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2. Overall Objectives

2.1. Overall Objectives
Motion planning is not only a crucial issue in control theory, but also a widespread task of all sort of human
activities. The aim of the project-team is to study the various aspects preceding and framing motion planning:
accessibility analysis (determining which configurations are attainable), criteria to make choice among
possible trajectories, trajectory tracking (fixing a possibly unfeasible trajectory and following it as closely
as required), performance analysis (determining the cost of a tracking strategy), design of implementable
algorithms, robustness of a control strategy with respect to computationally motivated discretizations, etc.
The viewpoint that we adopt comes from geometric control: our main interest is in qualitative and intrinsic
properties and our focus is on trajectories (either individual ones or families of them).

The main application domain of GECO is quantum control. The importance of designing efficient transfers
between different atomic or molecular levels in atomic and molecular physics is due to its applications to
photochemistry (control by laser pulses of chemical reactions), nuclear magnetic resonance (control by a
magnetic field of spin dynamics) and, on a more distant time horizon, the strategic domain of quantum
computing.



2 Activity Report INRIA 2013

A second application area concerns the control interpretation of phenomena appearing in neurophysiology. It
studies the modeling of the mechanisms supervising some biomechanics actions or sensorial reactions such as
image reconstruction by the primary visual cortex, eyes movement and body motion. All these problems can
be seen as motion planning tasks accomplished by the brain.

As a third applicative domain we propose a system dynamics approach to switched systems. Switched
systems are characterized by the interaction of continuous dynamics (physical system) and discrete/logical
components. They provide a popular modeling framework for heterogeneous aspects issuing from automotive
and transportation industry, energy management and factory automation.

2.2. Highlights of the Year
We edited two volumes on two different and challenging subjects, that is hybrid systems with constraints [12]
and sub-Riemannian geometry [13].

3. Research Program

3.1. Geometric control theory
The main research topic of the project-team will be geometric control, with a special focus on control design.
The application areas that we target are control of quantum mechanical systems, neurogeometry and switched
systems.

Geometric control theory provides a viewpoint and several tools, issued in particular from differential geom-
etry, to tackle typical questions arising in the control framework: controllability, observability, stabilization,
optimal control... [29], [64] The geometric control approach is particularly well suited for systems involving
nonlinear and nonholonomic phenomena. We recall that nonholonomicity refers to the property of a velocity
constraint that is not equivalent to a state constraint.

The expression control design refers here to all phases of the construction of a control law, in a mainly open-
loop perspective: modeling, controllability analysis, output tracking, motion planning, simultaneous control
algorithms, tracking algorithms, performance comparisons for control and tracking algorithms, simulation and
implementation.

We recall that

• controllability denotes the property of a system for which any two states can be connected by a
trajectory corresponding to an admissible control law ;

• output tracking refers to a control strategy aiming at keeping the value of some functions of the
state arbitrarily close to a prescribed time-dependent profile. A typical example is configuration
tracking for a mechanical system, in which the controls act as forces and one prescribes the position
variables along the trajectory, while the evolution of the momenta is free. One can think for instance
at the lateral movement of a car-like vehicle: even if such a movement is unfeasible, it can be tracked
with arbitrary precision by applying a suitable control strategy;

• motion planning is the expression usually denoting the algorithmic strategy for selecting one control
law steering the system from a given initial state to an attainable final one;

• simultaneous control concerns algorithms that aim at driving the system from two different initial
conditions, with the same control law and over the same time interval, towards two given final states
(one can think, for instance, at some control action on a fluid whose goal is to steer simultaneously
two floating bodies.) Clearly, the study of which pairs (or n-uples) of states can be simultaneously
connected thanks to an admissible control requires an additional controllability analysis with respect
to the plain controllability mentioned above.
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At the core of control design is then the notion of motion planning. Among the motion planning methods, a
preeminent role is played by those based on the Lie algebra associated with the control system ( [84], [71],
[77]), those exploiting the possible flatness of the system ([58]) and those based on the continuation method
([96]). Optimal control is clearly another method for choosing a control law connecting two states, although it
generally introduces new computational and theoretical difficulties.

