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2. Overall Objectives

2.1. An overview of geometric numerical integration
A fundamental and enduring challenge in science and technology is the quantitative prediction of time-
dependent nonlinear phenomena. While dynamical simulation (for ballistic trajectories) was one of the first
applications of the digital computer, the problems treated, the methods used, and their implementation have
all changed a great deal over the years. Astronomers use simulation to study long term evolution of the solar
system. Molecular simulations are essential for the design of new materials and for drug discovery. Simulation
can replace or guide experiment, which often is difficult or even impossible to carry out as our ability to
fabricate the necessary devices is limited.
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During the last decades, we have seen dramatic increases in computing power, bringing to the fore an ever
widening spectrum of applications for dynamical simulation. At the boundaries of different modeling regimes,
it is found that computations based on the fundamental laws of physics are under-resolved in the textbook
sense of numerical methods. Because of the vast range of scales involved in modeling even relatively simple
biological or material functions, this limitation will not be overcome by simply requiring more computing
power within any realistic time. One therefore has to develop numerical methods which capture crucial
structures even if the method is far from “converging" in the mathematical sense. In this context, we are forced
increasingly to think of the numerical algorithm as a part of the modeling process itself. A major step forward
in this area has been the development of structure-preserving or “geometric" integrators which maintain
conservation laws, dissipation rates, or other key features of the continuous dynamical model. Conservation of
energy and momentum are fundamental for many physical models; more complicated invariants are maintained
in applications such as molecular dynamics and play a key role in determining the long term stability of
methods. In mechanical models (biodynamics, vehicle simulation, astrodynamics) the available structure may
include constraint dynamics, actuator or thruster geometry, dissipation rates and properties determined by
nonlinear forms of damping.
In recent years the growth of geometric integration has been very noticeable. Features such as symplecticity
or time-reversibility are now widely recognized as essential properties to preserve, owing to their physical
significance. This has motivated a lot of research [67], [64], [63] and led to many significant theoretical
achievements (symplectic and symmetric methods, volume-preserving integrators, Lie-group methods, ...).
In practice, a few simple schemes such as the Verlet method or the Störmer method have been used for years
with great success in molecular dynamics or astronomy. However, they now need to be further improved in
order to fit the tremendous increase of complexity and size of the models.

2.2. Overall objectives
To become more specific, the project IPSO aims at finding and implementing new structure-preserving
schemes and at understanding the behavior of existing ones for the following type of problems:

• systems of differential equations posed on a manifold.

• systems of differential-algebraic equations of index 2 or 3, where the constraints are part of the
equations.

• Hamiltonian systems and constrained Hamiltonian systems (which are special cases of the first two
items though with some additional structure).

• highly-oscillatory systems (with a special focus of those resulting from the Schrödinger equation).

Although the field of application of the ideas contained in geometric integration is extremely wide (e.g.
robotics, astronomy, simulation of vehicle dynamics, biomechanical modeling, biomolecular dynamics, geo-
dynamics, chemistry...), IPSO will mainly concentrate on applications for molecular dynamics simulation and
laser simulation:

• There is a large demand in biomolecular modeling for models that integrate microscopic molecular
dynamics simulation into statistical macroscopic quantities. These simulations involve huge systems
of ordinary differential equations over very long time intervals. This is a typical situation where the
determination of accurate trajectories is out of reach and where one has to rely on the good qualitative
behavior of structure-preserving integrators. Due to the complexity of the problem, more efficient
numerical schemes need to be developed.

• The demand for new models and/or new structure-preserving schemes is also quite large in laser
simulations. The propagation of lasers induces, in most practical cases, several well-separated scales:
the intrinsically highly-oscillatory waves travel over long distances. In this situation, filtering the
oscillations in order to capture the long-term trend is what is required by physicists and engineers.
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2.3. Highlights of the Year
• A. Debussche was the main organizer of the thematic semester “Perspectives in Analysis and

Probability" organized by the Lebesgue Center in Nantes and Rennes from april to september 2013
(see: http://www.lebesgue.fr/content/sem2013-perspectives-analysis-and-probability).

• E. Faou received the Blaise Pascal prize (GAMNI/SMAI and French Academy of Sciences).

• G. Vilmart defended his Habilitation to supervise research (HDR) in Mathematics, [12], July.

• G. Vilmart receives the “Prix Bretagne Jeune Chercheur 2013” from the Region Bretagne, December.

3. Research Program

3.1. Structure-preserving numerical schemes for solving ordinary differential
equations
Participants: François Castella, Philippe Chartier, Erwan Faou, Vilmart Gilles.

ordinary differential equation, numerical integrator, invariant, Hamiltonian system, reversible system, Lie-
group system

In many physical situations, the time-evolution of certain quantities may be written as a Cauchy problem for a
differential equation of the form

y′(t) = f(y(t)),

y(0) = y0.
(1)

For a given y0, the solution y(t) at time t is denoted ϕt(y0). For fixed t, ϕt becomes a function of y0 called the
flow of (1). From this point of view, a numerical scheme with step size h for solving (1) may be regarded as an
approximation Φh of ϕh. One of the main questions of geometric integration is whether intrinsic properties
of ϕt may be passed on to Φh.

This question can be more specifically addressed in the following situations:

3.1.1. Reversible ODEs
The system (1) is said to be ρ-reversible if there exists an involutive linear map ρ such that

ρ ◦ ϕt = ϕ−1t ◦ ρ = ϕ−t ◦ ρ. (2)

It is then natural to require that Φh satisfies the same relation. If this is so, Φh is said to be symmetric.
Symmetric methods for reversible systems of ODEs are just as much important as symplectic methods for
Hamiltonian systems and offer an interesting alternative to symplectic methods.

3.1.2. ODEs with an invariant manifold
The system (1) is said to have an invariant manifold g whenever

M = {y ∈ Rn; g(y) = 0} (3)

is kept globally invariant by ϕt. In terms of derivatives and for sufficiently differentiable functions f and g,
this means that

∀ y ∈ M, g′(y)f(y) = 0.

http://www.lebesgue.fr/content/sem2013-perspectives-analysis-and-probability
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As an example, we mention Lie-group equations, for which the manifold has an additional group structure.
This could possibly be exploited for the space-discretisation. Numerical methods amenable to this sort of
problems have been reviewed in a recent paper [62] and divided into two classes, according to whether they
use g explicitly or through a projection step. In both cases, the numerical solution is forced to live on the
manifold at the expense of some Newton’s iterations.

3.1.3. Hamiltonian systems
Hamiltonian problems are ordinary differential equations of the form:

ṗ(t) = −∇qH(p(t), q(t)) ∈ Rd

q̇(t) = ∇pH(p(t), q(t)) ∈ Rd
(4)

with some prescribed initial values (p(0), q(0)) = (p0, q0) and for some scalar function H , called the
Hamiltonian. In this situation,H is an invariant of the problem. The evolution equation (4) can thus be regarded
as a differential equation on the manifold

M = {(p, q) ∈ Rd × Rd;H(p, q) = H(p0, q0)}.

Besides the Hamiltonian function, there might exist other invariants for such systems: when there exist d
invariants in involution, the system (4) is said to be integrable. Consider now the parallelogram P originating
from the point (p, q) ∈ R2d and spanned by the two vectors ξ ∈ R2d and η ∈ R2d, and let ω(ξ, η) be the sum
of the oriented areas of the projections over the planes (pi, qi) of P ,

ω(ξ, η) = ξTJη,

where J is the canonical symplectic matrix

J =

[
0 Id

−Id 0

]
.

