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Administrative Assistant
Anne-Laure Gautier [Inria]

2. Overall Objectives

2.1. Presentation
Algorithmic number theory dates back to the dawn of mathematics itself, cf. Eratosthenes’s sieve to enumerate
consecutive prime numbers. With the arrival of computers, previously unsolvable problems have come into
reach, which has boosted the development of more or less practical algorithms for essentially all number
theoretic problems. The field is now mature enough for a more computer science driven approach, taking into
account the theoretical complexities and practical running times of the algorithms.

Concerning the lower level multiprecision arithmetic, folklore has asserted for a long time that asymptotically
fast algorithms such as Schönhage–Strassen multiplication are impractical; nowadays, however, they are used
routinely. On a higher level, symbolic computation provides numerous asymptotically fast algorithms (such as
for the simultaneous evaluation of a polynomial in many arguments or linear algebra on sparse matrices),
which have only partially been exploited in computational number theory. Moreover, precise complexity
analyses do not always exist, nor do sound studies to choose between different algorithms (an exponential
algorithm may be preferable to a polynomial one for a large range of inputs); folklore cannot be trusted in a
fast moving area such as computer science.
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Another problem is the reliability of the computations; many number theoretic algorithms err with a small
probability, depend on unknown constants or rely on a Riemann hypothesis. The correctness of their output
can either be ensured by a special design of the algorithm itself (slowing it down) or by an a posteriori
verification. Ideally, the algorithm outputs a certificate, providing an independent fast correctness proof. An
example is integer factorisation, where factors are hard to obtain but trivial to check; primality proofs have
initiated sophisticated generalisations.

One of the long term goals of the LFANT project team is to make an inventory of the major number theoretic
algorithms, with an emphasis on algebraic number theory and arithmetic geometry, and to carry out complexity
analyses. So far, most of these algorithms have been designed and tested over number fields of small degree
and scale badly. A complexity analysis should naturally lead to improvements by identifying bottlenecks,
systematically redesigning and incorporating modern asymptotically fast methods.

Reliability of the developed algorithms is a second long term goal of our project team. Short of proving the
Riemann hypothesis, this could be achieved through the design of specialised, slower algorithms not relying
on any unproven assumptions. We would prefer, however, to augment the fastest unproven algorithms with the
creation of independently verifiable certificates. Ideally, it should not take longer to check the certificate than
to generate it.

All theoretical results are complemented by concrete reference implementations in PARI/GP, which allow to
determine and tune the thresholds where the asymptotic complexity kicks in and help to evaluate practical
performances on problem instances provided by the research community. Another important source for
algorithmic problems treated by the LFANT project team is modern cryptology. Indeed, the security of all
practically relevant public key cryptosystems relies on the difficulty of some number theoretic problem; on the
other hand, implementing the systems and finding secure parameters require efficient algorithmic solutions to
number theoretic problems.

2.2. Highlights of the Year
V. Verneuil’s PhD thesis work, co-supervised by K. Belabas and carried out in the company Inside Secure, has
been awarded the “Prix de thèse AMIES 2013” of AMIES, l’Agence pour les Mathématiques en Interaction
avec l’Entreprise et la Société. The prize recognises outstanding work securing elliptic curve cryptographic
systems against side-channel attacks on smartcards and an exceptional integration into the company, see http://
www.agence-maths-entreprises.fr/a/?q=fr/node/292.

After two years of development, version 2.6.0 of the Pari/GP computer algebra system has been released,
incorporating numerous improvements related to the programming language and the implementation of
number fields, finite fields and elliptic curves. The new release maintains Pari/GP as the world leader for
number theoretic computations.

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Athanasios Angelakis, Karim Belabas, Julio Brau, Jean-Paul Cerri, Henri
Cohen, Jean-Marc Couveignes, Andreas Enge, Pierre Lezowski, Nicolas Mascot, Aurel Page.

Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [5]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

http://www.agence-maths-entreprises.fr/a/?q=fr/node/292
http://www.agence-maths-entreprises.fr/a/?q=fr/node/292
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The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by
one element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of
ideals then implies the unique factorisation of numbers. In general, this is not the case, and the class group
ClK of ideals of OK modulo principal ideals and its class number hK = |ClK | measure how far OK is from
behaving like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and −1, the unit structure
in general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulator
RK measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [32] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Julio Brau, Jean-Marc Couveignes, Andreas Enge, Nicolas Mascot, Jérôme
Milan, Damien Robert, Vincent Verneuil.

Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y ) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the Jacobian JacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
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function field of C is KC = Fq(X)[Y ]/(C); it contains the coordinate ring OC = Fq[X,Y ]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genus g is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairing en on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge, Nicolas Mascot, Enea
Milio, Aurel Page, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [39], for more background material, [37]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class field HK of K.

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q( 3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois group GalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular value j(τ) for a
complex valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK
allows to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more
involved construction can be used for hyperelliptic curves. This direct application of complex multiplication
yields algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.
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A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

4. Application Domains

4.1. Number theory
Being able to compute quickly and reliably algebraic invariants is an invaluable aid to mathematicians: It
fosters new conjectures, and often shoots down the too optimistic ones. Moreover, a large body of theoretical
results in algebraic number theory has an asymptotic nature and only applies for large enough inputs;
mechanised computations (preferably producing independently verifiable certificates) are often necessary to
finish proofs.

For instance, many Diophantine problems reduce to a set of Thue equations of the form P (x, y) = a for an
irreducible, homogeneous P ∈ Z[x, y], a ∈ Z, in unknown integers x, y. In principle, there is an algorithm
to solve the latter, provided the class group and units of a rupture field of P are known. Since there is no
other way to prove that the full set of solutions is obtained, these algebraic invariants must be computed and
certified, preferably without using the GRH.

Deeper invariants such as the Euclidean spectrum are related to more theoretical concerns, e.g., determining
new examples of principal, but not norm-Euclidean number fields, but could also yield practical new
algorithms: Even if a number field has class number larger than 1 (in particular, it is not norm-Euclidean),
knowing the upper part of the spectrum should give a partial gcd algorithm, succeeding for almost all pairs of
elements of OK . As a matter of fact, every number field which is not a complex multiplication field and whose
unit group has rank strictly greater than 1 is almost norm-Euclidean [34], [35].

Algorithms developed by the team are implemented in the free PARI/GP system for number theory maintained
by K. Belabas, which is a reference and the tool of choice for the worldwide number theory community.

4.2. Cryptology
Public key cryptology has become a major application domain for algorithmic number theory. This is already
true for the ubiquitous RSA system, but even more so for cryptosystems relying on the discrete logarithm
problem in algebraic curves over finite fields [6]. For the same level of security, the latter require smaller key
lengths than RSA, which results in a gain of bandwidth and (depending on the precise application) processing
time. Especially in environments that are constrained with respect to space and computing power such as
smart cards and embedded devices, algebraic curve cryptography has become the technology of choice. Most
of the research topics of the LFANT team concern directly problems relevant for curve-based cryptology: The
difficulty of the discrete logarithm problem in algebraic curves determines the security of the corresponding
cryptosystems. Complex multiplication, point counting and isogenies provide, on one hand, the tools needed
to create secure instances of curves. On the other hand, isogenies have been found to have direct cryptographic
applications to hash functions [36] and encryption [43]. Pairings in algebraic curves have proved to be a rich
source for novel cryptographic primitives. Class groups of number fields also enter the game as candidates for
algebraic groups in which cryptosystems can be implemented. However, breaking these systems by computing
discrete logarithms has proved to be easier than in algebraic curves; we intend to pursue this cryptanalytic
strand of research.

Apart from solving specific problems related to cryptology, number theoretic expertise is vital to provide
cryptologic advice to industrial partners in joint projects. It is to be expected that continuing pervasiveness
and ubiquity of very low power computing devices will render the need for algebraic curve cryptography more
pressing in coming years.
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5. Software and Platforms

5.1. Pari/Gp
Participants: Karim Belabas [correspondent], Bill Allombert, Henri Cohen, Andreas Enge.

http://pari.math.u-bordeaux.fr/

PARI/GP is a widely used computer algebra system designed for fast computations in number theory
(factorisation, algebraic number theory, elliptic curves, ...), but it also contains a large number of other
useful functions to compute with mathematical entities such as matrices, polynomials, power series, algebraic
numbers, etc., and many transcendental functions.

• PARI is a C library, allowing fast computations.

• GP is an easy-to-use interactive shell giving access to the PARI functions.

• gp2c, the GP-to-C compiler, combines the best of both worlds by compiling GP scripts to the C
language and transparently loading the resulting functions into GP; scripts compiled by gp2c will
typically run three to four times faster.