Control systems with special structure, which are very important for applications are those for which the
controls appear linearly. When the controls are not bounded, this means that the admissible velocities form a
distribution in the tangent bundle to the state manifold. If the distribution is equipped with a smoothly varying
norm (representing a cost of the control), the resulting geometrical structure is called sub-Riemannian. Sub-
Riemannian geometry thus appears as the underlying geometry of the nonholonomic control systems, playing
the same role as Euclidean geometry for linear systems. As such, its study is fundamental for control design.
Moreover its importance goes far beyond control theory and is an active field of research both in differential
geometry ( [83]), geometric measure theory ([59], [33]) and hypoelliptic operator theory ([45]).

Other important classes of control systems are those modeling mechanical systems. The dynamics are naturally
defined on the tangent or cotangent bundle of the configuration manifold, they have Lagrangian or Hamiltonian
structure, and the controls act as forces. When the controls appear linearly, the resulting model can be seen
somehow as a second-order sub-Riemannian structure (see [50]).

The control design topics presented above naturally extend to the case of distributed parameter control systems.
The geometric approach to control systems governed by partial differential equations is a novel subject with
great potential. It could complement purely analytical and numerical approaches, thanks to its more dynamical,
qualitative and intrinsic point of view. An interesting example of this approach is the paper [30] about the
controllability of Navier–Stokes equation by low forcing modes.

4. Application Domains

4.1. Quantum control
The issue of designing efficient transfers between different atomic or molecular levels is crucial in atomic
and molecular physics, in particular because of its importance in those fields such as photochemistry (control
by laser pulses of chemical reactions), nuclear magnetic resonance (NMR, control by a magnetic field of
spin dynamics) and, on a more distant time horizon, the strategic domain of quantum computing. This last
application explicitly relies on the design of quantum gates, each of them being, in essence, an open loop
control law devoted to a prescribed simultaneous control action. NMR is one of the most promising techniques
for the implementation of a quantum computer.

Physically, the control action is realized by exciting the quantum system by means of one or several external
fields, being them magnetic or electric fields. The resulting control problem has attracted increasing attention,
especially among quantum physicists and chemists (see, for instance, [89], [94]). The rapid evolution of the
domain is driven by a multitude of experiments getting more and more precise and complex (see the recent
review [49]). Control strategies have been proposed and implemented, both on numerical simulations and on
physical systems, but there is still a large gap to fill before getting a complete picture of the control properties
of quantum systems. Control techniques should necessarily be innovative, in order to take into account the
physical peculiarities of the model and the specific experimental constraints.

The area where the picture got clearer is given by finite dimensional linear closed models.
• Finite dimensional refers to the dimension of the space of wave functions, and, accordingly, to the

finite number of energy levels.
• Linear means that the evolution of the system for a fixed (constant in time) value of the control is

determined by a linear vector field.
• Closed refers to the fact that the systems are assumed to be totally disconnected from the environ-

ment, resulting in the conservation of the norm of the wave function.
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The resulting model is well suited for describing spin systems and also arises naturally when infinite
dimensional quantum systems of the type discussed below are replaced by their finite dimensional Galerkin
approximations. Without seeking exhaustiveness, let us mention some of the issues that have been tackled for
finite dimensional linear closed quantum systems:
• controllability [31],
• bounds on the controllability time [27],
• STIRAP processes [99],
• simultaneous control [72],
• optimal control ( [68], [40], [51]),
• numerical simulations [78].

Several of these results use suitable transformations or approximations (for instance the so-called rotating
wave) to reformulate the finite-dimensional Schrödinger equation as a sub-Riemannian system. Open systems
have also been the object of an intensive research activity (see, for instance, [32], [69], [90], [46]).

In the case where the state space is infinite dimensional, some optimal control results are known (see, for
instance, [36], [47], [65], [37]). The controllability issue is less understood than in the finite dimensional
setting, but several advances should be mentioned. First of all, it is known that one cannot expect exact
controllability on the whole Hilbert sphere [98]. Moreover, it has been shown that a relevant model, the
quantum oscillator, is not even approximately controllable [91], [81]. These negative results have been
more recently completed by positive ones. In [38], [39] Beauchard and Coron obtained the first positive
controllability result for a quantum particle in a 1D potential well. The result is highly nontrivial and is based
on Coron’s return method (see [54]). Exact controllability is proven to hold among regular enough wave
functions. In particular, exact controllability among eigenfunctions of the uncontrolled Schrödinger operator
can be achieved. Other important approximate controllability results have then been proved using Lyapunov
methods [80], [85], [66]. While [80] studies a controlled Schrödinger equation in R for which the uncontrolled
Schrödinger operator has mixed spectrum, [85], [66] deal mainly with general discrete-spectrum Schrödinger
operators.