A continuously differentiable map g from R2d to itself is called symplectic if it preserves ω, i.e. if

ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

A fundamental property of Hamiltonian systems is that their exact flow is symplectic. Integrable Hamiltonian
systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations,
as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction
of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations of
Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of
time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.

3.1.4. Differential-algebraic equations
Whenever the number of differential equations is insufficient to determine the solution of the system, it may
become necessary to solve the differential part and the constraint part altogether. Systems of this sort are
called differential-algebraic systems. They can be classified according to their index, yet for the purpose of
this expository section, it is enough to present the so-called index-2 systems

ẏ(t) = f(y(t), z(t)),

0 = g(y(t)),
(5)
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where initial values (y(0), z(0)) = (y0, z0) are given and assumed to be consistent with the constraint
manifold. By constraint manifold, we imply the intersection of the manifold

M1 = {y ∈ Rn, g(y) = 0}

and of the so-called hidden manifold

M2 = {(y, z) ∈ Rn × Rm,
∂g

∂y
(y)f(y, z) = 0}.

This manifold M = M1

⋂
M2 is the manifold on which the exact solution (y(t), z(t)) of (5) lives.

There exists a whole set of schemes which provide a numerical approximation lying on M1. Furthermore,
this solution can be projected on the manifold M by standard projection techniques. However, it it worth
mentioning that a projection destroys the symmetry of the underlying scheme, so that the construction of a
symmetric numerical scheme preserving M requires a more sophisticated approach.

3.2. Highly-oscillatory systems
Participants: François Castella, Philippe Chartier, Nicolas Crouseilles, Erwan Faou, Florian Méhats, Mo-
hammed Lemou, Gilles Vilmart.

second-order ODEs, oscillatory solutions, Schrödinger and wave equations, step size restrictions.

In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1) involves
fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much
cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the
number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

q̈ = −∇V (q) (6)

where the potential V (q) is a sum of potentials V = W + U acting on different time-scales, with ∇2W
positive definite and ‖∇2W‖ >> ‖∇2U‖. In order to get a bounded error propagation in the linearized
equations for an explicit numerical method, the step size must be restricted according to

hω < C,

whereC is a constant depending on the numerical method and where ω is the highest frequency of the problem,
i.e. in this situation the square root of the largest eigenvalue of∇2W . In applications to molecular dynamics for
instance, fast forces deriving from W (short-range interactions) are much cheaper to evaluate than slow forces
deriving from U (long-range interactions). In this case, it thus seems highly desirable to design numerical
methods for which the number of evaluations of slow forces is not (at least not too much) affected by the
presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the
Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one
indeed gets the time-dependent Schrödinger equation:

iψ̇(t) =
1

ε
H(t)ψ(t), (7)
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where H(t) is finite-dimensional matrix and where ε typically is the square-root of a mass-ratio (say
electron/ion for instance) and is small (ε ≈ 10−2 or smaller). Through the coupling with classical mechanics
(H(t) is obtained by solving some equations from classical mechanics), we are faced once again with two
different time-scales, 1 and ε. In this situation also, it is thus desirable to devise a numerical method able to
advance the solution by a time-step h > ε.

3.3. Geometric schemes for the Schrödinger equation
Participants: François Castella, Philippe Chartier, Erwan Faou, Florian Méhats, Gilles Vilmart.

Schrödinger equation, variational splitting, energy conservation.

Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy
preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian
structures. This is the case of the time-dependent Schrödinger equation, which we may write as

iε
∂ψ

∂t
= Hψ, (8)

where ψ = ψ(x, t) is the wave function depending on the spatial variables x = (x1, · · · , xN ) with xk ∈ Rd

(e.g., with d = 1 or 3 in the partition) and the time t ∈ R. Here, ε is a (small) positive number representing the
scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

k=1

ε2

2mk
∆xk

and V = V (x),

where mk > 0 is a particle mass and ∆xk
the Laplacian in the variable xk ∈ Rd, and where the real-valued

potential V acts as a multiplication operator on ψ.

The multiplication by i in (8) plays the role of the multiplication by J in classical mechanics, and the energy
〈ψ|H|ψ〉 is conserved along the solution of (8), using the physicists’ notations 〈u|A|u〉 = 〈u,Au〉 where 〈 , 〉
denotes the Hermitian L2-product over the phase space. In quantum mechanics, the number N of particles is
very large making the direct approximation of (8) very difficult.

The numerical approximation of (8) can be obtained using projections onto submanifolds of the phase space,
leading to various PDEs or ODEs: see [66], [65] for reviews. However the long-time behavior of these
approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite
dimensional. In the general case, it is very difficult to prove the preservation of qualitative properties of (8) such
as energy conservation or growth in time of Sobolev norms. The reason for this is that backward error analysis
is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

ψ1 = exp (−i(δt)V/2) exp (i(δt)∆) exp (−i(δt)V/2)ψ0 (9)

where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator
is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these
schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space
or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose
long-time properties turn out to be more tractable.
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3.4. High-frequency limit of the Helmholtz equation
Participant: François Castella.

waves, Helmholtz equation, high oscillations.

The Helmholtz equation models the propagation of waves in a medium with variable refraction index. It is a
simplified version of the Maxwell system for electro-magnetic waves.

The high-frequency regime is characterized by the fact that the typical wavelength of the signals under
consideration is much smaller than the typical distance of observation of those signals. Hence, in the high-
frequency regime, the Helmholtz equation at once involves highly oscillatory phenomena that are to be
described in some asymptotic way. Quantitatively, the Helmholtz equation reads

iαεuε(x) + ε2∆xuε + n2(x)uε = fε(x). (10)

Here, ε is the small adimensional parameter that measures the typical wavelength of the signal, n(x) is the
space-dependent refraction index, and fε(x) is a given (possibly dependent on ε) source term. The unknown
is uε(x). One may think of an antenna emitting waves in the whole space (this is the fε(x)), thus creating at
any point x the signal uε(x) along the propagation. The small αε > 0 term takes into account damping of the
waves as they propagate.

One important scientific objective typically is to describe the high-frequency regime in terms of rays
propagating in the medium, that are possibly refracted at interfaces, or bounce on boundaries, etc. Ultimately,
one would like to replace the true numerical resolution of the Helmholtz equation by that of a simpler,
asymptotic model, formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation, the specificity of the Helmholtz equation is
the following. While the wave equation typically describes the evolution of waves between some initial time
and some given observation time, the Helmholtz equation takes into account at once the propagation of waves
over infinitely long time intervals. Qualitatively, in order to have a good understanding of the signal observed
in some bounded region of space, one readily needs to be able to describe the propagative phenomena in the
whole space, up to infinity. In other words, the “rays” we refer to above need to be understood from the initial
time up to infinity. This is a central difficulty in the analysis of the high-frequency behaviour of the Helmholtz
equation.

3.5. From the Schrödinger equation to Boltzmann-like equations
Participant: François Castella.

Schrödinger equation, asymptotic model, Boltzmann equation.

