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2. Overall Objectives

2.1. Overall objectives
The overall objectives of the NACHOS project-team are the formulation, analysis and evaluation of numerical
methods and high performance algorithms for the solution of first order linear systems of partial differential
equations (PDEs) with variable coefficients pertaining to electrodynamics and elastodynamics with applica-
tions to computational electromagnetics and computational geoseismics. In both domains, the applications
targeted by the team involve the interaction of the underlying physical fields with media exhibiting space and
time heterogeneities such as when studying the propagation of electromagnetic waves in biological tissues or
the propagation of seismic waves in complex geological media. Moreover, in most of the situations of prac-
tical relevance, the computational domain is irregularly shaped or/and it includes geometrical singularities.
Both the heterogeneity and the complex geometrical features of the underlying media motivate the use of
numerical methods working on non-uniform discretizations of the computational domain. In this context, the
research efforts of the team aim at the development of unstructured (or hybrid structured/unstructured) mesh
based methods with activities ranging from the mathematical analysis of numerical methods for the solution of
the systems of PDEs of electrodynamics and elastodynamics, to the development of prototype 3D simulation
software that efficiently exploits the capabilities of modern high performance computing platforms.
In the case of electrodynamics, the mathematical model of interest is the full system of unsteady Maxwell
equations [53] which is a first-order hyperbolic linear system of PDEs (if the underlying propagation media
is assumed to be linear). This system can be numerically solved using so-called time domain methods among
which the Finite Difference Time Domain (FDTD) method introduced by K.S. Yee [63] in 1996 is the
most popular and which often serves as a reference method for the works of the team. In the vast majority
of existing time domain methods, time advancing relies on an explicit time scheme. For certain types of
problems, a time harmonic evolution can be assumed leading to the formulation of the frequency domain
Maxwell equations whose numerical resolution requires the solution of a linear system of equations (i.e
in that case, the numerical method is naturally implicit). Heterogeneity of the propagation media is taken
into account in the Maxwell equations through the electrical permittivity, the magnetic permeability and the
electric conductivity coefficients. In the general case, the electrical permittivity and the magnetic permeability
are tensors whose entries depend on space (i.e heterogeneity in space) and frequency. In the latter case, the
time domain numerical modeling of such materials requires specific techniques in order to switch from the
frequency evolution of the electromagnetic coefficients to a time dependency. Moreover, there exist several
mathematical models for the frequency evolution of these coefficients (Debye model, Lorentz model, etc.).
In the case of elastodynamics, the mathematical model of interest is the system of elastodynamic equations
[46] for which several formulations can be considered such as the velocity-stress system. For this system,
as with Yee’s scheme for time domain electromagnetics, one of the most popular numerical method is the
finite difference method proposed by J. Virieux [62] in 1986. Heterogeneity of the propagation media is taken
into account in the elastodynamic equations through the Lamé and mass density coefficients. A frequency
dependence of the Lamé coefficients allows to take into account physical attenuation of the wave fields and
characterizes a viscoelastic material. Again, several mathematical models are available for expressing the
frequency evolution of the Lamé coefficients.
The research activities of the team are currently organized along five main directions: (a) arbitrary high
order finite element type methods on simplicial meshes for the discretization of the considered systems
of PDEs, (b) efficient time integration methods for dealing with grid induced stiffness when using non-
uniform (locally refined) meshes, (c) numerical treatment of complex propagation media models (i.e. physical
dispersion models), (d) domain decomposition algorithms for solving the algebraic systems resulting from
the discretization of the considered systems of PDEs when a time harmonic regime is assumed or when
time integration relies on an implicit scheme and (e) adaptation of numerical algorithms to modern high
performance computing platforms. From the point of view of applications, the objective of the team is to
demonstrate the capabilities of the proposed numerical methodologies for the simulation of realistic wave
propagation problems in complex domains and heterogeneous media.
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3. Research Program

3.1. High order discretization methods
The applications in computational electromagnetics and computational geoseismics that are considered by the
team lead to the numerical simulation of wave propagation in heterogeneous media or/and involve irregularly
shaped objects or domains. The underlying wave propagation phenomena can be purely unsteady or they
can be periodic (because the imposed source term follows a time harmonic evolution). In this context, the
overall objective of the research activities undertaken by the team is to develop numerical methods putting the
emphasis on several features:

• Accuracy. The foreseen numerical methods should ideally rely on discretization techniques that best
fit to the geometrical characteristics of the problems at hand. For this reason, the team focuses
on methods working on unstructured, locally refined, even non-conforming, simplicial meshes.
These methods should also be capable to accurately describe the underlying physical phenomena
that may involve highly variable space and time scales. With reference to this characteristic, two
main strategies are possible: adaptive local refinement/coarsening of the mesh (i.e h-adaptivity) and
adaptive local variation of the interpolation order (i.e p-adaptivity). Ideally, these two strategies are
combined leading to the so-called hp-adaptive methods.

• Numerical efficiency. The simulation of unsteady problems most often relies on explicit time
integration schemes. Such schemes are constrained by a stability criteria linking the space and
time discretization parameters that can be very restrictive when the underlying mesh is highly non-
uniform (especially for locally refined meshes). For realistic 3D problems, this can represent a severe
limitation with regards to the overall computing time. In order to improve this situation, one possible
approach consists in resorting to an implicit time scheme in regions of the computational domain
where the underlying mesh is refined while an explicit time scheme is applied to the remaining part of
the domain. The resulting hybrid explicit-implicit time integration strategy raises several challenging
questions concerning both the mathematical analysis (stability and accuracy, especially for what
concern numerical dispersion), and the computer implementation on modern high performance
systems (data structures, parallel computing aspects). A second, more classical approach is to devise
a local time strategy in the context of a fully explicit time integration scheme. Stability and accuracy
are still important challenges in this case.
On the other hand, when considering time harmonic wave propagation problems, numerical effi-
ciency is mainly linked to the solution of the system of algebraic equations resulting from the dis-
cretization in space of the underlying PDE model. Various strategies exist ranging from the more
robust and efficient sparse direct solvers to the more flexible and cheaper (in terms of memory re-
sources) iterative methods. Current trends tend to show that the ideal candidate will be a judicious
mix of both approaches by relying on domain decomposition principles.

• Computational efficiency. Realistic 3D wave propagation problems lead to the processing of very
large volumes of data. The latter results from two combined parameters: the size of the mesh
i.e the number of mesh elements, and the number of degrees of freedom per mesh element
which is itself linked to the degree of interpolation and to the number of physical variables
(for systems of partial differential equations). Hence, numerical methods must be adapted to the
characteristics of modern parallel computing platforms taking into account their hierarchical nature
(e.g multiple processors and multiple core systems with complex cache and memory hierarchies).
Besides, appropriate parallelization strategies need to be designed that combine SIMD and MIMD
programming paradigms. Moreover, maximizing the effective floating point performances will
require the design of numerical algorithms that can benefit from the optimized BLAS linear algebra
kernels.
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The discontinuous Galerkin method (DG) was introduced in 1973 by Reed and Hill to solve the neutron
transport equation. From this time to the 90’s a review on the DG methods would likely fit into one page. In
the meantime, the finite volume approach has been widely adopted by computational fluid dynamics scientists
and has now nearly supplanted classical finite difference and finite element methods in solving problems of
non-linear convection. The success of the finite volume method is due to its ability to capture discontinuous
solutions which may occur when solving non-linear equations or more simply, when convecting discontinuous
initial data in the linear case. Let us first remark that DG methods share with finite volumes this property since
a first order finite volume scheme can be viewed as a 0th order DG scheme. However a DG method may be
also considered as a finite element one where the continuity constraint at an element interface is released.
While it keeps almost all the advantages of the finite element method (large spectrum of applications, complex
geometries, etc.), the DG method has other nice properties which explain the renewed interest it gains in
various domains in scientific computing as witnessed by books or special issues of journals dedicated to this
method [43]- [44]- [45]- [52]:

• It is naturally adapted to a high order approximation of the unknown field. Moreover, one may
increase the degree of the approximation in the whole mesh as easily as for spectral methods but,
with a DG method, this can also be done very locally. In most cases, the approximation relies on
a polynomial interpolation method but the DG method also offers the flexibility of applying local
approximation strategies that best fit to the intrinsic features of the modeled physical phenomena.

• When the discretization in space is coupled to an explicit time integration method, the DG method
leads to a block diagonal mass matrix independently of the form of the local approximation (e.g
the type of polynomial interpolation). This is a striking difference with classical, continuous finite
element formulations. Moreover, the mass matrix is diagonal if an orthogonal basis is chosen.

• It easily handles complex meshes. The grid may be a classical conforming finite element mesh, a
non-conforming one or even a hybrid mesh made of various elements (tetrahedra, prisms, hexahedra,
etc.). The DG method has been proven to work well with highly locally refined meshes. This property
makes the DG method more suitable to the design of a hp-adaptive solution strategy (i.e where the
characteristic mesh size h and the interpolation degree p changes locally wherever it is needed).

• It is flexible with regards to the choice of the time stepping scheme. One may combine the DG spatial
discretization with any global or local explicit time integration scheme, or even implicit, provided
the resulting scheme is stable.

• It is naturally adapted to parallel computing. As long as an explicit time integration scheme is used,
the DG method is easily parallelized. Moreover, the compact nature of DG discretization schemes
is in favor of high computation to communication ratio especially when the interpolation order is
increased.

As with standard finite element methods, a DG method relies on a variational formulation of the continuous
problem at hand. However, due to the discontinuity of the global approximation, this variational formulation
has to be defined at the element level. Then, a degree of freedom in the design of a DG method stems from
the approximation of the boundary integral term resulting from the application of an integration by parts to
the element-wise variational form. In the spirit of finite volume methods, the approximation of this boundary
integral term calls for a numerical flux function which can be based on either a centered scheme or an upwind
scheme, or a blending between these two schemes.
For the numerical solution of the time domain Maxwell equations, we have first proposed a non-dissipative
high order DGTD (Discontinuous Galerkin Time Domain) method working on unstructured conforming sim-
plicial meshes [16]-[3]. This DG method combines a central numerical flux function for the approximation of
the integral term at an interface between two neighboring elements with a second order leap-frog time integra-
tion scheme. Moreover, the local approximation of the electromagnetic field relies on a nodal (Lagrange type)
polynomial interpolation method. Recent achievements by the team deal with the extension of these methods
towards non-conforming meshes and hp-adaptivity [13]-[14], their coupling with hybrid explicit/implicit time
integration schemes in order to improve their efficiency in the context of locally refined meshes [7]. A high
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order DG method has also been proposed for the numerical resolution of the elastodynamic equations mod-
eling the propagation of seismic waves [6]-[12]. For the numerical treatment of the time harmonic Maxwell
equations, we have studied similar DG methods [8]-[24] and more recently, HDG (Hybridized Discontinuous
Galerkin) methods [26].

