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2. Overall Objectives
2.1. Overall Objectives

Sciport is a temporary sequel to the former project Tropics. Sciport will stop at the end of 2013, when the new
project Ecuador starts.

The team studies Automatic Differentiation (AD) of algorithms and programs, thus at the junction of two
research domains :
• AD theory: We study software engineering techniques, to analyze and transform programs mechan-

ically. Automatic Differentiation (AD) transforms a program P that computes a function F , into a
program P’ that computes analytical derivatives of F . We put emphasis on the so-called reverse
or adjoint mode of AD, a sophisticated transformation that yields gradients for optimization at a
remarkably low cost.

• AD application to Scientific Computing: We apply the adjoint mode of AD to e.g. Computational
Fluid Dynamics. We adapt the strategies of Scientific Computing to take full advantage of AD. We
validate our work on real-size applications.

We want to produce AD code that can compete with hand-written sensitivity and adjoint programs used in the
industry. We implement our algorithms into our tool TAPENADE, which is one of the most popular AD tools.

Our research directions are :
• Modern numerical methods for finite elements or finite differences : multigrid methods, mesh

adaptation.
• Optimal shape design or optimal control in fluid dynamics for steady and unsteady simulations.

Higher-order derivatives for robust optimization and uncertainty quantification.
• Automatic Differentiation : AD-specific static data-flow analysis, strategies to reduce runtime and

memory consumption of the adjoint mode for very large codes. Improved models for adjoint-mode
AD, in particular coping with Message-Passing parallellism.
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3. Research Program

3.1. Automatic Differentiation
Participants: Laurent Hascoet, Valérie Pascual, Ala Taftaf.

automatic differentiation (AD) Automatic transformation of a program, that returns a new program
that computes some derivatives of the given initial program, i.e. some combination of the partial
derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Derivative Equations that define a problem, obtain-
ing new differential equations that define the gradient of the original problem’s solution.

checkpointing General trade-off technique, used in adjoint-mode AD, that trades duplicate execution
of a part of the program to save some memory space that was used to save intermediate results.

Automatic or Algorithmic Differentiation (AD) differentiates programs. An AD tool takes as input a source
program P that, given a vector argument X ∈ Rn, computes some vector result Y = F (X) ∈ Rm. The AD
tool generates a new source program P ′ that, given the argument X , computes some derivatives of F . The
resulting P ′ reuses the control of P .

For any given control, P is equivalent to a sequence of instructions, which is identified with a composition of
vector functions. Thus, if

P is {I1; I2; · · · Ip; },
F = fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the chain rule gives the Jacobian of F

F ′(X) = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically written as a sequence of instructions I ′k. Combining the I ′k with the control of P
yields P ′. This is therefore a piecewise differentiation, which can be generalized to higher level derivatives,
Taylor series, etc.

In practice, many applications only need cheaper projections of F ′(X) such as:

• Sensitivities, defined for a given direction Ẋ in the input space as:

F ′(X).Ẋ = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) . Ẋ . (3)

Sensitivities are easily computed from right to left, interleaved with the original program instructions.
This is the tangent mode of AD.

• Adjoints, defined after transposition (F ′∗), for a given weighting Y of the outputs as:

F ′∗(X).Y = f ′∗1 (X0).f
′∗
2 (X1). · · · .f ′∗p−1(Xp−2).f

′∗
p (Xp−1).Y . (4)

Adjoints are most efficiently computed from right to left, because matrix×vector products are
cheaper than matrix×matrix products. This is the adjoint mode of AD, most effective for optimiza-
tion, data assimilation [31], adjoint problems [25], or inverse problems.
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Adjoint-mode AD turns out to make a very efficient program, at least theoretically [28]. The computation time
required for the gradient is only a small multiple of the run-time of P . It is independent from the number
of parameters n. In contrast, computing the same gradient with the tangent mode would require running the
tangent differentiated program n times.