The Schrödinger equation is the appropriate way to describe transport phenomena at the scale of electrons.
However, for real devices, it is important to derive models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows to obtain quantitative informa-
tion about electronic transport in crystals. It reads, in convenient adimensional units,

i∂tψ(t, x) = −1

2
∆xψ + V (x)ψ, (11)
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where V (x) is the potential and ψ(t, x) is the time- and space-dependent wave function. However, the size
of real devices makes it important to derive simplified models that are valid at a larger scale. Typically, one
wishes to have kinetic transport equations. As is well-known, this requirement needs one to be able to describe
“collisions” between electrons in these devices, a concept that makes sense at the macroscopic level, while
it does not at the microscopic (electronic) level. Quantitatively, the question is the following: can one obtain
the Boltzmann equation (an equation that describes collisional phenomena) as an asymptotic model for the
Schrödinger equation, along the physically relevant micro-macro asymptotics? From the point of view of
modelling, one wishes here to understand what are the “good objects”, or, in more technical words, what are the
relevant “cross-sections”, that describe the elementary collisional phenomena. Quantitatively, the Boltzmann
equation reads, in a simplified, linearized, form :

∂tf(t, x, v) =

∫
R3

σ(v, v′) [f(t, x, v′)− f(t, x, v)]dv′. (12)

Here, the unknown is f(x, v, t), the probability that a particle sits at position x, with a velocity v, at time t.
Also, σ(v, v′) is called the cross-section, and it describes the probability that a particle “jumps” from velocity
v to velocity v′ (or the converse) after a collision process.

4. Application Domains

4.1. Laser physics
Laser physics considers the propagation over long space (or time) scales of high frequency waves. Typically,
one has to deal with the propagation of a wave having a wavelength of the order of 10−6m, over distances
of the order 10−2m to 104m. In these situations, the propagation produces both a short-scale oscillation and
exhibits a long term trend (drift, dispersion, nonlinear interaction with the medium, or so), which contains
the physically important feature. For this reason, one needs to develop ways of filtering the irrelevant high-
oscillations, and to build up models and/or numerical schemes that do give information on the long-term
behavior. In other terms, one needs to develop high-frequency models and/or high-frequency schemes.

Generally speaking, the demand in developing such models or schemes in the context of laser physics, or
laser/matter interaction, is large. It involves both modeling and numerics (description of oscillations, structure
preserving algorithms to capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling, one would like to understand the very coupling
between a laser propagating in, say, a fiber, and the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is a Schrödinger like equation that
describes the evolution of the atoms, when coupled to the laser field. Here the laser field induces a potential
that acts directly on the atom, and the link between this potential and the laser itself is given by the so-called
dipolar matrix, a matrix made up of physical coefficients that describe the polarization of the atom under the
applied field.

The scientific objective here is twofold. First, one wishes to obtain tractable asymptotic models that average out
the high oscillations of the atomic system and of the laser field. A typical phenomenon here is the resonance
between the field and the energy levels of the atomic system. Second, one wishes to obtain good numerical
schemes in order to solve the Bloch equation, beyond the oscillatory phenomena entailed by this model.
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4.2. Molecular Dynamics
In classical molecular dynamics, the equations describe the evolution of atoms or molecules under the action
of forces deriving from several interaction potentials. These potentials may be short-range or long-range and
are treated differently in most molecular simulation codes. In fact, long-range potentials are computed at only a
fraction of the number of steps. By doing so, one replaces the vector field by an approximate one and alternates
steps with the exact field and steps with the approximate one. Although such methods have been known and
used with success for years, very little is known on how the “space" approximation (of the vector field) and
the time discretization should be combined in order to optimize the convergence. Also, the fraction of steps
where the exact field is used for the computation is mainly determined by heuristic reasons and a more precise
analysis seems necessary. Finally, let us mention that similar questions arise when dealing with constrained
differential equations, which are a by-product of many simplified models in molecular dynamics (this is the
case for instance if one replaces the highly-oscillatory components by constraints).

4.3. Plasma physics
The development of efficient numerical methods is essential for the simulation of plasmas and beams at the
kinetic level of description (Vlasov type equations). It is well known that plasmas or beams give rise to
small scales (Debye length, Larmor radius, gyroperiod, mean free path...) which make numerical simulations
challenging. Instead of solving the limit or averaged models by considering these small scales equal to zero,
our aim is to explore a different strategy, which consists in using the original kinetic equation. Specific
numerical scheme called ‘Asymptotic Preserving" scheme is then built to discretize the original kinetic
equation. Such a scheme allows to pass to the limit with no stability problems, and provide in the limit a
consistent approximation of the limit or average model. A systematic and robust way to design such a scheme
is the micro-macro decomposition in which the solution of the original model is decomposed into an averaged
part and a remainder.

5. New Results

5.1. Multi-revolution composition methods for highly oscillatory differential
equations
In [45], we introduce a new class of multi-revolution composition methods (MRCM) for the approximation of
the N th-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory
systems of differential equations, the technique benefits from the properties of standard composition methods:
it is intrinsically geometric and well-suited for Hamiltonian or divergence-free equations for instance. We
prove error estimates with error constants that are independent of the oscillatory frequency. Numerical
experiments, in particular for the nonlinear Schrödinger equation, illustrate the theoretical results, as well
as the efficiency and versatility of the methods.

5.2. Weak second order multi-revolution composition methods for highly
oscillatory stochastic differential equations with additive or
multiplicative noise
In [61], we introduce a class of numerical methods for highly oscillatory systems of stochastic differential
equations with general noncommutative noise. We prove global weak error bounds of order two uniformly
with respect to the stiffness of the oscillations, which permits to use large time steps. The approach is based
on the micro-macro framework of multi-revolution composition methods recently introduced for deterministic
problems and inherits its geometric features, in particular to design integrators preserving exactly quadratic
first integral. Numerical experiments, including the stochastic nonlinear Schrödinger equation with space-time
multiplicative noise, illustrate the performance and versatility of the approach.
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5.3. High order numerical approximation of the invariant measure of ergodic
SDEs
In [41], we introduce new sufficient conditions for a numerical method to approximate with high order of
accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the
weak order of accuracy of the method. We then present a systematic procedure based on the framework of
modified differential equations for the construction of stochastic integrators that capture the invariant measure
of a wide class of ergodic SDEs (Brownian and Langevin dynamics) with an accuracy independent of the weak
order of the underlying method. Numerical experiments confirm our theoretical findings.

5.4. PIROCK: a swiss-knife partitioned implicit-explicit orthogonal
Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction
problems with or without noise
In [13], a partitioned implicit-explicit orthogonal Runge-Kutta method (PIROCK) is proposed for the time
integration of diffusion-advection-reaction problems with possibly severely stiff reaction terms and stiff
stochastic terms. The diffusion terms are solved by the explicit second order orthogonal Chebyshev method
(ROCK2), while the stiff reaction terms (solved implicitly) and the advection and noise terms (solved
explicitly) are integrated in the algorithm as finishing procedures. It is shown that the various coupling
(between diffusion, reaction, advection and noise) can be stabilized in the PIROCK method. The method,
implemented in a single black-box code that is fully adaptive, provides error estimators for the various terms
present in the problem, and requires from the user solely the right-hand side of the differential equation.
Numerical experiments and comparisons with existing Chebyshev methods, IMEX methods and partitioned
methods show the efficiency and flexibility of our new algorithm.