In all the positive results recalled in the previous paragraph, the quantum system is steered by a single external
field. Different techniques can be applied in the case of two or more external fields, leading to additional
controllability results [57], [43].

The picture is even less clear for nonlinear models, such as Gross–Pitaevski and Hartree–Fock equations. The
obstructions to exact controllability, similar to the ones mentioned in the linear case, have been discussed
in [63]. Optimal control approaches have also been considered [35], [48]. A comprehensive controllability
analysis of such models is probably a long way away.

4.2. Neurophysiology
At the interface between neurosciences, mathematics, automatics and humanoid robotics, an entire new
approach to neurophysiology is emerging. It arouses a strong interest in the four communities and its
development requires a joint effort and the sharing of complementary tools.

A family of extremely interesting problems concerns the understanding of the mechanisms supervising some
sensorial reactions or biomechanics actions such as image reconstruction by the primary visual cortex, eyes
movement and body motion.

In order to study these phenomena, a promising approach consists in identifying the motion planning problems
undertaken by the brain, through the analysis of the strategies that it applies when challenged by external
inputs. The role of control is that of a language allowing to read and model neurological phenomena. The
control algorithms would shed new light on the brain’s geometric perception (the so-called neurogeometry
[87]) and on the functional organization of the motor pathways.
• A challenging problem is that of the understanding of the mechanisms which are responsible for the

process of image reconstruction in the primary visual cortex V1.
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The visual cortex areas composing V1 are notable for their complex spatial organization and their
functional diversity. Understanding and describing their architecture requires sophisticated modeling
tools. At the same time, the structure of the natural and artificial images used in visual psychophysics
can be fully disclosed only using rather deep geometric concepts. The word “geometry" refers here
to the internal geometry of the functional architecture of visual cortex areas (not to the geometry of
the Euclidean external space). Differential geometry and analysis both play a fundamental role in
the description of the structural characteristics of visual perception.

A model of human perception based on a simplified description of the visual cortex V1, involving
geometric objects typical of control theory and sub-Riemannian geometry, has been first proposed
by Petitot ( [88]) and then modified by Citti and Sarti ( [53]). The model is based on experimental
observations, and in particular on the fundamental work by Hubel and Wiesel [62] who received the
Nobel prize in 1981.

In this model, neurons of V1 are grouped into orientation columns, each of them being sensitive to
visual stimuli arriving at a given point of the retina and oriented along a given direction. The retina
is modeled by the real plane, while the directions at a given point are modeled by the projective line.
The fiber bundle having as base the real plane and as fiber the projective line is called the bundle of
directions of the plane.

From the neurological point of view, orientation columns are in turn grouped into hypercolumns,
each of them sensitive to stimuli arriving at a given point, oriented along any direction. In the same
hypercolumn, relative to a point of the plane, we also find neurons that are sensitive to other stimuli
properties, such as colors. Therefore, in this model the visual cortex treats an image not as a planar
object, but as a set of points in the bundle of directions of the plane. The reconstruction is then
realized by minimizing the energy necessary to activate orientation columns among those which are
not activated directly by the image. This gives rise to a sub-Riemannian problem on the bundle of
directions of the plane.

• Another class of challenging problems concern the functional organization of the motor pathways.

The interest in establishing a model of the motor pathways, at the same time mathematically rigorous
and biologically plausible, comes from the possible spillovers in robotics and neurophysiology. It
could help to design better control strategies for robots and artificial limbs, yielding smoother and
more progressive movements. Another underlying relevant societal goal (clearly beyond our domain
of expertise) is to clarify the mechanisms of certain debilitating troubles such as cerebellar disease,
chorea and Parkinson’s disease.

A key issue in order to establish a model of the motor pathways is to determine the criteria underlying
the brain’s choices. For instance, for the problem of human locomotion (see [34]), identifying
such criteria would be crucial to understand the neural pathways implicated in the generation of
locomotion trajectories.

A nowadays widely accepted paradigm is that, among all possible movements, the accomplished
ones satisfy suitable optimality criteria (see [97] for a review). One is then led to study an inverse
optimal control problem: starting from a database of experimentally recorded movements, identify
a cost function such that the corresponding optimal solutions are compatible with the observed
behaviors.