3.2. Domain decomposition methods
Domain Decomposition (DD) methods are flexible and powerful techniques for the parallel numerical solution
of systems of PDEs. As clearly described in [58], they can be used as a process of distributing a computational
domain among a set of interconnected processors or, for the coupling of different physical models applied in
different regions of a computational domain (together with the numerical methods best adapted to each model)
and, finally as a process of subdividing the solution of a large linear system resulting from the discretization
of a system of PDEs into smaller problems whose solutions can be used to devise a parallel preconditioner
or a parallel solver. In all cases, DD methods (1) rely on a partitioning of the computational domain into
subdomains, (2) solve in parallel the local problems using a direct or iterative solver and, (3) call for an
iterative procedure to collect the local solutions in order to get the global solution of the original problem.
Subdomain solutions are connected by means of suitable transmission conditions at the artificial interfaces
between the subdomains. The choice of these transmission conditions greatly influences the convergence rate
of the DD method. One generally distinguish three kinds of DD methods:

• Overlapping methods use a decomposition of the computational domain in overlapping pieces. The
so-called Schwarz method belongs to this class. Schwarz initially introduced this method for proving
the existence of a solution to a Poisson problem. In the Schwarz method applied to the numerical
resolution of elliptic PDEs, the transmission conditions at artificial subdomain boundaries are simple
Dirichlet conditions. Depending on the way the solution procedure is performed, the iterative process
is called a Schwarz multiplicative method (the subdomains are treated sequentially) or an additive
method (the subdomains are treated in parallel).

• Non-overlapping methods are variants of the original Schwarz DD methods with no overlap between
neighboring subdomains. In order to ensure convergence of the iterative process in this case, the
transmission conditions are not trivial and are generally obtained through a detailed inspection of
the mathematical properties of the underlying PDE or system of PDEs.

• Substructuring methods rely on a non-overlapping partition of the computational domain. They
assume a separation of the problem unknowns in purely internal unknowns and interface ones.
Then, the internal unknowns are eliminated thanks to a Schur complement technique yielding to the
formulation of a problem of smaller size whose iterative resolution is generally easier. Nevertheless,
each iteration of the interface solver requires the realization of a matrix/vector product with the Schur
complement operator which in turn amounts to the concurrent solution of local subproblems.

Schwarz algorithms have enjoyed a second youth over the last decades, as parallel computers became more
and more powerful and available. Fundamental convergence results for the classical Schwarz methods were
derived for many partial differential equations, and can now be found in several books [58]- [57]- [61].
The research activities of the team on this topic aim at the formulation, analysis and evaluation of Schwarz
type domain decomposition methods in conjunction with discontinuous Galerkin approximation methods on
unstructured simplicial meshes for the solution of time domain and time harmonic wave propagation problems.
Ongoing works in this direction are concerned with the design of non-overlapping Schwarz algorithms for the
solution of the time harmonic Maxwell equations. A first achievement has been a Schwarz algorithm for the
time harmonic Maxwell equations, where a first order absorbing condition is imposed at the interfaces between
neighboring subdomains [10]. This interface condition is equivalent to a Dirichlet condition for characteristic
variables associated to incoming waves. For this reason, it is often referred as a natural interface condition.
Beside Schwarz algorithms based on natural interface conditions, the team also investigates algorithms that
make use of more effective transmission conditions [11]. Recent contributions are concerned with the design
and anlysis of such optimized Schwarz algorithm for the solution of the time harmonic Maxwell equations
with non-zero conductivity [4].
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3.3. High performance numerical computing
Beside basic research activities related to the design of numerical methods and resolution algorithms for
the wave propagation models at hand, the team is also committed to demonstrate the benefits of the
proposed numerical methodologies in the simulation of challenging three-dimensional problems pertaining
to computational electromagnetics and computation geoseismics. For such applications, parallel computing is
a mandatory path. Nowadays, modern parallel computers most often take the form of clusters of heterogeneous
multiprocessor systems, combining multiple core CPUs with accelerator cards (e.g Graphical Processing Units
- GPUs), with complex hierarchical distributed-shared memory systems. Developing numerical algorithms
that efficiently exploit such high performance computing architectures raises several challenges, especially in
the context of a massive parallelism. In this context, current efforts of the team are towards the exploitation
of multiple levels of parallelism (computing systems combining CPUs and GPUs) through the study of
hierarchical SPMD (Single Program Multiple Data) strategies for the parallelization of unstructured mesh
based solvers.

4. Application Domains

4.1. Computational electromagnetics
Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found
and continues to find applications in a wide array of areas, encompassing both industrial and societal
purposes. Applications of current interest include (among others) those related to communications (e.g
transmission through optical fiber lines), to biomedical devices (e.g microwave imaging, micro-antenna
design for telemedecine, etc.), to circuit or magnetic storage design (electromagnetic compatibility, hard disc
operation), to geophysical prospecting, and to non-destructive evaluation (e.g crack detection), to name but
just a few. Equally notable and motivating are applications in defence which include the design of military
hardware with decreased signatures, automatic target recognition (e.g bunkers, mines and buried ordnance,
etc.) propagation effects on communication and radar systems, etc. Although the principles of electromagnetics
are well understood, their application to practical configurations of current interest, such as those that arise in
connection with the examples above, is significantly complicated and far beyond manual calculation in all but
the simplest cases. These complications typically arise from the geometrical characteristics of the propagation
medium (irregular shapes, geometrical singularities), the physical characteristics of the propagation medium
(heterogeneity, physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

Part of the activities of the NACHOS project-team aim at the development of high performance, high order,
unstructured mesh based solvers for the full system of Maxwell equations, in the time domain and frequency
domain regimes. Although many of the above-mentioned electromagnetic wave propagation problems can
potentially benefit from the proposed numerical methodologies, the team concentrates its efforts on the
following two situations.

4.1.1. Interaction of electromagnetic waves with biological tissues at microwave frequencies.
Two main reasons motivate our commitment to consider this type of problem for the application of the
numerical methodologies developed in the NACHOS project-team:

• First, from the numerical modeling point of view, the interaction between electromagnetic waves
and biological tissues exhibit the three sources of complexity identified previously and are thus
particularly challenging for pushing one step forward the state-of-the art of numerical methods
for computational electromagnetics. The propagation media is strongly heterogeneous and the
electromagnetic characteristics of the tissues are frequency dependent. Interfaces between tissues
have rather complicated shapes that cannot be accurately discretized using cartesian meshes. Finally,
the source of the signal often takes the form of a complicated device (e.g a mobile phone or an
antenna array).
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• Second, the study of the interaction between electromagnetic waves and living tissues is of interest
to several applications of societal relevance such as the assessment of potential adverse effects
of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diagnostic
purposes. It is widely recognized nowadays that numerical modeling and computer simulation
of electromagnetic wave propagation in biological tissues is a mandatory path for improving the
scientific knowledge of the complex physical mechanisms that characterize these applications.

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great
majority of numerical studies so far have been conducted using variants of the widely known FDTD (Finite
Difference Time Domain) method due to Yee [63]. In this method, the whole computational domain is
discretized using a structured (cartesian) grid. Due to the possible straightforward implementation of the
algorithm and the availability of computational power, FDTD is currently the leading method for numerical
assessment of human exposure to electromagnetic waves. However, limitations are still seen, due to the rather
difficult departure from the commonly used rectilinear grid and cell size limitations regarding very detailed
structures of human tissues. In this context, the general objective of the contributions of the NACHOS project-
team is to demonstrate the benefits of high order unstructured mesh based Maxwell solvers for a realistic
numerical modeling of the interaction of electromagnetic waves and biological tissues with emphasis on
applications related to numerical dosimetry. Since the creation of the team, our works on this topic have
mainly been focussed on the study of the exposure of humans to radiations from mobile phones or wireless
communication systems (see Fig. 1). This activity has been conducted in close collaboration with the team
of Joe Wiart at Orange Labs/Whist Laboratory http://whist.institut-telecom.fr/en/index.html (formerly, France
Telecom Research & Development) in Issy-les-Moulineaux [15].

4.1.2. Interaction of electromagnetic waves with nanoparticles at optical frequencies
(nanophotonics).
Nanostructuring of materials has opened up a number of new possibilities for manipulating and enhancing
light-matter interactions, thereby improving fundamental device properties. Low-dimensional semiconductors,
like quantum dots, enable one to catch the electrons and control the electronic properties of a material, while
photonic crystal structures allow to synthesize the electromagnetic properties. These technologies may, e.g., be
employed to make smaller and better lasers, sources that generate only one photon at a time, for applications
in quantum information technology, or miniature sensors with high sensitivity. The incorporation of metallic
structures into the medium add further possibilities for manipulating the propagation of electromagnetic
waves. In particular, this allows subwavelength localisation of the electromagnetic field and, by subwavelength
structuring of the material, novel effects like negative refraction, e.g. enabling super lenses, may be realized.
Nanophotonics is the recently emerged, but already well defined, field of science and technology aimed at
establishing and using the peculiar properties of light and light-matter interaction in various nanostructures.
Nanophotonics includes all the phenomena that are used in optical sciences for the development of optical
devices. Therefore, nanophotonics finds numerous applications such as in optical microscopy, the design of
optical switches and electromagnetic chips circuits, transistor filaments, etc. Because of its numerous scientific
and technological applications (e.g. in relation to telecommunication, energy production and biomedicine),
nanophotonics represents an active field of research increasingly relying on numerical modeling beside
experimental studies.
Plasmonics is a related field to nanophotonics. Nanostructures whose optical scattering is dominated by
the response of the conduction electrons are considered as plasmomic media. If the structure presents an
interface with e.g. a dielectric with a positive permittivity, collective oscillations of surface electrons create
surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are guided along metal-dielectric
interfaces much in the same way light can be guided by an optical fiber, with the unique characteristic of
subwavelength-scale confinement perpendicular to the interface. Nanofabricated systems that exploit SPPs
offer fascinating opportunities for crafting and controlling the propagation of light in matter. In particular,
SPPs can be used to channel light efficiently into nanometer-scale volumes, leading to direct modification
of mode dispersion properties (substantially shrinking the wavelength of light and the speed of light pulses
for example), as well as huge field enhancements suitable for enabling strong interactions with nonlinear

http://whist.institut-telecom.fr/en/index.html
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Figure 1. Exposure of head tissues to an electromagnetic wave emitted by a localized source. Top figures: surface
triangulations of the skin and the skull. Bottom figures: contour lines of the amplitude of the electric field.
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materials. The resulting enhanced sensitivity of light to external parameters (for example, an applied electric
field or the dielectric constant of an adsorbed molecular layer) shows great promise for applications in sensing
and switching. In particular, very promising applications are foreseen in the medical domain [49]- [64].
Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at optical
frequencies requires to solve the system of Maxwell equations coupled to appropriate models of physical
dispersion in the metal, such the Drude and Drude-Lorentz models. Her again, the FDTD method is a widely
used approach for solving the resulting system of PDEs [60]. However, for nanophotonic applications, the
space and time scales, in addition to the geometrical characteristics of the considered nanostructures (or
structured layouts of the latter), are particularly challenging for an accurate and efficient application of the
FDTD method. Recently, unstructured mesh based methods have been developed and have demonstrated their
potentialities for being considered as viable alternatives to the FDTD method [54]- [56]- [47]. The activities
of the NACHOS project-team towards the development of accurate and efficient unstructured mesh based
methods for nanophotonic applications have started in 2012 and are conducted in collaboration with Dr. Maciej
Klemm at University of Bristol who is designing nanoantennas for medical applications [55].