However, the Xk are required in the inverse of their computation order. If the original program overwrites a
part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore, the central
research problem of adjoint-mode AD is to make the Xk available in reverse order at the cheapest cost, using
strategies that combine storage, repeated forward computation from available previous values, or even inverted
computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel communication. We keep extending our models
and tools to handle new constructs.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoet, Valérie Pascual, Ala Taftaf.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known
as basic blocks, contain each a list of instructions to be executed in sequence, and whose arcs
represent all possible control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution, in
which all branches of control switches are taken simultaneously, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect
whether a variable is initialized or not, at any location in the source program.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is generated to the places where it is used, and finally to
the place where it is overwritten. The collection of all these itineraries is often stored as a data
dependence graph, and data flow analysis most often rely on this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and conversely from the
read accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analysis [17]
to improve the quality of the produced code. These tools share their technological basis. More importantly,
there are common mathematical models to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular
input programming language. This is generally achieved using language-specific front-ends and back-ends.
Abstraction can go further: the internal representation becomes more language independent, and semantic
constructs can be unified. Analysis can then concentrate on the semantics of a small set of constructs. We
advocate an internal representation composed of three levels.
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• At the top level is the call graph, whose nodes are modules and procedures. Arrows relate nodes that
call or import one another. Recursion leads to cycles.

• At the middle level is the flow graph, one per procedure. It captures the control flow between atomic
instructions.

• At the lowest level are abstract syntax trees for the individual atomic instructions. Semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each level belong symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [20], [29], [18]. But many analyses
are more complex, and better defined on graphs than on trees. This is the case for data-flow analyses,
that look for run-time properties of variables. Since flow graphs are cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [21], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [22] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of actual
run-time values. In addition to the very theoretical limit of undecidability, there are practical limitations to how
much information one can infer from programs that use arrays [35], [23] or pointers. In general, conservative
over-approximations are always made that lead to derivative code that is less efficient than possibly achievable.

3.3. Automatic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoet, Bruno Koobus.

linearization In Scientific Computing, the mathematical model often consists of Partial Derivative
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible to simulate
the 3D air flow around a plane that captures the physical phenomena of shocks and turbulence. Next comes
optimization, one degree higher in complexity because it repeatedly simulates and applies optimization steps
until an optimum is reached. We focus on gradient-based optimization.

We investigate several approaches to obtain the gradient, between two extremes:
• One can write an adjoint system of mathematical equations, then discretize it and program it by hand.

This is mathematically sound [25], but very costly in development time. It also does not produce an
exact gradient of the discrete function, and this can be a problem if using optimization methods
based on descent directions.
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• One can apply adjoint-mode AD (cf 3.1) on the program that discretizes and solves the direct system.
This gives in fact the adjoint of the discrete function computed by the program. Theoretical results
[24] guarantee convergence of these derivatives when the direct program converges. This approach
is highly mechanizable, but leads to massive use of storage and may require code transformation by
hand [30], [33] to reduce memory usage.

If for instance the model is steady, one tradeoff can use the iterated states in the direct order [26]. Another
tradeoff can use only the fully converged final state. Since tradeoff approaches can be error-prone, we advocate
incorporating them into the AD model and into the AD tools.

4. Application Domains

4.1. Automatic Differentiation
Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of
applications:

• optimum shape design under constraints, multidisciplinary optimization, and more generally any
algorithm based on local linearization,

• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate
sciences (meteorology, oceanography),

• first-order linearization of complex systems, or higher-order simulations, yielding reduced models
for simulation of complex systems around a given state,

• mesh adaptation and mesh optimization with gradients or adjoints,

• equation solving with the Newton method,

• sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape and
other parameters. From this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize a
criterion by a gradient descent, one needs the gradient of the output criterion with respect to all the inputs, and
possibly additional gradients when there are constraints. Adjoint-mode AD is a promising way to compute
these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [31] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state is
largely unknown. Only some measures at arbitrary places and times are available. A good initial state is found
by solving a least squares problem between the measures and a guessed initial state which itself must verify
the equations of meteorology. This boils down to solving an adjoint problem, which can be done though AD
[34]. Figure 1 shows an example of a data assimilation exercise using the oceanography code OPA [32] and
its AD adjoint produced by TAPENADE.
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Figure 1. Twin experiment using the adjoint of OPA. We add random noise to a simulation of the ocean state
around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model
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The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is time,
as available measures are distributed over a given assimilation period. Therefore the least squares mechanism
must be applied to a simulation over time that follows the time evolution model. This process gives a much
better estimation of the initial state, because both position and time of measurements are taken into account.
On the other hand, the adjoint problem involved grows in complexity, because it must run (backwards) over
many time steps. This demanding application of AD justifies our efforts in reducing the runtime and memory
costs of AD adjoint codes.

