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2. Overall Objectives

2.1. Introduction
The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on
the design, formalization and implementation of functional programming languages, with particular emphasis
on type systems and type inference, formal verification of compilers, and interactions between programming
and program proof. The Caml language and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical foundations and formal semantics to applications
to real-world problems.

2.2. Highlights of the Year
Didier Le Botlan (INSA Toulouse) and Didier Rémy received the ACM SIGPLAN Most Influential ICFP
Paper Award for their ICFP 2003 paper, MLF: Raising ML to the power of System F [44].

3. Research Program

3.1. Programming languages: design, formalization, implementation
Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array accesses, etc) to the programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type checking) and run-time checks.

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.
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Our research work in language design and implementation centers around the statically-typed functional pro-
gramming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with
full imperative features and objects for additional expressiveness, and modules and classes for compositional-
ity. The OCaml language and system embodies many of our earlier results in this area [27]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.

3.2. Type systems
Type systems [47] are a very effective way to improve programming language reliability. By grouping the data
manipulated by the program into classes called types, and ensuring that operations are never applied to types
over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it were
a function), a tremendous number of programming errors can be detected and avoided, ranging from the trivial
(misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are also
very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot analyze
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[41], [35], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.
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Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [51], integrated in OCaml, extended the benefits of this approach (reusable code with no
loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another
example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type
system [48].

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
typechecker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type checking undecidable, possibly requiring heuristics,
which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for typechecking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
designs of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
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for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods
Formal methods refer collectively to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed in
interaction, and are interested in developing ways and means to facilitate this approach. One possibility that
we currently investigate is to extend functional programming languages such as Caml with the ability to state
logical invariants over data structures and pre- and post-conditions over functions, and interface with automatic
or interactive provers to verify that these specifications are satisfied. Another approach that we practice is to
start with a proof assistant such as Coq and improve its capabilities for programming directly within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains

4.1. High-assurance software
A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming, program proof, and static type-checking contribute significantly to this goal.
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Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as Caml are eminently suitable to develop
the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes
(null references, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data
structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and
other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as Caml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [45] and enforcement of data confidentiality through type-based inference of information flows
and noninterference properties [49].

4.3. Processing of complex structured data
Like most functional languages, Caml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Languages such as
CDuce and OCamlDuce extend these benefits to the handling of semi-structured XML data [39]. Therefore,
Caml is an excellent match for applications involving significant amounts of symbolic processing: compilers,
program analyzers and theorem provers, but also (and less obviously) distributed collaborative applications,
advanced Web applications, financial modeling tools, etc.

4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the Caml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the Caml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan.

5. Software and Platforms
5.1. OCaml

Participants: Damien Doligez [correspondant], Alain Frisch [LexiFi], Jacques Garrigue [Nagoya University],
Fabrice Le Fessant, Xavier Leroy, Luc Maranget.
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OCaml, formerly known as Objective Caml, is our flagship implementation of the Caml language. From a
language standpoint, it extends the core Caml language with a fully-fledged object and class layer, as well as
a powerful module system, all joined together by a sound, polymorphic type system featuring type inference.
The OCaml system is an industrial-strength implementation of this language, featuring a high-performance
native-code compiler for several processor architectures (IA32, AMD64, PowerPC, ARM, etc) as well as
a bytecode compiler and interactive loop for quick development and portability. The OCaml distribution
includes a standard library and a number of programming tools: replay debugger, lexer and parser generators,
documentation generator, and compilation manager.

Web site: http://caml.inria.fr/

5.2. CompCert C
Participants: Xavier Leroy [correspondant], Sandrine Blazy [EPI Celtique], Jacques-Henri Jourdan.

The CompCert C verified compiler is a compiler for a large subset of the C programming language that
generates code for the PowerPC, ARM and x86 processors. The distinguishing feature of Compcert is that it
has been formally verified using the Coq proof assistant: the generated assembly code is formally guaranteed
to behave as prescribed by the semantics of the source C code. The subset of C supported is quite large,
including all C types except long double, all C operators, almost all control structures (the only exception
is unstructured switch), and the full power of functions (including function pointers and recursive functions
but not variadic functions). The generated PowerPC code runs 2–3 times faster than that generated by GCC
without optimizations, and only 7% (resp. 12%) slower than GCC at optimization level 1 (resp. 2).

Web site: http://compcert.inria.fr/

5.3. The diy tool suite
Participants: Luc Maranget [correspondant], Jade Alglave [University College London], Susmit Sarkar
[University of St Andrews], Peter Sewell [University of Cambridge].

The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests
on hardware, various generators for producing tests from concise specifications, and herd, a memory model
simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from
concise specification, run on hardware, or simulated on top of memory models. Test results can be handled
and compared using additional tools.

The tool suite and a comprehensive documentation are available from http://diy.inria.fr/.

5.4. Zenon
Participant: Damien Doligez.

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle).

Web site: http://zenon-prover.org/

5.5. JoCaml
Participant: Luc Maranget.

JoCaml is an experimental extension of OCaml that adds support for concurrent and distributed programming,
following the programming model of the join-calculus.

http://caml.inria.fr/
http://compcert.inria.fr/
http://diy.inria.fr/
http://zenon-prover.org/
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Web site: http://jocaml.inria.fr/

6. New Results
6.1. Formal verification of compilers and static analyzers
6.1.1. The CompCert formally-verified compiler

Participants: Xavier Leroy, Jacques-Henri Jourdan, Robbert Krebbers.

