
IN PARTNERSHIP WITH:
CNRS

Université Paris-Sud (Paris 11)

Université des sciences et
technologies de Lille (Lille 1)

Activity Report 2013

Project-Team GRAND-LARGE

Global parallel and distributed computing

IN COLLABORATION WITH: Laboratoire d’informatique fondamentale de Lille (LIFL), Laboratoire de recherche en
informatique (LRI)

RESEARCH CENTER
Saclay - Île-de-France

THEME
Distributed and High Performance
Computing

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Research Program . 2

3.1. Large Scale Distributed Systems (LSDS) 2
3.1.1. Computing on Large Scale Global Computing systems 3
3.1.2. Building a Large Scale Distributed System 4

3.1.2.1. The resource discovery engine 4
3.1.2.2. Fault Tolerant MPI 4

3.2. Volatility and Reliability Processing 5
3.3. Parallel Programming on Peer-to-Peer Platforms (P5) 7

3.3.1. Large Scale Computational Sciences and Engineering 7
3.3.2. Experimentations and Evaluations 7
3.3.3. Languages, Tools and Interface 8

3.4. Methodology for Large Scale Distributed Systems 8
3.4.1. Observation tools 9
3.4.2. Tool for scalability evaluations 9
3.4.3. Real life testbeds: extreme realism 9

3.5. High Performance Scientific Computing 9
3.5.1. Communication avoiding algorithms for numerical linear algebra 10
3.5.2. Preconditioning techniques 10
3.5.3. Fast linear algebra solvers based on randomization 11
3.5.4. Sensitivity analysis of linear algebra problems 11

4. Software and Platforms . 11
4.1. APMC-CA 11
4.2. YML 11
4.3. The Scientific Programming InterNet (SPIN) 12
4.4. V-DS 12
4.5. PVC: Private Virtual Cluster 13
4.6. OpenWP 13
4.7. OpenScop 14
4.8. Clay 15
4.9. Fast linear system solvers in public domain libraries 15
4.10. cTuning: Repository and Tools for Collective Characterization and Optimization of Computing

Systems 15
5. New Results . 16

5.1. Automated Code Generation for Lattice Quantum Chromodynamics 16
5.2. A Fine-grained Approach for Power Consumption Analysis and Prediction 16
5.3. Switcheable scheduling 16
5.4. Solving Navier-Stokes equations on heterogeneous parallel architectures 17
5.5. Optimizing NUMA effects in dense linear algebra software 17

6. Partnerships and Cooperations . 17
6.1. Regional Initiatives 17
6.2. National Initiatives 17
6.3. European Initiatives 18
6.4. International Initiatives 18

6.4.1. Inria International Labs 18
6.4.2. Participation In other International Programs 18

6.5. International Research Visitors 18
7. Dissemination . 19

2 Activity Report INRIA 2013

7.1. Scientific Animation 19
7.2. Teaching - Supervision - Juries 19

7.2.1. Teaching 19
7.2.2. Supervision 19
7.2.3. Committees 19

7.3. Popularization 19
8. Bibliography .20

Project-Team GRAND-LARGE

Keywords: Fault Tolerance, Grid Computing, High Performance Computing, Parallel Solver,
Peer-to-peer

Creation of the Project-Team: 2003 October 02, end of the Project-Team: 2013 December 31.

1. Members
Research Scientists

Franck Cappello [Senior Researcher, until Mar 2013, HdR]
Christine Eisenbeis [Inria, Senior Researcher]
Grigori Fursin [Inria, Researcher]

Faculty Members
Marc Baboulin [Team leader (interim), Univ. Paris XI, Professor, HdR]
Cédric Bastoul [Univ. Paris-Sud 11, until Aug. 2013, then Univ. Strasbourg, Professor, HdR]
Joel Falcou [Univ. Paris XI, Associate Professor]
Frédéric Gruau [Univ. Paris XI, Associate Professor]
Brigitte Rozoy [Univ. Paris XI, Professor, HdR]

Engineer
Taj Muhammad Khan [Inria]

PhD Students
Michael Kruse [Univ. Paris-Sud 11, until Sep 2013, then Inria]
Lénaïc Bagnères [Inria]
Pierre Esterie [Univ. Paris XI, until Sep 2013]
Alessandro Ferreira Leite [cotutelle univ. Paris-Sud 11 and univ. of Brazilia]
Tatiana Martsinkevich [Inria]
Adrien Remy de Zotti [Univ. Paris XI]

Post-Doctoral Fellow
Chen Chen [Inria, from Dec 2013]

Visiting Scientists
Serge Petiton [Univ. Lille I]
Masha Sosonkina [June and December 2013]

Administrative Assistant
Katia Evrat [Inria]

2. Overall Objectives

2.1. Grand-Large General Objectives
Grand-Large was evaluated in september 2012 and was supposed to end in December 2012. Additional
information can be found in the 2012 Grand-Large evaluation report. It was continued in 2013 with purpose
to create a new team involving some of the Grand-Large members.

2 Activity Report INRIA 2013

Grand-Large is a research project investigating the issues raised by High Performance Computing (HPC) on
Large Scale Distributed Systems (LSDS), where users execute HPC applications on a shared infrastructure and
where resources are subject to failure, possibly heterogeneous, geographically distributed and administratively
independent. More specifically, we consider large scale distributed computing mainly, Desktop Grids, Grids,
and large scale parallel computers. Our research focuses on the design, development, proof and experiments
of programming environments, middleware and scientific algorithms and libraries for HPC applications.
Fundamentally, we address the issues related to HPC on LSDS, gathering several methodological tools that
raise themselves scientific issues: theoretical models and exploration tools (simulators, emulators and real size
experimental systems).

Our approach ranges from concepts to experiments, the projects aims at:
1. models and fault-tolerant algorithms, self-stabilizing systems and wireless networks.
2. studying experimentally, and formally, the fundamental mechanisms of LSDS for high performance

computing;
3. designing, implementing, validating and testing real software, libraries, middleware and platforms;
4. defining, evaluating and experimenting approaches for programming applications on these platforms.

Compared to other European and French projects, we gather skills in 1) large scale systems formal design and
validation of algorithms and protocols for distributed systems and 2) programming, evaluation, analysis and
definition of programming languages and environments for parallel architectures and distributed systems.

This project pursues short and long term researches aiming at having scientific and industrial impacts. Research
topics include:

1. the design of middleware for LSDS (XtremWeb and PVC)
2. large scale data movements on LSDS (BitDew)
3. fault tolerant MPI for LSDS, fault tolerant protocol verification (MPICH-V)
4. algorithms, programming and evaluation of scientific applications LSDS;
5. tools and languages for large scale computing on LSDS (OpenWP, YML).
6. Exploration systems and platforms for LSDS (Grid’5000, XtremLab, DSL-Lab, SimBOINC, FAIL,

V-DS)

These researches should have some applications in the domain of Desktop Grids, Grids and large scale parallel
computers.

As a longer term objective, we put special efforts on the design, implementation and use of Exploration Tools
for improving the methodology associated with the research in LSDS. For example we had the responsibility
of the Grid eXplorer project founded by the French ministry of research and we were deeply involved in the
Grid5000 project (as project Director) and in the ALADDIN initiative (project scientific director).

3. Research Program

3.1. Large Scale Distributed Systems (LSDS)
What makes a fundamental difference between recent Global Computing systems (Seti@home), Grid (EGEE,
TeraGrid) and former works on distributed systems is the large scale of these systems. This characteristic
becomes also true for large scale parallel computers gathering tens of thousands of CPU cores. The notion of
Large Scale is linked to a set of features that has to be taken into account in these systems. An example is the
system dynamicity caused by node volatility: in Internet Computing Platforms (also called Desktop Grids),
a non predictable number of nodes may leave the system at any time. Some recent results also report a very
low MTTI (Mean Time To Interrupt) in top level supercomputers gathering 100,000+ CPU cores. Another
example of characteristics is the complete lack of control of nodes connectivity. In Desktop Grid, we cannot
assume that external administrator is able to intervene in the network setting of the nodes, especially their

Project-Team GRAND-LARGE 3

connection to Internet via NAT and Firewalls. This means that we have to deal with the in place infrastructure
in terms of performance, heterogeneity, dynamicity and connectivity. These characteristics, associated with the
requirement of scalability, establish a new research context in distributed systems. The Grand-Large project
aims at investigating theoretically as well as experimentally the fundamental mechanisms of LSDS, especially
for the high performance computing applications.

3.1.1. Computing on Large Scale Global Computing systems
Large scale parallel and distributed systems are mainly used in the context of Internet Computing. As
a consequence, until Sept. 2007, Grand-Large has focused mainly on Desktop Grids. Desktop Grids are
developed for computing (SETI@home, Folding@home, Decrypthon, etc.), file exchanges (Napster, Kazaa,
eDonkey, Gnutella, etc.), networking experiments (PlanetLab, Porivo) and communications such as instant
messaging and phone over IP (Jabber, Skype). In the High Performance Computing domain, LSDS have
emerged while the community was considering clustering and hierarchical designs as good performance-cost
tradeoffs. Nowadays, Internet Computing systems are still very popular (the BOINC platform is used to run
over 40 Internet Computing projects and XtremWeb is used in production in three countries) and still raise
important research issues.

Desktop Grid systems essentially extend the notion of computing beyond the frontier of administration
domains. The very first paper discussing this type of systems [79] presented the Worm programs and several
key ideas that are currently investigated in autonomous computing (self replication, migration, distributed
coordination, etc.). LSDS inherit the principle of aggregating inexpensive, often already in place, resources,
from past research in cycle stealing/resource sharing. Due to its high attractiveness, cycle stealing has been
studied in many research projects like Condor [69] , Glunix [64] and Mosix [45], to cite a few. A first approach
to cross administration domains was proposed by Web Computing projects such as Jet [73], Charlotte [46],
Javeline [57], Bayanihan [77], SuperWeb [42], ParaWeb [52] and PopCorn [54]. These projects have emerged
with Java, taking benefit of the virtual machine properties: high portability across heterogeneous hardware
and OS, large diffusion of virtual machine in Web browsers and a strong security model associated with
bytecode execution. Performance and functionality limitations are some of the fundamental motivations of
the second generation of Global Computing systems like BOINC [44] and XtremWeb [60]. The second
generation of Global Computing systems appeared in the form of generic middleware which allow scientists
and programmers to design and set up their own distributed computing project. As a result, we have seen
the emergence of large communities of volunteers and projects. Currently, Global Computing systems are
among the largest distributed systems in the world. In the mean time, several studies succeeded to understand
and enhance the performance of these systems, by characterizing the system resources in term of volatility
and heterogeneity and by studying new scheduling heuristics to support new classes of applications: data-
intensive, long running application with checkpoint, workflow, soft-real time etc... However, despite these
recent progresses, one can note that Global Computing systems are not yet part of high performance
solution, commonly used by scientists. Recent researches to fulfill the requirements of Desktop Grids for
high demanding users aim at redesigning Desktop Grid middleware by essentially turning a set of volatile
nodes into a virtual cluster and allowing the deployment of regular HPC utilities (batch schedulers, parallel
communication libraries, checkpoint services, etc...) on top of this virtual cluster. The new generation would
permit a better integration in the environment of the scientists such as computational Grids, and consequently,
would broaden the usage of Desktop Grid.