4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This is
sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction
of this complex system to small perturbations around a fixed set of parameters, there is a very efficient
approximate solution: just suppose that the system is linear in a small neighborhood of the current set of
parameters. The reaction of the system is thus approximated by a simple product of the variation of the
parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is
especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing
higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is
often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. Software and Platforms

5.1. AIRONUM
Participant: Alain Dervieux [correspondant].

AIRONUM is an experimental software that solves the unsteady compressible Navier-Stokes equations with
k − ε, LES-VMS and hybrid turbulence modelling on parallel platforms with MPI as parallel programming
concept. The mesh model is unstructured tetrahedrization, with possible mesh motion. See also http://www-
sop.inria.fr/tropics/aironum
• Version: v 1.0
• Programming language: Fortran95 (mostly). About 100,000 lines.

AIRONUM was developed by Inria and university of Montpellier. It is used by Inria, university of Montpellier
and university of Pisa (I). AIRONUM is used as an experimental platform for:
• Numerical approximation of compressible flows, such as upwind mixed element volume approxi-

mation with superconvergence on regular meshes.
• Numerical solution algorithms for the implicit time advancing of the compressible Navier-Stokes

equations, such as parallel scalable deflated additive Schwarz algorithms.
• Turbulence modelling such as the Variational Multiscale Large eddy Simulation and its hybridization

with RANS statistical models.

5.2. TAPENADE
Participants: Laurent Hascoet [correspondant], Valérie Pascual, Ala Taftaf.

http://www-sop.inria.fr/tropics/aironum
http://www-sop.inria.fr/tropics/aironum
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TAPENADE is an Automatic Differentiation tool that transforms an original program into a new program that
computes derivatives of the original program. Automatic Differentiation produces analytical derivatives, that
are exact up to machine precision. Adjoint-mode AD can compute gradients at a cost which is independent
from the number of input variables. TAPENADE accepts source programs written in Fortran77, Fortran90, or
C. It provides differentiation in the following modes: tangent, vector tangent, adjoint, ans vector adjoint.
Documentation is provided on the web site of the reserch team http://www-sop.inria.fr/tropics/, in Inria
technical report RT-0300, and in [13]. TAPENADE runs under most operating systems and requires installation
of Java jdk1.6 or upward.

• Version: v3.8, r4996, November 2013

• ACM: D.3.4 Compilers; G.1.0 Numerical algorithms; G.1.4 Automatic differentiation; I.1.2 Analysis
of algorithms

• AMS: 65K10; 68N20

• APP: IDDN.FR.001.040038.002.S.P.2002.000.10600

• Keywords: automatic differentiation, adjoint, gradient, optimisation, inverse problems, static analy-
sis, data-flow analysis, compilation

• Programming language: Java

TAPENADE implements the results of our research about models and static analyses for AD. TAPENADE can
be downloaded and installed on most architectures. Alternatively, it can be used as a web server. TAPENADE
differentiates computer programs according to the model described in section 3.1 and in [13] Higher-order
derivatives can be obtained through repeated application of tangent AD on tangent- and/or adjoint-mode AD.

TAPENADE performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the complete
source program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write
analysis, and Pointer analysis. AD-specific analysis include:

• Activity analysis: Detects variables whose derivative is either null or useless, to reduce the number
of derivative instructions.

• Adjoint Liveness analysis: Detects the source statements that are dead code for the computation of
derivatives.

• TBR analysis: In adjoint-mode AD, reduces the set of source variables that need to be recovered.

TAPENADE is not open-source. Academic usage is free. Industrial or commercial usage require a paying
license, as detailled on the team’s web page. The software has been downloaded several hundred times, and
the web tool served several thousands of true connections (not counting robots). The tapenade-users mailing
list is over one hundred registered users.

6. New Results

6.1. Automatic Differentiation and parallel codes
Participants: Valérie Pascual, Laurent Hascoet, Jean Utke [Argonne National Lab. (Illinois, USA)], Michel
Schanen [RWTH Aachen University (Germany)].