In the context of our work on compiler verification (see section 3.3.1), since 2005 we have been developing
and formally verifying a moderately-optimizing compiler for a large subset of the C programming language,
generating assembly code for the PowerPC, ARM, and x86 architectures [6]. This compiler comprises a
back-end part, translating the Cminor intermediate language to PowerPC assembly and reusable for source
languages other than C [5], and a front-end translating the CompCert C subset of C to Cminor. The compiler
is mostly written within the specification language of the Coq proof assistant, from which Coq’s extraction
facility generates executable Caml code. The compiler comes with a 50000-line, machine-checked Coq proof
of semantic preservation establishing that the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

This year we released three versions of CompCert. Version 1.13, released in March, improves conformance
with the ISO C standard by defining the semantics of comparisons involving pointers “one past” the end
of an array. Such comparisons used to be undefined behaviors in earlier versions of CompCert. Robbert
Krebbers formalized a reasonable interpretation of the ISO C rules concerning pointers “one past” and adapted
CompCert’s proofs accordingly. CompCert 1.13 also features minor performance improvements for the ARM
and PowerPC back-ends, notably for parameter passing via stack locations.

Version 2.0 of CompCert, released in June, re-architects the compiler back-end around the new register
allocator described in section 6.1.2. Besides improving the performance of generated code, this new allocator
made it possible to add support for 64-bit integers, that is, the long long and unsigned long long data
types of ISO C99. Most arithmetic operations over 64-bit integers are expanded in-line and proved correct,
but a few complex operations (division, modulus, and conversions to and from floating-point numbers) are
implemented as calls into library functions.

Moreover, conformance with Application Binary Interfaces was improved, especially concerning the passing
of function parameters and results of type float (single-precision FP numbers).

Finally, CompCert 2.0 features preliminary support for debugging information. The -g compiler flag causes
DWARF debugging information to be generated for line numbers and call stack structure. However, no
information is generated yet for C type definitions and variable declarations.

Version 2.1, released in October, addresses several shortcomings of CompCert for embedded system codes, as
identified by Airbus during their experimental evaluation of CompCert. In particular, CompCert 2.1 features
the _Alignas modifier introduced in ISO C2011, to support precise control of alignment of global variables
and structure fields, and uses this modifier to implement packed structures in a more robust fashion than in
earlier releases. Xavier Leroy also implemented and proved correct the optimization of integer divisions by
constants introduced by Granlund and Montgomery [40].

6.1.2. Register allocation with validation a posteriori
Participant: Xavier Leroy.

Register allocation (the placement of program variables in processor registers) has a tremendous impact on the
performance of compiled code. However, advanced register allocation techniques are difficult to prove correct,
as they involve complex algorithms and data structures. Since the beginning of the CompCert project, we chose
to avoid some of these difficult proofs by performing validation a posteriori for part of register allocation: the
IRC graph coloring algorithm invoked during register allocation is not proved correct; instead, its results are
verified at every compiler run to be a correct coloring of the given interference graph, using a simple validator
proved sound in Coq.

http://jocaml.inria.fr/
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In CompCert 2.0, we push this validation-based approach further. The whole register allocator is now subject
to validation a posteriori and no longer needs to be proved correct. The validator follows the algorithm invented
by Rideau and Leroy [50] and further developed by Tassarotti and Leroy. It proceeds by backward dataflow
analysis of symbolic equations between program variables, registers, and stack locations.

Consequently, the new register allocator for CompCert 2.0 is much more aggressive than that of CompCert
1: it features a number of optimizations that could not be proved correct in CompCert, including live-
range splitting, better handling of two-address operations and other irregularities of the x86 instruction set,
an improved spilling strategy, and iterating register allocation to place temporaries introduced by spilling.
Moreover, the new register allocator can handle program variables of 64-bit integer types, allocating them to
pairs of 32-bit registers or stack locations. The new register allocator improves the performance of generated
x86 code by up to 10% on our benchmarks.

6.1.3. Formal verification of static analyzers based on abstract interpretation
Participants: Sandrine Blazy [EPI Celtique], Vincent Laporte [EPI Celtique], Jacques-Henri Jourdan, Xavier
Leroy, David Pichardie [EPI Celtique].

In the context of the ANR Verasco project, we are investigating the formal specification and verification in
Coq of a realistic static analyzer based on abstract interpretation. This static analyzer should be able to handle
the same large subset of the C language as the CompCert compiler; support a combination of abstract domains,
including relational domains; and produce usable alarms. The long-term goal is to obtain a static analyzer that
can be used to prove safety properties of real-world embedded C codes.

This year, Jacques-Henri Jourdan worked on numerical abstract domains for the static analyzer. First, he
designed, programmed and proved correct an abstraction layer that transforms any relational abstract domain
for mathematical, arbitrary-precision integers into a relational abstract domain for finite-precision machine
integers, taking overflow and “wrap-around” behaviors into account. This domain transformer makes it
possible to design numerical domains without taking into account the finiteness of machine integers. Then, he
implemented and proved sound non-relational abstract domains for intervals of integers and of floating-point
numbers, supporting almost all CompCert arithmetic operations.

In collaboration with team Celtique, we studied which intermediate languages of the CompCert C compiler
are suitable as source language for the static analyzer. Early work by Blazy, Laporte, Maroneze and Pichardie
[36] performs abstract interpretation over the RTL intermediate language, a simple language with unstructured
control (control-flow graph). However, this language is too low-level to support reporting alarms at the level
of the source C program.

Later this year, we decided to use the C#minor intermediate language of CompCert as source language for
analysis. This language has mostly structured control (if/then/else, C loops, and goto), and is much closer to
the source C program. Then, Jacques-Henri Jourdan, Xavier Leroy and David Pichardie designed a generic
abstract interpreter for the C#minor language, parameterized by an abstract domain of execution states, using
structured fixpoint iteration for loops and a function-global iteration for goto. Jacques-Henri Jourdan is in the
process of proving the soundness of this abstract interpreter in Coq.