The high performance potential of LSDS platforms has also raised a significant interest in the industry.
Performance demanding users are also interested by these platforms, considering their cost-performance ratio
which is even lower than the one of clusters. Thus, several Desktop Grid platforms are daily used in production
in large companies in the domains of pharmacology, petroleum, aerospace, etc.

Desktop Grids share with Grid a common objective: to extend the size and accessibility of a computing
infrastructure beyond the limit of a single administration domain. In [61], the authors present the similarities
and differences between Grid and Global Computing systems. Two important distinguishing parameters are
the user community (professional or not) and the resource ownership (who own the resources and who is
using them). From the system architecture perspective, we consider two main differences: the system scale

4 Activity Report INRIA 2013

and the lack of control of the participating resources. These two aspects have many consequences, at least on
the architecture of system components, the deployment methods, programming models, security (trust) and
more generally on the theoretical properties achievable by the system.

Beside Desktop Grids and Grids, large scale parallel computers with tens of thousands (and even hundreds of
thousands) of CPU cores are emerging with scalability issues similar to the one of Internet Computing systems:
fault tolerance at large scale, large scale data movements, tools and languages. Grand-Large is gradually
considering the application of selected research results, in the domain of large scale parallel computers, in
particular for the fault tolerance and language topics.

3.1.2. Building a Large Scale Distributed System
This set of studies considers the XtremWeb project as the basis for research, development and experimentation.
This LSDS middleware is already operational. This set gathers 4 studies aiming at improving the mechanisms
and enlarging the functionalities of LSDS dedicated to computing. The first study considers the architecture of
the resource discovery engine which, in principle, is close to an indexing system. The second study concerns
the storage and movements of data between the participants of a LSDS. In the third study, we address the
issue of scheduling in LSDS in the context of multiple users and applications. Finally the last study seeks to
improve the performance and reduce the resource cost of the MPICH-V fault tolerant MPI for desktop grids.

3.1.2.1. The resource discovery engine

A multi-users/multi-applications LSDS for computing would be in principle very close to a P2P file sharing
system such as Napster [78], Gnutella [78] and Kazaa [68], except that the shared resource is the CPUs instead
of files. The scale and lack of control are common features of the two kinds of systems. Thus, it is likely that
solutions sharing fundamental mechanisms will be adopted, such as lower level communication protocols,
resource publishing, resource discovery and distributed coordination. As an example, recent P2P projects have
proposed distributed indexing systems like CAN [75], CHORD [80], PASTRY [76] and TAPESTRY [84] that
could be used for resource discovery in a LSDS dedicated to computing.

The resource discovery engine is composed of a publishing system and a discovery engine, which allow a
client of the system to discover the participating nodes offering some desired services. Currently, there is as
much resource discovery architectures as LSDS and P2P systems. The architecture of a resource discovery
engine is derived from some expected features such as speed of research, speed of reconfiguration, volatility
tolerance, anonymity, limited use of the network, matching between the topologies of the underlying network
and the virtual overlay network.

This study focuses on the first objective: to build a highly reliable and stable overlay network supporting
the higher level services. The overlay network must be robust enough to survive unexpected behaviors (like
malicious behaviors) or failures of the underlying network. Unfortunately it is well known that under specific
assumptions, a system cannot solve even simples tasks with malicious participants. So, we focus the study on
designing overlay algorithms for transient failures. A transient failure accepts any kind of behavior from the
system, for a limited time. When failures stop, the system will eventually provide its normal service again.

A traditional way to cope with transient failures are self-stabilizing systems [59]. Existing self-stabilizing
algorithms use an underlying network that is not compatible with LSDS. They assume that processors
know their list of neighbors, which does not fit the P2P requirements. Our work proposes a new model for
designing self-stabilizing algorithms without making this assumption, then we design, prove and evaluate
overlay networks self-stabilizing algorithms in this model.

3.1.2.2. Fault Tolerant MPI

MPICH-V is a research effort with theoretical studies, experimental evaluations and pragmatic implementa-
tions aiming to provide a MPI implementation based on MPICH [71], featuring multiple fault tolerant proto-
cols.

Project-Team GRAND-LARGE 5

There is a long history of research in fault tolerance for distributed systems. We can distinguish the auto-
matic/transparent approach from the manual/user controlled approach. The first approach relies either on co-
ordinated checkpointing (global snapshot) or uncoordinated checkpointing associated with message logging.
A well known algorithm for the first approach has been proposed by Chandy and Lamport [56]. This algorithm
requires restarting all processes even if only one process crashes. So it is believed not to scale well. Several
strategies have been proposed for message logging: optimistic [82], pessimistic [43], causal [83]. Several op-
timizations have been studied for the three strategies. The general context of our study is high performance
computing on large platforms. One of the most used programming environments for such platforms is MPI.

Within the MPICH-V project, we have developed and published several original fault tolerant protocols
for MPI: MPICH-V1 [49], MPICH-V2 [50], MPICH-Vcausal, MPICH-Vcl [51], MPICH-Pcl. The two first
protocols rely on uncoordinated checkpointing associated with either remote pessimistic message logging or
sender based pessimistic message logging. We have demonstrated that MPICH-V2 outperforms MPICH-V1.
MPICH-Vcl implements a coordinated checkpoint strategy (Chandy-Lamport) removing the need of message
logging. MPICH-V2 and Vcl are concurrent protocols for large clusters. We have compared them considering
a new parameter for evaluating the merits of fault tolerant protocols: the impact of the fault frequency on
the performance. We have demonstrated that the stress of the checkpoint server is the fundamental source of
performance differences between the two techniques. MPICH-Vcausal implements a causal message logging
protocols, removing the need for waiting acknowledgement in contrary to MPICH-V2. MPICH-Pcl is a
blocking implementation of the Vcl protocol. Under the considered experimental conditions, message logging
becomes more relevant than coordinated checkpoint when the fault frequency reaches 1 fault every 4 hours,
for a cluster of 100 nodes sharing a single checkpoint server, considering a data set of 1 GB on each node and
a 100 Mb/s network.

Multiple important events arose from this research topic. A new open source implementation of the MPI-2
standard was born during the evolution of the MPICH-V project, namely OpenMPI. OpenMPI is the result of
the alliance of many MPI projects in the USA, and we are working to port our fault tolerance algorithms both
into OpenMPI and MPICH.

Grids becoming more popular and accessible than ever, parallel applications developers now consider them as
possible targets for computing demanding applications. MPI being the de-facto standard for the programming
of parallel applications, many projects of MPI for the Grid appeared these last years. We contribute to this new
way of using MPI through a European Project in which we intend to grid-enable OpenMPI and provide new
fault-tolerance approaches fitted for the grid.

When introducing Fault-Tolerance in MPI libraries, one of the most neglected component is the runtime envi-
ronment. Indeed, the traditional approach consists in restarting the whole application and runtime environment
in case of failure. A more efficient approach could be to implement a fault-tolerant runtime environment, ca-
pable of coping with failures at its level, thus avoiding the restart of this part of the application. The benefits
would be a quicker restart time, and a better control of the application. However, in order to build a fault-
tolerant runtime environment for MPI, new topologies, more connected, and more stable, must be integrated
in the runtime environment.

For traditional parallel machines of large scale (like large scale clusters), we also continue our investigation of
the various fault tolerance protocols, by designing, implementing and evaluating new protocols in the MPICH-
V project.

3.2. Volatility and Reliability Processing
In a global computing application, users voluntarily lend the machines, during the period they don’t use them.
When they want to reuse the machines, it is essential to give them back immediately. We assume that there is
no time for saving the state of the computation (for example because the user is shooting down is machine).
Because the computer may not be available again, it is necessary to organize checkpoints. When the owner
takes control of his machine, one must be able to continue the computation on another computer from a
checkpoint as near as possible from the interrupted state.

6 Activity Report INRIA 2013

The problems raised by this way of managing computations are numerous and difficult. They can be put into
two categories: synchronization and repartition problems.

• Synchronization problems (example). Assume that the machine that is supposed to continue the
computation is fixed and has a recent checkpoint. It would be easy to consider that this local
checkpoint is a component of a global checkpoint and to simply rerun the computation. But on
one hand the scalability and on the other hand the frequency of disconnections make the use of
a global checkpoint totally unrealistic. Then the checkpoints have to be local and the problem of
synchronizing the recovery machine with the application is raised.

• Repartition problems (example). As it is also unrealistic to wait for the computer to be available
again before rerunning the interrupted application, one has to design a virtual machine organization,
where a single virtual machine is implemented as several real ones. With too few real machines for
a virtual one, one can produce starvation; with too many, the efficiency is not optimal. The good
solution is certainly in a dynamic organization.

These types of problems are not new ([62]). They have been studied deeply and many algorithmic solutions
and implementations are available. What is new here and makes these old solutions not usable is scalability.
Any solution involving centralization is impossible to use in practice. Previous works validated on former
networks can not be reused.

3.2.1. Reliability Processing
We voluntarily presented in a separate section the volatility problem because of its specificity both with
respect to type of failures and to frequency of failures. But in a general manner, as any distributed system,
a global computing system has to resist to a large set of failures, from crash failures to Byzantine failures,
that are related to incorrect software or even malicious actions (unfortunately, this hypothesis has to be
considered as shown by DECRYPTHON project or the use of erroneous clients in SETI@HOME project),
with in between, transient failures such as loss of message duplication. On the other hand, failures related
accidental or malicious memory corruptions have to be considered because they are directly related to the very
nature of the Internet. Traditionally, two approaches (masking and non-masking) have been used to deal with
reliability problems. A masking solution hides the failures to the user, while a non-masking one may let the
user notice that failures occur. Here again, there exists a large literature on the subject (cf. [70], [81], [59] for
surveys). Masking techniques, generally based on consensus, are not scalable because they systematically use
generalized broadcasting. The self-stabilizing approach (a non-masking solution) is well adapted (specifically
its time adaptive version, cf. [67], [66], [47], [48], [63]) for three main reasons:

1. Low overhead when stabilized. Once the system is stabilized, the overhead for maintaining correc-
tion is low because it only involves communications between neighbours.

2. Good adaptivity to the reliability level. Except when considering a system that is continuously under
attacks, self-stabilization provides very satisfying solutions. The fact that during the stabilization
phase, the correctness of the system is not necessarily satisfied is not a problem for many kinds of
applications.

3. Lack of global administration of the system. A peer to peer system does not admit a centralized
administrator that would be recognized by all components. A human intervention is thus not feasible
and the system has to recover by itself from the failures of one or several components, that is
precisely the feature of self-stabilizing systems.

We propose:
1. To study the reliability problems arising from a global computing system, and to design self-

stabilizing solutions, with a special care for the overhead.
2. For problem that can be solved despite continuously unreliable environment (such as information

retrieval in a network), to propose solutions that minimize the overhead in space and time resulting
from the failures when they involve few components of the system.