Different methods have been taken into account in the literature to tackle this kind of problems, for
instance in the linear quadratic case [67] or for Markov processes [86]. However all these methods
have been conceived for very specific systems and they are not suitable in the general case. Two
approaches are possible to overcome this difficulty. The direct approach consists in choosing a cost
function among a class of functions naturally adapted to the dynamics (such as energy functions) and
to compare the solutions of the corresponding optimal control problem to the experimental data. In
particular one needs to compute, numerically or analytically, the optimal trajectories and to choose
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suitable criteria (quantitative and qualitative) for the comparison with observed trajectories. The
inverse approach consists in deriving the cost function from the qualitative analysis of the data.

4.3. Switched systems
Switched systems form a subclass of hybrid systems, which themselves constitute a key growth area in
automation and communication technologies with a broad range of applications. Existing and emerging areas
include automotive and transportation industry, energy management and factory automation. The notion of
hybrid systems provides a framework adapted to the description of the heterogeneous aspects related to the
interaction of continuous dynamics (physical system) and discrete/logical components.

The characterizing feature of switched systems is the collective aspect of the dynamics. A typical question is
that of stability, in which one wants to determine whether a dynamical system whose evolution is influenced
by a time-dependent signal is uniformly stable with respect to all signals in a fixed class ( [74]).

The theory of finite-dimensional hybrid and switched systems has been the subject of intensive research in
the last decade and a large number of diverse and challenging problems such as stabilizability, observability,
optimal control and synchronization have been investigated (see for instance [95], [75]).

The question of stability, in particular, because of its relevance for applications, has spurred a rich literature.
Important contributions concern the notion of common Lyapunov function: when there exists a Lyapunov
function that decays along all possible modes of the system (that is, for every possible constant value of the
signal), then the system is uniformly asymptotically stable. Conversely, if the system is stable uniformly with
respect to all signals switching in an arbitrary way, then a common Lyapunov function exists [76]. In the
linear finite-dimensional case, the existence of a common Lyapunov function is actually equivalent to the
global uniform exponential stability of the system [82] and, provided that the admissible modes are finitely
many, the Lyapunov function can be taken polyhedral or polynomial [41], [42], [55]. A special role in the
switched control literature has been played by common quadratic Lyapunov functions, since their existence
can be tested rather efficiently (see [56] and references therein). Algebraic approaches to prove the stability of
switched systems under arbitrary switching, not relying on Lyapunov techniques, have been proposed in [73],
[28].

Other interesting issues concerning the stability of switched systems arise when, instead of considering
arbitrary switching, one restricts the class of admissible signals, by imposing, for instance, a dwell time
constraint [61].

Another rich area of research concerns discrete-time switched systems, where new intriguing phenomena
appear, preventing the algebraic characterization of stability even for small dimensions of the state space [70].
It is known that, in this context, stability cannot be tested on periodic signals alone [44].

Finally, let us mention that little is known about infinite-dimensional switched system, with the exception of
some results on uniform asymptotic stability ( [79], [92], [93]) and some recent papers on optimal control (
[60], [100]).

5. Software and Platforms

5.1. IRHD
We develop a software for reconstruction of corrupted and damaged images, named IRHD (for Image
Reconstruction via Hypoelliptic Diffusion). One of the main features of the algorithm on which the software
is based is that it does not require any information about the location and character of the corrupted
places. Another important advantage is that this method is massively parallelizable; this allows to work with
sufficiently large images. Theoretical background of the presented method is based on the model of geometry
of vision due to Petitot, Citti and Sarti. The main step is numerical solution of the equation of 3D hypoelliptic
diffusion. IRHD is based on Fortran.
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6. New Results

6.1. New results: geometric control
We start by presenting some results on motion planning and tracking algorithms.

• In [22] we study the complexity of the motion planning problem for control-affine systems. Such
complexities are already defined and rather well-understood in the particular case of nonholonomic
(or sub-Riemannian) systems. Our aim is to generalize these notions and results to systems with
a drift. Accordingly, we present various definitions of complexity, as functions of the curve that is
approximated, and of the precision of the approximation. Due to the lack of time-rescaling invariance
of these systems, we consider geometric and parametrized curves separately. Then, we give some
asymptotic estimates for these quantities.