6.1.4. Formalization of floating-point arithmetic
Participants: Sylvie Boldo [EPI Toccata], Jacques-Henri Jourdan, Xavier Leroy, Guillaume Melquiond [EPI
Toccata].

Last year, we replaced the axiomatization of floating-point numbers and arithmetic operations used in early
versions of CompCert by a fully-formal Coq development, building on the Coq formalization of IEEE-754
arithmetic provided by the Flocq library of Sylvie Boldo and Guillaume Melquiond. A paper describing this
work was presented at the ARITH 2013 conference [15].
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This year, we extended this formalization of floating-point arithmetic with a more precise modeling of
“Not a Number” special numbers, reflecting the signs and payloads of these numbers into their bit-level,
in-memory representation. We also proved correct more algebraic identities over FP computations, such as
x/2n = x× 2−n if |n| < 1023, as well as nontrivial implementation schemes for conversions between integer
and FP numbers, whose correctness rely on subtle properties of the “round to odd” rounding mode. These
extensions are described in a draft journal paper under submission [29], and integrated in version 2.1 of
CompCert.

6.1.5. Formal verification of hardware synthesis
Participants: Thomas Braibant, Adam Chlipala [MIT].

Verification of hardware designs has been thoroughly investigated. Yet, obtaining provably correct hardware
of significant complexity is usually considered challenging and time-consuming. Hardware synthesis aims
to raise the level of description of circuits, reducing the effort necessary to produce them. This yields two
opportunities for formal verification: a first option is to verify (part of) the hardware compiler; a second option
is to study to what extent these higher-level design are amenable to formal proof.

Continuing work started during a visit at MIT under the supervision of Adam Chlipala, Thomas Braibant
worked on the implementation and proof of correctness of a prototype hardware compiler. This compiler
produces descriptions of circuits in RTL style from a high-level description language inspired by BlueSpec.
Formal verification of hardware designs of mild complexity was conducted at the source level, making it
possible to obtain fully certified RTL designs. A paper describing this compiler and two examples of certified
designs was presented at the CAV 2013 conference [16].

6.2. Language design and type systems
6.2.1. The Mezzo programming language

Participants: Jonathan Protzenko, François Pottier, Thibaut Balabonski, Armaël Guéneau, Cyprien Mangin.

In the past ten years, the type systems community and the separation logic community, among others, have
developed highly expressive formalisms for describing ownership policies and controlling side effects in
imperative programming languages. In spite of this extensive knowledge, it remains very difficult to come up
with a programming language design that is simple, effective (it actually controls side effects!) and expressive
(it does not force programmers to alter the design of their data structures and algorithms).

The Mezzo programming language aims to bring new answers to these questions.

This year, we:
• made significant progress on the proof of soundness, by rewriting it in a more modular fashion;
• improved the implementation, by formalizing the algorithms and rewriting significant parts of the

type-checker;
• hosted two interns who explored arithmetic reasoning and modeling of the iterator protocol, respec-

tively;
• formalized libraries for concurrent programming in Mezzo;
• wrote both an interpreter and a compiler for the language.

A paper on Mezzo appeared in the ICFP 2013 conference [21].

During the previous year (2012), François Pottier wrote a formal definition of Mezzo, and proved that Mezzo
is type-safe: that is, well-typed programs cannot crash. The proof was machine-checked using Coq. This
year, Thibaut Balabonski and François Pottier extended this formalization with support for concurrency and
dynamically-allocated locks, and proved that well-typed programs not only cannot crash, but also are data-race
free.

The structure of the proof was re-worked so as to make it more modular. A paper, which emphasizes this
modularity, has been submitted for presentation at a conference.
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The new concurrent features have been integrated in the core library of Mezzo by Thibaut Balabonski. Further
concurrent libraries have been included to provide more communication primitives, such as channels for
message passing.

Jonathan Protzenko worked on formalizing the type-checking algorithms currently used in the Mezzo proto-
type compiler. This led to practical results in the form of improvements to the type-checker: we now type-check
more programs, and the success of the type-checker is more predictable as well. Some soundness bugs have
been identified and fixed. The design of some of the language’s features has been improved as well.

The formalization of the type-checker was presented at the IFL 2013 conference, and is to appear in the
post-symposium proceedings in 2014.

We set out to promote Mezzo in the wild. Protzenko packaged the software to make it available widely via
OPAM, wrote a tutorial for end-users [34], communicated through blog posts about the language, and released
the source code online for others to contribute.

We also spread the word about Mezzo through various seminar talks and discussions with other teams
(Carnegie-Mellon university, Cambridge Computer Lab, Aarhus University, Brasilia University), and by
communicating in international conferences (ICFP’13, FSFMA’13).

This year, two interns worked with us on Mezzo. Armaël Guéneau (L3; June-July 2013) and Cyprien Mangin
(M1; April-July 2013) explored several experimental aspects of the language. In particular, Armaël worked
on an encoding of iterators in an object-oriented style, which involves transfers of ownership and typestate
changes; while Cyprien improved the treatment of arrays and implemented an experimental extension of
Mezzo with arithmetic assertions. Armaël presented his work at the workshop HOPE 2013. This work is
also described in a short unpublished paper [33].

6.2.2. System F with coercion constraints
Participants: Julien Cretin, Didier Rémy.

Expressive type systems often allow non trivial conversions between types, which may lead to complex,
challenging, and sometimes ad hoc type systems. Such examples are the extension of System F with type
equalities to model GADTs and type families of Haskell, or the extension of System F with explicit contracts.
A useful technique to simplify the meta-theoretical studies of such systems is to make type conversions explicit
as “coercions” inside terms.