3. For most critical modules, to study the possibility to use consensus based methods.
4. To build an adequate model for dealing with the trade-off between reliability and cost.

Project-Team GRAND-LARGE 7

3.3. Parallel Programming on Peer-to-Peer Platforms (P5)
Several scientific applications, traditionally computed on classical parallel supercomputers, may now be
adapted for geographically distributed heterogeneous resources. Large scale P2P systems are alternative
computing facilities to solve grand challenge applications.

Peer-to-Peer computing paradigm for large scale scientific and engineering applications is emerging as a
new potential solution for end-user scientists and engineers. We have to experiment and to evaluate such
programming to be able to propose the larger possible virtualization of the underlying complexity for the
end-user.

3.3.1. Large Scale Computational Sciences and Engineering
Parallel and distributed scientific application developments and resource managements in these environments
are a new and complex undertaking. In scientific computation, the validity of calculations, the numerical
stability, the choices of methods and software are depending of properties of each peer and its software
and hardware environments; which are known only at run time and are non-deterministic. The research to
obtain acceptable frameworks, methodologies, languages and tools to allow end-users to solve accurately their
applications in this context is capital for the future of this programming paradigm.

GRID scientific and engineering computing exists already since more than a decade. Since the last few years,
the scale of the problem sizes and the global complexity of the applications increase rapidly. The scientific
simulation approach is now general in many scientific domains, in addition to theoretical and experimental
aspects, often link to more classic methods. Several applications would be computed on world-spread networks
of heterogeneous computers using some web-based Application Server Provider (ASP) dedicated to targeted
scientific domains. New very strategic domains, such as Nanotechnologies, Climatology or Life Sciences, are
in the forefront of these applications. The development in this very important domain and the leadership in
many scientific domains will depend in a close future to the ability to experiment very large scale simulation
on adequate systems [65]. The P2P scientific programming is a potential solution, which is based on existing
computers and networks. The present scientific applications on such systems are only concerning problems
which are mainly data independents: i.e. each peer does not communicate with the others.

P2P programming has to develop parallel programming paradigms which allow more complex dependencies
between computing resources. This challenge is an important goal to be able to solve large scientific
applications. The results would also be extrapolated toward future petascale heterogeneous hierarchically
designed supercomputers.

3.3.2. Experimentations and Evaluations
We have followed two tracks. First, we did experiments on large P2P platforms in order to obtain a realistic
evaluation of the performance we can expect. Second, we have set some hypothesis on peers, networks, and
scheduling in order to have theoretical evaluations of the potential performance. Then, we have chosen a
classical linear algebra method well-adapted to large granularity parallelism and asynchronous scheduling:
the block Gauss-Jordan method to invert dense very large matrices. We have also chosen the calculation
of one matrix polynomial, which generates computation schemes similar to many linear algebra iterative
methods, well-adapted for very large sparse matrices. Thus, we were able to theoretically evaluate the potential
throughput with respect to several parameters such as the matrix size and the multicast network speed.

Since the beginning of the evaluations, we experimented with those parallel methods on a few dozen peer
XtremWeb P2P Platforms. We continue these experiments on larger platforms in order to compare these
results to the theoretical ones. Then, we would be able to extrapolate and obtain potential performance for
some scientific applications.

Recently, we also experimented several Krylov based method, such as the Lanczos and GMRES methods on
several grids, such as a French-Japanese grid using hundred of PC in France and 4 clusters at the University of
Tsukuba. We also experimented on GRID5000 the same methods. We currently use several middleware such
as Xtremweb, OmniRPC and Condor. We also begin some experimentations on the Tsubame supercomputer

8 Activity Report INRIA 2013

in collaboration with the TITech (Tokyo Institute of Technologies) in order to compare our grid approaches
and the High performance one on an hybrid supercomputer.

Experimentations and evaluation for several linear algebra methods for large matrices on P2P systems will
always be developed all along the Grand Large project, to be able to confront the different results to the reality
of the existing platforms.

As a challenge, we would like, in several months, to efficiently invert a dense matrix of size one million using
a several thousand peer platform. We are already inverting very large dense matrices on Grid5000 but more
efficient scheduler and a larger number of processors are required to this challenge.

Beyond the experimentations and the evaluations, we propose the basis of a methodology to efficiently
program such platforms, which allow us to define languages, tools and interface for the end-user.

3.3.3. Languages, Tools and Interface
The underlying complexity of the Large Scale P2P programming has to be mainly virtualized for the end-
user. We have to propose an interface between the end-user and the middleware which may extract the end-
user expertise or propose an on-the-shelf general solution. Targeted applications concern very large scientific
problems which have to be developed using component technologies and up-to-dated software technologies.

We introduced the YML framework and language which allows to describe dependencies between compo-
nents. We introduced different classes of components, depending of the level of abstraction, which are asso-
ciated with divers parts of the framework. A component catalogue is managed by an administrator and/or the
end-users. Another catalogue is managed with respect to the experimental platform and the middleware crite-
ria. A front-end part is completely independent of any middleware or testbed, and a back-end part is developed
for each targeted middleware/platform couple. A YML scheduler is adapted for each of the targeted systems.

The YML framework and language propose a solution to develop scientific applications to P2P and GRID
platform. An end-user can directly develop programs using this framework. Nevertheless, many end-users
would prefer avoid programming at the component and dependency graph level. Then, an interface has to be
proposed soon, using the YML framework. This interface may be dedicated to a special scientific domain
to be able to focus on the end-user vocabulary and P2P programming knowledge. We plan to develop such
version based on the YML framework and language. The first targeted scientific domain will be very large
linear algebra for dense or sparse matrices.

3.4. Methodology for Large Scale Distributed Systems
Research in the context of LSDS involves understanding large scale phenomena from the theoretical point of
view up to the experimental one under real life conditions.

One key aspects of the impact of large scale on LSDS is the emergence of phenomena which are not co-
ordinated, intended or expected. These phenomena are the results of the combination of static and dynamic
features of each component of LSDS: nodes (hardware, OS, workload, volatility), network (topology, conges-
tion, fault), applications (algorithm, parameters, errors), users (behavior, number, friendly/aggressive).

Validating current and next generation of distributed systems targeting large-scale infrastructures is a complex
task. Several methodologies are possible. However, experimental evaluations on real testbeds are unavoidable
in the life-cycle of a distributed middleware prototype. In particular, performing such real experiments
in a rigorous way requires to benchmark developed prototypes at larger and larger scales. Fulfilling this
requirement is mandatory in order to fully observe and understand the behaviors of distributed systems. Such
evaluations are indeed mandatory to validate (or not!) proposed models of these distributed systems, as well
as to elaborate new models. Therefore, to enable an experimentally-driven approach for the design of next
generation of large scale distributed systems, developing appropriate evaluation tools is an open challenge.

Fundamental aspects of LSDS as well as the development of middleware platforms are already existing in
Grand-Large. Grand-Large aims at gathering several complementary techniques to study the impact of large
scale in LSDS: observation tools, simulation, emulation and experimentation on real platforms.

Project-Team GRAND-LARGE 9

3.4.1. Observation tools
Observation tools are mandatory to understand and extract the main influencing characteristics of a distributed
system, especially at large scale. Observation tools produce data helping the design of many key mechanisms
in a distributed system: fault tolerance, scheduling, etc. We pursue the objective of developing and deploying a
large scale observation tool (XtremLab) capturing the behavior of thousands of nodes participating to popular
Desktop Grid projects. The collected data will be stored, analyzed and used as reference in a simulator
(SIMBOINC).

3.4.2. Tool for scalability evaluations
Several Grid and P2P systems simulators have been developed by other teams: SimGrid [55], GridSim [53],
Briks [41]. All these simulators considers relatively small scale Grids. They have not been designed to scale
and simulate 10 K to 100 K nodes. Other simulators have been designed for large multi-agents systems such
as Swarm [72] but many of them considers synchronous systems where the system evolution is guided by
phases. In the P2P field, ad hoc many simulators have been developed, mainly for routing in DHT. Emulation is
another tool for experimenting systems and networks with a higher degree of realism. Compared to simulation,
emulation can be used to study systems or networks 1 or 2 orders of magnitude smaller in terms of number of
components. However, emulation runs the actual OS/middleware/applications on actual platform. Compared
to real testbed, emulation considers conducting the experiments on a fully controlled platform where all static
and dynamic parameters can be controlled and managed precisely. Another advantage of emulation over real
testbed is the capacity to reproduce experimental conditions. Several implementations/configurations of the
system components can be compared fairly by evaluating them under the similar static and dynamic conditions.
Grand-Large is leading one of the largest Emulator project in Europe called Grid explorer (French funding).
This project has built and used a 1K CPUs cluster as hardware platform and gathers 24 experiments of 80
researchers belonging to 13 different laboratories. Experiments concerned developing the emulator itself and
use of the emulator to explore LSDS issues. In term of emulation tool, the main outcome of Grid explorer
is the V-DS system, using virtualization techniques to fold a virtual distributed system 50 times larger than
the actual execution platform. V-DS aims at discovering, understanding and managing implicit uncoordinated
large scale phenomena. Grid Explorer is still in use within the Grid’5000 platform and serves the community
of 400 users 7 days a week and 24h a day.

3.4.3. Real life testbeds: extreme realism
The study of actual performance and connectivity mechanisms of Desktop Grids needs some particular testbed
where actual middleware and applications can be run under real scale and real life conditions. Grand-Large is
developing DSL-Lab, an experimental platform distributed on 50 sites (actual home of the participants) and
using the actual DSL network as the connection between the nodes. Running experiments over DSL-Lab put
the piece of software to study under extremely realistic conditions in terms of connectivity (NAT, Firewalls),
performance (node and network), performance symmetry (DSL Network is not symmetric), etc.

To investigate real distributed system at large scale (Grids, Desktop Grids, P2P systems), under real life con-
ditions, only a real platform (featuring several thousands of nodes), running the actual distributed system
can provide enough details to clearly understand the performance and technical limits of a piece of software.
Grand-Large members are strongly involved (as Project Director) in the French Grid5000 project which intents
to deploy an experimental Grid testbed for computer scientists. This testbed features about 4000 CPUs gath-
ering the resources of about 9 clusters geographically distributed over France. The clusters will be connected
by a high speed network (Renater 10G). Grand-Large is the leading team in Grid5000, chairing the steering
committee. As the Principal Investigator of the project, Grand-Large has taken some strong design decisions
that nowadays give a real added value of Grid5000 compared to all other existing Grids: reconfiguration and
isolation. From these two features, Grid5000 provides the capability to reproduce experimental conditions and
thus experimental results, which is the cornerstone of any scientific instrument.

3.5. High Performance Scientific Computing

10 Activity Report INRIA 2013

This research is in the area of high performance scientific computing, and in particular in parallel matrix
algorithms. This is a subject of crucial importance for numerical simulations as well as other scientific and
industrial applications, in which linear algebra problems arise frequently. The modern numerical simulations
coupled with ever growing and more powerful computational platforms have been a major driving force behind
a progress in numerous areas as different as fundamental science, technical/technological applications, life
sciences.