Together with colleagues in Argonne National Lab. and RWTH Aachen, we are studying how AD tools can
handle MPI-parallel codes, especially in adjoint mode. Results are progressively incorporated into a library
(AMPI, for Adjoinable-MPI) that is designed to provide efficient tangent and adjoint differentiation for MPI-
parallel codes, independently of the AD tool used (AdolC, dco, OpenAD, TAPENADE ...). Primitives from the
AMPI library dynamically orchestrate, at run-time, the MPI calls that are needed to compute the derivatives.

This year we studied issues raised by the collective reduction operations of MPI, and by the one-sided
communications (i.e. remote memory access) offered by MPI-II.

http://www-sop.inria.fr/tropics/
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The participants met on two occasions, two weeks in march in Sophia-Antipolis, and two weeks in october in
Argonne.

This work was presented in particular at the meeting of the Inria-Illinois joint lab in june in Lyon. An article
is in preparation.

6.2. Automatic Differentiation and Dynamic Memory
Participants: Valérie Pascual, Laurent Hascoet, Jean Utke [Argonne National Lab. (Illinois, USA)].

Adjoint differentiated code obtained by source transformation (OpenAD, TAPENADE...) consists of a forward
sweep that essentially copies the original code, and a backward sweep that computes the derivatives, These two
sweeps must have the same control flow shape, only reversed. The allocation and deallocation of some dynamic
memory inside the forward sweep requires a similar pattern in the backward sweep. However, allocations do
not always return the same memory chunk, and therefore all memory addresses must be updated to preserve
their consistency in the backward sweep.

This problem can only be solved dynamically, at run-time. A compile-time analysis would have to be
conservative, implying many overapproximations and in the end an unreasonably inefficient adjoint code.
Our approach is thus to design a library that encapsulates all calls to memory allocation primitives (malloc,
free...) in order to register the allocated addresses and to be able to restore consistency of pointers during the
backward sweep. This strategy is similar to the one we use for MPI calls, cf 6.1, and is actually needed in our
AMPI strategy. All we can hope from a static analysis is to detect the simple cases where addresses could be
recomputed instead of stored and updated. This may apply to a significant portion of memory manipulalions,
and may thus reduce the overhead due to the dynamic updating.

We started developing this library, called ADMM for Adjoinable Dynamic Memory Management. TAPENADE
will eventually produce adjoint code that calls these primitives instead of the standard memory management
primitives.

6.3. Automatic Differentiation and iterative processes
Participants: Laurent Hascoet, Ala Taftaf.

Adjoint codes naturally propagate partial gradients backwards from the result of the simulation. However, this
uses the data flow of the simulation in reverse order, at a cost that increases with the length of the simulation.
AD research looks for strategies to reduce this cost, taking advantage of the structures of the given program.
One such structure is iterative fixed point loops, commonplace in numerical computation. They occur at the
topmost level of steady-state simulations, as well as in unsteady simulations. They may also occur deeper in
the simulation, for instance in linear solvers.

It clear that the first iterations of a fixed-point search operate on a meaningless state vector, and that reversing
the corresponding data-flow is wasted effort. An adapted adjoint strategy for the iterative process should
consider only the last or the few last iterations. Furthermore, there is a discrete component to an iterative
algorithm, namely the number of iterations, and this makes differentiability questionnable. For these reasons
we are looking for a specific strategy for the adjoint, that reverses only the necessary data-flow, and that
restores confidence in the validity of the derivative.

We seek inspiration in the strategies proposed by two authors [19], [27] to design one strategy that is amenable
to implementation in a source-transformation AD tool such as TAPENADE. This will be triggered by user-given
differentiation directives. We are also selecting example codes (a steady-state flow solver and a Newton solver)
to benchmark and experiment.

Ala Taftaf presented her preliminary results at Queen Mary University in september, and at the 13th EuroAD
workshop in Oxford, december 9-10. She attended a training on the CFD code OpenFOAM at Queen Mary,
september 3-6.
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6.4. Differentiation of third-party codes
Participants: Valérie Pascual, Laurent Hascoet, Alain Dervieux.

This year, we have differentiated two applications brought to us by academic colleagues. This is an important
activity as it points us to problems that should be solved or interfaces that should be improved in TAPENADE.

• Striation simulates ionospheric plasma. It was developed in the University of Lille, then Toulouse.
The Fortran90 source is relatively compact (10,000 lines). We obtained and validated the tangent and
adjoint derivatives that were needed to solve an inverse problem i.e., identify the initial condition that
causes an observed instability in plasma density. This work uncovered important AD issues when
dynamic memory is used intensively, cf 6.2.

