
IN PARTNERSHIP WITH:
CNRS

Université de Lorraine

Activity Report 2013

Project-Team PAREO

Formal islands: foundations and applications

IN COLLABORATION WITH: Laboratoire lorrain de recherche en informatique et ses applications (LORIA)

RESEARCH CENTER
Nancy - Grand Est

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Research Program . 2

3.1. Introduction 2
3.2. Rule-based programming languages 2
3.3. Rewriting calculus 3

4. Application Domains .4
5. Software and Platforms . 4

5.1. ATerm 4
5.2. Tom 5

6. New Results . 5
6.1. Static analysis 5

6.1.1. Static analysis for control operators 5
6.1.2. Polymorphism and higher-order functions for XML 6

6.2. Model Transformations 6
6.3. Property based testing 6
6.4. Nominal Theory 6

7. Partnerships and Cooperations . 7
7.1. Regional Initiatives 7
7.2. National Initiatives 7
7.3. International Research Visitors 7

8. Dissemination . 7
8.1. Scientific Animation 7
8.2. Teaching - Supervision - Juries 9

8.2.1. Teaching 9
8.2.2. Supervision 9
8.2.3. Juries 9

8.3. Popularization 9
9. Bibliography .10

Project-Team PAREO

Keywords: Programming Languages, Compiling, Formal Methods, Type Systems, Security,
Proofs Of Programs

Creation of the Team: 2008 January 01, updated into Project-Team: 2011 January 01.

1. Members
Faculty Members

Pierre-Etienne Moreau [Team leader, Univ. Lorraine, Professor, HdR]
Christophe Calvès [Univ. Lorraine, ATER]
Horatiu Cirstea [Univ. Lorraine, Professor, HdR]
Sergueï Lenglet [Univ. Lorraine, Associate Professor]

External Collaborators
Sorin Stratulat [Univ. Lorraine, Associate Professor]
Claude Kirchner [Inria, Senior Researcher, HdR]
Hélène Kirchner [Inria, Senior Researcher, HdR]

PhD Student
Jean-Christophe Bach [Univ. Lorraine, ATER]

Administrative Assistants
Laurence Benini [Inria]
Martine Kuhlmann [CNRS]
Delphine Hubert [Univ. Lorraine]

Others
Cosay Topaktas [Univ. Lorraine, Master Intern, from Feb 2013 until Jun 2013]
Fellype Vedovato Martins [Inria, Master Intern, from Jun 2013 until Sep 2013]

2. Overall Objectives

2.1. Overall Objectives
The PAREO team aims at designing and implementing tools for the specification, analysis and verification
of software and systems. At the heart of our project is therefore the will to study fundamental aspects of
programming languages (logic, semantics, algorithmics, etc.) and to make major contributions to the design of
new programming languages. An important part of our research effort will be dedicated to the design of new
fundamental concepts and tools to analyze existing programs and systems. To achieve this goal we focus on:

• the improvement of theoretical foundations of rewriting and deduction;

• the integration of the corresponding formal methods in programming and verification environments;

• the practical applications of the proposed formalisms.

2 Activity Report INRIA 2013

3. Research Program

3.1. Introduction
It is a common claim that rewriting is ubiquitous in computer science and mathematical logic. And indeed
the rewriting concept appears from very theoretical settings to very practical implementations. Some extreme
examples are the mail system under Unix that uses rules in order to rewrite mail addresses in canonical forms
and the transition rules describing the behaviors of tree automata. Rewriting is used in semantics in order
to describe the meaning of programming languages [27] as well as in program transformations like, for
example, re-engineering of Cobol programs [33]. It is used in order to compute, implicitly or explicitly as
in Mathematica or MuPAD, but also to perform deduction when describing by inference rules a logic [23],
a theorem prover [25] or a constraint solver [26]. It is of course central in systems making the notion of
rule an explicit and first class object, like expert systems, programming languages based on equational logic,
algebraic specifications, functional programming and transition systems.

In this context, the study of the theoretical foundations of rewriting have to be continued and effective
rewrite based tools should be developed. The extensions of first-order rewriting with higher-order and higher-
dimension features are hot topics and these research directions naturally encompass the study of the rewriting
calculus, of polygraphs and of their interaction. The usefulness of these concepts becomes more clear when
they are implemented and a considerable effort is thus put nowadays in the development of expressive and
efficient rewrite based programming languages.