5.5. An offline-online homogenization strategy to solve quasilinear two-scale
problems at the cost of one-scale problems
In [39], inspired by recent analyses of the finite element heterogeneous multiscale method and the reduced
basis technique for nonlinear problems, we present a simple and concise finite element algorithm for the
reliable and efficient resolution of elliptic or parabolic multiscale problems of nonmonotone type. Solutions
of appropriate cell problems on sampling domains are selected by a greedy algorithm in an offline stage and
assembled in a reduced basis (RB). This RB is then used in an online stage to solve two-scale problems at a
computational cost comparable to the single-scale case. Both the offline and the online cost are independent
of the smallest scale in the physical problem. The performance and accuracy of the algorithm are illustrated
on 2D and 3D stationary and evolutionary nonlinear multiscale problems.

5.6. Reduced basis finite element heterogeneous multiscale method for
quasilinear elliptic homogenization problems
In [40], a reduced basis nite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear
homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of
the micro problems needed to estimate the macroscopic data of the homogenized problem are selected
by a Greedy algorithm and computed in an online stage. It is shown that the use of reduced basis (RB)
for nonlinear numerical homogenization reduces considerably the computational cost of the nite element
heterogeneous multiscale method (FE-HMM). As the precomputed microscopic functions depend nonlinearly
on the macroscopic solution, we introduce a new a posteriori error estimator for the Greedy algorithm that
guarantees the convergence of the online Newton method. A priori error estimates and uniqueness of the
numerical solution are also established. Numerical experiments illustrate the e ciency of the proposed method.
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5.7. Weak second order explicit stabilized methods for stiff stochastic
differential equations
In [16], we introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs)
of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended
stability domains and do not suffer from the stepsize reduction faced by standard explicit methods. The family
is based on the standard second order orthogonal Runge-Kutta Chebyshev methods (ROCK2) for deterministic
problems. The convergence, and the mean-square and asymptotic stability properties of the methods are
analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial
differential equations are presented and confirm the theoretical results.

5.8. Mean-square A-stable diagonally drift-implicit integrators of weak second
order for stiff Itô stochastic differential equations
In [15], we introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô
stochastic differential equations with general non-commutative noise which have weak order 2 and deter-
ministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex
scalar linear test problem with multiplicative noise and improve significantly the stability properties of the
drift-diagonally-implicit methods previously introduced [K. Debrabant and A. Rößler, Appl. Num. Math., 59,
2009].

5.9. Two-Scale Macro-Micro decomposition of the Vlasov equation with a
strong magnetic field
In [25], we build a Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field.
This consists in writing the solution of this equation as a sum of two oscillating functions with circonscribed
oscillations. The first of these functions has a shape which is close to the shape of the Two-Scale limit of the
solution and the second one is a correction built to offset this imposed shape. The aim of such a decomposition
is to be the starting point for the construction of Two-Scale Asymptotic-Preserving Schemes.

5.10. A dynamic multi-scale model for transient radiative transfer calculations
In [33], a dynamic multi-scale model which couples the transient radiative transfer equation (RTE) and the
diffusion equation (DE) is proposed and validated. It is based on a domain decomposition method where the
system is divided into a mesoscopic subdomain, where the RTE is solved, and a macroscopic subdomain where
the DE is solved. A buffer zone is introduced between the mesoscopic and the macroscopic subdomains, as
proposed by Degond and Jin, who solve a coupled system of two equations, one at the mesoscopic and the
other at the macroscopic scale. The DE and the RTE are coupled through the equations inside the buffer zone,
instead of being coupled through a geometric interface like in standard domain decomposition methods. One
main advantage is that no boundary or interface conditions are needed for the DE. The model is compared
to Monte Carlo, finite volume and P1 solutions in one dimensional stationary and transient test cases, and
presents promising results in terms of trade-off between accuracy and computational requirements.

5.11. Quasi-periodic solutions of the 2D Euler equation
In [24], we consider the two-dimensional Euler equation with periodic boundary conditions. We construct
time quasi-periodic solutions of this equation made of localized travelling profiles with compact support
propagating over a stationary state depending on only one variable. The direction of propagation is orthogonal
to this variable, and the support is concentrated on flat strips of the stationary state. The frequencies of the
solution are given by the locally constant velocities associated with the stationary state.
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5.12. Optimization and parallelization of Emedge3D on shared memory
architecture
In [38], a study of techniques used to speedup a scientific simulation code is presented. The techniques include
sequential optimizations as well as the parallelization with OpenMP. This work is carried out on two different
multicore shared memory architectures, namely a cutting edge 8x8 core CPU and a more common 2x6 core
board. Our target application is representative of many memory bound codes, and the techniques we present
show how to overcome the burden of the memory bandwidth limit, which is quickly reached on multi-core
or many-core with shared memory architectures. To achieve efficient speedups, strategies are applied to lower
the computation costs, and to maximize the use of processors caches. Optimizations are: minimizing memory
accesses, simplifying and reordering computations, and tiling loops. On 12 cores processor Intel X5675,
aggregation of these optimizations results in an execution time 21.6 faster, compared to the original version
on one core.

5.13. Vlasov on GPU (VOG Project)
In [58], we are concerned with the numerical simulation of the Vlasov-Poisson set of equations using
semi- Lagrangian methods on Graphical Processing Units (GPU). To accomplish this goal, modifications to
traditional methods had to be implemented. First and foremost, a reformulation of semi-Lagrangian methods
is performed, which enables us to rewrite the governing equations as a circulant matrix operating on the
vector of unknowns. This product calculation can be performed efficiently using FFT routines. Second, to
overcome the limitation of single precision inherent in GPU, a δf type method is adopted which only needs
refinement in specialized areas of phase space but not throughout. Thus, a GPU Vlasov-Poisson solver can
indeed perform high precision simulations (since it uses very high order reconstruction methods and a large
number of grid points in phase space). We show results for rather academic test cases on Landau damping
and also for physically relevant phenomena such as the bump on tail instability and the simulation of Kinetic
Electrostatic Electron Nonlinear (KEEN) waves.

5.14. Uniformly accurate numerical schemes for highly oscillatory
Klein-Gordon and nonlinear Schrödinger equations
In [37], we are interested in the numerical simulation of nonlinear Schrödinger and Klein-Gordon equations.
We present a general strategy to construct numerical schemes which are uniformly accurate with respect to
the oscillation frequency. This is a stronger feature than the usual so called ”Asymptotic preserving" property,
the last being also satisfied by our scheme in the highly oscillatory limit. Our strategy enables to simulate
the oscillatory problem without using any mesh or time step refinement, and the orders of our schemes are
preserved uniformly in all regimes. In other words, since our numerical method is not based on the derivation
and the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, in
the highly oscillatory limit regime, and in the intermediate regime with the same order of accuracy. The method
is based on two main ingredients. First, we embed our problem in a suitable ”two-scale" reformulation with the
introduction of an additional variable. Then a link is made with classical strategies based on Chapman-Enskog
expansions in kinetic theory despite the dispersive context of the targeted equations, allowing to separate the
fast time scale from the slow one. Uniformly accurate (UA) schemes are eventually derived from this new
formulation and their properties and performances are assessed both theoretically and numerically.