Following a general approach to coercions, we extended System F with a richer type-level language and a
proposition language. Propositions contain a first-order logic, a coinduction mechanism, coherence assertions
and coercion assertions. Types are classified by kinds and extended in order to handle lists of types. We
introduce a particular kind restricting a previous kind to its types satisfying a proposition. Abstracting
over such a kind means abstracting over arbitrary propositions, and thus enables coercion abstraction. Type
abstraction must be coherent: the kind of the abstract type has to be inhabited by a witness type. This language,
called Fcc, extends our previous language parametric F-iota and additionally subsumes Constraint ML.

We also extended Fcc with incoherent polymorphism in order to model GADTs. Unlike coercions and thus
coherent polymorphism, incoherent polymorphism is not erasable. But in counterpart, incoherent abstraction
does not require the kind to be inhabited. Since abstracting over incoherent types permits to write unsound
terms, incoherent abstraction has to block the reduction of terms.

This work is part of Julien Cretin’s Ph.D. dissertation [11], which will be defended in January 2014.

6.2.3. Type inference for GADTs
Participants: Jacques Garrigue [Nagoya University], Didier Rémy.

Type inference for generalized algebraic data types (GADTs) is inherently non monotone: assuming more
specific types for GADTs may ensure more invariants, which may result in more general types. This is
problematic for type inference and some amount of type annotations is required.

http://phd.ia0.fr/
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Moreover, even when types of GADTs parameters are explicitly given, they introduce equalities between types,
which makes them inter-convertible but with a limited scope. This may create an ambiguity when leaving the
scope of the equation: which element should be used for representing the equivalent forms? Idealy, one should
use a type disjunction, but this is not allowed—for good reasons. Hence, to avoid arbitrary choices, these
situations must be rejected as ambiguous, forcing the user to write more annotations to resolve the ambiguities.

We proposed a new approach to type inference with GADTs. While some uses of equations are unavoidable
and create real ambiguities, others are gratuitous and create artificial ambiguities, To distinguish between the
two we introduced ambivalent types, which are a way to trace unavoidable uses of equations within types
themselves. We then redefined ambiguities so that only ambivalent types become ambiguous and should
be rejected or resolved by a programmer annotation. Interestingly, this solution is fully compatible with
unification-based type inference algorithms used in ML dialects.

This work was presented at the APLAS 2013 conference [20]. It is also implemented in the OCaml language
since version 4.00.

6.2.4. GADTs and Subtyping
Participants: Gabriel Scherer, Didier Rémy.

Following the addition of GADTs to the OCaml language in version 4.00 released this year, we studied the
theoretical underpinnings of variance subtyping for GADTs. The question is to decide which variances should
be accepted for a GADT-style type declaration that includes type equality constraints in constructor types.
This question exposes a new notion of decomposability and unexpected tensions in the design of a subtyping
relation. A paper describing our formalization was presented at the ESOP 2013 conference [23].

6.2.5. Singleton types for code inference
Participants: Gabriel Scherer, Didier Rémy.

We continued working on the use of singleton types for code inference. If we can prove that a type contains, in
a suitably restricted pure lambda-calculus, a unique inhabitant modulo program equivalence, the compiler can
infer the code of this inhabitant. This opens the way to type-directed description of boilerplate code, through
type inference of finer-grained type annotations. As this is still work in progress, there was no publication on
this topic this year, but we presented our directions on three occasions: at the PLUME team in ENS Lyon,
at the LIX team in École Polytechnique (whose proof-search research is highly relevant to our work), and
at the Dependently Typed Programming workshop (satellite of the International Conference on Functional
Programming) in Boston.

6.2.6. Open closure types
Participants: Gabriel Scherer, Jan Hoffmann [Yale University, FLINT group].

During a visit to Yale, Gabriel Scherer worked with Jan Hoffmann on a type system for program analysis of
higher-order functional languages. Open closure types are a novel typing construct that lets the type system
statically reason about closure variables present in the lexical context. This allows fine-grained analysis (e.g.,
for resource consumption or information-flow control) of functional programming patterns such as function
currying. This work was presented at the LPAR 2013 conference [22] (Logic for Programming, Artificial
Intelligence, and Reasoning) in October.

6.3. Shared-memory parallelism
6.3.1. Algorithms and data structures for parallel computing

Participants: Umut Acar, Arthur Charguéraud [EPI Toccata], Mike Rainey.
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The ERC Deepsea project, with principal investigator Umut Acar, started in June and is hosted by the Gallium
team. This project aims at developing techniques for parallel and self-adjusting computations in the context of
shared-memory multiprocessors (i.e., multicore platforms). The project is continuing work that began at Max
Planck Institute for Software Systems in the previous three years. As part of this project, we are developing a
C++ library, called PASL, for programming parallel computations at a high level of abstraction. We use this
library to evaluate new algorithms and data structures. We have recently been pursuing two main lines of work.

We have been developing an algorithm that is able to perform dynamic load balancing in the style of work
stealing but without requiring atomic read-modify-write operations. These operations may scale poorly with
the number of cores due to synchronization bottlenecks. We have designed the algorithm, proved it correct
using a new technique for the x86-TSO weak memory model. We have evaluated our algorithm on a modern
multicore machine. Although we use no synchronization operations, we achieve performance that is no more
than a few percent slower than the industrial-strengh algorithm, even though the industrial-strength algorithm
takes full advantage of synchronization operations. We have a soon-to-be-submitted research article describing
our contributions [25].

