of the system under verification. Model
checkers will check whether the abstract model satisfies the given properties. If model checkers are able
to prove or disprove the properties on the abstract model, they report the result and terminate. In practice,
however, abstract models can be extremely complicated, model checkers may not conclude with reasonable
computational resources.

Compositional reasoning is a way to ameliorate the complexity in abstract models [54]. Compositional
reasoning tries to prove global properties on abstract models by establishing local properties on their
components. If local properties on components are easier to verify, compositional reasoning can improve
the capacity of model checking by local reasoning. Experiences however suggest that local reasoning may not
suffice to establish global properties. It is rare that a global property can be established without considering
their interactions. In assume-guarantee reasoning, model checkers try to verify local properties under a
contextual assumption of each component. If contextual assumptions faithfully capture interactions among
components, model checkers can conclude the verification of global properties.

Finding contextual assumptions however is difficult and may require clairvoyance. Interestingly, a fully au-
tomated technique for computing contextual assumptions was proposed in [33]. The automated technique
formalizes the contextual assumption generation problem as a learning problem. If properties and abstract
models are formalized as finite automata, then a contextual assumption is nothing but an unknown finite au-
tomaton that characterizes the environment. Applying a learning algorithm for finite automata, the automated
technique will generate contextual assumptions for assume-guarantee reasoning. Experimental results show
that the automated technique can outperform a monolithic and explicit verification algorithm.

The success of the learning-based assume-guarantee reasoning is however not satisfactory. Most verification
tools are using implicit algorithms. In fact, implicit representations such as Binary Decision Diagrams can
improve the capacity of model checking algorithms in order of magnitude. Early learning-based techniques,
on the other hand, are based on the L∗ learning algorithm using explicit representations. If a contextual
assumption requires hundreds of states, the learning algorithm will take too much time to infer an assumption.
Subsequently, early learning-based techniques cannot compete with monolithic implicit verification [32].

We have proposed assume-guarantee reasoning with implicit learning [29]. Our idea is to adopt an implicit
representation used in the learning-based framework. Instead of enumerating states of contextual assumptions
explicitly, our new technique computes transition relations as an implicit representation of contextual assump-
tions. Using a learning algorithm for Boolean functions, the new technique can easily compute contextual
assumptions with thousands of states. Our preliminary experimental results show that the implicit learning
technique can outperform interpolation-based monolithic implicit model checking in several parametrized test
cases such as synchronous bus arbiters and the MSI cache coherence protocol.

Learning Boolean functions can also be applied to loop invariant inference [40], [41]. Suppose that a
programmer annotates a loop with pre- and post-conditions. We would like to compute a loop invariant to
verify that the annotated loop conforms to its specification. Finding loop invariants manually is very tedious.
One makes a first guess and then iteratively refines the guess by examining the loop body. This process is in
fact very similar to learning an unknown formula. Applying predicate abstraction and decision procedures,
a learning algorithm for Boolean functions can infer loop invariants generated by a given set of atomic
predicates. Preliminary experimental results show that the learning-based technique is effective for annotated
loops extracted from source codes of Linux and SPEC2000 benchmarks.
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Although implicit learning techniques have been developed for assume-guarantee reasoning and loop invariant
inference successfully, challenges still remain. Currently, the learning algorithm is able to infer Boolean
functions over tens of Boolean variables. Contextual assumptions over tens of Boolean variables are not
enough. Ideally, one would like to have contextual assumptions over hundreds (even thousands) of Boolean
variables. On the other hand, it is known that learning arbitrary Boolean functions is infeasible. The scalability
of implicit learning techniques cannot be improved satisfactorily by tuning the learning algorithm alone.
Combining implicit learning with abstraction will be essential to improve its scalability.

Our second challenge is to extend learning-based techniques to other computation models. In addition to
finite automata, probabilistic automata and timed automata are also widely used to specify abstract models.
Their verification problems are much more difficult than those for finite automata. Compositional reasoning
thus can improve the capacity of model checkers more significantly. The L∗ algorithm has been applied in
assume-guarantee reasoning for probabilistic automata [35]. The new technique is unfortunately incomplete.
Developing a complete learning-based assume-guarantee reasoning technique for probabilistic automata and
timed automata will be very useful to their verification.