• In [23] we study the problem of controlling an unmanned aerial vehicle (UAV) to provide a target
supervision and to provide convoy protection to ground vehicles. We first present a control strategy
based upon a Lyapunov–LaSalle stabilization method to provide supervision of a stationary target.
The UAV is expected to join a pre-designed admissible circular trajectory around the target which
is itself a fixed point in the space. Our strategy is presented for both HALE (High Altitude Long
Endurance) and MALE (Medium Altitude Long Endurance) types UAVs. A UAV flying at a constant
altitude (HALE type) is modeled as a Dubins vehicle (i.e. a planar vehicle with constrained turning
radius and constant forward velocity). For a UAV that might change its altitude (MALE type), we
use the general kinematic model of a rigid body evolving in R3. Both control strategies presented
are smooth and unlike what is usually proposed in the literature these strategies asymptotically track
a circular trajectory of exact minimum turning radius. We then consider the problem of adding to the
tracking task an optimality criterion. In particular, we present the time-optimal control synthesis for
tracking a circle by a Dubins vehicle. This optimal strategy, although much simpler than the point-
to-point time-optimal strategy obtained by P. Souéres and J.-P. Laumond in the 1990s, is very rich.
Finally, we propose control strategies to provide supervision of a moving target, that are based upon
the previous ones.

• In [26] we prove the continuity and the Hölder equivalence w.r.t. an Euclidean distance of the
value function associated with the L1 cost of the control-affine system q̇ = f0(q) +

∑m
j=1 ujfj(q),

satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as
the Ball-Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on
a reduction of the control-affine system to a linear but time-dependent one, for which we are able
to define a generalization of the nilpotent approximation and through which we derive estimates for
the shape of the reachable sets. Finally, we also prove the continuity of the value function associated
with the L1 cost of time-dependent systems of the form q̇ =

∑m
j=1 ujf

t
j (q).

Let us list some new results in sub-Riemannian geometry and hypoelliptic diffusion.

• In [1] we provide normal forms for 2D almost-Riemannian structures, which are generalized
Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket
generating pair of vector fields that can become collinear. Generically, there are three types of points:
Riemannian points where the two vector fields are linearly independent, Grushin points where the
two vector fields are collinear but their Lie bracket is not, and tangency points where the two vector
fields and their Lie bracket are collinear and the missing direction is obtained with one more bracket.
We consider the problem of finding normal forms and functional invariants at each type of point. We
also require that functional invariants are “complete” in the sense that they permit to recognize
locally isometric structures. The problem happens to be equivalent to the one of finding a smooth
canonical parameterized curve passing through the point and being transversal to the distribution.
For Riemannian points such that the gradient of the Gaussian curvature K is different from zero, we
use the level set of K as support of the parameterized curve. For Riemannian points such that the
gradient of the curvature vanishes (and under additional generic conditions), we use a curve which is
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found by looking for crests and valleys of the curvature. For Grushin points we use the set where the
vector fields are parallel. Tangency points are the most complicated to deal with. The cut locus from
the tangency point is not a good candidate as canonical parameterized curve since it is known to be
non-smooth. Thus, we analyze the cut locus from the singular set and we prove that it is not smooth
either. A good candidate appears to be a curve which is found by looking for crests and valleys of
the Gaussian curvature. We prove that the support of such a curve is uniquely determined and has a
canonical parametrization.

• The curvature discussed in [14] is a rather far going generalization of the Riemann sectional
curvature. We define it for a wide class of optimal control problems: a unified framework including
geometric structures such as Riemannian, sub-Riemannian, Finsler and sub-Finsler structures; a
special attention is paid to the sub-Riemannian (or Carnot–Caratheodory) metric spaces. Our
construction of the curvature is direct and naive, and it is similar to the original approach of Riemann.
Surprisingly, it works in a very general setting and, in particular, for all sub-Riemannian spaces.

• In [15] we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases:
generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds
(close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a
generic starting point). As a byproduct, we show that, for generic low-dimensional Riemannian
manifolds, the only singularities of the exponential map, as a Lagragian map, that can arise along a
minimizing geodesic are A3 and A5 (in the classification of Arnol’d’s school). We show that in the
non-generic case, a cornucopia of asymptotics can occur, even for Riemannian surfaces.