3.2. Rule-based programming languages
Programming languages are formalisms used to describe programs, applications, or software which aim to
be executed on a given hardware. In principle, any Turing complete language is sufficient to describe the
computations we want to perform. However, in practice the choice of the programming language is important
because it helps to be effective and to improve the quality of the software. For instance, a web application
is rarely developed using a Turing machine or assembly language. By choosing an adequate formalism, it
becomes easier to reason about the program, to analyze, certify, transform, optimize, or compile it. The choice
of the programming language also has an impact on the quality of the software. By providing high-level
constructs as well as static verifications, like typing, we can have an impact on the software design, allowing
more expressiveness, more modularity, and a better reuse of code. This also improves the productivity of the
programmer, and contributes to reducing the presence of errors.

The quality of a programming language depends on two main factors. First, the intrinsic design, which
describes the programming model, the data model, the features provided by the language, as well as the
semantics of the constructs. The second factor is the programmer and the application which is targeted. A
language is not necessarily good for a given application if the concepts of the application domain cannot be
easily manipulated. Similarly, it may not be good for a given person if the constructs provided by the language
are not correctly understood by the programmer.

In the Pareo group we target a population of programmers interested in improving the long-term maintain-
ability and the quality of their software, as well as their efficiency in implementing complex algorithms. Our
privileged domain of application is large since it concerns the development of transformations. This ranges
from the transformation of textual or structured documents such as XML, to the analysis and the transfor-
mation of programs and models. This also includes the development of tools such as theorem provers, proof
assistants, or model checkers, where the transformations of proofs and the transitions between states play a
crucial role. In that context, the expressiveness of the programming language is important. Indeed, complex
encodings into low level data structures should be avoided, in contrast to high level notions such as abstract
types and transformation rules that should be provided.

Project-Team PAREO 3

It is now well established that the notions of term and rewrite rule are two universal abstractions well suited
to model tree based data types and the transformations that can be done upon them. Over the last ten years we
have developed a strong experience in designing and programming with rule based languages [28], [20], [18].
We have introduced and studied the notion of strategy [19], which is a way to control how the rules should be
applied. This provides the separation which is essential to isolate the logic and to make the rules reusable in
different contexts.

To improve the quality of programs, it is also essential to have a clear description of their intended behaviors.
For that, the semantics of the programming language should be formally specified.

There is still a lot of progress to be done in these directions. In particular, rule based programming can be
made even more expressive by extending the existing matching algorithms to context-matching or to new data
structures such as graphs or polygraphs. New algorithms and implementation techniques have to be found to
improve the efficiency and make the rule based programming approach effective on large problems. Separating
the rules from the control is very important. This is done by introducing a language for describing strategies.
We still have to invent new formalisms and new strategy primitives which are both expressive enough and
theoretically well grounded. A challenge is to find a good strategy language we can reason about, to prove
termination properties for instance.

On the static analysis side, new formalized typing algorithms are needed to properly integrate rule based
programming into already existing host languages such as Java. The notion of traversal strategy merits to be
better studied in order to become more flexible and still provide a guarantee that the result of a transformation
is correctly typed.

3.3. Rewriting calculus
The huge diversity of the rewriting concept is obvious and when one wants to focus on the underlying notions,
it becomes quickly clear that several technical points should be settled. For example, what kind of objects are
rewritten? Terms, graphs, strings, sets, multisets, others? Once we have established this, what is a rewrite
rule? What is a left-hand side, a right-hand side, a condition, a context? And then, what is the effect of
a rule application? This leads immediately to defining more technical concepts like variables in bound or
free situations, substitutions and substitution application, matching, replacement; all notions being specific to
the kind of objects that have to be rewritten. Once this is solved one has to understand the meaning of the
application of a set of rules on (classes of) objects. And last but not least, depending on the intended use of
rewriting, one would like to define an induced relation, or a logic, or a calculus.

In this very general picture, we have introduced a calculus whose main design concept is to make all the basic
ingredients of rewriting explicit objects, in particular the notions of rule application and result. We concentrate
on term rewriting, we introduce a very general notion of rewrite rule and we make the rule application and
result explicit concepts. These are the basic ingredients of the rewriting- or ρ-calculus whose originality comes
from the fact that terms, rules, rule application and application strategies are all treated at the object level (a
rule can be applied on a rule for instance).

The λ-calculus is usually put forward as the abstract computational model underlying functional programming.
However, modern functional programming languages have pattern-matching features which cannot be directly
expressed in the λ-calculus. To palliate this problem, pattern-calculi [32], [30], [24] have been introduced.
The rewriting calculus is also a pattern calculus that combines the expressiveness of pure functional calculi
and algebraic term rewriting. This calculus is designed and used for logical and semantical purposes. It could
be equipped with powerful type systems and used for expressing the semantics of rule based as well as object
oriented languages. It allows one to naturally express exception handling mechanisms and elaborated rewriting
strategies. It can be also extended with imperative features and cyclic data structures.

