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2. Overall Objectives
2.1. Presentation

SEQUEL means “Sequential Learning”. As such, SEQUEL focuses on the task of learning in artificial systems
(either hardware, or software) that gather information along time. Such systems are named (learning) agents
(or learning machines) in the following. These data may be used to estimate some parameters of a model,
which in turn, may be used for selecting actions in order to perform some long-term optimization task.

For the purpose of model building, the agent needs to represent information collected so far in some compact
form and use it to process newly available data.

The acquired data may result from an observation process of an agent in interaction with its environment (the
data thus represent a perception). This is the case when the agent makes decisions (in order to attain a certain
objective) that impact the environment, and thus the observation process itself.

Hence, in SEQUEL, the term sequential refers to two aspects:
• The sequential acquisition of data, from which a model is learned (supervised and non supervised

learning),
• the sequential decision making task, based on the learned model (reinforcement learning).

Examples of sequential learning problems include:
Supervised learning tasks deal with the prediction of some response given a certain set of observations of

input variables and responses. New sample points keep on being observed.
Unsupervised learning tasks deal with clustering objects, these latter making a flow of objects. The

(unknown) number of clusters typically evolves during time, as new objects are observed.
Reinforcement learning tasks deal with the control (a policy) of some system which has to be optimized

(see [45]). We do not assume the availability of a model of the system to be controlled.

In all these cases, we mostly assume that the process can be considered stationary for at least a certain amount
of time, and slowly evolving.

We wish to have any-time algorithms, that is, at any moment, a prediction may be required/an action may be
selected making full use, and hopefully, the best use, of the experience already gathered by the learning agent.

The perception of the environment by the learning agent (using its sensors) is generally neither the best one to
make a prediction, nor to take a decision (we deal with Partially Observable Markov Decision Problem). So,
the perception has to be mapped in some way to a better, and relevant, state (or input) space.

Finally, an important issue of prediction regards its evaluation: how wrong may we be when we perform a
prediction? For real systems to be controlled, this issue can not be simply left unanswered.

To sum-up, in SEQUEL, the main issues regard:
• the learning of a model: we focus on models that map some input space RP to R,
• the observation to state mapping,
• the choice of the action to perform (in the case of sequential decision problem),
• the performance guarantees,
• the implementation of usable algorithms,
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all that being understood in a sequential framework.

2.2. Highlights of the Year
• In 2013, Crazy Stone won the 6th edition of the UEC Cup and the first edition of the Denseisen.

Crazy Stone is a Go-playing program developed by Rémi Coulom since 2005, based on the
Monte Carlo Tree Search method. The UEC Cup is the most important international computer-
Go competition, organized yearly by the University of Electro-Communications in Tokyo, Japan.
The Denseisen is a match between the winner of the UEC Cup and a top Japanese profesionnal Go
player. This year Crazy Stone won a game with 4 stones of handicap against 9-dan profesionnal
player Yoshio Ishida.

• The International Machine Learning Society selects SEQUEL to organize the 32nd International
Conference on Machine Learning in 2015 at Lille. ICML is the most important conference in the
field of machine learning.

3. Research Program

3.1. In Short
SEQUEL is primarily grounded on two domains:

• the problem of decision under uncertainty,

• statistical analysis and statistical learning, which provide the general concepts and tools to solve this
problem.

To help the reader who is unfamiliar with these questions, we briefly present key ideas below.

3.2. Decision-making Under Uncertainty
The phrase “Decision under uncertainty” refers to the problem of taking decisions when we do not have a full
knowledge neither of the situation, nor of the consequences of the decisions, as well as when the consequences
of decision are non deterministic.

We introduce two specific sub-domains, namely the Markov decision processes which models sequential
decision problems, and bandit problems.

3.2.1. Reinforcement Learning
Sequential decision processes occupy the heart of the SEQUEL project; a detailed presentation of this problem
may be found in Puterman’s book [41].

A Markov Decision Process (MDP) is defined as the tuple (X,A, P, r) where X is the state space, A is the
action space, P is the probabilistic transition kernel, and r : X×A× X→ IR is the reward function. For the
sake of simplicity, we assume in this introduction that the state and action spaces are finite. If the current
state (at time t) is x ∈ X and the chosen action is a ∈ A, then the Markov assumption means that the transition
probability to a new state x′ ∈ X (at time t+ 1) only depends on (x, a). We write p(x′|x, a) the corresponding
transition probability. During a transition (x, a)→ x′, a reward r(x, a, x′) is incurred.