Through predicate abstraction, learning Boolean functions can be very useful in program analysis. We have
successfully applied algorithmic learning to infer both quantified and quantifier-free loop invariants for
annotated loops. Applying algorithmic learning to static analysis or program testing will be our last challenge.
In the context of program analysis, scalability of the learning algorithm is less of an issue. Formulas over
tens of atomic predicates usually suffice to characterize relation among program variables. On the other hand,
learning algorithms require oracles to answer queries or generate samples. Designing such oracles necessarily
requires information extracted from program texts. How to extract information will be essential to applying
algorithmic learning in static analysis or program testing.

3.4. Decision Procedures
Decision procedures are of utmost importance for us, since they are at the heart of theorem proving and
verification. Research in decision procedures started several decades ago, and are now commonly used both in
the academia and industry. A decision procedure [42] is an algorithm which returns a correct yes/no answer to
a given input decision problem. Many real-world problems can be reduced to the decision problems, making
this technique very practical. For example, Intel and AMD are developing solvers for their circuit verification
tools, while Microsoft is developing decision procedures for their code analysis tools.

Mathematical logic is the appropriate tool to formulate a decision problem. Most decision problems are
formulated as a decidable fragment of a first-order logic interpreted in some specific domain. One such easy
and popular fragment is propositional (or Boolean) logic, to which corresponding decision procedure is called
SAT. Representing real problems in SAT often results in awkward encodings that destroy the logical structure
of the original problem.

A very popular, effective recent trend is Satisfiability Modulo Theories (SMT) [53], a general technique to
solve decision problems formulated as propositional formulas operating on atoms in a given background
theory, for example linear real arithmetic. Existing approaches for solving SMT problems can be classified into
two categories: lazy method [49], and eager method [50]. The eager method encodes an SMT problem into
an equi-satisfiable SAT problem, while the lazy method employs different theory solvers for each theory and
coordinates them appropriately. The eager method does allow the user to express her problem in a natural way,
but does not exploit its logical structure to speed up the computation. The lazy approach is more appealing,
and has prompted much interest in algorithms for the various background theories important in practice.

Our SMT solver aCiNO is based on the lazy approach. So far, it provides with two (popular) theories only:
linear real arithmetic (LRA) and uninterpreted functions (UF). For efficiency consideration, the solver is
implemented in an incremental way. It also invokes an online SAT solver, which is now a modified DPLL
procedure, so that recovery from conflicts is possible. Our challenge here is twofold: first, to add other theories
of interest for the project, we are currently working on fragments of the theory of arrays [44], [26]. The theory
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of arrays is important because of its use for expressing loop invariants in programs with arrays, but its full first-
order theory is undecidable. We are also interested in the theory of bit vectors, very much used for hardware
verification.

Theory solvers implement state-of-the-art algorithms, but their sophistication makes their correct implemen-
tation a delicate task. Moreover, SMT solvers themselves employ a quite complex machinery, making them
error prone as well 2. We therefore strongly believe that decision procedures, and SMT provers, should come
along with a formal assessment of their correctness. As usual, there are two ways: ensure the correctness of
an arbitrary output by proving the code, or deliver for each input a certificate ensuring the correctness of the
corresponding output when the checker says so. Developing concise certificates together with efficient certifi-
cate checkers for the various decision procedures of interest and their combination with SMT is yet another
challenge which is at the heart of the project FORMES.

3.5. Simulation
The development of complex embedded systems platforms requires putting together many hardware compo-
nents, processor cores, application specific co-processors, bus architectures, peripherals, etc. The hardware
platform of a project is seldom entirely new. In fact, in most cases, 80 percent of the hardware components
are re-used from previous projects or simply are COTS (Commercial Off-The-Shelf) components. There is no
need to simulate in great detail these already proven components, whereas there is a need to run fast simulation
of the software using these components.

These requirements call for an integrated, modular simulation environment where already proven components
can be simulated quickly, (possibly including real hardware in the loop), new components under design can be
tested more thoroughly, and the software can be tested on the complete platform with reasonable speed.

Modularity and fast prototyping also have become important aspects of simulation frameworks, for investigat-
ing alternative designs with easier re-use and integration of third party components.

The project aims at developing such a rapid prototyping, modular simulation platform, combining new
hardware components modeling, verification techniques, fast software simulation for proven components,
capable of running the real embedded software application without any change.