• Mascaret is a hydrodynamic simulation code developed and used by EDF to study river flows.
Mascaret consists of 120,000 lines of Fortran90. In this first experiment, we differentiated only
one of the three kernel solvers. We obtained validated tangent and adjoint derivatives. A further
collaboration with EDF and CERFACS is planned next year.

In addition, Automatic Differentiation of the CFD code AIRONUM (cf 5.1) will continue in cooperation with
the partners of the FP7 project UMRIDA.

6.5. Resolution of linearised systems
Participants: Hubert Alcin [Inria Bordeaux-Sud-Ouest], Olivier Allain [Lemma], Marianna Braza [IMF-
Toulouse], Alexandre Carabias, Alain Dervieux, Bruno Koobus [Université Montpellier 2], Carine Moussaed
[Université Montpellier 2], Stephen Wornom [Lemma].

The work of Hubert Alcin for the ANR ECINADS on scalable parallel solvers based on coarse grids has
been continued by Carine Moussaed and Bruno Koobus. This results in scalable computations up to 2048
processors.

Bruno Koobus and Carine Moussaed presented their results on “Un modèle VMS-LES dynamique pour la
simulation d’écoulements autour d’obstacles” at CANUM congress, Super-Besse, France, May 21-25.

6.6. Control of approximation errors
Participants: Alexandre Carabias, Gautier Brethes, Alain Dervieux, Adrien Loseille [Gamma3 team, Inria-
Rocquencourt], Frédéric Alauzet [Gamma3 team, Inria-Rocquencourt], Estelle Mbinky [Gamma3 team, Inria-
Rocquencourt], Stephen Wornom [Lemma], Olivier Allain [Lemma], Anca Belme [university of Paris 6].

Third-order mesh adaptation was the main topic of the year in error control. Two PhD have been completed
this year on third-order mesh adaptation:

• In team Gamma3, Estelle Mbinky has studied a method from Bernard Mourrain for transforming
trilinear Taylor terms of the approximation error into a power of a bilinear term. Estelle Mbinky
defended her thesis at Paris 6 on december 20.

• In our team, Alexandre Carabias (who spent most of this year with team Gamma3) has developed
a 2D third-order scheme for the Euler model. The scheme is based on the ENO finite-volume
formulation with quadratic reconstruction. Some effort was devoted to improve the performance
of the scheme. The scheme is much less dissipative than an usual quadratic ENO scheme and of
smaller cost. Implementation of a 3D version in AIRONUM (cf 5.1) is now starting. The 2D scheme
has been the basis of an investigation of third order anisotropic mesh adaptation. Alexandre Carabias
defended his thesis in Sophia-Antipolis on december 12.

A. Carabias and E. Mbinky presented their work on “A priori-based mesh adaptation for third-order accurate
Euler simulation” at HONOM 2013, Bordeaux, France, March 18-22. We further studied mesh adaptation for
viscous flows and we are preparing a journal article in collaboration with Gamma3 and University of Paris 6.
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This year’s new topic is the combination of Multi-Grid and anisotropic mesh adaption, with the starting PhD of
Gautier Brèthes. The study involves several problematics, and in particular stopping criteria and construction
of correctors. This was supported by the ANR project ECINADS, ended in november, but continues with the
ANR project MAIDESC (started in october, coordinated by our team) following on mesh adaption and in
particular meshes for interfaces, third-order accuracy, meshes for boundary layers, and curved meshes.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR
7.1.1.1. ECINADS

Sciport is coordinator of the ANR project ECINADS, with CASTOR team, university Montpellier 2, Institut
de Mécanique des Fluides de Toulouse and the Lemma company in Sophia-Antipolis. ECINADS concentrates
on scalable parallel solution algorithms for state and adjoint systems in CFD, and on the use of this adjoint for
mesh adaptation applied to unsteady turbulent flows. ECINADS ended in november.

7.1.1.2. MAIDESC

Sciport is coordinator of the ANR project MAIDESC, with Gamma team, university Montpellier 2, Cemef-
Ecole des Mines, Inria-Bordeaux, Lemma and Transvalor. MAIDESC started in october. MAIDESC concen-
trates on mesh adaption and in particular meshes for interfaces, third-order accuracy, meshes for boundary
layers, and curved meshes.