• Version of PARI/GP: 2.5.5

• Version of gp2c: 0.0.8

• License: GPL v2+

• Programming language: C

5.2. GNU MPC
Participants: Andreas Enge [correspondent], Mickaël Gastineau [CNRS], Philippe Théveny [INRIA project-
team ARIC], Paul Zimmermann [INRIA project-team CARAMEL].

http://mpc.multiprecision.org/.

GNUMPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct
rounding of the result. It is built upon and follows the same principles as GNU MPFR.

It is a prerequisite for the GNU compiler collection GCC since version 4.5, where it is used in the C and Fortran
front ends for constant folding, the evaluation of constant mathematical expressions during the compilation of
a program. Since 2011, it is an official GNU project.

2012 has seen the first release of the major version 1.0.

• Version: 1.0.1 Fagus silvatica

• License: LGPL v3+

• ACM: G.1.0 (Multiple precision arithmetic)

• AMS: 30.04 Explicit machine computation and programs

• APP: Dépôt APP le 2003-02-05 sous le numéro IDDN FR 001 060029 000 R P 2003 000 10000

• Programming language: C

5.3. MPFRCX
Participant: Andreas Enge.

http://mpfrcx.multiprecision.org/

http://pari.math.u-bordeaux.fr/
http://mpc.multiprecision.org/
http://mpfrcx.multiprecision.org/
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MPFRCX is a library for the arithmetic of univariate polynomials over arbitrary precision real (MPFR) or
complex (MPC) numbers, without control on the rounding. For the time being, only the few functions needed
to implement the floating point approach to complex multiplication are implemented. On the other hand, these
comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

• Version: 0.4.2 Cassava

• License: LGPL v2.1+

• Programming language: C

5.4. CM
Participant: Andreas Enge.

http://cm.multiprecision.org/

The CM software implements the construction of ring class fields of imaginary quadratic number fields and
of elliptic curves with complex multiplication via floating point approximations. It consists of libraries that
can be called from within a C program and of executable command line applications. For the implemented
algorithms, see [8].

• Version: 0.2 Blindhühnchen

• License: GPL v2+

• Programming language: C

5.5. AVIsogenies
Participants: Damien Robert [correspondent], Gaëtan Bisson, Romain Cosset [INRIA project-team
CARAMEL].

http://avisogenies.gforge.inria.fr/.

AVISOGENIES (Abelian Varieties and Isogenies) is a MAGMA package for working with abelian varieties,
with a particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (`, `)-isogenies between Jacobian varieties of genus-two hyper-
elliptic curves over finite fields of characteristic coprime to `; practical runs have used values of ` in the
hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

• Version: 0.6

• License: LGPL v2.1+

• Programming language: Magma

5.6. APIP
Participant: Jérôme Milan.

http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

APIP, Another Pairing Implementation in PARI, is a library for computing standard and optimised variants of
most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

http://cm.multiprecision.org/
http://avisogenies.gforge.inria.fr/
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
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The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi-Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

• Version: 2012-10-17

• License: GPL v2+

• Programming language: C with libpari

5.7. CMH
Participants: Andreas Enge, Emmanuel Thomé [INRIA project-team CARAMEL].

http://cmh.gforge.inria.fr/

CMH computes Igusa class polynomials, parameterising two-dimensional abelian varieties (or, equivalently,
Jacobians of hyperelliptic curves of genus 2) with given complex multiplication.

• Version: development snapshot

• License: GPL v3+

• Programming language: C

5.8. Cubic
Participant: Karim Belabas.

http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz

CUBIC is a stand-alone program that prints out generating equations for cubic fields of either signature and
bounded discriminant. It depends on the PARI library. The algorithm has quasi-linear time complexity in the
size of the output.

• Version: 1.2

• License: GPL v2+

• Programming language: C

5.9. Euclid
Participant: Pierre Lezowski.

http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php.

Euclid is a program to compute the Euclidean minimum of a number field. It is the practical implementation of
the algorithm described in [41]. Some corresponding tables built with the algorithm are also available. Euclid
is a stand-alone program depending on the PARI library.

• Version: 1.0

• License: LGPL v2+

• Programming language: C

5.10. KleinianGroups
Participant: Aurel Page.

http://www.normalesup.org/~page/Recherche/Logiciels/logiciels.html

KLEINIANGROUPS is a Magma package that computes fundamental domains of arithmetic Kleinian groups.