To fully simulate a complete hardware platform, one must simulate the processors, the co-processors,
together with the peripherals such as network controllers, graphics controllers, USB controllers, etc. A
commonly used solution is the combination of some ISS (Instruction Set Simulator) connected to a Hardware
Description Language (HDL) simulator which can be implemented by software or by using a FPGA [43]
simulator. These solutions tend to present slow iteration design cycles and implementing the FPGA means
the hardware has already been designed at low level, which comes normally late in the project and become
very costly when using large FPGA platforms. Others have implemented a co-simulation environment, using
two separate technologies, typically one using a HDL and another one using an ISS [36], [38], [48]. Some
communication and synchronization must be designed and maintained between the two using some inter-
process communication (IPC), which slows down the process.

The idea we pursue is to combine hardware modeling and fast simulation into a fully integrated, software
based (not using FPGA) simulation environment, which uses a single simulation loop thanks to Transaction
Level Modeling (TLM) [28], [19] combined with a new ISS technology designed specifically to fit within the
TLM environment.

The most challenging way to enhance simulation speed is to simulate the processors. Processor simulation is
achieved with Instruction Set Simulation (ISS). There are several alternatives to achieve such simulation. In
interpretive simulation, each instruction of the target program is fetched from memory, decoded, and executed.
This method is flexible and easy to implement, but the simulation speed is slow as it wastes a lot of time in
decoding. Interpretive simulation is used in Simplescalar [27]. Another technique to implement a fast ISS is

2It took almost 20 years to have a correct implementation of a correct version of Shostak’s algorithm for combining decision procedures,
which can be seen as an ancestor of SMT.
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dynamic translation [31], [47], [34] which has been favored by many implementors [45], [34], [46], [47] in
the past decade.

With dynamic translation, the binary target instructions are fetched from memory at run-time, like in
interpretive simulation. They are decoded on the first execution and the simulator translates these instructions
into another representation which is stored into a cache. On further execution of the same instructions, the
translated cached version is used. Dynamic translation introduces a translation time phase as part of the overall
simulation time. But as the resulting cached code is re-used, the translation time is amortized over time. If the
code is modified during run-time, the simulator must invalidate the cached representation. Dynamic translation
provides much faster simulation while keeping the advantage of interpretive simulation as it supports the
simulation of programs that have either dynamic loading or self-modifying code.

There are many ways of translating binary code into cached data, which each come at a price, with different
trade-offs between the translation time and the obtained speed up on cache execution. Also, simulation speed-
ups usually don’t come for free: most of time there is a trade-off between accuracy and speed.

There are two well known variants of the dynamic translation technology: the target code is translated either
directly into machine code for the simulation host, or into an intermediate representation, independent from
the host machine, that makes it possible to execute the code with faster speed. Both have pros and cons.

Processor simulation is also achieved in Virtual Machines such as QEMU [23] and GXEMUL [37] that emulate
to a large extent the behavior of a particular hardware platform. The technique used in QEMU is a form of
dynamic translation. The target code is translated directly into machine code using some pre-determined code
patterns that have been pre-compiled with the C compiler. Both QEMU and GXEMUL include many device
models of open-source C code, but this code is hard to reuse. The functions that emulate device accesses do not
have the same profile. The scheduling process of the parallel hardware entities is not specified well enough to
guarantee the compatibility between several emulators or re-usability of third-party models using the standards
from the electronics industry (e.g. IEEE 1666).

A challenge in the development of high performance simulators is to maintain simultaneously fast speed and
simulation accuracy. In the FORMES project, we expect to develop a dynamic translation technology satisfying
the following additional objectives:

• provide different levels of translation with different degrees of accuracy so that users can choose
between accurate and slow (for debugging) or less accurate but fast simulation.

• to take advantage of multi-processor simulation hosts to parallelize the simulation;

• to define intermediate representations of programs that optimize the simulation speed and possibly
provide a more convenient format for studying properties of the simulated programs.

Another objective of the FORMES simulation is to extract information from the simulated applications to
prove properties. Running a simulation is exercising a test case. In most cases, if a test is failing, a bug has
been found. One can use model checking tools to generate tests that can be run on the simulator to check
whether the test fails or not on the real application. It is also a goal of FORMES simulation activity to use such
formal methods tools to detect bugs, either by generating tests, or by using formal methods tools to analyze
the results of simulation sessions.

3.6. Trustworthy Software
Since the early days of software development, computer scientists have been interested in designing methods
for improving software quality. Formal methods based on model checking, correctness proofs, common
criteria certification, all address this issue in their own way. None of these methods, however, considers the
trustworthiness of a given software system as a system-level property, requiring to grasp a given software
within its environment of execution.