Figure 2. Scattering of a 20 nanometer radius gold nanosphere by a plane wave. The gold properties are described
by a Drude dispersion model. Modulus of the electric field in the frequency domain. Top left figure: Mie solution.

Top right figure: numerical solution. Bottom figure: 1D plot of the electric field modulus for various orders of
approximation (PhD thesis of Jonathan Viquerat).

4.2. Computational geoseismics
Computational challenges in geoseismics span a wide range of disciplines and have significant scientific and
societal implications. Two important topics are mitigation of seismic hazards and discovery of economically
recoverable petroleum resources. The research activities of the NACHOS project-team in this domain before
all focus on the development of numerical methodologies and simulation tools for seismic hazard assessment,
while the involvement on the second topic has been been intiated recently.
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4.2.1. Seismic hazard assessment.
To understand the basic science of earthquakes and to help engineers better prepare for such an event,
scientists want to identify which regions are likely to experience the most intense shaking, particularly in
populated sediment-filled basins. This understanding can be used to improve building codes in high hazard
areas and to help engineers design safer structures, potentially saving lives and property. In the absence of
deterministic earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios
is one of the most promising tools to mitigate earthquake related hazard. This requires intense modeling
that meets the spatial and temporal resolution scales of the continuously increasing density and resolution of
the seismic instrumentation, which record dynamic shaking at the surface, as well as of the basin models.
Another important issue is to improve the physical understanding of the earthquake rupture processes and
seismic wave propagation. Large scale simulations of earthquake rupture dynamics and wave propagation are
currently the only means to investigate these multi-scale physics together with data assimilation and inversion.
High resolution models are also required to develop and assess fast operational analysis tools for real time
seismology and early warning systems. Modeling and forecasting earthquake ground motion in large basins is
a challenging and complex task. The complexity arises from several sources. First, multiple scales characterize
the earthquake source and basin response: the shortest wavelengths are measured in tens of meters, whereas
the longest measure in kilometers; basin dimensions are on the order of tens of kilometers, and earthquake
sources up to hundreds of kilometers. Second, temporal scales vary from the hundredths of a second necessary
to resolve the highest frequencies of the earthquake source up to as much as several minutes of shaking within
the basin. Third, many basins have a highly irregular geometry. Fourth, the soil’s material properties are highly
heterogeneous. And fifth, geology and source parameters are observable only indirectly and thus introduce
uncertainty in the modeling process. Because of its modeling and computational complexity, earthquake
simulation is currently recognized as a grand challenge problem.
Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing
numerical software rely on finite difference type methods. Among the most popular schemes, one can cite
the staggered grid finite difference scheme proposed by Virieux [62] and based on the first order velocity-
stress hyperbolic system of elastic waves equations, which is an extension of the scheme derived by Yee
[63] for the solution of the Maxwell equations. Many improvements of this method have been proposed, in
particular, higher order schemes in space or rotated staggered-grids allowing strong fluctuations of the elastic
parameters. Despite these improvements, the use of cartesian grids is a limitation for such numerical methods
especially when it is necessary to incorporate surface topography or curved interface. Moreover, in presence of
a non planar topography, the free surface condition needs very fine grids (about 60 points by minimal Rayleigh
wavelength) to be approximated. In this context, our objective is to develop high order unstructured mesh based
methods for the numerical solution of the system of elastodynamic equations for elastic media in a first step,
and then to extend these methods to a more accurate treatment of the heterogeneities of the medium or to more
complex propagation materials such as viscoelastic media which take into account the intrinsic attenuation.
Initially, the team has considered in detail the necessary methodological developments for the large-scale
simulation of earthquake dynamics [2]-[1]. More recently, the team has initiated a close collaboration with
CETE Méditerranée http://www.cete-mediterranee.fr/gb which is a regional technical and engineering centre
whose activities are concerned with seismic hazard assessment studies, and IFSTTAR http://www.ifsttar.fr/en/
welcome which is the French institute of science and technology for transport, development and networks,
conducting research studies on control over aging, risks and nuisances.

4.2.2. Imperfect interfaces.
A long term scientific collaboration (at least 5 years long) has been recently set up between the NACHOS
project-team and LMA (Laboratoire de Mécanique et Acoustique) http://www.lma.cnrs-mrs.fr with the arrival
of Marie-Hélène Lallemand who joigned NACHOS in October 2012. That collaboration has been motivated by
common scientific interests concerning both geodynamics (seismic wave propagation) and seismology (Non
Destructive Control by wave propagation). The goal is to contribute in the area of both fracture dynamics
modelings and the setting of adequate constitutive laws for interfaces separating two continuous media. Since
the whole medium under study is heterogeneous in term of both materials and geometries, the study of

http://www.cete-mediterranee.fr/gb
http://www.ifsttar.fr/en/welcome
http://www.ifsttar.fr/en/welcome
http://www.lma.cnrs-mrs.fr
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Figure 3. Propagation of a plane wave in a heterogeneous model of Nice area (provided by CETE Méditerranée).
Left figure: topography of Nice and location of the cross-section used for numerical simulations (black line).
Middle figure: S-wave velocity distribution along the cross-section in the Nice basin. Right figure: transfer

functions (amplification) for a vertically incident plane wave ; receivers every 5 m at the surface. This numerical
simulation was performed using a numerical method for the solution of the elastodynamics equations coupled to a

Generalized Maxwell Body (GMB) model of viscoelasticity (PhD thesis of Fabien Peyrusse).

equivalent homogeneous representation/modellings is crucial to get a suitable reduced model which can be
used for numerical simulations. In the particular example of rock-type soils near mountain areas, the medium
may be viewed from the geologist, at the macro-scale, for example, as large layers of continuous materials
separated by interfacial areas through which discontinuities (of displacements, velocities, stress components
...) may occur. Even if the so-called interfaces may have a depth which may attain many times ten meters and
a length of many times hundred meters, they are assimilated as interfaces, from the geologist point of view.
Inside those thin layers, there are usually some mixture of multiphase materials (water, sand, gas, etc.), and the
exact composition is not known in advance. While perfect interfaces are usually assumed in inverse problems
in sismology, the question is to qualify and to quantify the errors if we do not take those assumptions for
granted. When soil rheology is requested, assuming perfect interfaces or imperfect interfaces greatly influence
the physical parameters obtained in reversing the data collected in the captors. Interface modelling is one of the
expertise area of LMA, and the project-team is interested in taking that opportunity to improve its knowledge in
multi-scale modelling while ready to help answering the numerical implementation of such resulting models.
That collaboration is not restricted to that aspect though. Well-posedness of the resulting models, numerical
solvers are also domains which are also addressed.

4.2.3. Seismic exploration.
This application topic has been considered recently by the NACHOS project-team and this is done in close
collaboration with the MAGIQUE-3D project-team at Inria Bordeaux - Sud-Ouest which is coordinating the
Depth Imaging Partnership (DIP) http://dip.inria.fr between Inria and TOTAL. The research program of DIP
includes different aspects of the modeling and numerical simulation of sesimic wave propagation that must
be considered to construct an efficient software suites for producing accurate images of the subsurface. Our
common objective with the MAGIQUE-3D project-team is to design high order unstructured mesh based
methods for the numerical solution of the system of elastodynamic equations in the time domain and in the
frequency domain, that will be used as forward modelers in appropriate inversion procedures.

5. Software and Platforms

http://dip.inria.fr
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5.1. MAXW-DGTD
Participants: Stéphane Lanteri [correspondant], Loula Fezoui, Ludovic Moya, Raphaël Léger, Jonathan
Viquerat.

MAXW-DGTD is a software suite for the simulation of time domain electromagnetic wave propagation.
It implements a solution method for the Maxwell equations in the time domain. MAXW-DGTD is based
on a discontinuous Galerkin method formulated on unstructured triangular (2D case) or tetrahedral (3D
case) meshes [16]. Within each element of the mesh, the components of the electromagnetic field are
approximated by a arbitrary high order nodal polynomial interpolation method. This discontinuous Galerkin
method combines a centered scheme for the evaluation of numerical fluxes at a face shared by two neighboring
elements, with an explicit Leap-Frog time scheme. The software and the underlying algorithms are adapted
to distributed memory parallel computing platforms thanks to a parallelization strategy that combines a
partitioning of the computational domain with message passing programming using the MPI standard. Besides,
a peripheral version of the software has been recently developed which is able to exploit the processing
capabilities of a hybrid parallel computing system comprising muticore CPU and GPU nodes.

• AMS: AMS 35L50, AMS 35Q60, AMS 35Q61, AMS 65N08, AMS 65N30, AMS 65M60

• Keywords: Computational electromagnetics, Maxwell equations, discontinuous Galerkin, tetrahe-
dral mesh.

• OS/Middelware: Linux

• Required library or software: MPI (Message Passing Interface), CUDA

• Programming language: Fortran 77/95

5.2. MAXW-DGFD
Participants: Stéphane Lanteri [correspondant], Ronan Perrussel.

MAXW-DGFD is a software suite for the simulation of time harmonic electromagnetic wave propagation. It
implements a solution method for the Maxwell equations in the frequency domain. MAXW-DGFD is based
on a discontinuous Galerkin method formulated on unstructured triangular (2D case) or tetrahedral (3D case)
meshes. Within each element of the mesh, the components of the electromagnetic field are approximated by a
arbitrary high order nodal polynomial interpolation method. The resolution of the sparse, complex coefficients,
linear systems resulting from the discontinuous Galerkin formulation is performed by a hybrid iterative/direct
solver whose design is based on domain decomposition principles. The software and the underlying algorithms
are adapted to distributed memory parallel computing platforms thanks to a paralleization strategy that
combines a partitioning of the computational domain with a message passing programming using the MPI
standard. Some recent achievements have been the implementation of non-uniform order DG method in the
2D case and of a new hybridizable discontinuous Galerkin (HDG) formulation also in the 2D and 3D cases.