5.15. Asymptotic preserving schemes for the Wigner-Poisson-BGK equations
in the diffusion limit
In [26], we focus on the numerical simulation of the Wigner-Poisson-BGK equation in the diffusion asymp-
totics. Our strategy is based on a ”micro-macro" decomposition, which leads to a system of equations that
couple the macroscopic evolution (diffusion) to a microscopic kinetic contribution for the fluctuations. A
semi-implicit discretization provides a numerical scheme which is stable with respect to the small parameter ε
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(mean free path) and which possesses the following properties: (i) it enjoys the asymptotic preserving property
in the diffusive limit; (ii) it recovers a standard discretization of the Wigner-Poisson equation in the collision-
less regime. Numerical experiments confirm the good behaviour of the numerical scheme in both regimes. The
case of a spatially dependent ε(x) is also investigated.

5.16. Existence and stability of solitons for fully discrete approximations of the
nonlinear Schrödinger equation
In [19], we study the long time behavior of a discrete approximation in time and space of the cubic nonlinear
Schrödinger equation on the real line. More precisely, we consider a symplectic time splitting integrator
applied to a discrete nonlinear Schrödinger equation with additional Dirichlet boundary conditions on a large
interval. We give conditions ensuring the existence of a numerical soliton which is close in energy norm to
the continuous soliton. Such result is valid under a CFL condition between the time and space stepsizes.
Furthermore we prove that if the initial datum is symmetric and close to the continuous soliton, then the
associated numerical solution remains close to the orbit of the continuous soliton for very long times.

5.17. Asymptotic preserving schemes for the Klein-Gordon equation in the
non-relativistic limit regime
In [32], we consider the Klein-Gordon equation in the non-relativistic limit regime, i.e. the speed of light c
tending to infinity. We construct an asymptotic expansion for the solution with respect to the small parameter
depending on the inverse of the square of the speed of light. As the first terms of this asymptotic can easily be
simulated our approach allows us to construct numerical algorithms that are robust with respect to the large
parameter c producing high oscillations in the exact solution.

5.18. Sobolev stability of plane wave solutions to the cubic nonlinear
Schrödinger equation on a torus
In [31], it is shown that plane wave solutions to the cubic nonlinear Schrödinger equation on a torus behave
orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over
long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small
in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation
and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.

5.19. Weak backward error analysis for overdamped Langevin equation
In [57], we consider an overdamped Langevin stochastic differential equation and show a weak backward
error analysis result for its numerical approximations defined by implicit methods. In particular, we prove that
the generator associated with the numerical solution coincides with the solution of a modified Kolmogorov
equation up to high order terms with respect to the stepsize. This implies that every measure of the numerical
scheme is close to a modified invariant measure obtained by asymptotic expansion. Moreover, we prove that,
up to negligible terms, the dynamic associated with the implicit scheme considered is exponentially mixing.

5.20. Weak backward error analysis for Langevin equation
In [56], We consider numerical approximations of stochastic Langevin equations by implicit methods. We
show a weak backward error analysis result in the sense that the generator associated with the numerical
solution coincides with the solution of a modified Kolmogorov equation up to high order terms with respect to
the stepsize. This implies that every measure of the numerical scheme is close to a modified invariant measure
obtained by asymptotic expansion. Moreover, we prove that, up to negligible terms, the dynamic associated
with the implicit scheme considered is exponentially mixing.
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5.21. Approximation of the invariant law of SPDEs: error analysis using a
Poisson equation for a full-discretization scheme
In [44], we study the long-time behavior of fully discretized semilinear SPDEs with additive space-time white
noise, which admit a unique invariant probability measure µ. We show that the average of regular enough
test functions with respect to the (possibly non unique) invariant laws of the approximations are close to the
corresponding quantity for µ.

More precisely, we analyze the rate of the convergence with respect to the different discretization parameters.
Here we focus on the discretization in time thanks to a scheme of Euler type, and on a Finite Element
discretization in space.

The results rely on the use of a Poisson equation; we obtain that the rates of convergence for the invariant
laws are given by the weak order of the discretization on finite time intervals: order 1/2 with respect to the
time-step and order 1 with respect to the mesh-size.

5.22. An asymptotic preserving scheme based on a new formulation for NLS in
the semiclassical limit
In [20], we consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a
phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose nov-
elty consists in including some asymptotically vanishing viscosity. We prove that the system is always locally
well-posed in a class of Sobolev spaces, and globally well-posed for a fixed positive Planck constant in the
one-dimensional case. We propose a second order numerical scheme which is asymptotic preserving. Before
singularities appear in the limiting Euler equation, we recover the quadratic physical observables as well as
the wave function with mesh size and time step independent of the Planck constant. This approach is also well
suited to the linear Schrodinger equation.

5.23. Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson
equations
The work [28] is devoted to the numerical simulation of a Vlasov-Poisson model describing a charged particle
beam under the action of a rapidly oscillating external field. We construct an Asymptotic Preserving numerical
scheme for this kinetic equation in the highly oscillatory limit. This scheme enables to simulate the problem
without using any time step refinement technique. Moreover, since our numerical method is not based on the
derivation of the simulation of asymptotic models, it works in the regime where the solution does not oscillate
rapidly, and in the highly oscillatory regime as well. Our method is based on a "two scale" reformulation of
the initial equation, with the introduction of an additional periodic variable.

5.24. Uniformly accurate numerical schemes for highly oscillatory
Klein-Gordon and nonlinear Schrödinger equations
The work [37] is devoted to the numerical simulation of nonlinear Schrödinger and Klein-Gordon equations.
We present a general strategy to construct numerical schemes which are uniformly accurate with respect to
the oscillation frequency. This is a stronger feature than the usual so called ”Asymptotic preserving" property,
the last being also satisfied by our scheme in the highly oscillatory limit. Our strategy enables to simulate
the oscillatory problem without using any mesh or time step refinement, and the orders of our schemes are
preserved uniformly in all regimes. In other words, since our numerical method is not based on the derivation
and the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly,
in the highly oscillatory limit regime, and in the intermediate regime with the same order of accuracy. In
the same spirit as in [28], the method is based on two main ingredients. First, we embed our problem in a
suitable ”two-scale" reformulation with the introduction of an additional variable. Then a link is made with
classical strategies based on Chapman-Enskog expansions in kinetic theory despite the dispersive context of
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the targeted equations, allowing to separate the fast time scale from the slow one. Uniformly accurate (UA)
schemes are eventually derived from this new formulation and their properties and performances are assessed
both theoretically and numerically.

5.25. On the controllability of quantum transport in an electronic
nanostructure
In [59], we investigate the controllability of quantum electrons trapped in a two-dimensional device, typically
a MOS field-effect transistor. The problem is modeled by the Schrödinger equation in a bounded domain
coupled to the Poisson equation for the electrical potential. The controller acts on the system through the
boundary condition on the potential, on a part of the boundary modeling the gate. We prove that, generically
with respect to the shape of the domain and boundary conditions on the gate, the device is controllable. We
also consider control properties of a more realistic nonlinear version of the device, taking into account the
self-consistent electrostatic Poisson potential.