• Version: 1.0

• License: GPL v3+

• Programming language: Magma

http://cmh.gforge.inria.fr/
http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels.html
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6. New Results

6.1. Class groups and other invariants of number fields
Participants: Karim Belabas, Jean-Paul Cerri, Pierre Lezowski.

In collaboration with E. Friedman, K. Belabas presented in [22] a new algorithm to compute the residue at
s = 1 of the Dedekind zeta function of a number field, conditional on GRH. This improves on previous results
of Eric Bach [31] by a useful constant factor. Such an estimate is one of the two key analytic ingredients
to Buchmann’s class group algorithm, the other being the existence (under GRH) of an explicit set of small
generators [33].

In collaboration with F. Thorne, H. Cohen worked on Dirichlet series associated to cubic and quartic fields
with given resolvent. In [23] they give an explicit formula for the Dirichlet series

∑
K |∆(K)|−s, where the

sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is isomorphic to a fixed
quadratic field k. This is a sequel to previous work of Cohen and Morra, where such formulæ are proved
in a more general setting, in terms of sums over characters of certain groups related to ray class groups.
Here, the analysis is carried further and they prove explicit formulæ for these Dirichlet series over Q. As an
application, they compute tables of the number of S3-sextic fields K with discriminant ranging up to 1023. An
accompanying PARI/GP implementation is available.

In [24], they give an explicit formula for the Dirichlet series
∑
K |∆(K)|−s, where this time the sum is over

isomorphism classes of all quartic fields whose cubic resolvent field is isomorphic to a fixed cubic field k. This
work is a sequel to an unpublished preprint of Cohen, Diaz y Diaz, and Olivier.

The papers by H. Cohen on Haberland’s formula and numerical computation of Petersson scalar products and
by A. Angelakis and P. Stevenhagen on imaginary quadratic fields with isomorphic abelian Galois groups,
which were presented at the ANTS-X conference, were published in [17], [16].

6.2. Number and function fields
Participants: Athanasios Angelakis, Jean-Marc Couveignes, Karim Belabas.

In collaboration with Reynald Lercier, Jean-Marc Couveignes presents in [12] a randomised algorithm that on
input a finite field K with q elements and a positive integer d outputs a degree d irreducible polynomial in
K[x]. The running time is d1+o(1) × (log q)

5+o(1) elementary operations. The o(1) in d1+o(1) is a function
of d that tends to zero when d tends to infinity. And the o(1) in (log q)

5+o(1) is a function of q that tends to
zero when q tends to infinity. In particular, the complexity is quasi-linear in the degree d.

The book of surveys “Explicit methods in number theory. Rational points and Diophantine equations” [19]
edited by K. Belabas with contributions from K. Belabas, F. Beukers, P. Gaudry, W. McCallum, B. Poonen,
S. Siksek, M. Stoll and M. Watkins presents the state of the art of the use of explicit methods in arithmetic
geometry to solve diophantine problems.

6.3. Quaternion algebras
Participants: Jean-Paul Cerri, Pierre Lezowski, Aurel Page.

In a joint work with J. Chaubert ([11]), J.-P. Cerri and P. Lezowski have studied totally definite quaternion
fields over number fields which are Euclidean, that is to say that they admit a left or right Euclidean order. In
particular, they have established the complete list of totally definite and Euclidean quaternion fields over real
quadratic number fields. In this list, all fields are in fact norm-Euclidean. The proofs are both theoretic and
algorithmic.

A. Page uploaded a new version of his article [30] on the computation of arithmetic Kleinian groups,
incorporating comments from the referee.
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6.4. Complex multiplication and modularity
Participants: Jean-Marc Couveignes, Andreas Enge, Nicolas Mascot, Enea Milio, Aurel Page, Damien
Robert.

H. Ivey-Law has been implementing efficient algorithms to compute Hilbert class polynomials and modular
polynomials for various modular functions, as well as various supplementary algorithms required by, or based
on, these two primary components. These algorithms form an important and time-critical part of algorithms
used to select elliptic curves for use in cryptographic applications.

The implementation is based on algorithms for these tasks published by A. Sutherland and his collaborators.
It includes, more specifically, algorithms to compute Hilbert class polynomials for various different modu-
lar functions over Z or Z/MZ, modular polynomials for various different modular functions over Z, Z/MZ,
and/or pre-instantiated at a particular point. The supplementary algorithms include functionality for computing
equations for isogenies between elliptic curves and equations for their codomains, for manipulating, interro-
gating and traversing isogeny volcanoes, for computing minimal polycyclic presentations of abstract groups,
for testing supersingularity of j-invariants, for accessing optimised equations of the modular curve X1(N)
for N ≤ 50, for finding elliptic curves with a given trace or a given endomorphism ring, for calculating the
endomorphism ring of a given elliptic curve, for computing the action of the torsor Cl(O) on the set of elliptic
curves with endomorphism ring O and for enumerating the kernel of the map Cl(Z +NO)→ Cl(O).