The design of efficient parallel graph algorithms requires a sequence data structure that supports logarithmic-
time split and concatenation operations in addition to push and pop operations with excellent constant factors.
We have designed such a data structure by building on a recently introduced data structure called Finger Tree
and by integrating a “chunking” technique. Our chunking technique is based on instantiating the leaves of the
Finger Tree with chunks of contiguous memory. Unlike previous chunked data structures, we are able to prove
efficient constant factors even in worst-case scenarios. Moreover, we implemented our data structure in C++
and OCaml and showed it to be competitive with state-of-the-art sequence data structures that do not support
split and concatenation operations. We are currently writing a report on our results.

6.3.2. Weak memory models
Participants: Luc Maranget, Jacques-Pascal Deplaix, Jade Alglave [University College London].

Modern multicore and multiprocessor computers do not follow the intuitive “Sequential Consistency” model
that would define a concurrent execution as the interleaving of the execution of its constituting threads
and that would command instantaneous writes to the shared memory. This situation is due both to in-core
optimisations such as speculative and out-of-order execution of instruction and to the presence of sophisticated
(and cooperating) caching devices between processors and memory.

In the last few years, Luc Maranget took part in an international research effort to define the semantics of the
computers of the multi-core era. This research effort relies both on formal methods for defining the models
and on intensive experiments for validating the models. Joint work with, amongst others, Jade Alglave (now at
University College London) and Peter Sewell (University of Cambridge) achieved several significant results,
including two semantics for the IBM Power and ARM memory models: one of the operational kind [52] and
the other of the axiomatic kind [46]. In particular, Luc Maranget is the main developer of the diy tool suite
(see section 5.3). Luc Maranget also performs most of the experiments involved.

In 2013, Luc Maranget pursued this collaboration. He mainly worked with Jade Alglave to produce a new
model for Power/ARM. The new model is simpler than the previous ones, in the sense that it is based on fewer
mathematical objects and can be simulated more efficiently than the previous models. The new model is at
the core of a journal submission which is now at the second stage of reviewing. The submitted work contains
in-depth testing of ARM devices which led to the discovery of anomalous behaviours acknowledged as such
by our ARM contact, and of legitimate features now included in the model. The new model also impacted our
diy tool suite that now includes a generic memory model simulator built by following the principles exposed
in the submitted article. At the moment the new simulator is available as an experimental release (http://diy.
inria.fr/herd). It will be include in future releases of the tool suite.

In the same research theme, Luc Maranget supervises the internship of Jacques-Pascal Deplaix (EPITECH),
from Oct. 2013 to May 2014. The internship aims at extending litmus, our tool to to run tests on hardware:
at the moment litmus accepts test written in assembler; Jacques-Pascal is extending litmus so that it accepts

http://diy.inria.fr/herd
http://diy.inria.fr/herd
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tests written in C. The general objective is to achieve conformance testing of C compilers and machines with
respect to the new C11/C++11 standard.

6.4. The OCaml language and system
6.4.1. The OCaml system

Participants: Damien Doligez, Alain Frisch [Lexifi SAS], Jacques Garrigue [University of Nagoya], Fabrice
Le Fessant, Xavier Leroy, Gabriel Scherer.

This year, we released version 4.01.0 of the OCaml system. This is a major release that fixes about 140 bugs
and introduces 44 new features suggested by users. Damien Doligez acted as release manager for this version.

The major innovations in OCaml 4.01 are:
• The overloading of variant constructors and record field labels, resolved using typing information.

Before this, programmers had to use globally unique field labels across all record types. The new
typechecking algorithm enables programmers to use more natural names for fields in their data
structures. The algorithm is carefully engineered to preserve principality of inferred types.

• New warnings give the programmer the option of applying very strict checking of problematic
constructs in the source code.

Other features of this release include:
• Suggestion of possible typos in case of “unbound identifier” error.
• New infix application operators in the standard library.
• Options to reduce the verbosity (and enhance the readability) of error messages.
• Many internal improvements, especially in compiler performance.

In parallel, we designed and experimented with several new features that are candidate for inclusion in the
next major release of OCaml in 2014:
• Module aliases: a more efficient way of typechecking and compiling module declarations of the

form module M = ModuleName, providing a lighter, more practical alternative to packed modules
and reducing the need for name spaces.

• Extension points and preprocessing by rewriting abstract syntax trees: this approach provides an
alternative to Camlp4 for macro processing and automatic code generation.

• A native code generator for the new ARM 64 bit instruction set (also known as AArch64).
• Several ongoing experiments to improve the performance of OCaml-compiled code: more aggressive

function inlining and constant propagation; more unboxing of numbers; and a pass of common
subexpression elimination.

6.4.2. Run-time types for the OCaml language
Participants: Grégoire Henry, Jacques Garrigue [University of Nagoya], Fabrice Le Fessant.

With the addition of GADTs to OCaml in version 4.00, it is now possible to provide a clean implementation
of run-time types in the language, thus allowing the definition of polytypic function, a.k.a. generic function
defined by case analysis on the structure of its argument’s type. However, when integrating this mechanism
into the language, its interaction with other parts of the type-system proved delicate, the main difficulty being
the semantic of abstract types.

In collaboration with Jacques Garrigue during a 3 month stay in Japan, Grégoire Henry worked on different
semantics for the runtime representation of abstract types. They tried to design a mechanism that preserves
abstraction by default, and still allows to propagate type information when requested by the programmer.

6.4.3. Multi-runtime OCaml
Participants: Luca Saiu, Fabrice Le Fessant.
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Multicore architectures are now broadly available, and developers expect their programs to be able to benefit
from them. In OCaml, there is no portable way to use such architectures, as only one OCaml thread can run at
any time.