5.26. The Interaction Picture method for solving the generalized nonlinear
Schrödinger equation in optics
The ”interaction picture” (IP) method is a very promising alternative to Split-Step methods for solving certain
type of partial differential equations such as the nonlinear Schrödinger equation involved in the simulation
of wave propagation in optical fibers. The method exhibits interesting convergence properties and is likely
to provide more accurate numerical results than cost comparable Split-Step methods such as the Symmetric
Split-Step method. In [42] we investigate in detail the numerical properties of the IP method and carry out a
precise comparison between the IP method and the Symmetric Split-Step method.

5.27. Solving highly-oscillatory NLS with SAM: numerical efficiency and
geometric properties
In [46], we present the Stroboscopic Averaging Method (SAM), recently introduced in [7,8,10,12], which
aims at numerically solving highly-oscillatory differential equations. More specifically, we first apply SAM
to the Schrödinger equation on the 1-dimensional torus and on the real line with harmonic potential, with
the aim of assessing its efficiency: as compared to the well-established standard splitting schemes, the stiffer
the problem is, the larger the speed-up grows (up to a factor 100 in our tests). The geometric properties of
SAM are also explored: on very long time intervals, symmetric implementations of the method show a very
good preservation of the mass invariant and of the energy. In a second series of experiments on 2-dimensional
equations, we demonstrate the ability of SAM to capture qualitatively the long-time evolution of the solution
(without spurring high oscillations).

5.28. Analysis of models for quantum transport of electrons in graphene layers
In [51], we present and analyze two mathematical models for the self consistent quantum transport of electrons
in a graphene layer. We treat two situations. First, when the particles can move in all the plane R2, the model
takes the form of a system of massless Dirac equations coupled together by a selfconsistent potential, which
is the trace in the plane of the graphene of the 3D Poisson potential associated to surface densities. In this
case, we prove local in time existence and uniqueness of a solution in Hs(R2), for s > 3/8 which includes in
particular the energy space H1/2(R2). The main tools that enable to reach s ∈ (3/8, 1/2) are the dispersive
Strichartz estimates that we generalized here for mixed quantum states. Second, we consider a situation where
the particles are constrained in a regular bounded domain Ω. In order to take into account Dirichlet boundary
conditions which are not compatible with the Dirac Hamiltonian H_0, we propose a different model built on
a modified Hamiltonian displaying the same energy band diagram as H_0 near the Dirac points. The well-
posedness of the system in this case is proved in Hs_A, the domain of the fractional order Dirichlet Laplacian
operator, for 1/2 ≤ s.
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5.29. Analysis of a large number of Markov chains competing for transitions
In [18], we consider the behavior of a stochastic system composed of several identically distributed, but
non independent, discrete-time absorbing Markov chains competing at each instant for a transition. The
competition consists in determining at each instant, using a given probability distribution, the only Markov
chain allowed to make a transition. We analyze the first time at which one of the Markov chains reaches its
absorbing state. When the number of Markov chains goes to infinity, we analyze the asymptotic behavior
of the system for an arbitrary probability mass function governing the competition. We give conditions for
the existence of the asymptotic distribution and we show how these results apply to cluster-based distributed
systems when the competition between the Markov chains is handled by using a geometric distribution.

5.30. Markov Chains Competing for Transitions: Application to Large-Scale
Distributed Systems
In [17], we consider the behavior of a stochastic system composed of several identically distributed, but
non independent, discrete-time absorbing Markov chains competing at each instant for a transition. The
competition consists in determining at each instant, using a given probability distribution, the only Markov
chain allowed to make a transition. We analyze the first time at which one of the Markov chains reaches its
absorbing state. We obtain its distribution and its expectation and we propose an algorithm to compute these
quantities. We also exhibit the asymptotic behavior of the system when the number of Markov chains goes to
infinity. Actually, this problem comes from the analysis of large-scale distributed systems and we show how
our results apply to this domain.

5.31. Existence of densities for the 3D Navier–Stokes equations driven by
Gaussian noise
In [30], we prove three results on the existence of densities for the laws of finite dimensional functionals of the
solutions of the stochastic Navier-Stokes equations in dimension 3. In particular, under very mild assumptions
on the noise, we prove that finite dimensional projections of the solutions have densi- ties with respect to the
Lebesgue measure which have some smoothness when measured in a Besov space. This is proved thanks to a
new argument inspired by an idea introduced by N. Fournier and J. Printems.

5.32. Invariant measure of scalar first-order conservation laws with stochastic
forcing
In [50], we assume an hypothesis of non-degeneracy of the flux and study the long-time behaviour of periodic
scalar first-order conservation laws with stochastic forcing in any space dimension. For sub-cubic fluxes,
we show the existence of an invariant measure. Moreover for sub-quadratic fluxes we show uniqueness and
ergodicity of the invariant measure. Also, since this invariant measure is supported by Lp for some p small,
we are led to generalize to the stochastic case the theory of L1 solutions developed by Chen and Perthame.

5.33. Degenerate Parabolic Stochastic Partial Differential Equations:
Quasilinear case
In [49], we study the Cauchy problem for a quasilinear degenerate parabolic stochastic partial differential
equation driven by a cylindrical Wiener process. In particular, we adapt the notion of kinetic formulation
and kinetic solution and develop a well-posedness theory that includes also an L1-contraction property. In
comparison to the previous works of the authors concerning stochastic hyperbolic conservation laws and
semilinear degenerate parabolic SPDEs, the present result contains two new ingredients that provide simpler
and more effective method of the proof: a generalized Itô formula that permits a rigorous derivation of the
kinetic formulation even in the case of weak solutions of certain nondegenerate approximations and a direct
proof of strong convergence of these approximations to the desired kinetic solution of the degenerate problem.
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5.34. Existence of densities for stable-like driven SDE’s with Hölder
continuous coefficients
In [29], we consider a multidimensional stochastic differential equation driven by a stable-like Lévy process.
We prove that the law of the solution immediately has a density in some Besov space, under some non-
degeneracy condition on the driving Lévy process and some very light Hölder-continuity assumptions on the
drift and diffusion coefficients.

5.35. Ergodicity results for the stochastic Navier-Stokes equations: an
introduction
In the chapter [36], we give an overview of the results on ergodicity for the stochastic Navier-Stokes equations.
We first explain the basis on SPDEs and on the concept of invariant measures and ergodicity. Then, in the 2D
case, we introduce progressively the various methods, finishing with a celebrated result due to M. Hairer and
J. Mattingly on ergodicity with very degenerated noises. In the 3D case, the theory is much less complete.
Nonetheles, we show that it is possible to construct Markov evolutions and, under some non degenary
assumptions on the noise, to obtain ergodicity.

5.36. Weak truncation error estimates for elliptic PDEs with lognormal
coefficients
In [22], we are interested in the weak error committed on the solution of an elliptic partial differential
equation with a lognormal coefficient, resulting from the approximation of the lognormal coefficient through a
Karhunen-Loéve expansion. We improve results of a previous work, in which Lp-estimates of the weak error
are provided. Only small enough values of p (the corresponding values of p depend on the space dimension)
could be considered and such bounds are not sufficient to be applied to practical cases. Moreover, the
optimality of this weak order (which turns out to be twice the strong order) has not been studied numerically.
Therefore, the aim of this paper is double. First we improve drastically the weak error estimate by providing
a bound of the C1-norm of the weak error. This requires regularity results in Hölder spaces, with explicit
bounds for the constants. We also consider much more general test functions in the definition of the weak
error. Finally, we show the optimality of the weak order and illustrate this weak convergence with numerical
results.