These algorithms are implemented in an experimental branch of PARI/GP, and will be integrated in the public
version soon.

A. Enge and R. Schertz determine in [13] under which conditions singular values of multiple η-quotients of
square-free level, not necessarily prime to 6, yield class invariants, that is, algebraic numbers in ring class
fields of imaginary-quadratic number fields. It turns out that the singular values lie in subfields of the ring
class fields of index 2k

′−1 when k′ ≥ 2 primes dividing the level are ramified in the imaginary-quadratic field,
which leads to faster computations of elliptic curves with prescribed complex multiplication. The result is
generalised to singular values of modular functions on X+

0 (p) for p prime and ramified.

The paper of R. Cosset and D. Robert [25] presenting an algorithm for computing isogenies between
principally polarised abelian surface has been accepted for publication in Mathematics of Computation. This
paper explains, given the theta coordinates of the points of a maximal isotropic kernel of the `-torsion, how
to compute the corresponding isogeny. It also gives formulæ for the conversion between theta coordinates and
Mumford coordinates.

The paper by K. Lauter and D. Robert on Improved CRT Algorithm for Class Polynomials in Genus 2, which
was presented at the ANTS-X conference, was published in [18].

A. Enge and E. Thomé describe in [14] a quasi-linear algorithm for computing Igusa class polynomials of
Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an
explicit treatment of the computations in quartic CM fields and their Galois closures, they pursue an approach
due to Dupont for evaluating ϑ-constants in quasi-linear time using Newton iterations on the Borchardt mean.
They report on experiments with the implementation CMH and present an example with class number 20016.

N. Mascot’s article on computing modular Galois representations [15] has been published in Rendiconti del
Circolo Matematico di Palermo. This article describes an algorithm to compute Galois representations attached
to a newform, and to deduce the Fourier coefficients of this newform modulo a small prime.

E. Milio has implemented R. Dupont’s algorithms [38] in PARI/GP. With them, he has calculated the three
modular polynomials in genus 2 and level 2 defined by Streng’s version of Igusa modular forms and a modular
polynomial of genus 2 and level 3 coming from theta modular forms.

6.5. Elliptic curve cryptology
Participants: Jean-Marc Couveignes, Andreas Enge, Damien Robert.
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Couveignes and Lercier study in [26] the problem of parameterisations by radicals of low genus algebraic
curves. They prove that for q a prime power that is large enough and prime to 6, a fixed positive proportion
of all genus 2 curves over the field with q elements can be parameterised by 3-radicals. This results in the
existence of a deterministic encoding into these curves when q is congruent to 2 modulo 3. Deterministic
encodings into curves are useful in numerous situations, for instance in discrete logarithm cryptography. The
parameterisation found by Couveignes and Lercier is in some sense the first generic one for genus 2 curves.

A software for this method is in preparation.

The survey [21], published in the Handbook of Finite Fields, presents the state of the art of the use of elliptic
curves in cryptography.

6.6. Pairings
Participants: Andreas Enge, Damien Robert.

In [27], A. Enge gives an elementary and self-contained introduction to pairings on elliptic curves over finite
fields. For the first time in the literature, the three different definitions of the Weil pairing are stated correctly
and proved to be equivalent using Weil reciprocity. Pairings with shorter loops, such as the ate, atei, R-ate
and optimal pairings, together with their twisted variants, are presented with proofs of their bilinearity and
non-degeneracy. Finally, different types of pairings are reviewed in a cryptographic context. The article can be
seen as an update chapter to [40].

With D. Lubicz, D. Robert has worked on extending the algorithm to compute Weil and Tate pairings using
theta functions from [42] to the ate and optimal ate pairings in [29]. The result includes how to compute
the Miller functions with theta functions, but also how to generalise ate and optimal ate pairings to Kummer
varieties. In contrast to preceding algorithms using Miller functions which needed a geometric interpretation
of the addition law and worked with Jacobians, this new algorithm uses only the algebraic Riemann relations
and works on any abelian variety (provided with a theta structure). This algorithm has been implemented using
AVISOGENIES.