The major challenge we want to address here is to provide a framework in which to formalize the notion of
trustworthiness, to evaluate the trustworthiness of a given software, and if necessary improve it.
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To make trustworthiness a fruitful concept, our vision is to formalize it via a hierarchy of observability and
controllability degrees: the more the software is observable and controllable, the more its behaviors can be
trusted by users. On the other hand, users from different application domains have different expectations from
the software they use. For example, aerospace embedded software should be safety-critical while e-commerce
software should be insensitive to attacks. As a result, trustworthiness should be domain-specific.

A main challenge is the evaluation of trustworthiness. We believe that users should be responsible for
describing the level of trustworthiness they need, in the form of formal requirements that the software should
satisfy. A major issue is to come up with some predefined levels of trustworthiness for the major applicative
areas. Another is to use stepwise refinement techniques to achieve the appropriate level of trustworthiness.
These levels would then drive the design and implementation of a software system: the objective would be to
design a model with enough details (observability) to make it possible to check all requirements of that level.

The other challenge is the effective integration of results obtained from different verification methods.
There are many verification techniques, like simulation, testing, model checking and theorem proving. These
methods may operate on different models of the software to be then executed, while trustworthiness should
measure our trust in the real software running in its real execution environment. There are also monitoring and
analysis techniques to capture the characteristics of actual executions of the system. Integrating all the analysis
in order to decide the trustworthiness level of a software is quite a hard task.

4. Application Domains
4.1. Proof of Programs

In many life critical application such as nuclear power or transportation, formal proofs of programs are
required, and theorem provers provide an essential tool in that area.

4.2. Simulation
Simulation is relevant to most areas where complex embedded systems are used, not only to the semiconductor
industry for System-on-Chip modeling, but also to any application where a complex hardware platform must
be assembled to run the application software. It has applications for example in industry automation, digital
TV, telecommunications and transportation.

4.3. Certified Compilation for Embedded systems
Many frameworks have been designed in order to make the design and the development of embedded systems
more rigourous and secure on the basis of some formal model. All these frameworks implicitly assume the
reliability of the translation to executable code, in order to guarantee the verified properties in the design level
are preserved in the implementation. In other words, they rely on a claim saying that the compilers from high
level model description to the implementation will not introduce undesired behaviors or errors in silence. The
only safe way to satisfy such a claim is to certify correctness of the compilers, that is, to prove that the code
they produce has exactly the semantics of the source code or model.

4.4. Distributed Systems
Many embedded systems run in a distributed environment. Distributed systems raise extremely challenging
issues, both for the design and the implementation, because decisions can be made only from a local
knowledge, which is imperfect due to communication time and unreliability of transmissions.

4.5. Security
The convergence between embedded technologies and the Internet offers many opportunities to malicious
people for breaking the privacy of consumers or of organisations. Using cryptography is not enough for
ensuring the protection of data, because of possible flaws in protocols and interfaces, providing opportunities
for many well-known attacks. This area is therefore an important target of formal methods.
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5. Software and Platforms

5.1. CoLoR
Participants: Frédéric Blanqui, Kim-Quyen Ly.

CoLoR is a Coq library on rewriting theory and termination of more than 83,000 lines of code [4]. It provides
definitions and theorems for:

• Mathematical structures: relations, (ordered) semi-rings.

• Data structures: lists, vectors, polynomials with multiple variables, finite multisets, matrices, finite
graphs.

• Term structures: strings, algebraic terms with symbols of fixed arity, algebraic terms with varyadic
symbols, pure and simply typed λ-terms.

• Transformation techniques: conversion from strings to algebraic terms, conversion from algebraic to
varyadic terms, arguments filtering, rule elimination, dependency pairs, dependency graph decom-
position, semantic labelling.

• Termination criteria: polynomial interpretations, multiset ordering, lexicographic ordering, first and
higher order recursive path ordering, matrix interpretations.

CoLoR is distributed under the CeCILL license. It is currently developed by Frédéric Blanqui and Kim-Quyen
Ly, but various people participated to its development since 2006.

5.2. HOT
Participant: Frédéric Blanqui.

HOT is an automated termination prover for higher-order rewrite systems based on the notion of computability
closure and size annotation [24]. It won the 2012 competition in the category “higher-order rewriting union
beta”. The sources are not public.