The study of the rewriting calculus turns out to be extremely successful in terms of fundamental results and
of applications [22]. Different instances of this calculus together with their corresponding type systems have
been proposed and studied. The expressive power of this calculus was illustrated by comparing it with similar

4 Activity Report INRIA 2013

formalisms and in particular by giving a typed encoding of standard strategies used in first-order rewriting and
classical rewrite based languages like ELAN and Tom.

4. Application Domains

4.1. Application Domains
Beside the theoretical transfer that can be performed via the cooperations or the scientific publications, an
important part of the research done in the Pareo group team is published within software. Tom is our flagship
implementation. It is available via the Inria Gforge (http://gforge.inria.fr) and is one of the most visited and
downloaded projects. The integration of high-level constructs in a widely used programming language such as
Java may have an impact in the following areas:

• Teaching: when (for good or bad reasons) functional programming is not taught nor used, Tom is an
interesting alternative to exemplify the notions of abstract data type and pattern-matching in a Java
object oriented course.

• Software quality: it is now well established that functional languages such as Caml are very
successful to produce high-assurance software as well as tools used for software certification. In
the same vein, Tom is very well suited to develop, in Java, tools such as provers, model checkers, or
static analyzers.

• Symbolic transformation: the use of formal anchors makes possible the transformation of low-
level data structures such as C structures or arrays, using a high-level formalism, namely pattern
matching, including associative matching. Tom is therefore a natural choice each time a symbolic
transformation has to be implemented in C or Java for instance. Tom has been successfully used to
implement the Rodin simplifier, for the B formal method.

• Prototyping: by providing abstract data types, private types, pattern matching, rules and strategies,
Tom allows the development of quite complex prototypes in a short time. When using Java as the
host-language, the full runtime library can be used. Combined with the constructs provided by Tom,
such as strategies, this procures a tremendous advantage.

One of the most successful transfer is certainly the use of Tom made by Business Objects/SAP. Indeed, after
benchmarking several other rule based languages, they decided to choose Tom to implement a part of their
software. Tom is used in Paris, Toulouse and Vancouver. The standard representation provided by Tom is used
as an exchange format by the teams of these sites.

5. Software and Platforms

5.1. ATerm
Participant: Pierre-Etienne Moreau [correspondant].

ATerm (short for Annotated Term) is an abstract data type designed for the exchange of tree-like data structures
between distributed applications.

The ATerm library forms a comprehensive procedural interface which enables creation and manipulation of
ATerms in C and Java. The ATerm implementation is based on maximal subterm sharing and automatic garbage
collection.

We are involved (with the CWI) in the implementation of the Java version, as well as in the garbage collector
of the C version. The Java version of the ATerm library is used in particular by Tom.

The ATerm library is documented, maintained, and available at the following address: http://www.meta-
environment.org/Meta-Environment/ATerms.

http://gforge.inria.fr
http://www.meta-environment.org/Meta-Environment/ATerms
http://www.meta-environment.org/Meta-Environment/ATerms

Project-Team PAREO 5

5.2. Tom
Participants: Jean-Christophe Bach, Christophe Calvès, Horatiu Cirstea, Pierre-Etienne Moreau [correspon-
dant].

Since 2002, we have developed a new system called Tom [31], presented in [17], [18]. This system consists
of a pattern matching compiler which is particularly well-suited for programming various transformations
on trees/terms and XML documents. Its design follows our experiments on the efficient compilation of rule-
based systems [29]. The main originality of this system is to be language and data-structure independent.
This means that the Tom technology can be used in a C, C++ or Java environment. The tool can be
seen as a Yacc-like compiler translating patterns into executable pattern matching automata. Similarly to
Yacc, when a match is found, the corresponding semantic action (a sequence of instructions written in the
chosen underlying language) is triggered and executed. Tom supports sophisticated matching theories such
as associative matching with neutral element (also known as list-matching). This kind of matching theory is
particularly well-suited to perform list or XML based transformations for example.

In addition to the notion of rule, Tom offers a sophisticated way of controlling their application: a strategy
language. Based on a clear semantics, this language allows to define classical traversal strategies such as
innermost, outermost, etc.. Moreover, Tom provides an extension of pattern matching, called anti-pattern
matching. This corresponds to a natural way to specify complements (i.e.what should not be there to fire a
rule). Tom also supports the definition of cyclic graph data-structures, as well as matching algorithms and
rewriting rules for term-graphs.

Tom is documented, maintained, and available at http://tom.loria.fr as well as at http://gforge.inria.fr/projects/
tom.