The main focus of this research is on the design of efficient, portable linear algebra algorithms, such
that solving a large set of linear equations or a least squares problem. The characteristics of the matrices
commonly encountered in this situations can vary significantly, as are the computational platforms used for
the calculations. Nonetheless two common trends are easily discernible. First, the problems to solve are larger
and larger, since the numerical simulations are using higher resolution. Second, the architecture of today’s
supercomputers is getting very complex, and so the developed algorithms need to be adapted to these new
achitectures.

3.5.1. Communication avoiding algorithms for numerical linear algebra
Since 2007, we work on a novel approach to dense and sparse linear algebra algorithms, which aims at
minimizing the communication, in terms of both its volume and a number of transferred messages. This
research is motivated by technological trends showing an increasing communication cost. Its main goal is to
reformulate and redesign linear algebra algorithms so that they are optimal in an amount of the communication
they perform, while retaining the numerical stability. The work here involves both theoretical investigation
and practical coding on diverse computational platforms. We refer to the new algorithms as communication
avoiding algorithms [58] [10]. In our team we focus on communication avoiding algorithms for dense direct
methods as well as sparse iterative methods.

The theoretical investigation focuses on identifying lower bounds on communication for different operations
in linear algebra, where communication refers to data movement between processors in the parallel case, and
to data movement between different levels of memory hierarchy in the sequential case. The lower bounds are
used to study the existing algorithms, understand their communication bottlenecks, and design new algorithms
that attain them.

This research focuses on the design of linear algebra algorithms that minimize the cost of communication.
Communication costs include both latency and bandwidth, whether between processors on a parallel computer
or between memory hierarchy levels on a sequential machine. The stability of the new algorithms represents
an important part of this work.

3.5.2. Preconditioning techniques
Solving a sparse linear system of equations is the most time consuming operation at the heart of many scientific
applications, and therefore it has received a lot of attention over the years. While direct methods are robust,
they are often prohibitive because of their time and memory requirements. Iterative methods are widely used
because of their limited memory requirements, but they need an efficient preconditioner to accelerate their
convergence. In this direction of research we focus on preconditioning techniques for solving large sparse
systems.

One of the main challenges that we address is the scalability of existing methods as incomplete LU factoriza-
tions or Schwarz-based approaches, for which the number of iterations increases significantly with the problem
size or with the number of processors. This is often due to the presence of several low frequency modes that
hinder the convergence of the iterative method. To address this problem, we study direction preserving solvers
in the context of multilevel filtering LU decompositions. A judicious choice for the directions to be preserved
through filtering allows us to alleviate the effect of low frequency modes on the convergence. While precon-
ditioners and their scalability are studied by many other groups, our approach of direction preserving and
filtering is studied in only very few other groups in the world (as Lawrence Livermore National Laboratory,
Frankfurt University, Pennsylvania State University).

Project-Team GRAND-LARGE 11

3.5.3. Fast linear algebra solvers based on randomization
Linear algebra calculations can be enhanced by statistical techniques in the case of a square linear system
Ax = b where A is a general or symmetric indefinite matrix [3]& [1]. Thanks to a random transformation of A,
it is possible to avoid pivoting and then to reduce the amount of communication. Numerical experiments show
that this randomization can be performed at a very affordable computational price while providing us with
a satisfying accuracy when compared to partial pivoting. This random transformation called Partial Random
Butterfly Transformation (PRBT) is optimized in terms of data storage and flops count. A PRBT solver for
LU factorization (and for LDLT factorization on multicore) has been developed. This solver takes advantage
of the latest generation of hybrid multicore/GPU machines and gives better Gflop/s performance than existing
factorization routines [19].

3.5.4. Sensitivity analysis of linear algebra problems
We derive closed formulas for the condition number of a linear function of the total least squares solution [4].
Given an over determined linear systems Ax = b, we show that this condition number can be computed using
the singular values and the right singular vectors of [A, b] and A. We also provide an upper bound that requires
the computation of the largest and the smallest singular value of [A, b] and the smallest singular value of A. In
numerical experiments, we compare these values with condition estimates from the literature.

4. Software and Platforms
4.1. APMC-CA

Participants: Sylvain Peyronnet [correspondant], Joel Falcou, Pierre Esterie, Khaled Hamidouche, Alexandre
Borghi.

The APMC model checker implements the state-of-the-art approximate probabilistic model checking methods.
Last year we develop a version of the tool dedicated to the CELL architecture. Clearly, it was very pedagogic,
but the conclusion is that the CELL is not adapted to sampling based verification methods.

This year we develop, thanks to the BSP++ framework, a version compatible with SPM/multicores machines,
clusters and hybrid architectures. This version outperforms all previous ones, thus showing the interest of both
these new architectures and of the BSP++ framework.

4.2. YML
Participants: Serge Petiton [correspondant], Nahid Emad, Maxime Hugues.

Scientific end-users face difficulties to program P2P large scale applications using low level languages and
middleware. We provide a high level language and a set of tools designed to develop and execute large coarse
grain applications on peer-to-peer systems. Thus, we introduced, developed and experimented the YML for
parallel programming on P2P architectures. This work was done in collaboration with the PRiSM laboratory
(team of Nahid Emad).

The main contribution of YML is its high level language for scientific end-users to develop parallel programs
for P2P platforms. This language integrates two different aspects. The first aspect is a component description
language. The second aspect allows to link components together. A coordination language called YvetteML
can express graphs of components which represent applications for peer-to-peer systems.

Moreover, we designed a framework to take advantage of the YML language. It is based on two component
catalogues and an YML engine. The first one concerns end-user’s components and the second one is related to
middleware criteria. This separation enhances portability of applications and permits real time optimizations.
Currently we provide support for the XtremWeb Peer-to-Peer middleware and the OmniRPC grid system.
The support for Condor is currently under development and a beta-release will be delivered soon (in this
release, we plan to propagate semantic data from the end-users to the middleware). The next development of
YML concerns the implementation of a multi-backend scheduler. Therefore, YML will be able to schedule at
runtime computing tasks to any global computing platform using any of the targeted middleware.

12 Activity Report INRIA 2013

We experimented YML with basic linear algebra methods on a XtremWeb P2P platform deployed between
France and Japan. Recently, we have implemented complex iterative restarted Krylov methods, such as
Lanczos-Bisection, GMRES and MERAM methods, using YML with the OmniRPC back-end. The experi-
ments are performed either on the Grid5000 testbed of on a Network of Workstations deployed between Lille,
Versailles and Tsukuba in Japan. Demos was proposed on these testbeds from conferences in USA. We recently
finished evaluations of the overhead generated using YML, without smart schedulers and with extrapolations
due to the lack of smart scheduling strategies inside targeted middleware.

In the context of the FP3C project funded by ANR-JST, we have recently extended YML to support a directive
distributed parallel language, XcalableMP http://www.xcalablemp.org/. This extension is based on the support
of the XcalableMP language inside YML components. This allows to develop parallel programs with two
programming paradigm and thus two parallelism levels. This work is a part of the project that targets post-
Petascale supercomputer that would be composed of heterogeneous and massively parallel hardware.

The software is available at http://yml.prism.uvsq.fr/

4.3. The Scientific Programming InterNet (SPIN)
Participant: Serge Petiton [correspondant].

SPIN (Scientific Programming on the InterNet), is a scalable, integrated and interactive set of tools for
scientific computations on distributed and heterogeneous environments. These tools create a collaborative
environment allowing the access to remote resources.

The goal of SPIN is to provide the following advantages: Platform independence, Flexible parameterization,
Incremental capacity growth, Portability and interoperability, and Web integration. The need to develop a
tool such as SPIN was recognized by the GRID community of the researchers in scientific domains, such
as linear algebra. Since the P2P arrives as a new programming paradigm, the end-users need to have such
tools. It becomes a real need for the scientific community to make possible the development of scientific
applications assembling basic components hiding the architecture and the middleware. Another use of SPIN
consists in allowing to build an application from predefined components ("building blocks") existing in the
system or developed by the developer. The SPIN users community can collaborate in order to make more and
more predefined components available to be shared via the Internet in order to develop new more specialized
components or new applications combining existing and new components thanks to the SPIN user interface.

SPIN was launched at ASCI CNRS lab in 1998 and is now developed in collaboration with the University of
Versailles, PRiSM lab. SPIN is currently under adaptation to incorporate YML, cf. above. Nevertheless, we
study another solution based on the Linear Algebra KErnel (LAKE), developed by the Nahid Emad team at
the University of Versailles, which would be an alternative to SPIN as a component oriented integration with
YML.

4.4. V-DS
Participant: Franck Cappello [correspondant].

This project started officially in September 2004, under the name V-Grid. V-DS stands for Virtualization
environment for large-scale Distributed Systems. It is a virtualization software for large scale distributed
system emulation. This software allows folding a distributed systems 100 or 1000 times larger than the
experimental testbed. V-DS virtualizes distributed systems nodes on PC clusters, providing every virtual node
its proper and confined operating system and execution environment. Thus compared to large scale distributed
system simulators or emulators (like MicroGrid), V-DS virtualizes and schedules a full software environment
for every distributed system node. V-DS research concerns emulation realism and performance.

http://www.xcalablemp.org/
http://yml.prism.uvsq.fr/

Project-Team GRAND-LARGE 13

A first work concerns the definition and implementation of metrics and methodologies to compare the merits of
distributed system virtualization tools. Since there is no previous work in this domain, it is important to define
what and how to measure in order to qualify a virtualization system relatively to realism and performance. We
defined a set of metrics and methodologies in order to evaluate and compared virtualization tools for sequential
system. For example a key parameter for the realism is the event timing: in the emulated environment, events
should occur with a time consistent with a real environment. An example of key parameter for the performance
is the linearity. The performance degradation for every virtual machine should evolve linearly with the increase
of the number of virtual machines. We conducted a large set of experiments, comparing several virtualization
tools including Vserver, VMware, User Mode Linux, Xen, etc. The result demonstrates that none of them
provides both enough isolation and performance. As a consequence, we are currently studying approaches to
cope with these limits.

We have made a virtual platform on the GDX cluster with the Vserver virtualization tool. On this platform,
we have launched more than 20K virtual machines (VM) with a folding of 100 (100 VM on each physical
machine). However, some recent experiments have shown that a too high folding factor may cause a too
long execution time because of some problems like swapping. Currently, we are conducting experiments on
another platform based on the virtualization tool named Xen which has been strongly improved since 2 years.
We expect to get better result with Xen than with Vserver. Recently, we have been using the V-DS version
based on Xen to evaluate at large scales three P2P middleware [74].

This software is available at http://v-ds.lri.fr/

4.5. PVC: Private Virtual Cluster
Participant: Franck Cappello [correspondant].

Current complexity of Grid technologies, the lack of security of Peer-to-Peer systems and the rigidity of VPN
technologies make sharing resources belonging to different institutions still technically difficult.