5.3. Moca
Participant: Frédéric Blanqui.

Moca is a construction functions generator for OCaml data types with invariants.

It allows the high-level definition and automatic management of complex invariants for data types. In addition,
it provides the automatic generation of maximally shared values, independently or in conjunction with the
declared invariants.

A relational data type is a concrete data type that declares invariants or relations that are verified by its
constructors. For each relational data type definition, Moca compiles a set of construction functions that
implements the declared relations.

Moca supports two kinds of relations:

• predefined algebraic relations (such as associativity or commutativity of a binary constructor),

• user-defined rewrite rules that map some pattern of constructors and variables to some arbitrary users
defined expression.

The properties that user-defined rules should satisfy (completeness, termination, and confluence of the
resulting term rewriting system) must be verified by a programmer’s proof before compilation. For the
predefined relations, Moca generates construction functions that allow each equivalence class to be uniquely
represented by their canonical value.

Moca is distributed under QPL. It is developed by Frédéric Blanqui, Pierre Weis (EPI Pomdapi) and Richard
Bonichon (CEA).

http://color.inria.fr/
https://who.rocq.inria.fr/Frederic.Blanqui/hot.html
http://termination-portal.org/wiki/Termination_Competition
http://moca.inria.fr/
http://caml.inria.fr/
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5.4. Rainbow
Participants: Frédéric Blanqui, Kim-Quyen Ly.

Rainbow is a tool for automatically verifying the correctness of termination certificates expressed in the CPF
XML format as used in the termination competition. Termination certificates are currently translated and
checked in Coq by using the CoLoR library. But a new standalone version is under development using Coq
extraction mechanism (PhD subject of Kim-Quyen Ly).

Rainbow is distributed under the CeCILL license. It is currently developed by Frédéric Blanqui and Kim-
Quyen Ly. See the web site for more information.

5.5. CoqMT
Participants: Qian Wang [correspondant], Jean-Pierre Jouannaud.

The proof-assistant Coq is based on a complex type theory, which resulted from various extensions of the
Calculus of Constructions studied independently from each other. With the collaboration of Bruno Barras, we
decided to address the challenge of proving the real type theory underlying Coq, and even, indeed, of its recent
extension CoqMT developed in FORMES by Pierre-Yves Strub. To this end, we have studied formally the
theory CoqMTU, which extends the pure Calculus of Constructions by inductive types, a predicative hierarchy
of universes, and a decidable theory T for some first-order inductive types. Recently, we were able to announce
the complete certification of CoqMTU in Coq augmented with appropriate intuitionistic set-theoretic axioms
in order to fight Gödel’s incompleteness theorem~[16]. As a consequence, Coq and CoqMTU are the first proof
assistants, of which consistency (relative to intuitionistic set theory IZF augmented with the afore-mentioned
axioms) is formally entirely proved (in Coq). While previous formal proofs for Coq and other proof assistants
all assumed strong normalization, the present one proves strong normalization thanks to the new notion of
strongly-normalizing model introduced by Bruno Barras. While consistency is done already, decidability of
type-checking in CoqMTU remains to be done. This is a straightforward consequence for Coq, but a non-
trivial task for CoqMTU because of the interaction between inductive types and the first-order theory T. It
should however be done by the summer of 2014. We consider this work as a major scientific achievement of
the team.

5.6. SimSoC
Participants: Vania Joloboff [correspondant], Antoine Rouquette, Shenpeng Wang.

SimSoC is an infrastructure to run simulation models which comes along with a library of simulation models.
SimSoC allows its users to experiment various system architectures, study hardware/software partition, and
develop embedded software in a co-design environment before the hardware is ready to be used. SimSoC
aims at providing high performance, yet accurate simulation, and provide tools to evaluate performance and
functional or non functional properties of the simulated system.

SimSoC is based on SystemC standard and uses Transaction Level Modeling for interactions between the
simulation models. The current version is based on the open source libraries from the OSCI Consortium:
SystemC version 2.3 and TLM 2.0.1 [39], [21]. Hardware components are modeled as TLM models, and since
TLM is itself based on SystemC, the simulation is driven by the SystemC kernel. We use standard, unmodified,
SystemC, hence the simulator has a single simulation loop.

The third open source version of SimSoC, release 0.8.0, has been released in September 2013. It contains a
full simulator for ARM (V5 and V6) and PowerPC both running at an average speed of about 100 Millions
instructions per second in, and a deprecated simulator for the MIPS architecture. SimSoC is distributed under
LGPL on Inria Gforge web site.