6. New Results

6.1. Static analysis
Participant: Sergueï Lenglet.

6.1.1. Static analysis for control operators
Control operators allow programs to have access and manipulate their execution context. Abortive control
operators, such as call/cc in Scheme or SML, capture the entire execution context (also called continuation),
while delimited-control operators, such as shift and reset captures only a part of the continuation (delimited by
reset). We want to prove properties (like equivalences between terms or termination) for languages with these
operators, using static analysis.

In [9], [16], we study the behavioral theory of a language with delimited control. More precisely, we define
environmental bisimilarities for the delimited-control operators shift and reset. We consider two different
notions of contextual equivalence: one that does not require the presence of a top-level control delimiter when
executing tested terms, and another one, fully compatible with the original CPS semantics of shift and reset,
that does. For each of them, we develop sound and complete environmental bisimilarities, and we discuss
up-to techniques.

In [8], we present new proofs of termination of evaluation in reduction semantics (i.e., a small-step operational
semantics with explicit representation of evaluation contexts) for System F with control operators. We
introduce a modified version of Girard’s proof method based on reducibility candidates, where the reducibility
predicates are defined on values and on evaluation contexts as prescribed by the reduction semantics format.
We address both abortive control operators (callcc) and delimited-control operators (shift and reset) for which
we introduce novel polymorphic type systems, and we consider both the call-by-value and call-by-name
evaluation strategies.

http://tom.loria.fr
http://gforge.inria.fr/projects/tom
http://gforge.inria.fr/projects/tom

6 Activity Report INRIA 2013

6.1.2. Polymorphism and higher-order functions for XML
In [11], we define a calculus with higher-order polymorphic functions, recursive types with arrow and
product type constructors and set-theoretic type connectives (union, intersection, and negation). We study
the explicitly-typed version of the calculus in which type instantiation is driven by explicit instantiation
annotations. In particular, we define an explicitly-typed λ-calculus with intersection types and an efficient
evaluation model for it. In a companion paper [21], we define a local type inference system that allows
the programmer to omit explicit instantiation annotations, and a type reconstruction system that allows the
programmer to omit explicit type annotations. The work presented in the two articles provides the theoretical
foundations and technical machinery needed to design and implement higher-order polymorphic functional
languages for semi-structured data.

6.2. Model Transformations
Participants: Jean-Christophe Bach, Pierre-Etienne Moreau.

Model Driven Engineering is a technique that has been applied quite successfully for the design of complex
systems. Such systems cannot be released and embedded without complying with the certification required by
the application domain: EN 50128 for railways, DO-178C for aeronautics, or ISO 26262 for automotive for
instance.

Recently we have developed an extension of Tom to support the development of Model Transformations and
the generation of traces which are needed to give confidence in the quality of the implemented transformation.

In [12], we present a method, a language and dedicated tooling to ease and to speed up software development
based on models transformations. Our approach aims to bridge the gap between general purpose languages
and domain specific ones in order to take benefit from both of the two worlds, and to increase software quality.
Our approach uses the Tom language which is a shallow extension of general purpose languages. Our proposal
allows to write modular transformations whose code is reusable, and which are traceable.

6.3. Property based testing
Participants: Horatiu Cirstea, Pierre-Etienne Moreau, Cosay Topaktas.

Quality is crucial for software systems and several aspects should be taken into account. Formal verification
techniques like model checking and automated theorem proving can be used to guarantee the correctness
of finite or infinite systems. While these approaches provide a high level of confidence they are sometimes
difficult and expensive to apply. Software testing is another approach and although it cannot guarantee
correctness it can be very efficient in finding errors.

We have proposed a property based testing framework for the Tom language inspired from the ones prosed
in the context of functional programming. In the current version relatively simple properties can be already
expressed and tested on Tom programs. It consists of an exhaustive approach testing all possible input values
and guaranteeing that the discovered counter-examples are the smallest ones (the size of the inputs is clearly
limited by the execution time) and a random approach where inputs of bigger size could be tested but the
minimal counter-example is not guaranteed. A relatively simple shrinking method which searches a smaller
counter-example starting from an initial relatively complex one has been also proposed. There is ongoing
work on the expressiveness of the property language and the efficiency of the shrinking method. The library is
available at http://gforge.inria.fr/projects/tom.

6.4. Nominal Theory
Participant: Christophe Calvès.

Nominal unification is proven to be quadratic in time and space. It was so by two different approaches, both
inspired by the Paterson-Wegman linear unification algorithm, but dramatically different in the way nominal
and first-order constraints are dealt with.

http://gforge.inria.fr/projects/tom

Project-Team PAREO 7

To handle nominal constraints, Levy and Villaret introduced the notion of replacing while Calvès and
Fernández use permutations and sets of atoms. To deal with structural constraints, the former use multi-
equation in a way similar to the Martelli-Montanari algorithm while the later mimic Paterson-Wegman.