• In [19] we study the evolution of the heat and of a free quantum particle (described by the
Schroedinger equation) on two-dimensional manifolds endowed with the degenerate Riemannian
metric ds2 = dx2 + |x|−2α

dθ2, where x ∈ R, θ ∈ T and the parameter α ∈ R. For α ≤ −1 this
metric describes cone-like manifolds (for α = −1 it is a flat cone). For α = 0 it is a cylinder. For
α ≥ 1 it is a Grushin-like metric. We show that the Laplace–Beltrami operator ∆ is essentially
self-adjoint if and only if α 6∈ (−3, 1). In this case the only self-adjoint extension is the Friedrichs
extension ∆F , that does not allow communication through the singular set {x = 0} both for the
heat and for a quantum particle. For α ∈ (−3,−1] we show that for the Schroedinger equation
only the average on θ of the wave function can cross the singular set, while the solutions of the
only Markovian extension of the heat equation (which indeed is ∆F ) cannot. For α ∈ (−1, 1) we
prove that there exists a canonical self-adjoint extension ∆B , called bridging extension, which is
Markovian and allows the complete communication through the singularity (both of the heat and of
a quantum particle). Also, we study the stochastic completeness (i.e., conservation of the L1 norm
for the heat equation) of the Markovian extensions ∆F and ∆B , proving that ∆F is stochastically
complete at the singularity if and only if α ≤ −1, while ∆B is always stochastically complete at the
singularity.

6.2. New results: quantum control
New results have been obtained for the control of the bilinear Schrödinger equation.

• In [4] we show the approximate rotational controllability of a polar linear molecule by means of three
nonresonant linear polarized laser fields. The result is based on a general approximate controllability
result for the bilinear Schroedinger equation, with wavefunction varying in the unit sphere of an
infinite-dimensional Hilbert space and with several control potentials, under the assumption that the
internal Hamiltonian has discrete spectrum. A further general results, extending the above approach,
are obtained in [16].

• In [5] we provide a short introduction to modern issues in the control of infinite dimensional closed
quantum systems, driven by the bilinear Schroedinger equation. The first part is a quick presentation
of some of the numerous recent developments in the fields. This short summary is intended to
demonstrate the variety of tools and approaches used by various teams in the last decade. In a second
part, we present four examples of bilinear closed quantum systems. These examples were extensively
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studied and may be used as a convenient and efficient test bench for new conjectures. Finally, we list
some open questions, both of theoretical and practical interest.

• In [6] we study the so-called spin-boson system, namely a spin-1/2 particle in interaction with a
distinguished mode of a quantized bosonic field. We control the system via an external field acting
on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using
perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove
approximate controllability of the system, for almost every value of the interaction parameter.

• In [9] and [25] we investigate the controllability of a quantum electron trapped in a two-dimensional
device. The problem is modeled by the Schroedinger equation in a bounded domain coupled to the
Poisson equation for the electrical potential. The controller acts on the system through the boundary
condition on the potential, on a part of the boundary modeling the gate. We prove that, generically
with respect to the shape and boundary conditions on the gate, the device is controllable. In [25]
We also consider control properties of a more realistic nonlinear version of the device, taking into
account the self-consistent electrostatic Poisson potential.

• In [18] we study the controllability of a closed control-affine quantum system driven by two or
more external fields. We provide a sufficient condition for controllability in terms of existence of
conical intersections between eigenvalues of the Hamiltonian in dependence of the controls seen as
parameters. Such spectral condition is structurally stable in the case of three controls or in the case of
two controls when the Hamiltonian is real. The spectral condition appears naturally in the adiabatic
control framework and yields approximate controllability in the infinite-dimensional case. In the
finite-dimensional case it implies that the system is Lie-bracket generating when lifted to the group
of unitary transformations, and in particular that it is exactly controllable. Hence, Lie algebraic
conditions are deduced from purely spectral properties. Another contribution of [18] is the proof
that approximate and exact controllability are equivalent properties for general finite-dimensional
quantum systems.

6.3. New results: neurophysiology
• In recent papers models of the human locomotion by means of an optimal control problem have

been proposed. In this paradigm, the trajectories are assumed to be solutions of an optimal control
problem whose cost has to be determined. The purpose of [3] is to analyze the class of optimal control
problems defined in this way. We prove strong convergence result for their solutions on the one hand
for perturbations of the initial and final points (stability), and on the other hand for perturbations of
the cost (robustness).

• [8] analyses a class of optimal control problems on geometric paths of the euclidean space, that
is, curves parametrized by arc length. In the first part we deal with existence and robustness issues
for such problems and we define the associated inverse optimal control problem. In the second part
we discuss the inverse optimal control problem in the special case of planar trajectories and under
additional assumptions. More precisely we define a criterion to restrict the study to a convenient
class of costs based on the analysis of experimentally recorded trajectories. This method applies in
particular to the case of human locomotion trajectories.