• AMS: AMS 35L50, AMS 35Q60, AMS 35Q61, AMS 65N08, AMS 65N30, AMS 65M60

• Keywords: Computational electromagnetics, Maxwell equations, discontinuous Galerkin, tetrahe-
dral mesh.

• OS/Middelware: Linux

• Required library or software: MPI (Message Passing Interface)

• Programming language: Fortran 77/95

5.3. SISMO-DGTD
Participants: Nathalie Glinsky [correspondant], Stéphane Lanteri.
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SISMO-DGTD is a software for the simulation of time domain seismic wave propagation. It implements
a solution method for the velocity-stress equations in the time domain. SISMO-DGTD is based on a
discontinuous Galerkin method formulated on unstructured triangular (2D case) or tetrahedral (3D case)
meshes [6]. Within each element of the mesh, the components of the electromagnetic field are approximated by
a arbitrary high order nodal polynomial interpolation method. This discontinuous Galerkin method combines
a centered scheme for the evaluation of numerical fluxes at a face shared by two neighboring elements, with
an explicit Leap-Frog time scheme. The software and the underlying algorithms are adapted to distributed
memory parallel computing platforms thanks to a paralleization strategy that combines a partitioning of the
computational domain with a message passing programming using the MPI standard.

• AMS: AMS 35L50, AMS 35Q74, AMS 35Q86, AMS 65N08, AMS 65N30, AMS 65M60
• Keywords: Computational geoseismics, elastodynamic equations, discontinuous Galerkin, tetrahe-

dral mesh.
• OS/Middelware: Linux
• Required library or software: MPI (Message Passing Interface)
• Programming language: Fortran 77/95

5.4. NUM3SIS
Participants: Nora Aissiouene, Thibaud Kloczko [SED 1 team], Régis Duvigneau [OPALE project-team],
Thibaud Kloczko [SED team], Stéphane Lanteri, Julien Wintz [SED team].

NUM3SIS http://num3sis.inria.fr is a modular platform devoted to scientific computing and numerical simula-
tion. It is designed to handle complex multidisciplinary simulations involving several fields such as Computa-
tional Fluid Dynamics (CFD), Computational Structural Mechanic (CSM) and Computational ElectroMagnet-
ics (CEM). In this context, the platform provides a comprehensive framework for engineers and researchers
that speeds up implementation of new models and algorithms. From a software engineering point of view,
num3sis specializes and extends some layers of the meta-platform dtk, especially its core and composition
layers. The core layer enables the user to define generic concepts used for numerical simulation such as mesh
or finite-volume schemes which are then implemented through a set of plugins. The composition layer pro-
vides a visual programming framework that wraps these concepts inside graphical items, nodes. These nodes
can then be connected to each other to define data flows (or compositions) corresponding to the solution of
scientific problems. NUM3SIS provides a highly flexible, re-usable and efficient approach to develop new
computational scenarios and takes advantage of existing tools. The team participates to the development of
the NUM3SIS platform through the adaptation and integration of the MAXW-DGTD simulation software.
This work is being carried out with the support of two engineers in the framework of an ADT (Action de
Développement Technologique) program.

5.5. Medical Image Extractor
Participants: Stéphane Lanteri, Julien Wintz [SED team].

Medical Image Extractor http://num3sis.inria.fr/software/apps/extractor provides functionalities needed to
extract meshes from labeled MR or PET-CT medical images. It puts the emphasis on consistence, by
generating both boundary surfaces, and volume meshes for each label (ideally identifying a tissue) of the input
image, using the very same tetreahedrization. As this process requires user interaction, images and meshes
are visualized together with tools allowing navigation and both easy and accurate refinement of the generated
meshes, that can then be exported to serve as an input for other tools, within a multidisciplinar software
toolchain. Using both DTK http://dtk.inria.fr and NUM3SIS SDKs, Medical Image Extractor comes within
NUM3SIS’framework. Using cutting edge research algorithms developped by different teams at Inria, spread
among different research topics, namely, visualization algorithms from medical image processing, meshing
algorithms from algorithmic geometry, it illustrates the possibility to bridge the gap between software that
come from different communities, in an innovative and highly non invasive development fashion.

1Service d’Experimentation et de Développement

http://num3sis.inria.fr
http://num3sis.inria.fr/software/apps/extractor
http://dtk.inria.fr
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6. New Results

6.1. Discontinuous Galerkin methods for Maxwell’s equations
6.1.1. DGTD-Pp method based on hierarchical polynomial interpolation

Participants: Loula Fezoui, Stéphane Lanteri.

The DGTD (Discontinuous Galerkin Time Domain) method originally proposed by the team for the solution
of the time domain Maxwell’s equations [16] relies on an arbitrary high order polynomial interpolation of the
component of the electromagnetic field, and its computer implementation makes use of nodal (Lagrange) basis
expansions on simplicial elements. The resulting method is often denoted by DGTD-Pp where p refers to the
interpolation degree that can be defined locally i.e. at the element level. In view of the design of a hp-adaptive
DGTD method, i.e. a solution strategy allowing an automatic adaptation of the interpolation degree p and the
discretization step h, we now investigate alternative polynomial interpolation and in particular those which
lead to hierarchical or/and orthogonal basis expansions. Such basis expansions on simplicial elements have
been extensively studied in the context of continuous finite element formulations (e.g. [59]) and have thus
been designed with global conformity requirements (i.e. H1, H(rot) or (div)) whose role in the context of a
discontinuous Galerkin formulation has to be clarified. This represents one of the objectives of this study. This
year, we have started the development of a new software platform in Fortran 95 implementing DGTD-Pp able
to deal with different polynomial basis expansions on a tetrahedral element, for the solution of the 3D time
domain Maxwell equations.

6.1.2. DGTD-PpQk method on multi-element meshes
Participants: Clément Durochat, Stéphane Lanteri, Raphael Léger, Claire Scheid, Mark Loriot [Distene, Pôle
Teratec, Bruyères-le-Chatel].

In this work, we study a multi-element DGTD method formulated on a hybrid mesh which combines a
structured (orthogonal) discretization of the regular zones of the computational domain with an unstructured
discretization of the irregularly shaped objects. The general objective is to enhance the flexibility and the
efficiency of DGTD methods for large-scale time domain electromagnetic wave propagation problems with
regards to the discretization process of complex propagation scenes. With this objective in mind, we have
designed and analyzed a DGTD-PpQk method formulated on non-conforming hybrid quadrangular/triangular
meshes (2D case) or non-conforming hexahedral/tetrahedral meshes (3D case) for the solution of the time
domain Maxwell’s equations [23]-[22].

6.1.3. DGTD-Pp method for Debye media and applications to biolectromagnetics
Participants: Claire Scheid, Maciej Klemm [Communication Systems & Networks Laboratory, Centre for
Communications Research, University of Bristol, UK], Stéphane Lanteri.

This work is undertaken in the context of a collaboration with the Communication Systems & Networks
Laboratory, Centre for Communications Research, University of Bristol (UK). This laboratory is studying
imaging modalities based on microwaves with applications to dynamic imaging of the brain activity (Dynamic
Microwave Imaging) on one hand, and to cancerology (imaging of breast tumors) on the other hand. The design
of imaging systems for these applications is extensively based on computer simulation, in particular to assess
the performances of the antenna arrays which are at the heart of these systems. In practice, one has to model the
propagation of electromagnetic waves emitted from complex sources and which propagate and interact with
biological tissues. In relation with these issues, we study the extension of the DGTD-Pp method originally
proposed in [16] to the numerical treatment of electromagnetic wave propagation in dispersive media. We
consider an approach based on an auxiliary differential equation modeling the time evolution of the electric
polarization for a dispersive medium of Debye type (other dispersive media will be considered subsequently).
The stability and a priori convergence analysis of the resulting DGTD-Pp method has been studied [25], and
its application to the simulation of the propagation in realistic geometrical models of head tissues is underway
in the context of our participation to the DEEP-ER FP7 project.
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Figure 4. Scattering of a plane wave by a disk. Conforming triangular mesh (top left) and non-conforming
quadrangular/triangular mesh (top right). Contour lines of electrical field component Ez from a simulation with a

DGTD-P2Q4 method (bottom).
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6.1.4. DGTD-Pp method for nanophotonics
Participants: Claire Scheid, Maciej Klemm [Communication Systems & Networks Laboratory, Centre for
Communications Research, University of Bristol, UK], Stéphane Lanteri, Raphael Léger, Jonathan Viquerat.

Modelling and numerical simulation aspects are crucial for a better understanding of nanophotonics. Media
that one encounters are complex and the geometries quite involved, so that while a FDTD method failed
to be accurate enough, a non conforming discretisation method seems to be well adapted. In this direction,
since the end of 2012, we are actively studying the numerical modeling of electromagnetic wave interaction
with nanoscale metallic structures. In this context, one has to take into account the dispersive characteristics
of metals in the frequency range of interest to nanophotonics. As a first step in this direction, we have
considered an auxiliary differential equation approach for the numerical treatment of a Drude, Drude-Lorentz
and a generalized dispersion models in the framework of a DGTD-Pp method [20]-[36]. We performed
the corresponding numerical analysis as well as numerical validation tests cases. Some methodological
improvements, such as curvilinear elements and higher order time discretization schemes are also underway.

6.1.5. Frequency domain hybridized DGFD-Pp methods
Participants: Stéphane Lanteri, Liang Li [Faculty Member, School of Mathematical Sciences, Institute of
Computational Science, University of Electronic Science and Technology of China Chengdu, China], Ronan
Perrussel [Laplace Laboratory, INP/ENSEEIHT/UPS, Toulouse].

For certain types of problems, a time harmonic evolution can be assumed leading to the formulation of the
frequency domain Maxwell equations, and solving these equations may be more efficient than considering the
time domain variant. We are studying a high order Discontinuous Galerkin Frequency Domain (DGFD-Pp)
method formulated on unstructured meshes for solving the 2D and 3D time harmonic Maxwell equations.
However, one major drawback of DG methods is their intrinsic cost due to the very large number of globally
coupled degrees of freedom as compared to classical high order conforming finite element methods. Different
attempts have been made in the recent past to improve this situation and one promising strategy has been
recently proposed by Cockburn et al. [48] in the form of so-called hybridizable DG formulations. The
distinctive feature of these methods is that the only globally coupled degrees of freedom are those of an
approximation of the solution defined only on the boundaries of the elements. This work is concerned with the
study of such Hybridizable Discontinuous Galerkin (HDG) methods for the solution of the system of Maxwell
equations in the time domain when the time integration relies on an implicit scheme, or in the frequency
domain. We have been one of the first groups to study HDGFD-Pp methods based on nodal interpolation
methods for the solution of the 2D and 3D frequency domain Maxwell equations [26]-[27].