7.2. European Initiatives
7.2.1. FP7 Projects
7.2.1.1. AboutFlow

Type: PEOPLE

Instrument: Initial Training Network

Duration: November 2012 - October 2016

Coordinator: Jens-Dominik Mueller

Partner: Queen Mary University of London (UK)

Inria contact: Laurent Hascoët

Abstract: The aim of AboutFlow is to develop robust gradient-based optimisation methods using
adjoint sensitivities for numerical optimisation of flows. http://aboutflow.sems.qmul.ac.uk/

7.2.1.2. UMRIDA

Type:AAT

Instrument:Aeronautics and Air Transport

Duration: 2013-2016

Coordinator: Charles Hirsch

Partner: Numeca S.A. (Belgium)

Inria contact: Alain Dervieux

Abstract: UMRIDA addresses major research challenges in Uncertainty Quantification and Robust
Design: develop new methods that handle large numbers of simultaneous uncertainties and gener-
alized geometrical uncertainties. The turn-around time must be acceptable for industrial readiness.
UMRIDA will apply these methods to representative industrial configurations.

http://aboutflow.sems.qmul.ac.uk/
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7.3. International Initiatives
7.3.1. Inria International Partners
7.3.1.1. SARDINE

Program: Inria International Partner

Title: Sophia-Antipolis ARgonne DIfferentiation INitiativE

Inria principal investigator: Laurent Hascoët

International Partner (Institution - Laboratory - Researcher):

Argonne National Laboratory (USA) - Math and Computer Science - Paul Hovland

Duration: 2012 - 2013

We study theoretical and computer science aspects of Automatic Differentiation (AD) by source
transformation. In the context of the adjoint mode of AD, which computes gradients, we focus on
the storage-recomputation tradeoffs that are the key to efficiency. We also focus on the correct AD of
message-passing communication calls that are found in parallel application. A third goal is the use
into Uncertainty Quantification of higher-order derivatives produced through AD. From the point
of view of tool development, we aim at building interfaces to bridge between the AD tools of our
teams, OpenAD and TAPENADE.

7.3.2. Inria International Labs
The team participates in the JLPC, together with our colleagues at Argonne National Laboratory. Laurent
Hascoët attended the JLPC meeting in Lyon on june 12-14, and presented our works on the adjoint of MPI-
II one-sided communications. The team co-organizes and will host the next JLPC meeting in june 2014 in
Sophia-Antipolis.

7.4. International Research Visitors
7.4.1. Visits of International Scientists

• Jean Utke, Argonne National Laboratory (USA), march 11 to march 22.

• Michel Schanen, RWTH Aachen (Germany), march 11 to march 15.

• Trond Steihaug, from University of Bergen (Norway), june 3 to june 28.

7.4.2. Visits to International Teams
• Laurent Hascoët invited by Argonne National Laboratory (USA) from october 14th to october 25th.

8. Dissemination

8.1. Scientific Animation
• Laurent Hascoët is on the organizing commitee of the EuroAD Workshops on Automatic Differenti-

ation. The 12th EuroAD workshop was organized and hosted by the team in Sophia-Antipolis, june
10-11.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Master : Laurent Hascoët, Optimisation avancée, 15 h, niveau M2, Université de Nice, France

8.2.2. Supervision



Team SCIPORT 13

PhD : Alexandre Carabias, “Adaptation de maillage pour calculs d’écoulements à l’ordre 3”,
Université de Nice, defended december 12th, advisor A. Dervieux
PhD : Cédric Lachat, “Conception et validation d’algorithmes de remaillage parallèles à mémoire
distribu’ee basés sur un remailleur séquentiel”, Université de Nice, defended december 13th, co-
advisor L. Hascoët.
PhD in progress : Gauthier Brethes, “Multigrilles anisotropes adaptatives”, started october 2012,
advisor A. Dervieux
PhD in progress : Ala Taftaf, “Adjoint Automatic Differentiation on High-performance codes”,
started july 2013, advisor L. Hascoët.

8.3. Popularization
• Laurent Hascoët gave a presentation on adjoint Automatic Differentiation at the AboutFlow meeting

in Tinos (Greece), may 27-31.
• Laurent Hascoët made a detailed presentation of Automatic Differentiation at Microsoft Research

labs in Cambridge (UK) on december 6th.
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