We propose a new approach called "Instant Grid" (IG), which combines various Grid, P2P and VPN
approaches, allowing simple deployment of applications over different administration domains. Three main
requirements should be fulfilled to make Instant Grids realistic: simple networking configuration (Firewall and
NAT), no degradation of resource security, no need to re-implement existing distributed applications.

Private Virtual Cluster, is a low-level middle-ware that meets Instant Grid requirements. PVC turns dynam-
ically a set of resources belonging to different administration domains into a virtual cluster where existing
cluster runtime environments and applications can be run. The major objective of PVC is to establish direct
connections between distributed peers. To connect firewall protected nodes in the current implementation, we
have integrated three techniques: UPnP, TCP/UDP Hole Punching and a novel technique Traversing-TCP.

One of the major application of PVC is the third generation desktop Grid middleware. Unlike BOINC and
XtremWeb (which belong to the second generation of desktop Grid middleware), PVC allows the users to
build their Desktop Grid environment and run their favorite batch scheduler, distributed file system, resource
monitoring and parallel programming library and runtime software. PVC ensures the connectivity layer and
provide a virtual IP network where the user can install and run existing cluster software.

By offering only the connectivity layer, PVC allows to deploy P2P systems with specific applications, like file
sharing, distributed computing, distributed storage and archive, video broadcasting, etc.

4.6. OpenWP
Participant: Franck Cappello [correspondant].

Distributed applications can be programmed on the Grid using workflow languages, object oriented approaches
(Proactive, IBIS, etc), RPC programming environments (Grid-RPC, DIET), component based environments
(generally based on Corba) and parallel programming libraries like MPI.

http://v-ds.lri.fr/

14 Activity Report INRIA 2013

For high performance computing applications, most of the existing codes are programmed in C, Fortran and
Java. These codes have 100,000 to millions of lines. Programmers are not inclined to rewrite then in a "non
standard" programming language, like UPC, CoArray Fortran or Global Array. Thus environments like MPI
and OpenMPI remain popular even if they require hybrid approaches for programming hierarchical computing
infrastructures like cluster of multi-processors equipped with multi-core processors.

Programming applications on the Grid add a novel level in the hierarchy by clustering the cluster of multi-
processors. The programmer will face strong difficulties in adapting or programming a new application for
these runtime infrastructures featuring a deep hierarchy. Directive based parallel and distributed computing
is appealing to reduce the programming difficulty by allowing incremental parallelization and distribution.
The programmer add directives on a sequential or parallel code and may check for every inserted directive its
correction and performance improvement.

We believe that directive based parallel and distributed computing may play a significant role in the next
years for programming High performance parallel computers and Grids. We have started the development of
OpenWP. OpenWP is a directive based programming environment and runtime allowing expressing workflows
to be executed on Grids. OpenWP is compliant with OpenMP and can be used in conjunction with OpenMP
or hybrid parallel programs using MPI + OpenMP.

The OpenWP environment consists in a source to source compiler and a runtime. The OpenWP parser,
interprets the user directives and extracts functional blocks from the code. These blocks are inserted in a
library distributed on all computing nodes. In the original program, the functional blocks are replaced by RPC
calls and calls to synchronization. During the execution, the main program launches non blocking RPC calls
to functions on remote nodes and synchronize the execution of remote functions based on the synchronization
directives inserted by the programmer in the main code. Compared to OpenMP, OpenWP does not consider a
shared memory programming approach. Instead, the source to source compiler insert data movements calls in
the main code. Since the data set can be large in Grid application, the OpenWP runtime organize the storage
of data sets in a distributed way. Moreover, the parameters and results of RPC calls are passed by reference,
using a DHT. Thus, during the execution, parameter and result references are stored in the DHT along with the
current position of the datasets. When a remote function is called, the DHT is consulted to obtain the position
of the parameter data sets in the system. When a remote function terminates its execution, it stores the result
data sets and store a reference to the data set in the DHT.

We are evaluating OpenWP from an industrial application (Amibe), used by the European aerospace company
EADS. Amibe is the mesher module of jCAE 1. Amibe generates a mesh from a CAD geometry in three
steps. It first creates edges between every patch of the CAD (mesh in one dimension), then generates a surface
mesh for every unfolded patch (mesh in two dimensions) and finally adds the third dimension to the mesh by
projecting the 2D mesh into the original CAD surfaces. The first and third operation cannot be distributed.
However the second step can easily be distributed following a master/worker approach, transferring the
mesh1d results to every computing node and launching the distributed execution of the patches.

4.7. OpenScop
Participant: Cédric Bastoul.

OpenScop is an open specification which defines a file format and a set of data structures to represent a
static control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model, an
algebraic representation of programs used for automatic parallelization and optimization (used, e.g., in GNU
GCC, LLVM, IBM XL or Reservoir Labs R-Stream compilers). The goal of OpenScop is to provide a common
interface to various polyhedral compilation tools in order to simplify their interaction.

OpenScop provides a single format for tools that may have different purposes (e.g., as different as code
generation and data dependence analysis). We could observe that most available polyhedral compilation tools
during the last decade were manipulating the same kind of data (polyhedra, affine functions...) and were
actually sharing a part of their input (e.g., iteration domains and context concepts are nearly everywhere). We

1project page: http://jcae.sourceforge.net

http://jcae.sourceforge.net

Project-Team GRAND-LARGE 15

could also observe that those tools may rely on different internal representations, mostly based on one of the
major polyhedral libraries (e.g., Polylib, PPL or isl), and this representation may change over time (e.g., when
switching to a more convenient polyhedral library). OpenScop aims at providing a stable, unified format that
offers a durable guarantee that a tool can use an output or provide an input to another tool without breaking
a compilation chain because of some internal changes in one element of this chain. The other promise of
OpenScop is the ability to assemble or replace the basic blocks of a polyhedral compilation framework at no,
or at least low engineering cost. The OpenScop Library (licensed under the 3-clause BSD license) has been
developped as an example, yet powerful, implementation of the OpenScop specification.

4.8. Clay
Participant: Cédric Bastoul.

Clay is a free software and library devoted to semi-automatic optimization using the polyhedral model. It can
input a high-level program or its polyhedral representation and transform it according to a transformation
script. Classic loop transformations primitives are provided. Clay is able to check for the legality of the
complete sequence of transformation and to suggest corrections to the user if the original semantics is not
preserved (experimental at this document redaction time). Main authors include Joël Poudroux and Cédric
Bastoul.

4.9. Fast linear system solvers in public domain libraries
Participant: Marc Baboulin [correspondant].

Hybrid multicore+GPU architectures are becoming commonly used systems in high performance computing
simulations. In this research, we develop linear algebra solvers where we split the computation over multicore
and graphics processors, and use particular techniques to reduce the amount of pivoting and communication
between the hybrid components. This results in efficient algorithms that take advantage of each computational
unit [16]. Our research in randomized algorithms yields to several contributions to propose public domain
libraries PLASMA and MAGMA in the area of fast linear system solvers for general and symmetric indefinite
systems. These solvers minimize communication by removing the overhead due to pivoting in LU and LDLT
factorization. Different approaches to reduce communication are compared in [2].

See also the web page http://icl.cs.utk.edu/magma/.

4.10. cTuning: Repository and Tools for Collective Characterization and
Optimization of Computing Systems
Participant: Grigori Fursin [correspondant].

Designing, porting and optimizing applications for rapidly evolving computing systems is often complex, ad-
hoc, repetitive, costly and error prone process due to an enormous number of available design and optimization
choices combined with the complex interactions between all components. We attempt to solve this fundamental
problem based on collective participation of users combined with empirical tuning and machine learning.

We developed cTuning framework that allows to continuously collect various knowledge about application
characterization and optimization in the public repository at cTuning.org. With continuously increasing and
systematized knowledge about behavior of computer systems, users should be able to obtain scientifically
motivated advices about anomalies in the behavior of their applications and possible solutions to effectively
balance performance and power consumption or other important characteristics.

Currently, we use cTuning repository to analyze and learn profitable optimizations for various programs,
datasets and architectures using machine learning enabled compiler (MILEPOST GCC). Using collected
knowledge, we can quickly suggest better optimizations for a previously unseen programs based on their
semantic or dynamic features [8].

http://icl.cs.utk.edu/magma/

16 Activity Report INRIA 2013

We believe that such approach will be vital for developing efficient Exascale computing systems. We are
currently developing the new extensible cTuning2 framework for automatic performance and power tuning of
HPC applications.

For more information, see the web page http://cTuning.org.

5. New Results
5.1. Automated Code Generation for Lattice Quantum Chromodynamics

Participants: Denis Barthou, Konstantin Petrov, Olivier Brand-Foissac, Olivier Pène, Gilbert Grosdidier,
Michael Kruse, Romain Dolbeau, Christine Eisenbeis, Claude Tadonki.

This ongoing work is about a Domain Specific Language which aims to simplify Monte-Carlo simulations
and measurements in the domain of Lattice Quantum Chromodynamics. The tool-chain, called Qiral, is used
to produce high-performance OpenMP C code from LaTeX sources. We discuss conceptual issues and details
of implementation and optimization. The comparison of the performance of the generated code to the well-
established simulation software is also made.[33][20][37]

5.2. A Fine-grained Approach for Power Consumption Analysis and Prediction
Participants: Alessandro Ferreira Leite, Claude Tadonki, Christine Eisenbeis, Alba Cristina de Melo.

Power consumption has became a critical concern in modern computing systems for various reasons including
financial savings and environmental protection. With battery powered devices, we need to care about the
available amount of energy since it is limited. For the case of supercomputers, as they imply a large aggregation
of heavy CPU activities, we are exposed to a risk of overheating. As the design of current and future hardware
is becoming more and more complex, energy prediction or estimation is as elusive as that of time performance.
However, having a good prediction of power consumption is still an important request to the computer science
community. Indeed, power consumption might become a common performance and cost metric in the near
future. A good methodology for energy prediction could have a great impact on power-aware programming,
compilation, or runtime monitoring. In this paper, we try to understand from measurements where and how
power is consumed at the level of a computing node. We focus on a set of basic programming instructions,
more precisely those related to CPU and memory. We propose an analytical prediction model based on the
hypothesis that each basic instruction has an average energy cost that can be estimated on a given architecture
through a series of micro-benchmarks. The considered energy cost per operation includes all of the overhead
due to context of the loop where it is executed. Using these precalculated values, we derive an linear
extrapolation model to predict the energy of a given algorithm expressed by means of atomic instructions.
We then use three selected applications to check the accuracy of our prediction method by comparing our
estimations with the corresponding measurements obtained using a multimeter. We show a 9.48% energy
prediction on sorting.[35]

5.3. Switcheable scheduling
Participants: Lénaïc Bagnères, Cédric Bastoul, Taj Khan.

Parallel applications used to be executed alone until their termination on partitions of supercomputers. The
recent shift to multicore architectures for desktop and embedded systems is raising the problem of the
coexistence of several parallel programs. Operating systems already take into account the affinity mechanism
to ensure a thread will run only onto a subset of available processors (e.g., to reuse data remaining in
the cache since its previous execution). But this is not enough, as demonstrated by the large performance
gaps between executions of a given parallel program on desktop computers running several processes. To
support many parallel applications, advances must be made on the system side (scheduling policies, runtimes,
memory management...). However, automatic optimization and parallelization can play a significant role by
generating programs with dynamic-auto-tuning capabilities to adapt themselves to the complete execution
context, including the system load.

http://cTuning.org

Project-Team GRAND-LARGE 17

Our approach is to design at compile-time programs that can adapt at run-time to the execution context. The
originality of our solution is to rely on switcheable scheduling, a selected set of program restructuring which
allows to swap between program versions at some meeting points without backtracking. A first step selects
pertinent versions according to their performance behavior on some execution contexts. The second step builds
the auto-adaptive program with the various versions. Then at runtime the program selects the best version by
a low overhead sampling and profiling of the versions, ensuring every computation is useful.