5.7. SimSoC-Cert
Participants: Frédéric Blanqui, Vania Joloboff, Jean-François Monin [correspondant], Xiaomu Shi.

http://color.inria.fr/rainbow.html
http://cl-informatik.uibk.ac.at/software/cpf/
http://termination-portal.org/wiki/Termination_Competition
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Simulators such as SimSoC make it possible to reduce development time and development cost, allowing for
the software engineers to run fast iterative cycles without requiring a hardware development board. Then a
critical issue is: does the simulator actually simulate the real hardware?

Considering only one module in SimSoC, namely the ARM simulator, it somehow encodes the 1138 pages of
the ARM reference manual in C++. The whole simulator, which simulates ARM and PowerPC architecture,
includes about 60,000 lines of manually coded C++ code. Then, mistakes in the hand written code are
unavoidable and difficult to find due to the complexity. From the experiments performed on SimSoC, bugs
bringing a wrong behavior were observed from time to time but it was hard to reveal where they were. Using
intensive tests can cover most of the instructions, but still left some untested rare cases of instructions, which
lead to potential problems.

Therefore, a better approach is required to gain confidence in the correctness of the simulator. Our proposal
has been to certify the ARM CPU simulator from SimSoC using formal methods. We aimed at proving a
significant part of the correctness of SimSoC in order to support the claim that the implementation of the
simulator and the real hardware system will exhibit the same behavior.

In addition, we developed tools that can automatically generate in various C the core simulator, including
the decoding functions and the instruction set of the ARMv6 architecture manual [18] (implemented by the
ARM11 processor family). The input of SimSoC-Cert is the ARMv6 architecture manual itself.

In order to get the required flexibility and accuracy, we wanted to experiment a direct approach based on a
general proof assistant such as Coq. Fortunately, an operational semantics formalized in Coq of a large enough
subset of the C language is available from the CompCert project. We then decided to base our correctness
proofs on this technology. Up to our knowledge, this is the first development of formal correctness proofs
based on operational semantics, at least at this scale.

Based on this, we first developed simlight (8000 generated lines of C, plus 1500 hand-written lines of C), a
simulator for ARMv6 programs using no peripheral and no coprocessor. Next, we developed simlight2, a fast
ARMv6 simulator integrated inside a SystemC/TLM module, now part of SimSoC v0.8.

We can also generate similar programs for SH4 [20] but this is still experimental (work done by Frédéric
Tuong in 2011).

Finally, we proved that the C code for simulating ARM instructions in Simlight is correct with respect to the
Coq model.

6. New Results

6.1. Type and rewriting theory
Participants: Frédéric Blanqui, Jean-Pierre Jouannaud, Jianqi Li, Qian Wang.

Qian Wang and Bruno Barras have proved the strong normalization property of CoqMTU in presence of strong
elimination, a major step towars the full certification of CoqMTU [16].

Jouannaud and Li have developped a new framework, Normal Abstract Rewriting Systems (NARS), that
captures all known Church-Rosser results in presence of a termination assumption allowing to reduce equality
of terms to a simpler equality on their normal forms. This result applies to the paticular case of higher-order
rewriting for which it solved long-standing open problems [10].

Jouannaud and Liu have continued their investigation of Church-Rosser properties of non-terminating rewrite
systems [10], showing recently first, that many results found in the litterature could be captured, and
generalized, by using van Oostrom’s decreasing diagram technique (accepted at Symposium on Algebraic
Specifications, Kanazawa, Japan, April 2014). The next step, which has been recently completed, is a powerful
result generalizing Knuth and Bendix confluence test to non terminating rewrite system (submitted).



Team FORMES 13

Frédéric Blanqui, Jean-Pierre Jouannaud and Albert Rubio (Technical University of Catalonia) have developed
a method aiming at carrying out termination proof for higher-order calculi. CPO appears to be the ultimate
improvement of the higher-order recursive path ordering (HORPO) [25] in the sense that this definition
captures the essence of computability arguments à la Tait and Girard, therefore explaining the name of the
improved ordering. It has been shown that CPO allows to consider higher-order rewrite rules in a simple type
discipline with inductive types, that most of the guards present in the recursive calls of its core definition
cannot be relaxed in any natural way without losing well-foundedness, and that the precedence on function
symbols cannot be made more liberal anymore. This result is submitted to journal, and has been concurrently
generalized to higher-order calculi with dependent types by Jouannaud and Li (submitted).