5.37. Optimized high-order splitting methods for some classes of parabolic
equations
In [21], we are concerned with the numerical solution obtained by splitting methods of certain parabolic
partial differential equations. Splitting schemes of order higher than two with real coefficients necessarily
involve negative coefficients. It has been demonstrated that this second-order barrier can be overcome by using
splitting methods with complex-valued coefficients (with positive real parts). In this way, methods of orders
3 to 14 by using the Suzuki-Yoshida triple (and quadruple) jump composition procedure have been explicitly
built. Here we reconsider this technique and show that it is inherently bounded to order 14 and clearly sub-
optimal with respect to error constants. As an alternative, we solve directly the algebraic equations arising
from the order conditions and construct methods of orders 6 and 8 that are the most accurate ones available at
present time, even when low accuracies are desired. We also show that, in the general case, 14 is not an order
barrier for splitting methods with complex coefficients with positive real part by building explicitly a method
of order 16 as a composition of methods of order 8.
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5.38. Higher-Order Averaging, Formal Series and Numerical Integration III:
Error Bounds
In earlier papers, it has been shown how formal series like those used nowadays to investigate the properties
of numerical integrators may be used to construct high-order averaged systems or formal first integrals of
Hamiltonian problems. With the new approach the averaged system (or the formal first integral) may be written
down immediately in terms of (i) suitable basis functions and (ii) scalar coefficients that are computed via
simple recursions. In [23], we show how the coefficients/basis functions approach may be used advantageously
to derive exponentially small error bounds for averaged systems and approximate first integrals.
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possessing strong geometric properties such as Hamiltonian systems or stochastic differential
equations. Use intensive numerical simulations to discover and analyze new nonlinear phenomena.

6.2.2. Collaborations in European Programs, except FP7
ANR Programme blanc international (BLAN)

LODIQUAS 2012-2015

Low DImensional QUANtum Systems

Leaders: N. Mauser (Univ. Vienna) and F. Castella (IPSO).

https://sites.google.com/site/anrgypsi/
http://shirikyan.u-cergy.fr/stosymap.html
 http://www.irisa.fr/ipso/perso/faou/geopardi.html
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Participants: François Castella, Philippe Chartier, Florian Me´hats, Mohammed Lemou.

Fundings for 4 postdocs (48 months) and one pre-doc (36 months).

The whole project involves the following researchers : Norbert Mauser (Vienna), Erich Gornik
(Vienna), Mechthild Thalhammer (Innsbruck), Christoph Naegerl (Innsbruck), Jörg Schmiedmayer
(Vienna), Hans-Peter Stimming (Vienna). François Castella (IPSO), Florian Méhats (IPSO), Fran-
cis Nier (Rennes), Raymond El Hajj (Rennes), Mohammed Lemou (IPSO), Claudia Negulsecu
(Toulouse), Fanny Delebecque (Toulouse), Stéphane Descombes (Nice), Philippe Chartier (IPSO),
Christophe Besse (Lille).

Abstract: Quantum technology as the application of quantum effects in macroscopic devices has an
increasing importance, not only for far future goals like the quantum computer, but already now or
in the near future. The present project is mainly concerned with the mathematical and numerical
analysis of these objects, in conjunction with experimental physicists. On the side of fermions
quantum electronic structures like resonant tunnelling diodes show well studied non classical effects
like a negative differential resistance that are exploited for novel devices. On the side of bosons the
creation and manipulation of Bose Einstein Condensates (the first creation of BECs by Ketterle et al
merited a Nobel prize) has become a standard technique that allows to study fundamental quantum
concepts like matter-wave duality with increasingly large objects and advanced quantum effects
like decoherence, thermalization, quantum chaos. In state-of-the-art experiments e.g. with ultracold
atoms in optical lattices the bosonic or fermionic nature of quantum objects can change and it makes
a lot of sense to treat the models in parallel in the development of mathematical methods. The
experimental progress in these fields is spectacular, but the mathematical modelling and analysis as
well as the numerical simulation are lagging behind. Low dimensional models are mostly introduced
in a heuristic way and there is also a need for systematic derivations and comparison with the 3-
d models. To close the gap is a main goal of this project that aims to deliver reliable tools and
programme packages for the numerical simulation of different classes of quantum systems modelled
by partial differential equation of NLS type. Virtually all participants have a strong track record of
international collaboration, they grew up with the concept of the European Research Area where
science knows no boundaries and scientists used to work in different countries, as it was the case in
a pronounced way in mathematics and in quantum physics in the thirties of the last century. The Pre-
and Post-Docs to be funded by this project will be trained in this spirit of mobility between scientific
fields and between places.

6.3. International Initiatives
6.3.1. Participation In other International Programs

• PTDC/EMS-ENE FCT (Fundação para a Ciência e a Tecnologia, Portugal): 2013-2014;
Participant: N. Crouseilles;
Leader: M. Roger

• IFCAM (Institute France-India for Applied Mathematics, India): 2013;
Participant: N. Crouseilles and M. Lemou;
Leaders: R. Raghurama, M. Lemou

6.4. International Research Visitors
6.4.1. Visits of International Scientists

• A. Debussche invited Y. Bakhtin (Georgia Tech., USA) and F. Baudoin (Purdue, USA) for a one
month visit.

• L. Einkemmer, University of Innsbrück, one week, july 2013.

• A. Ruhi, Indian Institute of Sciences, 2 months, september-october 2013.
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• R. Raghurama, Indian Institute of Sciences, two weeks, october 2013.

• Yong Zhang, under contract in Vienna, has been invited for several periods in Rennes (4 months
altogether).

6.4.2. Visits to International Teams
• G. Vilmart: EPF Lausanne (Switzerland), invitation by Assyr Abdulle in the chair of numerical

analysis and computational mathematics, several 1-2 weeks visits (totalizing 2 months).

• G. Vilmart: Invited research and teaching position at the University of Geneva, Section of Mathe-
matics, for the period 09/2013-08/2014.

• N. Crouseilles visited the group of E. Sonnendrücker (IPP Garching, Germany), one week (december
2012).

• N. Crouseilles and E. Faou visited the group of A. Ostermann (University of Innsbrück, Austria),
one week (march 2013).

• N. Crouseilles visited the group of P. Coelho (Universitad tecnico de Lisboa, Portugal), one week
(july 2013).

• N. Crouseilles and M. Lemou visited the group of R. Raghurama (Indian Institute of Sciences,
Bangalore (India)), 2 weeks (december 2013).

7. Dissemination

7.1. Scientific Animation
7.1.1. Editorial activities

• P. Chartier is member of the editorial board of “M2AN"

• P. Chartier is member of the editorial board of “ESAIM Proceedings"

• P. Chartier is member of the editorial board of “Mathematical Analysis"

• N. Crouseilles is member of the editorial board of "International Journal of Analysis" http://www.
hindawi.com/journals/analysis/

• A. Debussche is editor in Chief of “Stochastic Partial Differential Equations: analysis and computa-
tions".

• A. Debussche is member of the editorial board of “Potential Analysis", Differential and Integral
Equations.

• A. Debussche is member of the editorial board of “Differential and Integral Equations".

• A. Debussche is member of the editorial board of “ESAIM: Proceedings".