This work has been started at Paris-Sud University by Cédric Bastoul before he joined the Inria CAMUS
project team during this year. The first results have been presented in 2013 at the HiPEAC System Week and
at the Rencontres Françaises de Compilation.

5.4. Solving Navier-Stokes equations on heterogeneous parallel architectures
Participants: Marc Baboulin, Jack Dongarra, Joël Falcou, Yann Fraigneau, Olivier Lemaître, Yushan Wang.

The Navier-Stokes equations describe a large class of fluid flows but are difficult to solve analytically
because of their nonlinearity. We implemented a parallel solver for the 3-D Navier-Stokes equations of
incompressible unsteady flows with constant coefficients, discretized by the finite difference method. We
applied the prediction-projection method which transforms the Navier-Stokes equations into three Helmholtz
equations and one Poisson equation. For each Helmholtz system, we applied the Alternating Direction
Implicit (ADI) method resulting in three tridiagonal systems. The Poisson equation is solved using partial
diagonalization which transforms the Laplacian operator into a tridiagonal one. Our implementation is based
on MPI where the computations are performed on each subdomain and information is exchanged on the
interfaces, and where the tridiagonal system solutions are accelerated using vectorization techniques. We
provided performance results on a current multicore system.[31]

5.5. Optimizing NUMA effects in dense linear algebra software
Participants: Marc Baboulin, Adrien Rémy, Brigitte Rozoy, Masha Sosonkina.

We studied the impact of non-uniform memory accesses (NUMA) on the solution of dense general linear
systems using an LU factorization algorithm. In particular we illustrated how an appropriate placement of
the threads and memory on a NUMA architecture can improve the performance of the panel factorization
and consequently accelerate the global LU factorization. We applied these placement strategies and presented
performance results for a hybrid multicore/GPU LU algorithm as it is implemented in the public domain
library MAGMA.

6. Partnerships and Cooperations

6.1. Regional Initiatives
• CALIFHA project (DIM Digiteo 2011): CALculations of Incompressible Fluid flows on Hetero-

geneous Architectures. Funding for a PhD student. Collaboration with LIMSI/CNRS. Participants:
Marc Baboulin (Principal Investigator), Joel Falcou, Yann Fraigneau (LIMSI), Laura Grigori, Olivier
Le Maître (LIMSI), Laurent Martin Witkowski (LIMSI)

6.2. National Initiatives
6.2.1. ANR

• ANR SPADES Coordinated by LIP-ENS Lyon. (Sylvain Peyronnet, Franck Cappello, Ala
Rezmerita)

18 Activity Report INRIA 2013

• ANR Cosinus project PetaQCD - Towards PetaFlops for Lattice Quantum ChromoDynamics
(2009-2012) Collaboration with Lal (Orsay), Irisa Rennes (Caps/Alf), IRFU (CEA Saclay), LPT
(Orsay), Caps Entreprise (Rennes), Kerlabs (Rennes), LPSC (Grenoble). About the design of
architecture, software tools and algorithms for Lattice Quantum Chromodynamics. (Cédric Bastoul,
Christine Eisenbeis, Michael Kruse)

6.3. European Initiatives
6.3.1. Collaborations in European Programs, except FP7

Program: ITEA
Project acronym: MANY
Project title: Many-core Programming and Resource Management for High-Performance Embedded
Systems
Duration: 09/2011 - 08/2014
Coordinator: XDIN
Other partners: France: Thales Communications and Security, CAPS Entreprise, Telecom SudParis;
Spain: UAB; Sweden: XDIN; Korea: ETRI, TestMidas, SevenCore; Netherlands: Vector Fabrics,
ST-Ericsson, TU Eindhoven; Belgium: UMONS.
Abstract: Adapting Industry for the for the disruptive landing of many-core processors in Embedded
Systems in order to provide scalable, reusable and very fast sofware development.

6.4. International Initiatives
6.4.1. Inria International Labs

• Franck Cappello, Co-Director of the Inria - Illinois Joint Laboratory on PetaScale Computing,
since 2009

6.4.2. Participation In other International Programs
Stic AmSud: BioCloud-EEAmSud Participants: Christine Eisenbeis, Alessandro Ferreira Leite, Claude

Tadonki.

BioCloud-EEAmSud is a cooperation project integrated by Brazil, Chile and France following
the 2012 STIC-AmSud call. Partners in Brazil are Universidade de Brasilia, Universidade Federal
Fluminense, and EMBRAPA-Genetic Resources and Biotechnology (CENARGEN), through the
support of the Coordination of Improvement of Senior Staff of the Ministry of Education in Brazil
(CAPES). In Chile, the main partner is Universidad de Santiago de Chile, through the support of the
National Commission for Scientific and Technological Research of Chile (CONICYT). In France,
the institutions involved are Mines ParisTech (CRI) and Inria-Saclay, through the support of the
Ministry of Foreign and European Affairs (MAEE). The international project coordinator is Pr. Maria
Emília Machado Telles Walter (UnB). Alessandro Ferreira Leite’ thesis work is a joint University of
Brazilia - université Paris-Sud 11 thesis and is partially supported by BioCloud-EEAmSud. Maria
Emilia Machado Telles Walter and Alba Cristian de Melo visited Grand-Large in 2013, as well as
Taina Rajol.

6.5. International Research Visitors
6.5.1. Internships

German Schinca
Subject: Minimizing communication in scientific computing

Project-Team GRAND-LARGE 19

Date: from Sep 2012 until Mar 2013
Institution: University of Buenos Aires (Argentina)

7. Dissemination
7.1. Scientific Animation

Christine Eisenbeis
– IJPP (International Journal on Parallel Programming) editorial board.

Marc Baboulin
– Member of Steering Committee of ACM High Performance Computing Symposium (HPC

2013), San Diego, April 7-10, 2013.

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Licence : Cédric Bastoul, Réseaux niveau licence, IUT d’Orsay (60h), Système niveau licence, IUT
d’Orsay (40h).
Master : Christine Eisenbeis, coordinatrice du module “Optimisations et compilation” du M2
recherche NSI (“Nouveaux systèmes informatiques”) de l’université Paris-Sud 11. 3 heures de cours.
Master: M. Baboulin and J. Falcou teach in "Calcul Haute Performance" of M2 recherche NSI of
University Paris Sud 11.
Polytech 5th year: M. Baboulin and J. Falcou teach the "Parallel Computing" class.

7.2.2. Supervision
PhD : Amal Khabou, Dense matrix computations: communication cost and numerical stability,
University Paris Sud 11, 11 February 2013, PhD Supervisor: L. Grigori
PhD in progress: Ian Masliah, Automatic code generation in high-performance computing numerical
libraries, University Paris Sud 11, Supervisors: M. Baboulin and J. Falcou
PhD in progress: Adrien Rémy, Solving dense linear systems on accelerated multicore architectures,
University Paris Sud 11, Supervisors: M. Baboulin and B. Rozoy
PhD in progress: Yushan Wang, Numerical simulations of incompressible fluid flows on heteroge-
neous parallel architectures, University Paris Sud 11, Supervisors: M. Baboulin and O. Le Maître
PhD in progress: Lénaïc Bagnères, université Paris-Sud 11, supervisors: Cédric Bastoul and Chris-
tine Eisenbeis
PhD in progress: Alessandro Leite, université Paris-Sud 11, supervisors: Alba de Melo (university
of Brazilia), Claude Tadonki (CRI, école des Mines de Paris), Christine Eisenbeis
PhD in progress: Michael Kruse, Polytopic memory layout optimization, université Paris-Sud 11,
supervisor: Christine Eisenbeis

7.2.3. Committees
• Marc Baboulin, President of the PhD committee of Marc Letournel: “Approches duales dans la

résolution de problèmes stochastiques”, September 27, 2013.
• Christine Eisenbeis, jury de HdR de Claude Tadonki, "High Performance Computing as a Combina-

tion of Machines and Methods and Programming", jeudi 16 mai 2013, université Paris-Sud.

7.3. Popularization
Christine Eisenbeis est membre du conseil scientifique des programmes du centre d’Alembert, Centre In-
terdisciplinaire d’Étude de l’Évolution des Idées, des Sciences et des Techniques (CIEEIST), de l’université
Paris-Sud.

20 Activity Report INRIA 2013

8. Bibliography
Major publications by the team in recent years

[1] M. BABOULIN, D. BECKER, J. DONGARRA. A Parallel Tiled Solver for Dense Symmetric Indefinite Systems on
Multicore Architectures, in "Proceedings of IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2012)", 2012, pp. 14-24

[2] M. BABOULIN, S. DONFACK, J. DONGARRA, L. GRIGORI, A. RÉMY, S. TOMOV. A class of communication-
avoiding algorithms for solving general dense linear systems on CPU/GPU parallel machines, in "Interna-
tional Conference on Computational Science (ICCS 2012)", Procedia Computer Science, Elsevier, 2012, vol.
9, pp. 17–26

[3] M. BABOULIN, J. DONGARRA, J. HERRMANN, S. TOMOV. Accelerating linear system solutions using
randomization techniques, in "ACM Trans. Math. Softw.", 2012, vol. 39, no 2

[4] M. BABOULIN, S. GRATTON. A contribution to the conditioning of the total least squares problem, in "SIAM
J. Matrix Anal. and Appl.", 2011, vol. 32, no 3, pp. 685–699

[5] R. BOLZE, F. CAPPELLO, E. CARON, M. J. DAYDÉ, F. DESPREZ, E. JEANNOT, Y. JÉGOU, S. LANTERI,
J. LEDUC, N. MELAB, G. MORNET, R. NAMYST, P. PRIMET, B. QUÉTIER, O. RICHARD, E.-G. TALBI,
T. IRENA. Grid’5000: a large scale and highly reconfigurable experimental Grid testbed, in "International
Journal of High Performance Computing Applications", November 2006, vol. 20, no 4, pp. 481-494

[6] A. BOUTEILLER, T. HÉRAULT, G. KRAWEZIK, P. LEMARINIER, F. CAPPELLO. MPICH-V Project: a
Multiprotocol Automatic Fault Tolerant MPI, in "International Journal of High Performance Computing
Applications", 2005, vol. 20, no 3, pp. 319–333