Frédéric Blanqui worked on the formalization in the Coq proof assistant of various definitions of the notion
of α-equivalence on pure λ-terms. In particular, he formalized and formally proved equivalent the definitions
of Church (1932), Curry and Feys (1958), Krivine (1993), and Gabbay and Pitts (1999). This work is freely
available from the CoLoR library released on December 13th.

Frédéric Blanqui worked with John Steinberger (Tsinghua University) on the formal verification in Coq of
proofs of theorems on coset arrays and non-negative integer linear combinations.

6.2. Automated theorem proving
Participant: Kim-Quyen Ly.

Kim-Quyen Ly extended her formally-proved (in Coq) automated termination-certificate (for first-order
rewrite systems) verifier Rainbow for dealing with certificates using arguments filtering [22] and other
termination techniques.

6.3. Simulation
Participants: Vania Joloboff, Antoine Rouquette, Shenpeng Wang.

There exists very fast Loosely Timed simulators such as SimSoC that can run the application software to
validate its functionality and possibly test real time software using timers. But such simulators do not provide
good enough timings to evaluate the software performance. The idea of “Approximately Timed” simulation is
to provide a fast simulation that can be used by software developers, and yet provide performance estimate.
The goal of approximately timed simulation is to provide estimates that are within a small margin error from
the real hardware performance, but at a simulation speed that is an order of magnitude faster than a cycle
accurate one.

Modern processors have complex architectures. They can execute a certain number of instructions per clock
cycle. There are however several cases where the instruction flow is disrupted, introducing delays in the
computation. In order to make an Approximately Timed simulator, our idea is to simulate enough of the
processes causing the delays, not simulating the exact hardware processes of the caches and pipe line and I/Os,
but using a model with wich the delays can be computed with a reasonable approximation while maintaining
fast simulation. Delays may also be related to bus arbitration and interconnect access. These delays are beyond
the scope of our work, but can be captured by TLM (timed) transactions. In our work, we are considering only
the processor model and we rely upon TLM interface to the interconnect for peripheral access to provides us
with timing delays.

We have started to investigate a new approach to provide a fast Approximately Timed ISS, that does not
simulate fully the hardware, yet provides good precision estimates, and does not use stastistical methods.
Our approach consists in developing a higher abstraction model of the processor (than the CA models) that
still executes instructions using fast SystemC/TLM code, but in parallel maintains some architecture state
to measure the delays introduces by cache misses and pipe line stalls, although the pipe line is not really
simulated.

6.4. Certification of a Simulator
Participants: Vania Joloboff, Jean-François Monin, Xiaomu Shi.

http://coq.inria.fr
http://color.inria.fr
http://coq.inria.fr
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We have developed a correctness proof of a part of the hardware simulator SimSoC. This is not only an attempt
to certify a simulator, but also a new experiment on the certification of non-trivial programs written in C. We
have provided a formalized representation of the ARM instruction set and addressing modes in Coq. We also
constructed a Coq representation of the ARM simulator in C, using the abstract syntax defined in CompCert.
From these two Coq representations, we have developed Coq proofs to prove the correctness of the C code,
using the operational semantics of C provided by CompCert.
During this work, we have also improved the technology available in Coq for performing inversions, a kind of
proof steps which heavily occurs in this context.

All of this work has been described in Xiaomu SHI PhD thesis dissertation, presented at University of Grenoble
in July 2013, and at ITP 2013 conference[15].

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. Tsinghua Grant

contract: Tsinghua National Laboratory for Information Science and Technology, Cross-discipline Foundation
grant 2011-9

title: An Intensional Logical Framework and Its Implementation

Participants: Jean-Pierre Jouannaud, Jianqi Li

duration: 2011 - 2012

Amount: 100,000 RMB

7.1.2. NSFC Grant
contract: National Science Foundation of China grant 61272002

title: The meta-theories of higher-order rewriting and their proof automation: toward the next generation
theorem prover

PIs: Jean-Pierre Jouannaud, Jianqi Li

duration: 2013-2016

Amount: 600,000 RMB

7.2. International Initiatives
7.2.1. Inria International Partners
7.2.1.1. Declared Inria International Partners

The FORMES project has been held since the beginning at Tsinghua University, Beijing, China. Tsinghua
University is a founding member of LIAMA laboratory.