As part of the ANR project “BWare”, Luca Saiu and Fabrice Le Fessant developed a multi-runtime version of
OCaml that takes advantage of multicore architectures. In this version, a program can start several runtimes
that can run on different cores. As a consequence, OCaml threads running on different runtimes can run
concurrently. This implementation required a lot of rewriting of the OCaml runtime system (written in C),
to make all global variables context-dependent and all functions reentrant. The compiler was also modified
to generate reentrant code and context-dependent variables. The sources of the prototype were released in
September 2013, to be tested by users.

Luca Saiu then developed a library based on skeletons to facilitate the development of parallel applications
that take advantage of the multi-runtime architecture.

6.4.4. Evaluation strategies and standardization
Participants: Thibaut Balabonski, Flávio de Moura [Universidade de Brasília].

During the past years, Thibaut Balabonski studied evaluation strategies, laziness and optimality for functional
programming languages, in particular in relation to pattern matching. These investigations continued this year,
with two highlights:

• Publication in the ICFP conference [14] of a theoretical result relating fully lazy evaluation (as can
be found in some Haskell compilers) to optimal reduction in the weak λ-calculus.

• Collaboration with Flávio de Moura (Universidade de Brasília) on so-called “standard” evaluation
strategies for a calculus with rich pattern matching mechanisms (the Pure Pattern Calculus of Jay
and Kesner [42]). The challenge here lies in that the calculus does not satisfies the usual stability
properties. As a consequences, standard strategies are not unique anymore, and new approaches are
needed. A paper is in preparation.

6.5. Software specification and verification
6.5.1. Tools for TLA+

Participants: Damien Doligez, Jael Kriener, Leslie Lamport [Microsoft Research], Stephan Merz [EPI
VeriDis], Tomer Libal [Microsoft Research-Inria Joint Centre], Hernán Vanzetto [Microsoft Research-Inria
Joint Centre].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of this
team is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing the ideas in
[43], and to build tools for writing TLA+ specifications and mechanically checking the corresponding formal
proofs.

This year, the TLA+ tools were released as open-source (MIT license), and in September we released a new
version of the TLA+ Proof System (TLAPS), an environment for writing and checking TLA+ proofs. This
environment is described in [38].

We have implemented a (not yet released) extension of TLAPS to deal with proofs of temporal formulas,
using the propositional temporal logic prover LS4 as a back-end. Until now, TLAPS could only be used to
prove safety properties (invariants). With this new version, our users will be able to prove liveness properties
(absence of deadlock), refinement relations between specifications, etc.

Jael Kriener started a 2-year post-doc contract in December. She is working on theoretical and implementation
aspects of TLA+ and TLAPS.

Web sites:
http://research.microsoft.com/users/lamport/tla/tla.html
http://tla.msr-inria.inria.fr/tlaps

http://research.microsoft.com/users/lamport/tla/tla.html
http://tla.msr-inria.inria.fr/tlaps
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6.5.2. The Zenon automatic theorem prover
Participants: Damien Doligez, David Delahaye [CNAM], Pierre Halmagrand [CNAM], Olivier Hermant
[Mines ParisTech], Mélanie Jacquel [CNAM].

Damien Doligez continued the development of Zenon, a tableau-based prover for first-order logic with equality
and theory-specific extensions.

David Delahaye and Mélanie Jacquel designed and implemented (with some help from Damien Doligez) an
extension of Zenon called SuperZenon, based on the Superdeduction framework of Brauner, Houtmann, and
Kirchner [37]. Mélanie Jacquel defended her thesis on this subject in April.

Pierre Halmagrand did an internship and started a thesis on integrating Deduction Modulo in Zenon; some
results of this work are described in two papers published at LPAR [19] and IWIL [18].

6.5.3. Implementing hash-consed structures in Coq
Participants: Thomas Braibant, Jacques-Henri Jourdan, David Monniaux [CNRS, VERIMAG].

Hash-consing is a programming technique used to implement maximal sharing of immutable values in
memory, keeping a single copy of semantically equivalent objects. Hash-consed data-structures give a
unique identifier to each object, allowing fast hashing and comparisons of objects. This may lead to major
improvements in execution time by itself, but it also make it possible to do efficient memoization of
computations.

Hash-consing and memoization are examples of imperative techniques that are of prime importance for
performance, but are not easy to implement and prove correct using the purely functional language of a
proof assistant such as Coq. In a joint article at ITP 2013 [17], we described three different implementation
techniques for hash-consed data-structures in Coq through the running example of Binary Decision Diagrams
(BDDs). BDDs are representations of Boolean functions, and are often used in software and hardware
verification tools (e.g., model checkers).

We substantially improved the work described in this ITP 2013 article afterwards. First, we came up with
a fourth implementation technique for hash-consed data-structures in Coq. Then, we performed an in-depth
comparative study of how our “design patterns” for certified hash-consing fare on two real-scale examples:
BDDs and lambda-terms. This work is currently under revision for publication in a journal.

6.5.4. Working with names and binders
Participant: François Pottier.

François Pottier released dblib, a Coq library that helps work with de Bruijn indices in a generic and
lightweight manner. This library is used in the formalization of Mezzo (see section 6.2.1). It is available
at http://gallium.inria.fr/~fpottier/.

6.6. Technology transfer
6.6.1. Analysis of the Scilab Language

Participants: Fabrice Le Fessant, Michael Laporte.

The Scilab language is a scripting language providing easy access to efficient implementations of mathematical
operations (on matrices, for example). It suffers from the lack of verifications of an untyped language, together
with the performance problems of an interpreted language. As part of the FUI Richelieu project, Fabrice Le
Fessant and Michael Laporte have been investigating solutions to these issues.