[7] F. CAPPELLO, S. DJILALI, G. FEDAK, T. HÉRAULT, F. MAGNIETTE, V. NÉRI, O. LODYGENSKY. Computing
on Large Scale Distributed Systems: XtremWeb Architecture, Programming Models, Security, Tests and
Convergence with Grid, in "FGCS Future Generation Computer Science", 2004

[8] G. FURSIN, Y. KASHNIKOV, A. MEMON, Z. CHAMSKI, O. TEMAM, M. NAMOLARU, E. YOM-TOV,
B. MENDELSON, A. ZAKS, E. COURTOIS, F. BODIN, P. BARNARD, E. ASHTON, E. BONILLA, J.
THOMSON, C. WILLIAMS, M. O’BOYLE. Milepost GCC: Machine Learning Enabled Self-tuning Compiler,
in "International Journal of Parallel Programming", 2011, vol. 39, pp. 296-327, 10.1007/s10766-010-0161-2,
http://dx.doi.org/10.1007/s10766-010-0161-2

[9] L. GRIGORI, J. DEMMEL, X. S. LI. Parallel Symbolic Factorization for Sparse LU Factorization with Static
Pivoting, in "SIAM Journal on Scientific Computing", 2007, vol. 29, no 3, pp. 1289-1314

[10] L. GRIGORI, J. DEMMEL, H. XIANG. Communication Avoiding Gaussian Elimination, in "Proceedings of
the ACM/IEEE SC08 Conference", 2008

[11] L. GRIGORI, J. DEMMEL, H. XIANG. CALU: a communication optimal LU factorization algorithm, in
"SIAM Journal on Matrix Analysis and Applications", 2011, vol. 32, pp. 1317-1350

http://dx.doi.org/10.1007/s10766-010-0161-2

Project-Team GRAND-LARGE 21

[12] L. GRIGORI, F. NATAF. , Generalized Filtering Decomposition, May 2011, Session 7, http://hal.inria.fr/inria-
00581744/en

[13] L. GRIGORI, F. NATAF. , Generalized Filtering Decomposition, Inria, March 2011, no RR-7569, 8 p. , http://
hal.inria.fr/inria-00576894/en

[14] T. HÉRAULT, R. LASSAIGNE, S. PEYRONNET. APMC 3.0: Approximate Verification of Discrete and
Continuous Time Markov Chains, in "Proceedings of the 3rd International Conference on the Quantitative
Evaluation of SysTems (QEST’06)", California, USA, September 2006

[15] Q. NIU, L. GRIGORI, P. KUMAR, F. NATAF. Modified tangential frequency filtering decomposition and its
Fourier analysis, in "Numerische Mathematik", 2010, vol. 116, no 1, pp. 123-148

[16] S. TOMOV, J. DONGARRA, M. BABOULIN. Towards dense linear algebra for hybrid GPU accelerated
manycore systems, in "Parallel Computing", 2010, vol. 36, no 5&6, pp. 232–240

[17] B. WEI, G. FEDAK, F. CAPPELLO. Scheduling Independent Tasks Sharing Large Data Distributed with
BitTorrent, in "IEEE/ACM Grid’2005 workshop Seattle, USA", 2005

Publications of the year
Articles in International Peer-Reviewed Journals

[18] G. ANTONIU, J. BIGOT, C. BLANCHET, L. BOUGÉ, F. BRIANT, F. CAPPELLO, A. COSTAN, F. DESPREZ,
G. FEDAK, S. GAULT, K. KEAHEY, B. NICOLAE, C. PÉREZ, A. SIMONET, F. SUTER, B. TANG, R.
TERREUX. Towards Scalable Data Management for Map-Reduce-based Data-Intensive Applications on
Cloud and Hybrid Infrastructures, in "International Journal of Cloud Computing (IJCC)", 2013, vol. 2, no

2/3 [DOI : 10.1504/IJCC.2013.055265], http://hal.inria.fr/hal-00767029

[19] M. BABOULIN, J. DONGARRA, J. HERRMANN, S. TOMOV. Accelerating linear system solutions using
randomization technique, in "ACM Transactions on Mathematical Software", February 2013, vol. 39, no 2
[DOI : 10.1145/2427023.2427025], http://hal.inria.fr/hal-00908496

[20] D. BARTHOU, O. BRAND-FOISSAC, O. PENE, G. GROSDIDIER, R. DOLBEAU, C. EISENBEIS, M. KRUSE,
K. PETROV, C. TADONKI. Automated Code Generation for Lattice Quantum Chromodynamics and beyond, in
"Journal of Physics: Conference Series", December 2013, LPT-Orsay-13-142, http://hal.inria.fr/hal-00926513

[21] G. BOSILCA, A. BOUTEILLER, É. BRUNET, F. CAPPELLO, J. DONGARRA, A. GUERMOUCHE, T.
HÉRAULT, Y. ROBERT, F. VIVIEN, D. ZAIDOUNI. Unified Model for Assessing Checkpointing Protocols
at Extreme-Scale, in "Journal of Concurrency and Computation: Practice and Experience", November 2013
[DOI : 10.1002/CPE.3173], http://hal.inria.fr/hal-00908447

[22] P. HAVE, R. MASSON, F. NATAF, M. SZYDLARSKI, H. XIANG, T. ZHAO. Algebraic Domain Decomposition
Methods for Highly Heterogeneous Problems, in "SIAM Journal on Scientific Computing", 2013, vol. 35, no

3, pp. C284-C302, http://hal.inria.fr/hal-00611997

[23] B. NICOLAE, F. CAPPELLO. BlobCR: Virtual Disk Based Checkpoint-Restart for HPC Applications on
IaaS Clouds, in "Journal of Parallel and Distributed Computing", February 2013, vol. 73, no 5, pp. 698-711
[DOI : 10.1016/J.JPDC.2013.01.013], http://hal.inria.fr/hal-00857964

http://hal.inria.fr/inria-00581744/en
http://hal.inria.fr/inria-00581744/en
http://hal.inria.fr/inria-00576894/en
http://hal.inria.fr/inria-00576894/en
http://hal.inria.fr/hal-00767029
http://hal.inria.fr/hal-00908496
http://hal.inria.fr/hal-00926513
http://hal.inria.fr/hal-00908447
http://hal.inria.fr/hal-00611997
http://hal.inria.fr/hal-00857964

22 Activity Report INRIA 2013

International Conferences with Proceedings

[24] A. BOUTEILLER, F. CAPPELLO, J. DONGARRA, A. GUERMOUCHE, T. HÉRAULT, Y. ROBERT. Multi-
criteria checkpointing strategies: response-time versus resource utilization, in "Euro-Par 2013", Aachen,
Germany, S. VERLAG (editor), LNCS, 2013, vol. 8097, pp. 420-431 [DOI : 10.1007/978-3-642-40047-
6_43], http://hal.inria.fr/hal-00926606

[25] S. DI, D. KONDO, F. CAPPELLO. Characterizing Cloud Applications on a Google Data Cen-
ter, in "42nd International Conference on Parallel Processing (ICPP’13)", 2013, pp. 468-473
[DOI : 10.1109/ICPP.2013.56], http://hal.inria.fr/hal-00936827

[26] S. DI, Y. ROBERT, F. VIVIEN, D. KONDO, C.-L. WANG, F. CAPPELLO. Optimization of Cloud Task
Processing with Checkpoint-Restart Mechanism, in "SC13 - Supercomputing - 2013", Denver, United States,
ACM, November 2013 [DOI : 10.1145/2503210.2503217], http://hal.inria.fr/hal-00847635

[27] M. E. M. DIOURI, O. GLÜCK, L. LEFÈVRE, F. CAPPELLO. ECOFIT: A Framework to Estimate Energy
Consumption of Fault Tolerance protocols during HPC executions, in "13th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid)", Delft, Netherlands, May 2013, http://hal.inria.fr/
hal-00806500

[28] M. E. M. DIOURI, O. GLÜCK, L. LEFÈVRE, F. CAPPELLO. Towards an Energy Estimator for Fault Tol-
erance Protocols, in "18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP)", Shenzhen, China, February 2013, pp. 313–314 [DOI : 10.1145/2442516.2442561], http://hal.
inria.fr/hal-00806499

[29] A. W. MEMON, G. FURSIN. Crowdtuning: systematizing auto-tuning using predictive modeling and crowd-
sourcing, in "PARCO mini-symposium on "Application Autotuning for HPC (Architectures)"", Munich, Ger-
many, September 2013, http://hal.inria.fr/hal-00944513

[30] B. NICOLAE, F. CAPPELLO. AI-Ckpt: Leveraging Memory Access Patterns for Adaptive Asyn-
chronous Incremental Checkpointing, in "HPDC ’13: 22th International ACM Symposium on High-
Performance Parallel and Distributed Computing", New York, United States, April 2013, pp. 155-166
[DOI : 10.1145/2462902.2462918], http://hal.inria.fr/hal-00809847

[31] Y. WANG, M. BABOULIN, J. DONGARRA, J. FALCOU, Y. FRAIGNEAU, O. LE MAITRE. A parallel solver for
incompressible fluid flows, in "International Conference on Computational Science (ICCS 2013)", Barcelona,
Italy, June 2013 [DOI : 10.1016/J.PROCS.2013.05.207], http://hal.inria.fr/hal-00915356

Conferences without Proceedings

[32] L. GIRAUD, F. CAPPELLO. Resilience at extreme scale : system level, algorithmic level or both ?, in "SIAM
Conference on Computational Science and Engineering - CSE 2013", Boston, United States, SIAM, March
2013, http://hal.inria.fr/hal-00799309

Research Reports

[33] D. BARTHOU, G. GROSDIDIER, K. PETROV, M. KRUSE, C. EISENBEIS, O. PÈNE, O. BRAND-FOISSAC, C.
TADONKI, R. DOLBEAU. , Automated Code Generation for Lattice QCD Simulation, Inria, December 2013,
no RR-8417, 13 p. , http://hal.inria.fr/hal-00918812

http://hal.inria.fr/hal-00926606
http://hal.inria.fr/hal-00936827
http://hal.inria.fr/hal-00847635
http://hal.inria.fr/hal-00806500
http://hal.inria.fr/hal-00806500
http://hal.inria.fr/hal-00806499
http://hal.inria.fr/hal-00806499
http://hal.inria.fr/hal-00944513
http://hal.inria.fr/hal-00809847
http://hal.inria.fr/hal-00915356
http://hal.inria.fr/hal-00799309
http://hal.inria.fr/hal-00918812

Project-Team GRAND-LARGE 23

[34] J. BEAUQUIER, P. BLANCHARD, J. BURMAN. , Self-stabilizing Leader Election in Population Protocols over
Arbitrary Communication Graphs, September 2013, http://hal.inria.fr/hal-00867287

[35] A. FERREIRA LEITE, C. TADONKI, C. EISENBEIS, A. C. M. A. DE MELO. , A Fine-grained Approach for
Power Consumption Analysis and Prediction, Inria, December 2013, no RR-8416, 12 p. , http://hal.inria.fr/
hal-00918810