In [10] we abstract over these two approaches and genralize them into the notion of modality, highlighting the
general ideas behind nominal unification. We show that replacings and environments are in fact isomorphic.
This isomorphism is of prime importance to prove intricate properties on both sides and a step further to the
real complexity of nominal unification.

7. Partnerships and Cooperations

7.1. Regional Initiatives
We participate at the LORIA project entitled “Combining deduction engines into SMT”.

7.2. National Initiatives
We participate in the “Logic and Complexity” part of the GDR–IM (CNRS Research Group on Mathematical
Computer Science), in the projects “Logic, Algebra and Computation” (mixing algebraic and logical systems)
and “Geometry of Computation” (using geometrical and topological methods in computer science).

7.3. International Research Visitors
7.3.1. Internships

Anisia Maria Magdalena Tudorescu
Subject: Integrating SMT solvers into Spike
Date: from Mar 2013 until May 2013
Institution: West Timisoara University (Romania)

Cosay Gurkay Topaktas
Subject: Property Based Testing
Date: from Feb 2013 until Jun 2013
Institution: Erasmus Mundus MSc in Dependable Software Systems

Fellype Vedovato Martins
Subject: Generation of Terms
Date: from Jun 2013 until Sept 2013
Institution: Mines-Nancy, 2nd year student

8. Dissemination

8.1. Scientific Animation
Jean-Christophe Bach:

• Member of the LORIA laboratory council
• Member of the organizing committee of the “Journées GDR–GPL” colocated with the AFADL and

CIEL conferences

8 Activity Report INRIA 2013

Christophe Calvès

• Member of the organizing committee of the “Journées GDR–GPL” colocated with the AFADL and
CIEL conferences

Horatiu Cirstea:

• PC member of RuleML 2013 (International RuleML Symposium on Rule Interchange and Applica-
tions).

• PC member of SCSS 2013 (International Symposium on Symbolic Computation in Software
Science).

• Steering committee of RULE.

• Responsible for the Master speciality “Logiciels: Théorie, méthodes et ingénierie”.

• Member of the organizing committee of the “Journées GDR–GPL” colocated with the AFADL and
CIEL conferences

Sergueï Lenglet:

• Member of the organizing committee of the “Journées GDR–GPL” colocated with the AFADL and
CIEL conferences

• Invited speaker at the “Journées LAC”

• Reviewer for the TCS (Theoretical Computer Science) journal
Pierre-Etienne Moreau:

• Member of the GDR–GPL (CNRS Research Group on Software Engineering) board.

• Member of the national committee for Inria “Médiation Scientifique”.

• Head of the local committee for Inria “détachements” and “délégations”.

• Head of the Computer Science department at Ecole des Mines de Nancy.

• President of the organizing committee of the “Journées GDR–GPL 2013” colocated with the AFADL
and CIEL conferences

• PC member of SLE 2013 (6th International Conference on Software Language Engineering), SCSS
2013 (5th International Symposium on Symbolic Computation in Software Science),

• Member of the organizing committee of WASDeTT 2013 (4th International Workshop on Academic
Software Development Tools and Techniques)

Sorin Stratulat:

• Member of the LITA Laboratory Council.

• Member of the program committee of the 9th International Conference on Information Assurance
and Security (IAS ’13)

• Member of the program committee of the 6th International Conference on Computational Intelli-
gence in Security for Information Systems (CISIS’13)

• Member of the program committee of the 5th International Symposium of Symbolic Computation
in Software Science (SCSS ’13)

• Tutorial speaker at the Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2013)

• Speaker at

– Workshop on Inductive Theorem Proving 23-24 November 2013, Imperial College Lon-
don, UK

– LIX Colloquium on the Theory and Application of Formal Proofs, 5-7 November 2013,
Ecole Polytechnique, Palaiseau, France

– Workshop on Proof Search in Axiomatic Theories and Type Theories (PSATTT), 8
November 2013, Ecole Polytechnique, Palaiseau, France

Project-Team PAREO 9

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Licence : Pierre-Etienne Moreau, Responsible of the course “Introduction to Algorithms and
Programming” (http://www.depinfonancy.net/s5/tcs13), first year at Mines-Nancy (150 students),
Université de Lorraine, France

8.2.2. Supervision
PhD in progress : Jean-Christophe BACH, "Transformation de modèles et certification", November
1st 2010, Pierre-Etienne Moreau

PhD in progress : Amira HENAIEN, "Certification du raisonnement formel porté sur des systèmes
d’information critiques.", November 1st 2010, Sorin Stratulat