The first part of the work was to clarify the semantics of the Scilab language. For that, an interpreter was
implemented in OCaml, based on the C++ AST provided by the forthcoming version 6 of Scilab. This work
exhibited a number of bugs in the new implementation, and proved to be more performant than the C++
implementation, thanks to a better algorithm to manage the dynamic scopes of Scilab.

http://gallium.inria.fr/~fpottier/
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The second part of the work was to understand how users write Scilab code. For that, a style-checking
application, called Scilint, has been developed. It implements static checking of some properties of Scilab
programs, to be able to detect runtime errors before running the program. Warnings are displayed for
suspicious cases. Using Scilint on large sets of Scilab code (from the Scilab forge or the Atom repository)
showed that the most erroneous features of Scilab are commonly used and that, to achieve the ultimate goal of
partial typing of the language, a subset of the language must be specified that the user should conform to, in
order for the code to benefit from the next part of the work, i.e. just-in-time compilation.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. The Caml Consortium

Participants: Xavier Leroy [correspondant], Damien Doligez, Didier Rémy.

The Caml Consortium is a formal structure where industrial and academic users of Caml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 11 member companies:
• CEA
• Citrix
• Dassault Aviation
• Dassault Systèmes
• Esterel Technologies
• Jane Street
• LexiFi
• Microsoft
• Mylife.com
• OCamlPro
• SimCorp

For a complete description of this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the
scientific committee of the Consortium.

7.1.2. OCamlPro
Participant: Fabrice Le Fessant.

Fabrice Le Fessant is consulting for OCamlPro, a SME that provides services and tools to companies wanting
to use OCaml as their development language.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR projects
8.1.1.1. BWare

Participants: Damien Doligez, Fabrice Le Fessant, Luca Saiu.

http://caml.inria.fr/consortium/
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The “BWare” project (2012-2016) is coordinated by David Delahaye at Conservatoire National des Arts et
Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche.
BWare is an industrial research project that aims to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method
and requiring high guarantees of confidence.

8.1.1.2. Paral-ITP
Participant: Damien Doligez.

The “Paral-ITP” project (2011-2014) is coordinated by Burkhart Wolff at Université Paris Sud and funded
by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche. The objective of
Paral-ITP is to investigate the parallelization of interactive theorem provers such as Coq and Isabelle.

8.1.1.3. Verasco
Participants: Jacques-Henri Jourdan, Xavier Leroy.

The “Verasco” project (2012-2015) is coordinated by Xavier Leroy and funded by the Ingéniérie Numérique
et Sécurité programme of Agence Nationale de la Recherche. The objective of this 4-year project is to develop
and formally verify a static analyzer based on abstract interpretation, and interface it with the CompCert C
verified compiler.

8.1.2. FSN BGLE projects
8.1.2.1. ADN4SE

Participants: Damien Doligez, Jael Kriener.

The “ADN4SE” project (2012-2016) is coordinated by the Sherpa Engineering company and funded by the
Briques Génériques du Logiciel Embarqué programme of Fonds national pour la Société Numérique. The
aim of this project is to develop a process and a set of tools to support the rapid development of embedded
software with strong safety constraints. Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS real-time kernel, on which the whole
project is based.

8.1.2.2. CEEC
Participants: Thomas Braibant, Xavier Leroy.

The “CEEC” project (2011-2014) is coordinated by the Prove & Run company and also involves Esterel
Technologies and Trusted Labs. It is funded by the Briques Génériques du Logiciel Embarqué programme
of Fonds national pour la Société Numérique. The CEEC project develops an environment for the develop-
ment and certification of high-security software, centered on a new domain-specific language designed by
Prove & Run. Our involvement in this project focuses on the formal verification of a C code generator for this
domain-specific language, and its interface with the CompCert C verified compiler.

8.1.3. FUI projects
8.1.3.1. Richelieu (FUI)

Participants: Michael Laporte, Fabrice Le Fessant.

The “Richelieu” project (2012-2014) is funded by the Fonds unique interministériel (FUI). It involves Scilab
Enterprises, U. Pierre et Marie Curie, Dassault Aviation, ArcelorMittal, CNES, Silkan, OCamlPro, and Inria.
The objective of the project is to improve the performance of scientific programming languages such as
Scilab’s through the use of VMKit and LLVM.



Project-Team GALLIUM 19

8.2. European Initiatives
8.2.1. FP7 Projects
8.2.1.1. DEEPSEA

Type: IDEAS
Instrument: ERC Starting Grant
Duration: June 2013 - May 2018
Coordinator: Umut Acar
Partner: Inria
Inria contact: Umut Acar
Abstract: the objective of project DEEPSEA is to develop abstractions, algorithms and languages for
parallelism and dynamic parallelism, with applications to problems on large data sets.

8.3. International Initiatives
8.3.1. Inria International Labs

Fabrice Le Fessant visited CIRIC (Center of Excellence on TIC, created by Inria in Chile) during two weeks.
He gave several lectures on OCaml: a presentation at StarTechConf’2013, a presentation at University Adolfo
Ibañez, and a presentation and a lecture at University of Chile.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

Olin Shivers, professor at Northeastern University (Boston), visited the Gallium team from July 2013 to
December 2013. He worked on static analysis and intermediate representations for functional programming
languages.

8.4.1.1. Internships

Robbert Krebbers
Subject: formal semantics for the C language
Date: from Jan 2013 until Mar 2013
Institution: Radboud University (Netherlands)

9. Dissemination

9.1. Scientific Animation
9.1.1. Conference organization

Didier Rémy organized the October 2013 meeting of IFIP working group 2.8 “Functional programming”,
which took place in Aussois, France.

Thomas Braibant participated in the organization of the LOLA 2013 workshop, associated with LICS 2013.

9.1.2. Editorial boards
Xavier Leroy is on the editorial board for the Research Highlights column of Communications of the ACM. He
is a member of the editorial boards of Journal of Automated Reasoning, Journal of Functional Programming,
and Journal of Formalized Reasoning.
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9.1.3. Program committees
Xavier Leroy was a member of the program committee for VSTTE 2013, the conference on Verified Software:
Theory, Tools and Experiments.