7.2.1.2. Informal International Partners

The FORMES project has also collaborated with:
• Pr John Koo at Shenzhen Institute of Advanced Technology, until August 2013.
• the Institute of Software of the Chinese Academy of Science where Frédéric Blanqui has been kindly

hosted between July 2012 and August 2013.

7.2.2. Inria International Labs
FORMES is one of the LIAMA projects.
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7.2.3. Participation In other International Programs
LIAMA is a member of the AURA network: Association of Units of Research in Asia.

7.3. International Research Visitors
7.3.1. Visits of International Scientists

FORMES project member Jean-Pierre Jouannaud organized jointly with Pr Ming Gu the LIAMA-Tsinghua
Software Day, where the following scientists reported on their research:

• Pr Edmund Clarke, from Carnegie Mellon.
• Erik Hagersten from University of Uppsala.
• Marc Pouzet from University Pierre et Marie Curie.

7.3.1.1. Internships
• Jiaxiang Liu

– Subject: Diagramatic Confluence,
– Date: from Jul 2013 to Dec 2013,
– Institution: Ecole Polytechnique

• Antoine Rouquette
– Subject: Upgrade of SimSoC simulator,
– Date: from September 2012 to August 2013,
– Institution: Shenzhen Institutes of Advanced Technology

• Shenpeng Wang
– Subject: Approximately Timed Simulation of PowerPC e200z,
– Date: from March 2012 to May 2013,
– Institutions: Tsinghua University and Shenzhen Institutes of Advanced Technology

8. Dissemination

8.1. Scientific Animation
Frédéric Blanqui was member of the Steering Committee of the International Conference on
Rewriting Techniques and Applications (RTA) for 3 years until June 2013.
Frédéric Blanqui was invited to present his work on “the formalization of λ-calculus and Tait-
Girard’s notion of computability” at the 3rd Workshop on Proof Theory and Rewriting (PR), March
2013, Kanazawa, Japan.
Vania Joloboff has organized a LIAMA Open Day in Shanghai in May 2013, in collaboration with
East China Normal University.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Frédéric Blanqui organized a 7-days school at the Institute of Applied Mechanics and Informatics
(IAMA) of the Vietnamese Academy of Sciences and Technology (VAST) at Ho Chi Minh City,
Vietnam, from 12 to 19 March 2013. The mornings were dedicated to theoretical lectures introducing
basic notions in mathematics and logic for the analysis of computer programs. The afternoons
were practical sessions introducing the OCaml programming language and the Coq proof assistant.
Lecture notes are given in [17].
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Vania Joloboff has taught simulation seminars at Shenzhen Institutes of Advanced Technology.
Licence: Jean-François Monin, Introduction to Interactive Proof of Software, 50 hours, L3, Tsinghua
University, China
This course is expected to attract students in the FORMES group via the local PhD program; already
one of them (2009) is currently a PhD student of Jean-Pierre Jouannaud, another (2010) in is the
PhD track with Gu Ming and 2 others (2010) work with Jean-François Monin and Vania Joloboff.
Doctorate: Jean-François Monin (organizer and teacher), Coq Summer School, 30 hours, Tsinghua
University, China

8.2.2. Supervision
PhD : Xiaomu Shi, “Certification of an Instruction Set Simulator”, University of Grenoble, July
2013, [14] Jean-François Monin, Vania Joloboff.
PhD in progress: Kim-Quyen Ly, automated formal verification of termination certificates, October
2011, Frédéric Blanqui
PhD in progress : Jiaxiang Liu, Testing Confluence via Critical Pairs, 2012, École Polytechnique,
Jean-Pierre Jouannaud
PhD in progress: Qian Wang, CoqMTU: a secure combination of the Calculus of Construction,
inductive types, universes and built-in equality, 2011, École Polytechnique, Jean-Pierre Jouannaud

8.2.3. Juries
Frédéric Blanqui has been in the jury of Zhiwu Xu for his PhD on “Parametric Polymorphism for
XML Processing Languages” (directors: Giuseppe Castagna and Haiming Chen).
Frédéric Blanqui refered the habilitation thesis of René Thiemann (Innsbrück University) on “A
Formalization of Termination Techniques in Isabelle/HOL”.
Jean-François Monin has been in the jury of Xiaomu Shi (see above).
Vania Joloboff has been in the jury of Xiaomu Shi (see above).
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