6.1.6. Exact transparent condition in a DGFD-Pp method
Participants: Mohamed El Bouajaji, Nabil Gmati [ENIT-LAMSIN, Tunisia], Stéphane Lanteri, Jamil Salhi
[ENIT-LAMSIN, Tunisia].

In the numerical treatment of propagation problems theoretically posed in unbounded domains, an artificial
boundary is introduced on which an absorbing condition is imposed. For the frequency domain Maxwell
equations, one generally use the Silver-Müller condition which is a first order approximation of the exact
radiation condition. Then, the accuracy of the numerical treatment greatly depends on the position of the
artificial boundary with regards to the scattering object. In this work, we have conducted a preliminary
study aiming at improving this situation by using an exact transparent condition in place of the Silver-Müller
condition. Promising results have been obtained in the 2D case [30].

6.2. Discontinuous Galerkin methods for the elastodynamic equations
6.2.1. DGTD-Pp method for viscoelastic media

Participants: Nathalie Glinsky, Stéphane Lanteri, Fabien Peyrusse.
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We continue developing high order non-dissipative discontinuous Galerkin methods on simplicial meshes for
the numerical solution of the first order hyperbolic linear system of elastodynamic equations. These methods
share some ingredients of the DGTD-Pp methods developed by the team for the time domain Maxwell
equations among which, the use of nodal polynomial (Lagrange type) basis functions, a second order leap-
frog time integration scheme and a centered scheme for the evaluation of the numerical flux at the interface
between neighboring elements. The resulting DGTD-Pp methods have been validated and evaluated in detail
in the context of propagation problems in both homogeneous and heterogeneous media including problems for
which analytical solutions can be computed. Particular attention was given to the study of the mathematical
properties of these schemes such as stability, convergence and numerical dispersion.
A recent novel contribution is the extension of the DGTD method to include viscoelastic attenuation. For
this, the velocity-stress first-order hyperbolic system is completed by additional equations for the anelastic
functions including the strain history of the material. These additional equations result from the rheological
model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of
viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. In practice, we need
solving 3L additional equations in 2D (and 6L in 3D), where L is the number of relaxation mechanisms of the
generalized Maxwell body. This method has been implemented in 2D and validated by comparison to results
obtained by a finite-difference method, in particular for wave propagation in a realistic basin of the area of
Nice (south of France)

6.2.2. DGTD-Pp method for the assessment of topographic effects
Participants: Etienne Bertrand [CETE Méditerranée], Nathalie Glinsky.

This study addresses the numerical assessment of site effects especially topographic effects. The study of
measurements and experimental records proved that seismic waves can be amplified at some particular
locations of a topography. Numerical simulations are exploited here to understand further and explain this
phenomenon. The DGTD-Pp method has been applied to a realistic topography of Rognes area (where the
Provence earthquake occured in 1909) to model the observed amplification and the associated frequency.
Moreover, the results obtained on several homogeneous and heterogeneous configurations prove the influence
of the medium in-depth geometry on the amplifications measures at the surface .

6.2.3. DGTD-Pp method for arbitrary heterogeneous media
Participants: Nathalie Glinsky, Diego Mercerat [CETE Méditerranée].

We have recently devised an extension of the DGTD method for elastic wave propagation in arbitrary
heterogeneous media. In realistic geological media (sedimentary basins for example), one has to include strong
variations in the material properties. Then, the classical hypothesis that these properties are constant within
each element of the mesh can be a severe limitation of the method, since we need to discretize the medium
with very fine meshes resulting in very small time steps. For these reasons, we propose an improvement of
the DGTD method allowing non-constant material properties within the mesh elements. A change of variables
on the stress components allows writing the elastodynamic system in a pseudo-conservative form. Then, the
introduction of non-constant material properties inside an element is simply treated by the calculation, via
convenient quadrature formulae, of a modified local mass matrix depending on these properties. This new
extension has been validated for a smoothly varying medium or a strong jump between two media, which can
be accurately approximated by the method, independently of the mesh .

6.2.4. DGFD-Pp method for frequency domain elastodynamics
Participants: Hélène Barucq [MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest], Marie Bonnasse,
Julien Diaz [MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri.

We have started this year a research direction aiming at the development of high order discontinuous Galerkin
methods on unstructured meshes for the simulation of frequency domain elastodynamic and viscelastic wave
propagation. This study is part of the Depth Imaging Partnership (DIP) between Inria and TOTAL. The PhD
thesis of Marie Bonnasse is at the heart of this study which is funded by TOTAL.
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6.3. Multiscale finite element methods for time-domain wave models
Participants: Marie-Helene Lallemand Tenkes, Stéphane Lanteri, Claire Scheid, Frédéric Valentin [LNCC,
Petrópolis, Brazil].

Mathematical (partial differential equation) models embedding multiscale features occur in a wide range
of natural situations and industrial applications involving wave propagation. This is for instance the case
of electromagnetic or seismic wave propagation in heterogenous media. Although the related applications
take place at the macro-scale, it is well known that the parameters describing the macro-scale processes are
eventually determined by the solution behavior at the micro-sacle. As a result, each stage of the modeling of the
underlying problem is driven by distinct sets of PDEs with highly heterogeneous coefficients and embedded
high-contrast interfaces. Because of the huge difference in physical scales in heterogenous media it is not
computationally feasible to fully resolve the micro-scale features directly. Macroscopic models or upscaling
techniques have therefore to be developed that are able to accurately capture the macroscopic behavior while
significantly reducing the computational cost. In this context, researchers at LNCC have recently proposed
a new family of finite element methods [51]- [50], called Multiscale Hybrid-Mixed methods (MHM), which
is particularly adapted to be used in high-contrast or heterogeneous coefficients problems. Particularly, they
constructed a family of novel finite element methods sharing the following properties: (i) stable and high-order
convergent; (ii) accurate on coarse meshes; (iii) naturally adapted to high-performance parallel computing; (iv)
induce a face-based a posteriori error estimator (to drive mesh adaptativity); (v) locally conservative. We have
started this year a new reserach direction aiming at the design of similar MHM methods for solving PDE
models of time-domain electromagnetic and seismic wave propagation.

6.4. Time integration strategies and resolution algorithms
6.4.1. Hybrid explicit-implicit DGTD-Pp method

Participants: Stéphane Descombes, Stéphane Lanteri, Ludovic Moya.

Existing numerical methods for the solution of the time domain Maxwell equations often rely on explicit time
integration schemes and are therefore constrained by a stability condition that can be very restrictive on highly
refined meshes. An implicit time integration scheme is a natural way to obtain a time domain method which
is unconditionally stable. Starting from the explicit, non-dissipative, DGTD-Pp method introduced in [16],
we have proposed the use of Crank-Nicolson scheme in place of the explicit leap-frog scheme adopted in
this method [5]. As a result, we obtain an unconditionally stable, non-dissipative, implicit DGTD-Pp method,
but at the expense of the inversion of a global linear system at each time step, thus obliterating one of the
attractive features of discontinuous Galerkin formulations. A more viable approach for 3D simulations consists
in applying an implicit time integration scheme locally i.e in the refined regions of the mesh, while preserving
an explicit time scheme in the complementary part, resulting in an hybrid explicit-implicit (or locally implicit)
time integration strategy. In [7], we conducted a preliminary numerical study of a hyrbid explicit-implicit
DGTD-Pp method, combining a leap-frog scheme and a Crank-Nicolson scheme, and obtained promising
results. More recently, we further investigated two such strategies, both theoretically (especially, convergence
in the ODE and PDE senses) [17] and numerically in the 2D case [28]. A last topic is to propose higher
order time integration techniques based on the second-order locally implicit method to fully exploit the
attractive features of this approach combined with a DG discretisation which allows to easily increase the
spatial convergence order. Promising results in 2D reaching high order in time, between 3, 5 and 4, have been
obtained in [29] by applying Richardson extrapolation and composition methods.

6.4.2. Optimized Schwarz algorithms for the frequency domain Maxwell equations
Participants: Victorita Dolean, Martin Gander [Mathematics Section, University of Geneva], Stéphane
Lanteri, Ronan Perrussel [Laplace Laboratory, INP/ENSEEIHT/UPS, Toulouse].
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Figure 5. Scattering of a plane wave by an airfoil profile. Contour lines of electrical field component Ez (left) and
locally refined triangular mesh with partitioning in explicit/implicit zones (right).

Even if they have been introduced for the first time two centuries ago, over the last two decades, classical
Schwarz methods have regained a lot of popularity with the developement of parallel computers. First
developed for the elliptic problems, they have been recently extended to systems of hyperbolic partial
differential equations, and it was observed that the classical Schwartz method can be convergent even without
overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to
elliptic problems, for which overlap is essential for convergence. Over the last decade, optimized versions
of Schwarz methods have been developed for elliptic partial differential equations. These methods use more
effective transmission conditions between subdomains, and are also convergent without overlap for elliptic
problems. The extension of such methods to systems of equations and more precisely to Maxwell’s system
(time harmonic and time discretized equations) has been studied in [9]. The optimized interface conditions
proposed in [9] were devised for the case of non-conducting propagation media. We have recently studied
the formulation of such conditions for conducting media [4]. Besides, we have also proposed an appropriate
discretization strategy of these optimized Schwarz algorithms in the context of a high order DGFD-Pp method
formulated on unstructured triangular meshes for the solution of the 2D frequency domain Maxwell equations
[42].

7. Bilateral Contracts and Grants with Industry

7.1. Seismic risk assessment by a discontinuous Galerkin method
Participants: Nathalie Glinsky, Stéphane Lanteri, Fabien Peyrusse.

The objective of this research grant with IFSTTAR http://www.ifsttar.fr (French institute of sciences and
technology for transport, development and networks) and CETE Méditerranée is the numerical modeling
of earthquake dynamics taking into account realistic physical models of geological media relevant to this
context. In particular, a discontinuous Galerkin method will be designed for the solution of the elastodynamic
equations coupled to an appropriate model of physical attenuation of the wave fields for the characterization
of a viscoelastic material.

8. Partnerships and Cooperations

http://www.ifsttar.fr
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Figure 6. Propagation of a plane wave in a multilayered heterogeneous medium. Problem setting and
two-subdomain decompositin (top). Contour lines of the real part of the Ez component of the electrical field

(bottom left) and asymptotic convergence of the optimized Schwarz algorithms (bottom right).