François Pottier was a member of the program committee for ESOP 2014, the European Symposium On
Programming.

9.1.4. Steering committees
Xavier Leroy is a member of the steering committees for the Certified Programming and Proofs (CPP)
conference and the Programming Languages meet Program Verification (PLPV) workshop.

François Pottier is a member of the steering committee for the ACM TLDI workshop.

Didier Rémy is a member of the steering committee of the OCaml Workshop.

9.1.5. Collective responsibilities
Damien Doligez chairs the Commission des actions de développement technologiques of Inria Paris-
Rocquencourt.

Xavier Leroy is vice-président du comité des projets of Inria Paris-Rocquencourt and appointed member
of Commission d’Évaluation. He participated in the following Inria hiring and promotion committees: jury
d’admissibilité CR2 Paris-Rocquencourt (vice-chair, with Philippe Robert as chair); jury d’admissibilité DR2;
promotions CR1, DR1, DR0. He was a member of the hiring committee for a Maître de conférences position
at Université Rennes 1.

Luc Maranget chairs the Commission des utilisateurs des moyens informatiques – Recherche of Inria Paris-
Rocquencourt.

François Pottier is a member of the post-doctoral hiring committee of Inria Paris-Rocquencourt. He was a
member of the hiring committee for a Maître de conférences position at Université Paris Diderot.

Jonathan Protzenko curated the Junior Seminar of Inria Paris-Rocquencourt until June 2013, which marked
the end of his two-year involvement in the seminar.

Didier Rémy represents Inria in the commission des études of the MPRI master, co-organized by U. Paris
Diderot, ENS Cachan, ENS Paris, and École Polytechnique.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Licence: Thibaut Balabonski, “Travaux dirigés de Caml Light”, 14 hours, L1, Collège Stanislas
(classes préparatoires MPSI), France.
Licence: Julien Cretin, “Bases de données”, 26h, L3, U. Paris Diderot, France.
Licence: Julien Cretin, “Principe de fonctionnement des machines binaires”, 33h, L1, U. Paris
Diderot, France.
Licence: Jacques-Henri Jourdan, “Langages de programmation et compilation”, 46h, L3, École
Normale Supérieure, France.
Licence: François Pottier, “Algorithmique et programmation” (INF431), 13h30, L3, École Polytech-
nique, France.
Licence: Gabriel Scherer, “IF1: Introduction to computer science and programming”, 42h, L1, U.
Paris Diderot, France.
Master: Xavier Leroy and Didier Rémy, “Functional programming and type systems”, 12h + 18h,
M2, MPRI master, France.
Master: Luc Maranget, “Semantics, languages and algorithms for multicore programming”, 9h, M2,
MPRI master, France.
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Master: François Pottier, “Compilation” (INF564), 13h30, M1, École Polytechnique, France.
Master: Jonathan Protzenko, “Conception et mise en œuvre d’algorithmes” (MOOC), 32h, M1,
Coursera / École Polytechnique, France.
Master: Gabriel Scherer, “Advanced Functional Programming”, 30h, M1, U. Paris Diderot, France.
Doctorat: Xavier Leroy, “Mechanized semantics”, 6h, Verification Technology, Systems & Applica-
tions summer school 2013, Nancy, France.

9.2.2. Supervision
PhD in progress: Julien Cretin, “Erasable coercions: a unified approach to type systems”, École
Polytechnique, since December 2010, supervised by Didier Rémy, to be defended January 30th,
2014.
PhD in progress: Pierre Halmagrand, “Déduction Automatique Modulo”, CNAM, since September
2013, supervised by David Delahaye, Damien Doligez, and Olivier Hermant.
PhD in progress: Jonathan Protzenko, “Fine-grained static control of side effects”, U. Paris Diderot,
since September 2010, supervised by François Pottier.
PhD in progress: Gabriel Scherer, “Term inference”, U. Paris Diderot, since October 2011, super-
vised by Didier Rémy.
PhD in progress: Jacques-Henri Jourdan, “Formal verification of a static analyzer for critical
embedded software”, U. Paris Diderot, since September 2012, supervised by Xavier Leroy.

9.2.3. Juries
Damien Doligez was a member of the Ph.D. jury of Mélanie Jacquel, CNAM, Paris, april 2013.

Xavier Leroy was a member of the Ph.D. jury of Xiaomu Shi, Université Joseph Fourier, Grenoble, july 2013.
Xavier Leroy was president of the Ph.D. jury of Pierre-Nicolas Tollitte, CNAM, Paris, december 2013.

9.3. Popularization
Jacques-Henri Jourdan and Arthur Charguéraud participated in the organization of the Castor computer science
contest (http://castor-informatique.fr/). This contest aims at making computer science more popular in French
high schools and junior high schools. It attracted over 170,000 participants.

Fabrice Le Fessant is one of the organizers of the OCaml meetup in Paris. Four events were organized in
2013, each featuring four short presentations on topics related to OCaml. Each event was attended by about
60 participants.

Xavier Leroy gave a tutorial on using theorem provers in programming language research at the 2013 ACM
SIGPLAN Programming Languages Mentoring Workshop, which was attended by about 80 undergraduate,
graduate and post-doctoral students.

Since 2012, the Gallium team publishes a research blog at http://gallium.inria.fr/blog/, edited by Gabriel
Scherer. This blog continued its activity in 2013, with 26 posts by 12 different authors. It covered various
changes in the OCaml language, announced small software libraries from members of the team, and discussed
Gallium’s research, notably the Mezzo language.
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