• A. Debussche is member of the editorial board of the collection: “Mathématiques & Applications",
SMAI, Springer.

• M. Lemou is associate editor of “Annales de la faculté de Toulouse"

7.1.2. Conference and workshop organization
• P. Chartier was a member of the scientific committees of SciCADE 2013 and ENUMATH 2013.

• A. Debussche was the main organizer of the thematic semester Perspectives in Analysis and
Probability organized by the Lebesgue Center in Nantes and Rennes from april to september (see:
http://www.lebesgue.fr/content/sem2013-perspectives-analysis-and-probability).

• A. Debussche was in the scientific committee of the conference Probability and PDEs, Centro de
Giorgi, Pisa, may 20-24, 2013.

http://www.hindawi.com/journals/analysis/
http://www.hindawi.com/journals/analysis/
http://www.lebesgue.fr/content/sem2013-perspectives-analysis-and-probability
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• E. Faou organized with J. Erhel (Rennes) and T. Lelièvre (CERMICS) the conference NASDPE13,
Numerical analysis of stochastic Partial Differential equations, September 10-11, Rennes, France.

• N. Crouseilles co-organized the workshop on AP scheme (with C. Negulescu, F. Deluzet, C. Besse),
Porquerolles, France (9-15 june, 2013).

• P. Chartier and M. Lemou organized a minisymposium on "Numerical schemes for highly oscillatory
problems". ENUMATH, Lausanne, 25-30 august.

• M. Lemou organized a minisymposium on "Asymptotic preserving schemes for kinetic and related
models". Hong-Kong, 07-11 January 2013.

• M. Lemou and F. Méhats were scientific advisors in the IHP semester Gravasco "N-body gravita-
tional dynamical systems from N=2 to infinity" and were co-organizers of the workshop "Dynamics
& Kinetic theory of self-gravitating systems" in this semester.

• F. Méhats was co-organizer of the workshop "Confined Quantum Systems: Modeling, Analysis and
Computation" in Vienna.

7.1.3. Administrative activities
• P. Chartier is member of the bureau of the Comité des Projets at Inria-Rennes.
• A. Debussche leads the Lebesgue Center with San Vu Ngoc (coordinator) and L. Guillopé.
• A. Debussche is a member of the administrative board of the ENS Cachan.
• M. Lemou is partly in charge of the Master 2
• M. Lemou is member of the scientific committee of the Lebesgue Center (Labex)
• F. Méhats is member of the CNU, Section 26.
• F. Méhats is the head of the numerical analysis department of IRMAR.
• G. Vilmart was partly in charge of the weekly numerical analysis seminar at ENS Rennes “Groupe

de travail: application des mathématiques”.
• N. Crouseilles was partly in charge of the weekly numerical analysis seminar at ENS Rennes

“Groupe de travail : application des mathématiques”.

7.1.4. Talks in seminars and conferences, mini-courses
• E. Faou was invited at the Séminaire de Mathématiques Appliquées du Collège de France.
• A. Debussche gave a mini-course on Stochastic equations and control theory, in the conference

Mathematical Control in Trieste, SISSA, Trieste, Dec. 2nd-6th, 2013.
• A. Debussche gave a mini-course on Introduction aux EDPS in the school École Interdisciplinaire à

Rennes, Rennes, oct. 8-10, 2013.
• A. Debussche was gave a plenary talk in the conference Theory and Applications of Stochastic PDEs,

IMA, Minneapolis, Jan. 14-18, 2013.
• F. Méhats and M. Lemou were invited to give a course on stability problems in gravitational models

in the IHP Gravasco semester.
• G. Vilmart was keynote speaker in NASPDE workshop (Numerical Analysis of Stochastic PDEs),

Rennes, 10-11 Sept., 2013.
• G. Vilmart was keynote speaker in the workshop on Multiscale methods and Asymptotic-Preserving

schemes, Porquerolles island, June 09-15, 2013.

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Licence 3: P. Chartier, “Equations différentielles", 36, L3, ENS Cachan-Bruz
Master 2 : P. Chartier, “Intégration numérique géométrique" , 12H, M2, University of Rennes 1
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Master 2: N. Crouseilles, “Numerical methods for kinetic equations", 18H, M2, University of Rennes
1
Master 2: E. Faou, “Modélisation et analyse numérique des EDPs", ENS Paris, in collaboration with
D. Lannes
Master 2: M. Lemou, “Equations hyperboliques et lois de conservation", and “Méthodes numériques
pour les modèles cinétiques".
Master 1: M. Lemou, “Theory of distributions" and “Equations elliptiques".

7.2.2. Supervision
• N. Crouseilles: co-advising (with M. Mehrenberger) of Christophe Steiner PhD (second year in

Strasbourg University), ministry grant.
• N. Crouseilles: co-advising (with S. Genaud) of Matthieu Kuhn PhD (second year in Strasbourg

University), ANR "E2T2" grant.
• N. Crouseilles: co-advising (with M. Mehrenberger) of Pierre Glanc PhD (third year in Strasbourg

University), Inria-Cordi grant.
• N. Crouseilles: co-advising (with M. Lemou) of H. Hivert PhD (first year in Rennes university), ENS

grant.
• N. Crouseilles: co-advising (with R. Raghurama and M. Lemou) of A. Ruhi PhD (second year in

IISc), Indian grant.
• F. Méhats is co-supervisor of the PhD thesis of G. Leboucher (with P. Chartier).
• F. Méhats is co-supervisor of the PhD thesis of M. Tusseau (with A. Debussche).
• A. Debussche supervizes the Phd theses of: M. Hofmanova (defended in july 2013), M. Kopec

(defense scheduled on june 2014), S. De Moor (defense scheduled on june 2014).
7.2.3. Juries

• P. Chartier was referee of the thesis of C. Zbinden (Geneva, supervised by E. Hairer), november.
• P. Chartier was referee of the thesis of H. Xue (Bergen, Supervised by A. Zanna), november.
• P. Chartier was member of the HDR jury of G. Vilmart, july.
• N. Crouseilles: member of the PHD jury of C. Caldini-Queiros, 15 november 2013.
• F. Méhats was referee of the thesis of M. Lutz (Strasbourg, supervised by E. Frenod and E.

Sonnendrücker).
• F. Méhats was referee of the thesis of J. Sabin (Cergy, supervised by M. Lewin).
• M. Lemou was referee of the PhD thesis of F. Doisneau: Ecole Centrale de Paris, april 2013.
• M. Lemou was member of the Jury for the PhD thesis of E. Franck: Univesity Paris 6, october 2013.

7.3. Popularization
• Web interview of E. Faou: A l’occasion de la remise de la médaille Blaise Pascal (2013), Inria

website.
• In http://interstices.info/planetes (2013), popularization article on the field of geometric numerical

integration, published in “Interstices”. Theme “Mathématiques de la planète Terre 2013” and Theme
2012-2013 “Invariants et similitudes” of TIPE in preparatory classes.

• Interview (June 2012) of M. Lemou for the journal "Science de l’Ouest" on the stability of galactic
models. and publication of a popularized article: “Les mathématiciens déchiffrent l’univers" in the
the journal “Espace des sciences", Nov 2012.

• M. Lemou and F. Méhats wrote a popularized scientific text in a CNRS letter “Lettre de l’INSMI",
june 25th, 2012.
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