Project-Team NACHOS 21

8.1. National Initiatives
8.1.1. Inria Project Lab
8.1.1.1. C2S@Exa - Computer and Computational Scienecs at Exascale

Participants: Olivier Aumage [RUNTIME project-team, Inria Bordeaux - Sud-Ouest], Jocelyne Erhel [SAGE
project-team, Inria Rennes - Bretagne Atlantique], Philippe Helluy [TONUS project-team, Inria Nancy
- Grand-Est], Laura Grigori [ALPINE project-team, Inria Saclay - Île-de-France], Jean-Yves L’excellent
[ROMA project-team, Inria Grenoble - Rhône-Alpes], Thierry Gautier [MOAIS project-team, Inria Grenoble
- Rhône-Alpes], Luc Giraud [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Michel Kern [POMDAPI
project-team, Inria Paris - Rocquencourt], Stéphane Lanteri [Coordinator of the project], François Pellegrini
[BACCHUS project-team, Inria Bordeaux - Sud-Ouest], Christian Perez [AVALON project-team, Inria Greno-
ble - Rhône-Alpes], Frédéric Vivien [ROMA project-team, Inria Grenoble - Rhône-Alpes].

Since January 2013, the team is coordinating the C2S@Exa http://www-sop.inria.fr/c2s_at_exa Inria Project
Lab (IPL). This national initiative aims at the development of numerical modeling methodologies that fully
exploit the processing capabilities of modern massively parallel architectures in the context of a number
of selected applications related to important scientific and technological challenges for the quality and
the security of life in our society. At the current state of the art in technologies and methodologies, a
multidisciplinary approach is required to overcome the challenges raised by the development of highly
scalable numerical simulation software that can exploit computing platforms offering several hundreds of
thousands of cores. Hence, the main objective of C2S@Exa is the establishment of a continuum of expertise
in the computer science and numerical mathematics domains, by gathering researchers from Inria project-
teams whose research and development activities are tightly linked to high performance computing issues
in these domains. More precisely, this collaborative effort involves computer scientists that are experts of
programming models, environments and tools for harnessing massively parallel systems, algorithmists that
propose algorithms and contribute to generic libraries and core solvers in order to take benefit from all the
parallelism levels with the main goal of optimal scaling on very large numbers of computing entities and,
numerical mathematicians that are studying numerical schemes and scalable solvers for systems of partial
differential equations in view of the simulation of very large-scale problems.

8.2. European Initiatives
8.2.1. FP7 Projects
8.2.1.1. DEEP-ER

Type: COOPERATION

Defi: Exascale computing platforms, software and applications

Instrument: Integrated Project

Objectif: Dynamic Exascale Entry Platform - Extended Reach

Duration: October 2013 - September 2016

Coordinator: Forschungszentrum Juelich Gmbh (Germany)

Partner: Intel Gmbh (Germany), Bayerische Akademie der Wissenschaften (Germany), Ruprecht-
Karls-Universitaet Heidelberg (Germany), Universitaet Regensburg (Germany), Fraunhofer-
Gesellschaft zur Foerderung der Angewandten Forschung E.V (Germany), Eurotech Spa (Italy),
Consorzio Interuniversitario Cineca (Italy), Barcelona Supercomputing Center - Centro Nacional
de Supercomputacion (Spain), Xyratex Technology Limited (United Kingdom), Katholieke Univer-
siteit Leuven (Belgium), Stichting Astronomisch Onderzoek in Nederland (The Netherlands) and
Inria (France).

Inria contact: Stephane Lanteri

http://www-sop.inria.fr/c2s_at_exa
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Abstract: the DEEP-ER project aims at extending the Cluster-Booster Architecture that has been
developed within the DEEP project with a highly scalable, efficient, easy-to-use parallel I/O system
and resiliency mechanisms. A Prototype will be constructed leveraging advances in hardware
components and integrate new storage technologies. They will be the basis to develop a highly
scalable, efficient and user-friendly parallel I/O system tailored to HPC applications. Building on this
I/O functionality a unified user-level checkpointing system with reduced overhead will be developed,
exploiting multiple levels of storage. The DEEP programming model will be extended to introduce
easy-to-use annotations to control checkpointing, and to combine automatic re-execution of failed
tasks and recovery of long-running tasks from multi-level checkpoint. The requirements of HPC
codes with regards to I/O and resiliency will guide the design of the DEEP-ER hardware and software
components. Seven applications will be optimised for the DEEP-ER Prototype to demonstrate and
validate the benefits of the DEEP-ER extensions to the Cluster-Booster Architecture.

8.2.2. Collaborations with Major European Organizations
Prof. Martin Gander: University of Geneva, Mathematics section (Switzerland)

Domain decomposition methods (optimized Schwarz algorithms) for the solution of the frequency
domain Maxwell equations

Dr. Maciej Klemm: University of Bristol, Communication Systems & Networks Laboratory, Centre
for Communications Research (United Kingdom)

Numerical modeling of the propagation of electromagnetic waves at the nanoscale for biomedical
applications

8.3. International Initiatives
8.3.1. Participation In other International Programs
8.3.1.1. CNPq-Inria HOSCAR project

Participants: Reza Akbarinia [ZENITH project-team, Inria Sophia Antipolis - Méditerranée], Rossana
Andrade [CSD/UFC], Hélène Barucq [MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest], Alvaro
Coutinho [COPPE/UFR], Juklien Diaz [MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest], Thierry
Gautier [MOAIS project-team, Inria Grenoble - Rhone-Alpes], Antônio Tadeu Gomes [LNCC], Pedroedro
Leite Da Silva Dias [LNCC, Coordinator of the project on the Brazilian side], Luc Giraud [HIEPACS
project-team, Inria Bordeaux - Sud-Ouest], Stéphane Lanteri [Coordinator of the project on the French
side], Alexandre Madureira [LNCC], Nicolas Maillard [INF/UFRG], Florent Masseglia [ZENITH project-
team, Inria Sophia Antipolis - Méditerranée], Marta Mattoso [COPPE/UFR], Philippe Navaux [INF/UFRG],
Esther Pacitti [ZENITH project-team, Inria Sophia Antipolis - Méditerranée], François Pellegrini [BACCHUS
project-team, Inria Bordeaux - Sud-Ouest], Fabio Porto [LNCC], Bruno Raffin [MOAIS project-team, Inria
Grenoble - Rhone-Alpes], Pierre Ramet [HIEPACS project-team, Inria Bordeaux - Sud-Ouest], Jean-Louis
Roch [MOAIS project-team, Inria Grenoble - Rhone-Alpes], Patrick Valduriez [ZENITH project-team, Inria
Sophia Antipolis - Méditerranée], Frédéric Valentin [LNCC].

Since July 2012, the team is coordinating the HOSCAR http://www-sop.inria.fr/hoscar Brazil-France collab-
orative project. he HOSCAR project is a CNPq - Inria collaborative project between Brazilian and French
researchers, in the field of computational sciences. The project is also sponsored by the French Embassy in
Brazil.
The general objective of the project is to setup a multidisciplinary Brazil-France collaborative effort for taking
full benefits of future high-performance massively parallel architectures. The targets are the very large-scale
datasets and numerical simulations relevant to a selected set of applications in natural sciences: (i) resource
prospection, (ii) reservoir simulation, (iii) ecological modeling, (iv) astronomy data management, and (v)
simulation data management. The project involves computer scientists and numerical mathematicians divided
in 3 fundamental research groups: (i) numerical schemes for PDE models (Group 1), (ii) scientific data
management (Group 2), and (iii) high-performance software systems (Group 3). Several Brazilian institutions

http://www-sop.inria.fr/hoscar
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are participating to the project among which: LNCC (Laboratório Nacional de Computaçäo Científica),
COPPE/UFRJ (Instituto Alberto Luiz Coimbra de Pós-Graduaçäo e Pesquisa de Engenharia/Alberto Luiz
Coimbra Institute for Grad<uate Studies and Research in Engineering, Universidade Federal do Rio de
Janeiro), INF/UFRGS (Instituto de Informática, Universidade Federal do Rio Grande do Sul) and LIA/UFC
(Laboratórios de Pesquisa em Ciência da Computaçäo Departamento de Computaçäo, Universidade Federal
do Ceará). The French partners are research teams from several Inria research centers.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

Prof. Kurt Busch, Theoretical Optics & Photonics, Humboldt-Universität zu Berlin, July 4-5

Prof. Martin Gander, University of Geneva, Switzerland, July 1-12

Prof. Jay Gopalakrishnan, Portland University, USA, July 15-19

Dr. Maciej Klemm, University of Bristol, UK, July 29-August 2

Dr. Antoine Moreau, Institut Pascal, Université Blaise Pascal, June 11-12

8.4.1.1. Internships

Anis Ben El Haj Midani Mohamed, ENIT-LAMSIN, Tunisia, April 30-July 31

Nicole Olivares, Mathematics Department, Portland University, Oregon, USA, JUne 11-Auguts 21

8.4.2. Visits to International Teams
Stéphane Lanteri, School of Mathematical Sciences, Institute of Computational Sciences, University
of Electronic Science and Technology of China Chengdu, June 2-7

Stéphane Lanteri, Laboratory for Computational Mathematics, Center of Mathematics, and Institute
for Biomedical Imaging and Life Sciences, Coimbra University, Portugal, October 27-November 1

9. Dissemination

9.1. Teaching - Supervision - Juries
9.1.1. Teaching

Victorita Dolean, Scilab, MAM3, 24 h, Polytech Nice.

Victorita Dolean, Partial differential equations, MAM4, 66 h, Polytech Nice.

Victorita Dolean, Computational electromagnetics, MAM5, 40 h, Polytech Nice.

Victorita Dolean, Numerical analysis, L2, 30 h, University of Nice-Sophia Antipolis.

Victorita Dolean, Mathematics and statistics, M1 Erasmus Mundus EuroAquae, 34 h, University of
Nice-Sophia Antipolis.

Claire Scheid and Stéphane Lanteri, Introduction to scientific computing, M2 Erasmus Mundus
MathMods, 30 h, University of Nice-Sophia Antipolis.

Claire Scheid, Practical works on differential calculus, 26 h, L2, University of Nice-Sophia Antipo-
lis.

Claire Scheid, Practical works on differential equations, 36 h, L3, University of Nice-Sophia
Antipolis.

Stéphane Descombes, Analyse numérique et applications en finances, M2, 30 h, University of Nice-
Sophia Antipolis.

9.1.2. Supervision
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PhD in progress : Caroline Girard, Numerical modeling of the electromagnetic susceptibility of
innovative planar circuits, October 2011, Stéphane Lanteri, Ronan Perrussel and Nathalie Raveu
(Laplace Laboratory, INP/ENSEEIHT/UPS, Toulouse).

PhD in progress : Fabien Peyrusse, Numerical simulation of strong earthquakes by a discontinu-
ous Galerkin method, University of Nice-Sophia Antipolis, October 2010, Nathalie Glinsky and
Stéphane Lanteri.