[36] G. FURSIN. , Collective Mind: cleaning up the research and experimentation mess in computer engineering
using crowdsourcing, big data and machine learning, August 2013, http://hal.inria.fr/hal-00850880

Other Publications

[37] D. BARTHOU, O. BRAND-FOISSAC, R. DOLBEAU, G. GROSDIDIER, C. EISENBEIS, M. KRUSE, O. PENE,
K. PETROV, C. TADONKI. , Automated Code Generation for Lattice Quantum Chromodynamics and beyond,
2014, http://hal.inria.fr/hal-00930288

[38] G. FURSIN. Keynote at HPSC 2013 at NTU, Taiwan: Systematizing tuning of computer systems using crowd-
sourcing and statistics, in "HPSC - Conference on Advanced Topics and Auto Tuning in High Performance
and Scientific Computing - 2013", Taipei, Taiwan, March 2013, http://hal.inria.fr/hal-00819000

[39] G. FURSIN. Tutorial at HPSC 2013 at NTU, Taiwan: Collective Mind: novel methodology, framework and
repository to crowd-source auto-tuning, in "HPSC - Conference on Advanced Topics and Auto Tuning in High
Performance and Scientific Computing - 2013", Taipee, Taiwan, March 2013, http://hal.inria.fr/hal-00819002

[40] G. FURSIN, A. W. MEMON, C. GUILLON. , Machine Learning for Compilation and Architecture: Myth or
Reality?, 2013, http://hal.inria.fr/hal-00907143

References in notes

[41] K. AIDA, A. TAKEFUSA, H. NAKADA, S. MATSUOKA, S. SEKIGUCHI, U. NAGASHIMA. Performance
evaluation model for scheduling in a global computing system, in "International Journal of High Performance
Computing Applications", 2000, vol. 14, No. 3, pp. 268-279, http://dx.doi.org/10.1177/109434200001400308

[42] A. D. ALEXANDROV, M. IBEL, K. E. SCHAUSER, C. J. SCHEIMAN. SuperWeb: Research Issues in
JavaBased Global Computing, in "Concurrency: Practice and Experience", June 1997, vol. 9, no 6, pp.
535–553

[43] L. ALVISI, K. MARZULLO. , Message Logging: Pessimistic, Optimistic and Causal, 2001, Proc. 15th Int’l
Conf. on Distributed Computing

[44] D. P. ANDERSON. , BOINC, 2011, http://boinc.berkeley.edu/

[45] A. BARAK, O. LA’ADAN. The MOSIX multicomputer operating system for high performance cluster
computing, in "Future Generation Computer Systems", 1998, vol. 13, no 4–5, pp. 361–372

[46] A. BARATLOO, M. KARAUL, Z. M. KEDEM, P. WYCKOFF. Charlotte: Metacomputing on the Web, in
"Proceedings of the 9th International Conference on Parallel and Distributed Computing Systems (PDCS-
96)", 1996

http://hal.inria.fr/hal-00867287
http://hal.inria.fr/hal-00918810
http://hal.inria.fr/hal-00918810
http://hal.inria.fr/hal-00850880
http://hal.inria.fr/hal-00930288
http://hal.inria.fr/hal-00819000
http://hal.inria.fr/hal-00819002
http://hal.inria.fr/hal-00907143
http://dx.doi.org/10.1177/109434200001400308
http://boinc.berkeley.edu/

24 Activity Report INRIA 2013

[47] J. BEAUQUIER, C. GENOLINI, S. KUTTEN. , Optimal reactive k-stabilization: the case of mutual exclusion.
In Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, may 1999, pp.
199-208

[48] J. BEAUQUIER, T. HÉRAULT. , Fault-Local Stabilization: the Shortest Path Tree., October 2002, Proceedings
of the 21th Symposium of Reliable Distributed Systems

[49] G. BOSILCA, A. BOUTEILLER, F. CAPPELLO, S. DJILALI, G. FEDAK, C. GERMAIN, T. HÉRAULT, P.
LEMARINIER, O. LODYGENSKY, F. MAGNIETTE, V. NÉRI, A. SELIKHOV. , MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes, 2002, in IEEE/ACM SC 2002

[50] A. BOUTEILLER, F. CAPPELLO, T. HÉRAULT, G. KRAWEZIK, P. LEMARINIER, F. MAGNIETTE. , MPICH-
V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Message Logging, November
2003, in IEEE/ACM SC 2003

[51] A. BOUTEILLER, P. LEMARINIER, G. KRAWEZIK, F. CAPPELLO. , Coordinated Checkpoint versus Message
Log for fault tolerant MPI, December 2003, in IEEE Cluster

[52] T. BRECHT, H. SANDHU, M. SHAN, J. TALBOT. ParaWeb: Towards World-Wide Supercomputing, in "Pro-
ceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications",
1996

[53] R. BUYYA, M. MURSHED. , GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing, Wiley Press, May 2002

[54] N. CAMIEL, S. LONDON, N. NISAN, O. REGEV. The POPCORN Project: Distributed Computation over the
Internet in Java, in "Proceedings of the 6th International World Wide Web Conference", April 1997

[55] H. CASANOVA. , Simgrid: A Toolkit for the Simulation of Application Scheduling. In Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ’01), May 2001, pp. 430–437

[56] K. M. CHANDY, L. LAMPORT. , Distributed Snapshots: Determining Global States of Distr. systems, 1985,
ACM Trans. on Comp. Systems, 3(1):63–75

[57] B. O. CHRISTIANSEN, P. CAPPELLO, M. F. IONESCU, M. O. NEARY, K. E. SCHAUSER, D. WU. Javelin:
Internet-Based Parallel Computing Using Java, in "Concurrency: Practice and Experience", November 1997,
vol. 9, no 11, pp. 1139–1160

[58] J. W. DEMMEL, L. GRIGORI, M. HOEMMEN, J. LANGOU. Communication-optimal parallel and sequential
QR and LU factorizations, in "SIAM Journal on Scientific Computing", 2012, short version of technical report
UCB/EECS-2008-89 from 2008

[59] S. DOLEV. , Self-stabilization, 2000, M.I.T. Press

[60] G. FEDAK, C. GERMAIN, V. NÉRI, F. CAPPELLO. XtremWeb: A Generic Global Computing System, in
"CCGRID’01: Proceedings of the 1st International Symposium on Cluster Computing and the Grid", IEEE
Computer Society, 2001, 582 p.

Project-Team GRAND-LARGE 25

[61] I. FOSTER, A. IAMNITCHI. On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing, in
"2nd International Workshop on Peer-to-Peer Systems (IPTPS’03)", Berkeley, CA, February 2003

[62] V. K. GARG. , Principles of distributed computing, John Wiley and Sons, May 2002

[63] C. GENOLINI, S. TIXEUIL. , A lower bound on k-stabilization in asynchronous systems, October 2002,
Proceedings of the 21th Symposium of Reliable Distributed Systems

[64] DOUGLAS P. GHORMLEY, D. PETROU, STEVEN H. RODRIGUES, AMIN M. VAHDAT, THOMAS E. ANDER-
SON. GLUnix: A Global Layer Unix for a Network of Workstations, in "Software Practice and Experience",
1998, vol. 28, no 9, pp. 929–961

[65] D. E. KEYES. , A Science-based Case for Large Scale Simulation, Vol. 1, Office of Science, US Department of
Energy, Report Editor-in-Chief, July 30 2003

[66] S. KUTTEN, B. PATT-SHAMIR. , Stabilizing time-adaptive protocols. Theoretical Computer Science 220(1),
1999, pp. 93-111

[67] S. KUTTEN, D. PELEG. , Fault-local distributed mending. Journal of Algorithms 30(1), 1999, pp. 144-165

[68] N. LEIBOWITZ, M. RIPEANU, A. WIERZBICKI. Deconstructing the Kazaa Network, in "Proceedings of the
3rd IEEE Workshop on Internet Applications WIAPP’03", Santa Clara, CA, 2003

[69] M. LITZKOW, M. LIVNY, M. MUTKA. Condor — A Hunter of Idle Workstations, in "Proceedings of the
Eighth Conference on Distributed Computing", San Jose, 1988

[70] NANCY A. LYNCH. , M. KAUFMANN (editor), Distributed Algorithms, 1996

[71] MESSAGE PASSING INTERFACE FORUM. , MPI: A message passing interface standard, June 12 1995,
Technical report, University of Tennessee, Knoxville

[72] N. MINAR, R. MURKHART, C. LANGTON, M. ASKENAZI. , The Swarm Simulation System: A Toolkit for
Building Multi-Agent Simulations, 1996

[73] H. PEDROSO, L. M. SILVA, J. G. SILVA. Web-Based Metacomputing with JET, in "Proceedings of the ACM",
1997

[74] B. QUÉTIER, M. JAN, F. CAPPELLO. , One step further in large-scale evaluations: the V-DS environment,
Inria, December 2007, no RR-6365, http://hal.inria.fr/inria-00189670

[75] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, S. SHENKER. A Scalable Content Addressable
Network, in "Proceedings of ACM SIGCOMM 2001", 2001

[76] A. ROWSTRON, P. DRUSCHEL. Pastry: Scalable, Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems, in "IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware)", 2001, pp. 329–350

http://hal.inria.fr/inria-00189670

26 Activity Report INRIA 2013

[77] L. F. G. SARMENTA, S. HIRANO. Bayanihan: building and studying Web-based volunteer computing systems
using Java, in "Future Generation Computer Systems", 1999, vol. 15, no 5–6, pp. 675–686

[78] S. SAROIU, P. K. GUMMADI, S. D. GRIBBLE. A Measurement Study of Peer-to-Peer File Sharing Systems,
in "Proceedings of Multimedia Computing and Networking", San Jose, CA, USA, January 2002

[79] J. F. SHOCH, J. A. HUPP. The Worm Programs: Early Experiences with Distributed Systems, in "Communi-
cations of the Association for Computing Machinery", March 1982, vol. 25, no 3

[80] I. STOICA, R. MORRIS, D. KARGER, F. KAASHOEK, H. BALAKRISHNAN. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications, in "Proceedings of the 2001 ACM SIGCOMM Conference", 2001,
pp. 149–160

[81] G. TEL. , Introduction to distributed algorithms, 2000, Cambridge University Press

[82] Y.-M. WANG, W. K. FUCHS. , Optimistic Message Logging for Independent Checkpointing in Message-
Passing Systems, 1992, pp. 147-154, Symposium on Reliable Distributed Systems

[83] Y. YI, T. PARK, H. Y. YEOM. , A Causal Logging Scheme for Lazy Release Consistent Distributed Shared
Memory Systems, December 1998, In Proc. of the 1998 Int’l Conf. on Parallel and Distributed Systems

[84] B. Y. ZHAO, J. D. KUBIATOWICZ, A. D. JOSEPH. , Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing, UC Berkeley, April 2001, no UCB/CSD-01-1141