8.2.3. Juries
Horatiu Cirstea:

PhD committee of Henri Debrat, “Certification formelle de la correction d’algorithmes de Consen-
sus”, Nancy 2013

Pierre-Etienne Moreau:

PhD committee of Mathieu Giorgino, reviewer, Toulouse, 2013: “Inductive Representation, Proofs
and Refinement of Pointer Structures”

PhD committee of Clément Guy, reviewer, Rennes, 2013: “Facilités de typage pour l’ingénierie des
langages”

PhD committee of Pengfei Liu, reviewer, Bordeaux, 2013: “Intégration de politiques de sécurité dans
des systèmes ubiquitaires”

PhD committee of Laurent Wouters, Paris, 2013: “Multi-Domain Expert-User Modeling Infrastruc-
ture”

8.3. Popularization
Participants: Jean-Christophe Bach, Pierre-Etienne Moreau.

Jean-Christophe Bach participated to scientific mediation by proposing several activities to demonstrate the
algorithmic thinking at the core of the Computer Science without requiring any computer or even electric
devices. These activities are the first part of the CSIRL (Computer Science In Real Life) project which aims
to popularize computer science and to initiate children, school students and non-scientists into this domain.
These activities were presented during the high school students welcome at LORIA and Inria - Nancy Grand
Est, and also during APMEP 1 days. Jean-Christophe Bach also took part to the “Fête de la science” in October.

Jean-Christophe Bach was also involved in popularization activities with Interstices 2 by writing short
debunking articles (“Idées reçues”) for non computer scientists about Church’s thesis and Turing’s work [15].
Other popularization articles are still under work.

Pierre-Etienne Moreau gave two lectures about “Robotics and Programming” in the ISN course (Informatique
et Science du Numérique), in order to help professors of “classes de terminale” to teach this discipline.

Pierre-Etienne Moreau organized a three day course about “Algorithms, Programming and Databases” in order
to help professors of “classes préparatoires aux grandes écoles” to teach this discipline.

1http://www.apmep.asso.fr/
2http://interstices.info

http://www.depinfonancy.net/s5/tcs13
http://www.apmep.asso.fr/
http://interstices.info

10 Activity Report INRIA 2013

9. Bibliography
Major publications by the team in recent years

[1] E. BALLAND, C. KIRCHNER, P.-E. MOREAU. Formal Islands, in "11th International Conference on Al-
gebraic Methodology and Software Technology", Kuressaare, Estonia, M. JOHNSON, V. VENE (editors),
LNCS, Springer-Verlag, jul 2006, vol. 4019, pp. 51–65, http://www.loria.fr/~moreau/Papers/BallandKM-
AMAST2006.pdf

[2] G. BARTHE, H. CIRSTEA, C. KIRCHNER, L. LIQUORI. Pure Patterns Type Systems, in " Principles of
Programming Languages - POPL2003, New Orleans, USA", ACM, Jan 2003, pp. 250–261

[3] P. BRAUNER, C. HOUTMANN, C. KIRCHNER. Principles of Superdeduction, in "Twenty-Second Annual IEEE
Symposium on Logic in Computer Science - LiCS 2007", Wroclaw Pologne, IEEE Computer Society, 2007,
http://dx.doi.org/10.1109/LICS.2007.37

[4] H. CIRSTEA, C. KIRCHNER. The rewriting calculus - Part I and II, in "Logic Journal of the Interest Group in
Pure and Applied Logics", May 2001, vol. 9, no 3, pp. 427-498

[5] H. CIRSTEA, C. KIRCHNER, R. KOPETZ, P.-E. MOREAU. Anti-patterns for Rule-based Languages, in
"Journal of Symbolic Computation", February 2010, vol. 54, no 5, pp. 523-550

[6] C. KIRCHNER, R. KOPETZ, P.-E. MOREAU. Anti-Pattern Matching, in "16th European Symposium on
Programming", Braga, Portugal, Lecture Notes in Computer Science, Springer, 2007, vol. 4421, pp. 110–124,
http://www.loria.fr/~moreau/Papers/KirchnerKM-2007.pdf

[7] P.-E. MOREAU, C. RINGEISSEN, M. VITTEK. A Pattern Matching Compiler for Multiple Target Languages, in
"12th Conference on Compiler Construction, Warsaw (Poland)", G. HEDIN (editor), LNCS, Springer-Verlag,
may 2003, vol. 2622, pp. 61–76, http://www.loria.fr/~moreau/Papers/MoreauRV-CC2003.ps.gz