7. Bilateral Contracts and Grants with Industry

7.1. DGA
Contract with DGA maîtrise de l’information about number theory and cryptography
• Duration: two years, 2011–2013 (ended May 2013)
• Scientific coordinator: J.-M. Couveignes
• Topics covered: index calculus and discrete logarithms, fast arithmetic for polynomials, pairings and

cryptography, algorithmics of the Langlands programme

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANRPeace – Parameter spaces for Efficient Arithmetic and Curve security Evaluation

Participants: Bill Allombert, Karim Belabas, Jean-Marc Couveignes, Andreas Enge, Nicolas Mascot, Enea
Milio, Aurel Page, Damien Robert.

http://chic2.gforge.inria.fr/

The PEACE project is joint between the research teams of Institut de Recherche en Mathématiques de Rennes
(IRMAR), LFANT and Institut Mathématiques de Luminy (IML).

http://chic2.gforge.inria.fr/
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The project aims at constituting a comprehensive and coherent approach towards a better understanding of
theoretical and algorithmic aspects of the discrete logarithm problem on algebraic curves of small genus.
On the theoretical side, this includes an effective description of moduli spaces of curves and of abelian
varieties, the maps that link these spaces and the objects they classify. The effective manipulation of moduli
objects will allow us to develop a better understanding of the algorithmic difficulty of the discrete logarithm
problem on curves, which may have dramatic consequences on the security and efficiency of already deployed
cryptographic devices.

One of the anticipated outcomes of this proposal is a new set of general criteria for selecting and validating
cryptographically secure curves (or families of curves) suitable for use in cryptography. Instead of publishing
fixed curves, as is done in most standards, we aim at proposing generating rationales along with explicit
theoretical and algorithmic criteria for their validation.

Meetings:
• Paris: 11/04–12/04, talks and mini-courses;
• Rennes: 02/12–03/12, talks.

8.1.2. ANRSimpatic – SIM and PAiring Theory for Information and Communications security
Participant: Damien Robert.

The SIMPATIC project is an industrial research project, formed by academic research teams and industrial
partners: Orange Labs, École Normale Supérieure, INVIA, Oberthur Technologies, ST-Ericsson France,
Université de Bordeaux 1, Université de Caen Basse-Normandie, Université de Paris 8.

The aim of the SIMPATIC project is to provide the most efficient and secure hardware/software implementation
of a bilinear pairing in a SIM card. This implementation will then be used to improve and develop new
cryptographic algorithms and protocols in the context of mobile phones and SIM cards. The project will more
precisely focus on e-ticketing and e-cash, on cloud storage and on the security of contactless and of remote
payment systems.

As a participant, D. Robert will aim to bridge the gap between the theoretical results described in the pairing
module and the practical realisation of pairing-based SIM cards in an industrial setting.

8.2. European Initiatives
8.2.1. FP7 Projects
8.2.1.1. ANTICS

Title: Algorithmic Number Theory in Cryptology
Type: IDEAS
Instrument: ERC Starting Grant
Duration: January 2012 - December 2016
Coordinator: Inria (France)
Abstract: Data security and privacy protection are major challenges in the digital world. Cryptology
contributes to solutions, and one of the goals of ANTICS is to develop the next generation public
key cryptosystem, based on algebraic curves and abelian varieties. Challenges to be tackled are the
complexity of computations, certification of the computed results and parallelisation, addressed by
introducing more informatics into algorithmic number theory.

8.3. International Initiatives
8.3.1. Inria International Labs

The MACISA project-team (Mathematics Applied to Cryptology and Information Security in Africa) is one
of the new teams of LIRIMA. Researchers from Inria and the universities of Bamenda, Bordeaux, Dakar,
Franceville, Maroua, Ngaoundéré, Rennes, Yaoundé cooperate in this team.
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The project is concerned with public key cryptology and more specifically the role played by algebraic maps
in this context. The team focus on two themes:

• Theme 1 : Rings, primality, factoring and discrete logarithms;

• Theme 2 : Elliptic and hyperelliptic curve cryptography.