PhD in progress : Marie Bonnasse, Numerical simulation of frequency domain elastic and viscoelas-
tic wave propagation using discontinuous Galerkin methods, University of Nice-Sophia Antipolis,
October 2012, Julien Diaz (MAGIQUE3D project-team, Inria Bordeaux - Sud-Ouest) and Stéphane
Lanteri.

PhD in progress : Jonathan Viquerat, Discontinuous Galerkin time domain methods for nanophoton-
ics, October 2012, Stéphane Lanteri and Claire Scheid.

10. Bibliography
Major publications by the team in recent years

[1] M. BENJEMAA, N. GLINSKY-OLIVIER, V. CRUZ-ATIENZA, J. VIRIEUX. 3D dynamic rupture simulations by
a finite volume method, in "Geophys. J. Int.", 2009, vol. 178, pp. 541–560, http://dx.doi.org/10.1111/j.1365-
246X.2009.04088.x

[2] M. BENJEMAA, N. GLINSKY-OLIVIER, V. CRUZ-ATIENZA, J. VIRIEUX, S. PIPERNO. Dynamic non-planar
crack rupture by a finite volume method, in "Geophys. J. Int.", 2007, vol. 171, pp. 271-285, http://dx.doi.org/
10.1111/j.1365-246X.2006.03500.x

[3] M. BERNACKI, L. FEZOUI, S. LANTÉRI, S. PIPERNO. Parallel unstructured mesh solvers for heterogeneous
wave propagation problems, in "Appl. Math. Model.", 2006, vol. 30, no 8, pp. 744–763, http://dx.doi.org/10.
1016/j.apm.2005.06.015

[4] M. E. BOUAJAJI, V. DOLEAN, M. GANDER, S. LANTÉRI. Optimized Schwarz methods for the time-harmonic
Maxwell equations with damping, in "SIAM J. Sci. Comp.", 2012, vol. 34, no 4, pp. A20148–A2071
[DOI : 10.1137/110842995]

[5] A. CATELLA, V. DOLEAN, S. LANTÉRI. An implicit discontinuous Galerkin time-domain method for two-
dimensional electromagnetic wave propagation, in "COMPEL", 2010, vol. 29, no 3, pp. 602–625, http://dx.
doi.org/10.1108/03321641011028215

[6] S. DELCOURTE, L. FEZOUI, N. GLINSKY-OLIVIER. A high-order discontinuous Galerkin method for the
seismic wave propagation, in "ESAIM: Proc.", 2009, vol. 27, pp. 70–89, http://dx.doi.org/10.1051/proc/
2009020

[7] V. DOLEAN, H. FAHS, L. FEZOUI, S. LANTÉRI. Locally implicit discontinuous Galerkin method for time
domain electromagnetics, in "J. Comput. Phys.", 2010, vol. 229, no 2, pp. 512–526, http://dx.doi.org/10.
1016/j.jcp.2009.09.038

[8] V. DOLEAN, H. FOL, S. LANTÉRI, R. PERRUSSEL. Solution of the time-harmonic Maxwell equations using
discontinuous Galerkin methods, in "J. Comp. Appl. Math.", 2008, vol. 218, no 2, pp. 435-445, http://dx.doi.
org/10.1016/j.cam.2007.05.026

http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03500.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03500.x
http://dx.doi.org/10.1016/j.apm.2005.06.015
http://dx.doi.org/10.1016/j.apm.2005.06.015
http://dx.doi.org/10.1108/03321641011028215
http://dx.doi.org/10.1108/03321641011028215
http://dx.doi.org/10.1051/proc/2009020
http://dx.doi.org/10.1051/proc/2009020
http://dx.doi.org/10.1016/j.jcp.2009.09.038
http://dx.doi.org/10.1016/j.jcp.2009.09.038
http://dx.doi.org/10.1016/j.cam.2007.05.026
http://dx.doi.org/10.1016/j.cam.2007.05.026


Project-Team NACHOS 25

[9] V. DOLEAN, M. GANDER, L. GERARDO-GIORDA. Optimized Schwarz methods for Maxwell equations, in
"SIAM J. Scient. Comp.", 2009, vol. 31, no 3, pp. 2193–2213, http://dx.doi.org/10.1137/080728536

[10] V. DOLEAN, S. LANTÉRI, R. PERRUSSEL. A domain decomposition method for solving the three-dimensional
time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in "J. Comput. Phys.",
2007, vol. 227, no 3, pp. 2044–2072, http://dx.doi.org/10.1016/j.jcp.2007.10.004

[11] V. DOLEAN, S. LANTÉRI, R. PERRUSSEL. Optimized Schwarz algorithms for solving time-harmonic
Maxwell’s equations discretized by a discontinuous Galerkin method, in "IEEE. Trans. Magn.", 2008, vol.
44, no 6, pp. 954–957, http://dx.doi.org/10.1109/TMAG.2008.915830

[12] V. ETIENNE, E. CHALJUB, J. VIRIEUX, N. GLINSKY. An hp-adaptive discontinuous Galerkin finite-element
method for 3-D elastic wave modelling, in "Geophys. J. Int.", 2010, vol. 183, no 2, pp. 941–962, http://dx.
doi.org/10.1111/j.1365-246X.2010.04764.x

[13] H. FAHS. Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial
meshes for electromagnetic wave propagation, in "Int. J. Numer. Anal. Mod.", 2009, vol. 6, no 2, pp. 193–216

[14] H. FAHS. High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations
on non-conforming simplicial meshes, in "Numer. Math. Theor. Meth. Appl.", 2009, vol. 2, no 3, pp. 275–300

[15] H. FAHS, A. HADJEM, S. LANTÉRI, J. WIART, M. WONG. Calculation of the SAR induced in head tissues
using a high order DGTD method and triangulated geometrical models, in "IEEE Trans. Ant. Propag.", 2011,
vol. 59, no 12, pp. 4669–4678, http://dx.doi.org/10.1109/TAP.2011.2165471

[16] L. FEZOUI, S. LANTÉRI, S. LOHRENGEL, S. PIPERNO. Convergence and stability of a discontinuous
Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in
"ESAIM: Math. Model. Num. Anal.", 2005, vol. 39, no 6, pp. 1149–1176, http://dx.doi.org/DOI:10.1051/
m2an:2005049

[17] L. MOYA. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equa-
tions, in "ESAIM: Mathematical Modelling and Numerical Analysis", 2012, vol. 46, pp. 1225–1246
[DOI : 10.1051/M2AN/2012002], http://hal.inria.fr/inria-00565217

[18] S. PIPERNO, M. REMAKI, L. FEZOUI. A nondiffusive finite volume scheme for the three-dimensional
Maxwell’s equations on unstructured meshes, in "SIAM J. Num. Anal.", 2002, vol. 39, no 6, pp. 2089–2108,
http://dx.doi.org/10.1137/S0036142901387683

Publications of the year
Doctoral Dissertations and Habilitation Theses

[19] C. DUROCHAT. , Méthode de type Galerkin discontinu en maillages multi-éléments (et non-conformes) pour
la résolution numérique des équations de Maxwell instationnaires, Université Nice Sophia Antipolis, January
2013, http://hal.inria.fr/tel-00805935

Articles in International Peer-Reviewed Journals

[20] S. DESCOMBES, C. DUROCHAT, S. LANTÉRI, L. MOYA, C. SCHEID, J. VIQUERAT. Recent advances on
a DGTD method for time-domain electromagnetics, in "Photonics and Nanostructures - Fundamentals and

http://dx.doi.org/10.1137/080728536
http://dx.doi.org/10.1016/j.jcp.2007.10.004
http://dx.doi.org/10.1109/TMAG.2008.915830
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
http://dx.doi.org/10.1109/TAP.2011.2165471
http://dx.doi.org/DOI:10.1051/m2an:2005049
http://dx.doi.org/DOI:10.1051/m2an:2005049
http://hal.inria.fr/inria-00565217
http://dx.doi.org/10.1137/S0036142901387683
http://hal.inria.fr/tel-00805935


26 Activity Report INRIA 2013

Applications", November 2013, vol. 11, no 4, pp. 291-302 [DOI : 10.1016/J.PHOTONICS.2013.06.005],
http://hal.inria.fr/hal-00915347

[21] T. DUMONT, M. DUARTE, S. DESCOMBES, M.-A. DRONNE, M. MASSOT, V. LOUVET. Simulation of
human ischemic stroke in realistic 3D geometry, in "Communications in Nonlinear Science and Numerical
Simulation", June 2013, vol. 18, no 6, pp. 1539-1557 [DOI : 10.1016/J.CNSNS.2012.10.002], http://hal.
inria.fr/hal-00546223

[22] C. DUROCHAT, S. LANTÉRI, R. LEGER. A non-conforming multi-element DGTD method for the simulation
of human exposure to electromagnetic waves, in "International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields", October 2013 [DOI : 10.1002/JNM.1943], http://hal.inria.fr/hal-00915353

[23] C. DUROCHAT, S. LANTÉRI, C. SCHEID. High order non-conforming multi-element Discontinuous Galerkin
method for time domain electromagnetics, in "Applied Mathematics and Computation", November 2013, vol.
224, pp. 681-704 [DOI : 10.1016/J.AMC.2013.08.069], http://hal.inria.fr/hal-00797973

[24] M. EL BOUAJAJI, S. LANTÉRI. High order discontinuous Galerkin method for the solution of 2D time-
harmonic Maxwell’s equations, in "Applied Mathematics and Computation", March 2013, vol. 219, no 13, pp.
7241-7251 [DOI : 10.1016/J.AMC.2011.03.140], http://hal.inria.fr/hal-00922826

[25] S. LANTÉRI, C. SCHEID. Convergence of a Discontinuous Galerkin scheme for the mixed time domain
Maxwell’s equations in dispersive media, in "IMA Journal of Numerical Analysis", 2013, vol. 33, no 2,
pp. 432-459 [DOI : 10.1093/IMANUM/DRS008], http://hal.inria.fr/hal-00874752

[26] L. LI, S. LANTÉRI, R. PERRUSSEL. Numerical investigation of a high order hybridizable discontinu-
ous Galerkin method for 2d time-harmonic Maxwell’s equations, in "COMPEL: The International Jour-
nal for Computation and Mathematics in Electrical and Electronic Engineering", 2013, pp. 1112 - 1138
[DOI : 10.1108/03321641311306196], http://hal.inria.fr/hal-00906142

[27] L. LI, S. LANTÉRI, R. PERRUSSEL. A hybridizable discontinuous Galerkin method combined to a Schwarz
algorithm for the solution of 3d time-harmonic Maxwell’s equations, in "Journal of Computational Physics",
January 2014, vol. 256, pp. 563-581 [DOI : 10.1016/J.JCP.2013.09.003], http://hal.inria.fr/hal-00795125