Publications of the year
International Conferences with Proceedings

[8] M. BIERNACKA, D. BIERNACKI, S. LENGLET, M. MATERZOK. Proving termination of evaluation for
System F with control operators, in "COS2013 - First Workshop on Control Operators and their Semantics",
Eindhoven, Netherlands, U. DE’LIQUORO, A. SAURIN (editors), Electronic Proceedings in Theoretical
Computer Science, Open Publishing Association, September 2013, vol. 127, pp. 15-29, In Proceedings COS
2013, arXiv:1309.0924 [DOI : 10.4204/EPTCS.127.2], http://hal.inria.fr/hal-00860954

[9] D. BIERNACKI, S. LENGLET. Environmental Bisimulations for Delimited-Control Operators, in "APLAS -
11th Asian Symposium on Programming Languages and Systems - 2013", Melbourne, Australia, C. CHIEH
SHAN (editor), LNCS, Springer, 2013, vol. 8301, pp. 333-348, http://hal.inria.fr/hal-00903839

[10] C. CALVÈS. Unifying Nominal Unification, in "Rewriting Techniques and Applications", Eindhoven, Nether-
lands, F. VAN RAAMSDONK (editor), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2013,
vol. 21, pp. 143-157 [DOI : 10.4230/LIPICS.RTA.2013.143], http://hal.inria.fr/hal-00926833

http://www.loria.fr/~moreau/Papers/BallandKM-AMAST2006.pdf
http://www.loria.fr/~moreau/Papers/BallandKM-AMAST2006.pdf
http://dx.doi.org/10.1109/LICS.2007.37
http://www.loria.fr/~moreau/Papers/KirchnerKM-2007.pdf
http://www.loria.fr/~moreau/Papers/MoreauRV-CC2003.ps.gz
http://hal.inria.fr/hal-00860954
http://hal.inria.fr/hal-00903839
http://hal.inria.fr/hal-00926833

Project-Team PAREO 11

[11] G. CASTAGNA, K. NGUYEN, Z. XU, H. IM, S. LENGLET, L. PADOVANI. Polymorphic Func-
tions with Set-Theoretic Types. Part 1: Syntax, Semantics, and Evaluation, in "POPL ’14, 41th ACM
Symposium on Principles of Programming Languages", San Diego, United States, 2014, to appear
[DOI : 10.1145/2535838.2535840], http://hal.inria.fr/hal-00907166

Research Reports

[12] J.-C. BACH. , Une approche hybride GPL-DSL pour transformer des modèles, January 2013, 26 p. , Première
version d’un article soumis à TSI, http://hal.inria.fr/hal-00786254

[13] D. BIERNACKI, S. LENGLET. , Sound and Complete Bisimilarities for Call-by-Name and Call-by-Value
Lambda-mu Calculus, Inria, January 2014, no RR-8447, http://hal.inria.fr/hal-00926100

[14] A. ROUSSEAU, A. DARNAUD, B. GOGLIN, C. ACHARIAN, C. LEININGER, C. GODIN, C. HOLIK, C.
KIRCHNER, D. RIVES, E. DARQUIE, E. KERRIEN, F. NEYRET, F. MASSEGLIA, F. DUFOUR, G. BERRY,
G. DOWEK, H. ROBAK, H. XYPAS, I. ILLINA, I. GNAEDIG, J. JONGWANE, J. EHREL, L. VIENNOT, L.
GUION, L. CALDERAN, L. KOVACIC, M. COLLIN, M.-A. ENARD, M.-H. COMTE, M. QUINSON, M.
OLIVI, M. GIRAUD, M. DORÉMUS, M. OGOUCHI, M. DROIN, N. LACAUX, N. ROUGIER, N. ROUSSEL,
P. GUITTON, P. PETERLONGO, R.-M. CORNUS, S. VANDERMEERSCH, S. MAHEO, S. LEFEBVRE, S.
BOLDO, T. VIÉVILLE, V. POIREL, A. CHABREUIL, A. FISCHER, C. FARGE, C. VADEL, I. ASTIC, J.-
P. DUMONT, L. FÉJOZ, P. RAMBERT, P. PARADINAS, S. DE QUATREBARBES, S. LAURENT. , Médiation
Scientifique : une facette de nos métiers de la recherche, March 2013, 34 p. , http://hal.inria.fr/hal-00804915

Scientific Popularization

[15] M. QUINSON, J.-C. BACH. L’informatique nomade, c’est la liberté !, in "Interstices", February 2013, http://
hal.inria.fr/hal-00794187

Other Publications

[16] D. BIERNACKI, S. LENGLET. , Environmental Bisimulations for Delimited-Control Operators, September
2013, Long version of the corresponding APLAS13 paper, http://hal.inria.fr/hal-00862189

References in notes

[17] J.-C. BACH, E. BALLAND, P. BRAUNER, R. KOPETZ, P.-E. MOREAU, A. REILLES. , Tom Manual, LORIA,
2009, 155 p. , http://hal.inria.fr/inria-00121885/en/