The project is managed by a team of five permanent researchers: G. Nkiet, coordinator of the project, J.-
M. Couveignes, vice coordinator, T. Ezome and D. Robert, responsible for each of the two scientific working
areas, A. Enge, head of the LFANT project team. The managing team organises the cooperation, schedules
meetings, prepares reports, controls expenses, reports to the LIRIMA managing team and administrative staff.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Tony Ezome Mintsa, University of Franceville, Gabon, 02/2013 and 11–12/2013

• Loïc Grenie, University of Bergamo, 11–12/2013

• Matthias Waack, University of Leipzig, Germany, 10–11/2013

• Eduardo Friedman, University of Chile, 01–02/2013

• Francisco Diaz y Diaz, emeritus, 01–02/2013

• Bernadette Perrin-Riou, Université d’Orsay, 03/2013

8.4.1.1. Internships

• Fritz Hiesmayr, ÉNS Lyon, 06–07/2013

• Gregor Seiler, Technische Universität Berlin, Germany, 10/2013–03/2014

8.4.2. Visits to International Teams
D. Robert visited the cryptology team at Microsoft Research from August 06 to August 14.

9. Dissemination

9.1. Scientific Animation
9.1.1. Editorships

K. Belabas acts on the editorial board of Journal de Théorie des Nombres de Bordeaux since 2005 and of
Archiv der Mathematik since 2006.

H. Cohen is an editorial board member of Journal de Théorie des Nombres de Bordeaux; he is an editor for
the Springer book series Algorithms and Computations in Mathematics (ACM).

J.-M. Couveignes is a member of the editorial board of the Publications mathématiques de Besançon since
2010.

A. Enge is an editor of Designs, Codes and Cryptography since 2004.



14 Activity Report INRIA 2013

9.1.2. Invited talks
• J.-M. Couveignes attended the Sémestre Mathématique de Besançon in September 2013 and gave a

talk on primality testing.

• J.-M. Couveignes attended GEOCRYPT 2013 in Papeete and gave a talk on genus two curves.

• A. Enge: “Class polynomials for dimension 2”, Jahrestagung Computeralgebra, Konstanz,
18–22/03/2013

• A. Enge: “Class polynomials for abelian surfaces”, Cryptography and Coding Theory at LIX, 20-
21/06

• A. Enge: “Class polynomials for abelian surfaces”, Number Theory, Geometry and Cryptography,
Warwick, 01-05/07

9.1.3. Conference organisation and programme committees
The third atelier PARI/GP was held at IMB from January 14th to 18th, 2013: http://pari.math.u-bordeaux.
fr/Events/PARI2013/. External speakers include Eduardo Friedman (Universidad de Chile), Xavier Roblot
(Université Claude Bernard Lyon I), Jürgen Klüners (Universität Paderborn), Pascal Molin (Université Paris
7), Loïc Grenié (Università di Milano-Bicocca), Charles Boyd, Christophe Delaunay (Université de Franche-
Comté), François Brunault (ENS Lyon), Philippe Elbaz-Vincent (Grenoble), Denis Simon (Caen).

A. Enge and D. Robert were programme committee members of the Selected Area in Cryptography 2013
conference.

9.1.4. Seminar
The following external speakers have given a presentation at the LFANT seminar, see
http://lfant.math.u-bordeaux1.fr/index.php?category=seminar

• Friedrich Panitz (Paderborn), “An algorithm to enumerate quartic fields, after Bhargava.”

• Sinai Robins (Nanyang Technological University, Singapore) “Cone theta functions and what they
tell us about the irrationality of spherical polytope volumes.”

• Achill Schürmann (Universität Rostock) “Exploiting Symmetries in Polyhedral Computations.”

• Maike Massierer (University of Basel) “Point Compression for the Trace Zero Variety.”

• Christophe Ritzenthaler (Université Aix-Marseille) “Sur la distribution des traces des courbes de
genre 3 sur les corps finis.”

• David Lubicz (CELAR — Rennes) “Algèbre linéaire sur Zp[[u]] et application au calcul de réseaux
dans les représentations galoisiennes p-adiques.”

• Marie-Françoise Roy (Rennes) “Algorithme diviser pour régner pour les cartes routières.”

• Sorina Ionica (ENS Paris) “Algorithms for isogeny graphs”.

• Philippe Jaming (imb) “Problème de la phase dans le cadre discret”

9.1.5. Research administration
K. Belabas is the head of the mathematics department of University Bordeaux 1. He also leads the computer
science support service (“cellule informatique”) of the Institute of Mathematics of Bordeaux and coordinates
the participation of the institute in the regional computation cluster PlaFRIM.

He is a permanent invited member of the councils of both the math and computer science department (UFR)
and the Math Institute (IMB).

J.-P. Cerri is an elected member of the scientific council of the Mathematics Institute of Bordeaux (IMB) and
responsible for the bachelor programme in mathematics and informatics.