• The article [17] presents an algorithm implementing the theory of neurogeometry of vision, de-
scribed by Jean Petitot in his book. We propose a new ingredient, namely working on the group
of translations and discrete rotations SE(2, N). We focus on the theoretical and numerical aspects
of integration of an hypoelliptic diffusion equation on this group. Our main tool is the generalized
Fourier transform. We provide a complete numerical algorithm, fully parallellizable.

6.4. New results: switched systems
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• In [2] we study the control system ẋ = Ax+ α(t)bu where the pair (A, b) is controllable, x ∈ R2,
u ∈ R is a scalar control and the unknown signal α : R+ → [0, 1] is (T, µ)-persistently exciting
(PE), i.e., there exists T ≥ µ > 0 such that, for all t ∈ R+,

∫ t+T
t

α(s)ds ≥ µ. We are interested in
the stabilization problem of this system by a linear state feedback u = −Kx. In [2], we positively
answer a question asked in [52] and prove the following: Assume that the class of (T, µ)-PE signals
is restricted to those which areM -Lipschitzian, whereM > 0 is a positive constant. Then, given any
C > 0, there exists a linear state feedback u = −Kx where K only depends on (A, b) and T, µ,M
so that, for everyM -Lipschitzian (T, µ)-PE signal, the rate of exponential decay of the time-varying
system ẋ = (A− α(t)bK)x is greater than C.

In [20] we consider a family of linear control systems ẋ = Ax+ αBu where α belongs to a given
class of persistently exciting signals. We seek maximal α-uniform stabilisation and destabilisation by
means of linear feedbacks u = Kx. We extend previous results obtained for bidimensional single-
input linear control systems to the general case as follows: if the pair (A,B) verifies a certain Lie
bracket generating condition, then the maximal rate of convergence of (A,B) is equal to the maximal
rate of divergence of (−A,−B). We also provide more precise results in the general single-input
case, where the above result is obtained under the sole assumption of controllability of the pair
(A,B).

The paper [24] considers the stabilization to the origin of a persistently excited linear system
by means of a linear state feedback, where we suppose that the feedback law is not applied
instantaneously, but after a certain positive delay (not necessarily constant). The main result is that,
under certain spectral hypotheses on the linear system, stabilization by means of a linear delayed
feedback is indeed possible, generalizing a previous result already known for non-delayed feedback
laws.

Several problems and results related with persistent excitation and stabilization are discussed in the
survey [11]. These problems and results deal with both finite- and infinite-dimensional systems.

• In [7] we consider several time-discretization algorithms for singularly perturbed switched systems.
The algorithms correspond to different sampling times and the discretization procedure respects
the splitting of each mode in fast and slow dynamics. We study whether such algorithms preserve
the asymptotic or quadratic stability of the original continuous-time singularly perturbed switched
system.

• In [10] we consider affine switched systems as perturbations of linear ones, the equilibria playing the
role of perturbation parameters. We study the stability properties of an affine switched system under
arbitrary switching, assuming that the corresponding linear system is uniformly exponentially stable.
It turns out that the affine system admits a minimal invariant set Ω, whose properties we investigate.
In the two-dimensional bi-switched case when both subsystems have non-real eigenvalues we are
able to characterize Ω completely and to prove that all trajectories of the system converge to Ω. We
also explore the behavior of minimal-time trajectories in Ω by constructing optimal syntheses.

• In [21] we give a collection of converse Lyapunov–Krasovskii theorems for uncertain retarded differ-
ential equations. We show that the existence of a weakly degenerate Lyapunov–Krasovskii functional
is a necessary and sufficient condition for the global exponential stability of the linear retarded func-
tional differential equations. This is carried out using the switched system transformation approach.

7. Partnerships and Cooperations

7.1. Regional Initiatives
• Digitéo project CONGEO. CONGEO (2009–2013) is financed by Digitéo in the framework of the

DIM Logiciels et systèmes complexes. It focuses on the neurophysiology applications. U. Boscain,
Y. Chitour (leader), F. Jean and P. Mason are part of the project.
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• Digitéo project 2012-061D SSyCoDyC. SSyCoDyC (2013–2014) is financed by Digitéo in the
framework of the DIM Hybrid Systems and Sensing Systems. It focuses on the application of
techniques of hybrid systems to the analysis of retarded equations with time-varying delays.
SSyCoDyC finances the post-doc fellowship of Ihab Haidar and is coordinated by Paolo Mason
and Mario Sigalotti.