[28] L. MOYA, S. DESCOMBES, S. LANTÉRI. Locally implicit time integration strategies in a discontinuous
Galerkin method for Maxwell’s equations, in "Journal of Scientific Computing", July 2013, vol. 56, no 1,
pp. 190–218 [DOI : 10.1007/S10915-012-9669-5], http://hal.inria.fr/hal-00922844

International Conferences with Proceedings

[29] S. DESCOMBES, S. LANTÉRI, L. MOYA. High-order locally implicit time integration strategies in a
discontinuous Galerkin method for Maxwell’s equations, in "ICOSAHOM 2012", Gammarth, Tunisia, M.
AZAÏEZ, H. E. FEKIH, J. S. HESTHAVEN (editors), Lecture Notes in Computational Science and Engineering,
Springer, January 2014, vol. 95, pp. 205-216 [DOI : 10.1007/978-3-319-01601-6_16], http://hal.inria.fr/
hal-00922157

[30] M. EL BOUAJAJI, N. GMATI, S. LANTÉRI, J. SALHI. Coupling of an exact transparent boundary condition
with a DG method for the solution of the time-harmonic Maxwell equations, in "ICOSAHOM 2012",
Gammarth, Tunisia, M. AZAÏEZ, H. E. FEKIH, J. S. HESTHAVEN (editors), Lecture Notes in Computational

http://hal.inria.fr/hal-00915347
http://hal.inria.fr/hal-00546223
http://hal.inria.fr/hal-00546223
http://hal.inria.fr/hal-00915353
http://hal.inria.fr/hal-00797973
http://hal.inria.fr/hal-00922826
http://hal.inria.fr/hal-00874752
http://hal.inria.fr/hal-00906142
http://hal.inria.fr/hal-00795125
http://hal.inria.fr/hal-00922844
http://hal.inria.fr/hal-00922157
http://hal.inria.fr/hal-00922157


Project-Team NACHOS 27

Science and Engineering, Springer, January 2014, vol. 95, pp. 238-249 [DOI : 10.1007/978-3-319-01601-
6_19], http://hal.inria.fr/hal-00922163

[31] C. GIRARD, S. LANTÉRI, R. PERRUSSEL, N. RAVEU. Coupling of a method of moments adapted to planar
circuit and volumic methods, in "COMPUMAG 2013", Budapest, Hungary, 2013, pp. PC5-16, http://hal.inria.
fr/hal-00907090

[32] L. MOYA. Locally Implicit Discontinuous Galerkin Methods for Time-Domain Maxwell’s Equations, in
"ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications",
Leicester, United Kingdom, Springer, January 2013, pp. 129-137, http://hal.inria.fr/hal-00939385

[33] F. PEYRUSSE, N. GLINSKY, C. GÉLIS, S. LANTÉRI. A high-order discontinuous Galerkin method for
viscoelastic wave propagation, in "ICOSAHOM 2012", Gammarth, Tunisia, M. AZAÏEZ, H. E. FEKIH, J.
S. HESTHAVEN (editors), Lecture Notes in Computational Science and Engineering, Springer, January 2014,
vol. 95, pp. 361-372 [DOI : 10.1007/978-3-319-01601-6_29], http://hal.inria.fr/hal-00922175

National Conferences with Proceedings

[34] C. GIRARD, N. RAVEU, S. LANTÉRI, R. PERRUSSEL. Hybridation entre la WCIP et des méthodes
volumiques, in "18èmes Journées Nationales Microondes", Paris, France, 2013, pp. J1-AP3-2, http://hal.inria.
fr/hal-00914400

Research Reports

[35] F. PEYRUSSE, N. GLINSKY, C. GÉLIS, S. LANTÉRI. , Une méthode Galerkin discontinue d’ordre élevé pour
la propagation d’ondes sismiques en milieu viscoélastique, Inria, February 2013, no RR-8242, http://hal.inria.
fr/hal-00789682

[36] J. VIQUERAT, K. MACIEJ, S. LANTÉRI, C. SCHEID. , Theoretical and numerical analysis of local dispersion
models coupled to a discontinuous Galerkin time-domain method for Maxwell’s equations, Inria, May 2013,
no RR-8298, 79 p. , http://hal.inria.fr/hal-00819758

Other Publications

[37] M. BONNASSE-GAHOT, S. LANTÉRI, J. DIAZ, H. CALANDRA. Discontinuous Galerkin methods for solving
Helmholtz isotropic wave equations for seismic applications, in "HOSCAR - 3rd Brazil-French workshop on
High performance cOmputing and SCientific dAta management dRiven by highly demanding applications
(Inria-CNPq)", Bordeaux, France, September 2013, http://hal.inria.fr/hal-00929971

[38] D. CHIRON, C. SCHEID. , Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity
in dimension two, October 2013, http://hal.inria.fr/hal-00873794

[39] S. DELCOURTE, N. GLINSKY. , Analysis of a discontinuous galerkin method for elastodynamic equations.
application to 3d wave propagation, February 2013, http://hal.inria.fr/hal-00787539

[40] V. DOLEAN, M. GANDER, S. LANTÉRI, J.-F. LEE, Z. PENG. , Effective Transmission Conditions for
Domain Decomposition Methods applied to the Time-Harmonic Curl-Curl Maxwell’s equations, December
2013, http://hal.inria.fr/hal-00912354

http://hal.inria.fr/hal-00922163
http://hal.inria.fr/hal-00907090
http://hal.inria.fr/hal-00907090
http://hal.inria.fr/hal-00939385
http://hal.inria.fr/hal-00922175
http://hal.inria.fr/hal-00914400
http://hal.inria.fr/hal-00914400
http://hal.inria.fr/hal-00789682
http://hal.inria.fr/hal-00789682
http://hal.inria.fr/hal-00819758
http://hal.inria.fr/hal-00929971
http://hal.inria.fr/hal-00873794
http://hal.inria.fr/hal-00787539
http://hal.inria.fr/hal-00912354


28 Activity Report INRIA 2013

[41] V. DOLEAN, M. GANDER, S. LANTÉRI, J.-F. LEE, Z. PENG. , Optimized Schwarz Methods for curl-curl
time-harmonic Maxwell’s equations, June 2013, http://hal.inria.fr/hal-00830282

[42] M. EL BOUAJAJI, V. DOLEAN, M. GANDER, S. LANTÉRI, R. PERRUSSEL. , DG discretization of optimized
Schwarz methods for Maxwell’s equations, June 2013, http://hal.inria.fr/hal-00830274

References in notes

[43] B. COCKBURN, G. KARNIADAKIS, C. SHU (editors). , Discontinuous Galerkin methods. Theory, computation
and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11

[44] B. COCKBURN, C. SHU (editors). , Special issue on discontinuous Galerkin methods, J. Sci. Comput.,
Springer, 2005, vol. 22-23

[45] C. DAWSON (editor). , Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng.,
Elsevier, 2006, vol. 195

[46] K. AKI, P. RICHARDS. , Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002

[47] K. BUSCH, M. KÖNIG, J. NIEGEMANN. Discontinuous Galerkin methods in nanophotonics, in "Laser and
Photonics Reviews", 2011, vol. 5, pp. 1–37

[48] B. COCKBURN, J. GOPALAKRISHNAN, R. LAZAROV. Unified hybridization of discontinuous Galerkin,
mixed, and continuous Galerkin methods for second order elliptic problems, in "SIAM J. Numer. Anal.",
2009, vol. 47, no 2, pp. 1319–1365

[49] A. CSAKI, T. SCHNEIDER, J. WIRTH, N. JAHR, A. STEINBRÜCK, O. STRANIK, F. GARWE, R. MÜLLER,
W. FRITZSCHE.. Molecular plasmonics: light meets molecules at the nanosacle, in "Phil. Trans. R. Soc. A",
2011, vol. 369, pp. 3483–3496

[50] H. FERNANDO, C. HARDER, D. PAREDES, F. VALENTIN. Numerical multiscale methods for a reaction
dominated model, in "Comput. Methods Appl. Mech. Engrg.", 2012, vol. 201–204, pp. 228–244

[51] C. HARDER, D. PAREDES, F. VALENTIN. , A family of multiscale hybrid-mixed finite element methods for
the Darcy equation with rough coefficients, 2011, no 05/2011

[52] J. HESTHAVEN, T. WARBURTON. , Nodal discontinuous Galerkin methods: algorithms, analysis and appli-
cations, Springer Texts in Applied Mathematics, Springer Verlag, 2007

[53] J. JACKSON. , Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998

[54] X. JI, W. CAI, P. ZHANG. High-order DGTD method for dispersive Maxwell’s equations and modelling of
silver nanowire coupling, in "Int. J. Numer. Meth. Engng.", 2007, vol. 69, pp. 308–325

[55] M. KLEMM. Novel directional nanoantennas for single-emitter sources and wireless nano-links, in "J. Optics",
2012, vol. 2012, no ID 348306

http://hal.inria.fr/hal-00830282
http://hal.inria.fr/hal-00830274


Project-Team NACHOS 29

[56] J. NIEGEMANN, M. KÖNIG, K. STANNIGEL, K. BUSCH. Higher-order time-domain methods for the analysis
of nano-photonic systems, in "Photonics Nanostruct.", 2009, vol. 7, pp. 2–11

[57] A. QUARTERONI, A. VALLI. , Domain decomposition methods for partial differential equations, Numerical
Mathematics and Scientific Computation, Oxford University Press, 1999

[58] B. SMITH, P. BJORSTAD, W. GROPP. , Domain decomposition and parallel multilevel methods for elliptic
partial differential equations, Cambridge University Press, 1996

[59] P. SOLIN, K. SEGETH, I. DOLEZEL. , Higher-order finite element methods, Studies in Advanced Mathematics,
Chapman & Hall/CRC Press, 2003

[60] A. TAFLOVE, S. HAGNESS. , Computational electrodynamics: the finite-difference time-domain method (3rd
edition), Artech House, 2005

[61] A. TOSELLI, O. WIDLUND. , Domain Decomposition Methods. Algorithms and theory, Springer Series in
Computational Mathematics, Springer Verlag, 2004, vol. 34

[62] J. VIRIEUX. P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in
"Geophysics", 1986, vol. 51, pp. 889–901

[63] K. YEE. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic
media, in "IEEE Trans. Antennas and Propagation", 1966, vol. 14, no 3, pp. 302–307

[64] Y. ZHENG, B. KIRALY, P. WEISS, T. HUANG. Molecular plasmonics for biology and nanomedicine, in
"Nanomedicine", 2012, vol. 7, no 5, pp. 751–770