Since January 2011, J.-M. Couveignes is involved in the GDR mathématiques et entreprises and in the Agence
pour les mathématiques en interaction avec l’entreprise et la société.

http://pari.math.u-bordeaux.fr/Events/PARI2013/
http://pari.math.u-bordeaux.fr/Events/PARI2013/
http://lfant.math.u-bordeaux1.fr/index.php?category=seminar
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Until October 2013, A. Enge was responsible for the international affairs of Inria–Bordeaux-Sud-Ouest. As
such, he was a regular member of the COST-GTRI, the Inria body responsible for evaluating international
partnerships. Since October 2013, he heads this committee.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Licence: A. Page, Fondamentaux pour les mathématiques et l’informatique, cours et TD, 18h, L1,
Université Bordeaux 1, France;
Licence: A. Page, CPBx Analyse 2, TD, 43h, L2, Université Bordeaux 1, France;
Licence: A. Page, Codes et cryptographie, TD, 13h, L1, Université Bordeaux 1, France;
Master: K. Belabas, Computer Algebra, 90h, M2, Université Bordeaux 1, France;
Licence: J.-P. Cerri, Algèbre 1, cours, 22h, L1, Université Bord eaux 1, France;
Licence: J.-P. Cerri, Algèbre 2, TD, 51h, L2, Université Bordeau x 1, France;
Licence: J.-P. Cerri, Cryptographie et Arithmétique, cours, 24h, L 3, Université Bordeaux 1, France;
Licence: J.-P. Cerri, Algèbre 4, TD, 51h, L3, Université Bordeau x 1, France;
Master: J.-P. Cerri, Arithmétique, cours, 36h, M1, Université Bo rdeaux 1, France;
Master: J.-M. Couveignes, Algorithms for public key cryptograph, 40h, M2, Université Bordeaux 1,
France;
Master: J.-M. Couveignes, Algorithms for number fields, 40h, M2, Université Bordeaux 1, France;
Licence: P. Lezowski, Ouverture professionnelle (help to students to look for a suitable Master), 12h,
L3, Université Bordeaux 1, France;
Licence : N. Mascot, cours intégré MOSE 1003, 27h, L1, Université Bordeaux 1, France;
Licence : N. Mascot, C2I, TD, 15h, L1, Université Bordeaux 1, France;
Summer school: A. Enge, Complex multiplication of elliptic curves, 6h, PhD, Number Theory for
Cryptography, Warwick, 24-28/06;
Summer school: A. Enge, Complex multiplication of elliptic curves, 1.5h, PhD, ECC 2013, Leuven,
11-13/09;
Summer school: A. Enge, Pairings on elliptic curves, 1.5h, PhD, ECC 2013, Leuven, 11-13/09.

9.2.2. Supervision
• K. Belabas, A. Enge

PhD Aurel Page, Méthodes explicites pour les groupes arithmétiques, University Bordeaux
• K. Belabas, J.-M. Couveignes

PhD Nicolas Mascot, Calcul de représentations galoisiennes modulaires, University Bor-
deaux

• K. Belabas, P. Stevenhagen
PhD Athanasios Angelakis, Number fields sharing the same abelianized Galois group,
ALGANT, University Bordeaux and University Leiden

K. Belabas, T. Dokchitser, P. Stevenhagen
PhD Julio Brau, Computing Galois representations attached to elliptic curves, ALGANT,
University Bordeaux and University Leiden

• A. Enge, D. Robert
PhD Enea Milio, Isogénies entre surfaces abéliennes, University Bordeaux

9.2.3. Juries
K. Belabas was a member of the committee for

Habilitation defense (and referee) of Emmanuel Hallouin in Toulouse (November 2013).
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J.-M. Couveignes was amember of the committees for
Professor position at the Université of Rennes (April 2013).
Professor position at the Université of Papeete(April 2013).
PhD defense of Jean-Gabriel Kammerer in Rennes (May 2013).
PhD defense (and referee) of Razvan Barbulescu in Nancy (december 2013).
PhD defense (and referee) of Emmanuel Fouotsa in Rennes (december 2013).
PhD defense (and referee) of Yvan Boyer in Paris (december 2013).

A. Enge was a member of the committees for
evaluation AERES LIP6, 07–09 January 2013;
evaluation AERES PRISM, 03–04 December 2013.

9.3. Popularisation
P. Lezowski has given a presentation on cryptology to high school students during “Fête de la science”.
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