[18] E. BALLAND, P. BRAUNER, R. KOPETZ, P.-E. MOREAU, A. REILLES. Tom: Piggybacking rewriting on
java, in "18th International Conference on Rewriting Techniques and Applications - (RTA)", Paris, France,
Lecture Notes in Computer Science, Jun 2007, vol. 4533, pp. 36–47

[19] P. BOROVANSKÝ, C. KIRCHNER, H. KIRCHNER. Controlling Rewriting by Rewriting, in "Proceedings of
the first international workshop on rewriting logic - (WRLA)", Asilomar (California), J. MESEGUER (editor),
Electronic Notes in Theoretical Computer Science, Sep 1996, vol. 4

[20] P. BOROVANSKÝ, C. KIRCHNER, H. KIRCHNER, P.-E. MOREAU. ELAN from a rewriting logic point of view,
in "Theoretical Computer Science", Jul 2002, vol. 2, no 285, pp. 155–185

http://hal.inria.fr/hal-00907166
http://hal.inria.fr/hal-00786254
http://hal.inria.fr/hal-00926100
http://hal.inria.fr/hal-00804915
http://hal.inria.fr/hal-00794187
http://hal.inria.fr/hal-00794187
http://hal.inria.fr/hal-00862189
http://hal.inria.fr/inria-00121885/en/

12 Activity Report INRIA 2013

[21] G. CASTAGNA, K. NGUYEN, Z. XU, P. ABATE. , Polymorphic Functions with Set-Theoretic Types. Part 2:
Local Type Inference and Type Reconstruction, November 2013, http://hal.archives-ouvertes.fr/hal-00880744

[22] H. CIRSTEA. , Le calcul de réécriture, Université Nancy II, October 2010, Habilitation à Diriger des
Recherches, http://hal.inria.fr/tel-00546917/en

[23] J.-Y. GIRARD, Y. LAFONT, P. TAYLOR. , Proofs and Types, Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 1989, vol. 7

[24] C. B. JAY, D. KESNER. First-class patterns, in "Journal of Functional Programming", 2009, vol. 19, no 2,
pp. 191–225

[25] J.-P. JOUANNAUD, H. KIRCHNER. Completion of a set of rules modulo a set of Equations, in "SIAM J. of
Computing", 1986, vol. 15, no 4, pp. 1155–1194

[26] J.-P. JOUANNAUD, C. KIRCHNER. Solving equations in abstract algebras: a rule-based survey of unification,
in "Computational Logic. Essays in honor of Alan Robinson", Cambridge (MA, USA), J.-L. LASSEZ, G.
PLOTKIN (editors), The MIT press, 1991, chap. 8, pp. 257–321

[27] G. KAHN. , Natural Semantics, Inria Sophia-Antipolis, feb 1987, no 601

[28] C. KIRCHNER, H. KIRCHNER, M. VITTEK. Designing Constraint Logic Programming Languages using
Computational Systems, in "Proc. 2nd CCL Workshop, La Escala (Spain)", F. OREJAS (editor), Sep 1993

[29] H. KIRCHNER, P.-E. MOREAU. Promoting Rewriting to a Programming Language: A Compiler for Non-
Deterministic Rewrite Programs in Associative-Commutative Theories, in "Journal of Functional Program-
ming", 2001, vol. 11, no 2, pp. 207–251, http://www.loria.fr/~moreau/Papers/jfp.ps.gz

[30] J. W. KLOP, V. VAN OOSTROM, R. DE VRIJER. Lambda calculus with patterns, in "Theor. Comput. Sci.",
2008, vol. 398, no 1-3, pp. 16–31

[31] P.-E. MOREAU, C. RINGEISSEN, M. VITTEK. A Pattern Matching Compiler for Multiple Target Languages,
in "12th Conference on Compiler Construction - (CC)", G. HEDIN (editor), Lecture Notes in Computer
Science, Springer-Verlag, MAY 2003, vol. 2622, pp. 61–76

[32] S. PEYTON-JONES. , The implementation of functional programming languages, Prentice-Hall, 1987

[33] M. VAN DEN BRAND, A. VAN DEURSEN, P. KLINT, S. KLUSENER, E. A. VAN DER MEULEN. Industrial
Applications of ASF+SDF, in "AMAST ’96", M. WIRSING, M. NIVAT (editors), Lecture Notes in Computer
Science, Springer-Verlag, 1996, vol. 1101, pp. 9–18

http://hal.archives-ouvertes.fr/hal-00880744
http://hal.inria.fr/tel-00546917/en
http://www.loria.fr/~moreau/Papers/jfp.ps.gz