7.2. National Initiatives
• ANR project GCM. The project ANR GCM (programme blanc, 2009–13) involves the great

majority of GECO’s members (permanent and external). It focuses on various theoretical aspects
of geometric control and on quantum control. It is coordinated by J.-P. Gauthier.

7.3. European Initiatives
7.3.1. FP7 Projects

Program: ERC Starting Grant

Project acronym: GeCoMethods

Project title: Geometric Control Methods for the Heat and Schroedinger Equations

Duration: 1/5/2010 - 1/5/2015

Coordinator: Ugo Boscain

Abstract: The aim of this project is to study certain PDEs for which geometric control techniques
open new horizons. More precisely we plan to exploit the relation between the sub-Riemannian
distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study
controllability properties of the Schroedinger equation.

All subjects studied in this project are applications-driven: the problem of controllability of the
Schroedinger equation has direct applications in Laser spectroscopy and in Nuclear Magnetic
Resonance; the problem of nonisotropic diffusion has applications in cognitive neuroscience (in
particular for models of human vision).

Participants. Main collaborator: Mario Sigalotti. Other members of the team: Andrei Agrachev, Ric-
cardo Adami, Thomas Chambrion, Grégoire Charlot, Yacine Chitour, Jean-Paul Gauthier, Frédéric
Jean.

7.4. International Initiatives
7.4.1. Inria International Partners
7.4.1.1. Informal International Partners

SISSA (Scuola Internazionale Superiore di Studi Avanzati), Trieste, Italy.

Sector of Functional Analysis and Applications, Geometric Control group. Coordinator: Andrei
A. Agrachev.

We collaborate with the Geometric Control group at SISSA mainly on subjects related with sub-
Riemannian geometry. Thanks partly to our collaboration, SISSA has established an official research
partnership with École Polytechnique.

7.4.2. Participation In other International Programs
• Laboratoire Euro Maghrébin de Mathématiques et de leurs Interactions (LEM2I)

http://www.lem2i.cnrs.fr/

• GDRE Control of Partial Differential Equations (CONEDP)
http://www.ceremade.dauphine.fr/~glass/GDRE/

http://www.lem2i.cnrs.fr/
http://www.ceremade.dauphine.fr/~glass/GDRE/
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8. Dissemination

8.1. Scientific Animation
8.1.1. Conference organization

• Y. Chitour, P. Mason and M. Sigalotti organized a double session named “Stability of switched
systems: theoretical and computational aspects” for the 52nd IEEE Conference on Decision and
Control, Firenze, Italy, December 10-13, 2013.

• Y. Chitour, P. Mason and M. Sigalotti organized a session named “Control issues for switched
systems” for the 52nd IEEE Conference on Decision and Control, Firenze, Italy, December 10-13,
2013.

8.1.2. Editorial activity
• U. Boscain is Associate Editor of Journal of Dynamical and Control Systems, ESAIM Control,

Optimisation and Calculus of Variations, Mathematical Control and Related Fields. He is also referee
for Journal of Differential equations, AIMS Book series: Applied mathematics, SIAM J. Control
Optim., Automatica, Rendiconti dei Lincei, Matematica ed Applicazioni, Physica A...and for the
conferences ACC, CDC, MTNS...

• M. Sigalotti is Associate Editor of Journal of Dynamical and Control Systems. He is also referee for
IEEE TAC, SIAM J. Control Optim., Automatica, MathSciNet, Journal of Functional Analysis...and
for the conferences CDC, ACC, IFAC...

8.2. Teaching - Supervision - Juries
8.2.1. Supervision

PhD: Dario Prandi, “Geometric control and PDEs", supervisors: Ugo Boscain, Mario Sigalotti,
defended in september 2013.
PhD in progress: Moussa Gaye, “Some problems of geometric analysis in almost-Riemannian
geometry and of stability of switching systems", 1/9/2011, supervisors: Ugo Boscain, Paolo Mason.
PhD in progress: Guiherme Mazanti, “Stabilité et taux de convergence pour les systèmes à excitation
persistante", 1/9/2013, supervisors: Yacine Chitour, Mario Sigalotti.
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