In the MDP (X,A, P, r), each initial state x0 and action sequence a0, a1, ... gives rise to a sequence of
states x1, x2, ..., satisfying P (xt+1 = x′|xt = x, at = a) = p(x′|x, a), and rewards 1 r1, r2, ... defined by
rt = r(xt, at, xt+1).

1Note that for simplicity, we considered the case of a deterministic reward function, but in many applications, the reward rt itself is a
random variable.
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The history of the process up to time t is defined to be Ht = (x0, a0, ..., xt−1, at−1, xt). A policy π is a
sequence of functions π0, π1, ..., where πt maps the space of possible histories at time t to the space of
probability distributions over the space of actions A. To follow a policy means that, in each time step, we
assume that the process history up to time t is x0, a0, ..., xt and the probability of selecting an action a is equal
to πt(x0, a0, ..., xt)(a). A policy is called stationary (or Markovian) if πt depends only on the last visited
state. In other words, a policy π = (π0, π1, ...) is called stationary if πt(x0, a0, ..., xt) = π0(xt) holds for all
t ≥ 0. A policy is called deterministic if the probability distribution prescribed by the policy for any history is
concentrated on a single action. Otherwise it is called a stochastic policy.

We move from an MD process to an MD problem by formulating the goal of the agent, that is what the sought
policy π has to optimize? It is very often formulated as maximizing (or minimizing), in expectation, some
functional of the sequence of future rewards. For example, an usual functional is the infinite-time horizon sum
of discounted rewards. For a given (stationary) policy π, we define the value function V π(x) of that policy π
at a state x ∈ X as the expected sum of discounted future rewards given that we state from the initial state x
and follow the policy π:

V π(x) = E

[ ∞∑
t=0

γtrt|x0 = x, π

]
, (1)

where E is the expectation operator and γ ∈ (0, 1) is the discount factor. This value function V π gives an
evaluation of the performance of a given policy π. Other functionals of the sequence of future rewards may
be considered, such as the undiscounted reward (see the stochastic shortest path problems [37]) and average
reward settings. Note also that, here, we considered the problem of maximizing a reward functional, but a
formulation in terms of minimizing some cost or risk functional would be equivalent.

In order to maximize a given functional in a sequential framework, one usually applies Dynamic Programming
(DP) [35], which introduces the optimal value function V ∗(x), defined as the optimal expected sum of rewards
when the agent starts from a state x. We have V ∗(x) = supπ V

π(x). Now, let us give two definitions about
policies:

• We say that a policy π is optimal, if it attains the optimal values V ∗(x) for any state x ∈ X, i.e.,
if V π(x) = V ∗(x) for all x ∈ X. Under mild conditions, deterministic stationary optimal policies
exist [36]. Such an optimal policy is written π∗.

• We say that a (deterministic stationary) policy π is greedy with respect to (w.r.t.) some function V
(defined on X) if, for all x ∈ X,

π(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV (x′)] .

where arg maxa∈A f(a) is the set of a ∈ A that maximizes f(a). For any function V , such a greedy
policy always exists because A is finite.

The goal of Reinforcement Learning (RL), as well as that of dynamic programming, is to design an optimal
policy (or a good approximation of it).

The well-known Dynamic Programming equation (also called the Bellman equation) provides a relation
between the optimal value function at a state x and the optimal value function at the successors states x′

when choosing an optimal action: for all x ∈ X,

V ∗(x) = max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (2)
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The benefit of introducing this concept of optimal value function relies on the property that, from the optimal
value function V ∗, it is easy to derive an optimal behavior by choosing the actions according to a policy
greedy w.r.t. V ∗. Indeed, we have the property that a policy greedy w.r.t. the optimal value function is an
optimal policy:

π∗(x) ∈ arg max
a∈A

∑
x′∈X

p(x′|x, a) [r(x, a, x′) + γV ∗(x′)] . (3)

In short, we would like to mention that most of the reinforcement learning methods developed so far are built
on one (or both) of the two following approaches ( [47]):

• Bellman’s dynamic programming approach, based on the introduction of the value function. It
consists in learning a “good” approximation of the optimal value function, and then using it to
derive a greedy policy w.r.t. this approximation. The hope (well justified in several cases) is that
the performance V π of the policy π greedy w.r.t. an approximation V of V ∗ will be close to
optimality. This approximation issue of the optimal value function is one of the major challenges
inherent to the reinforcement learning problem. Approximate dynamic programming addresses
the problem of estimating performance bounds (e.g. the loss in performance ||V ∗ − V π|| resulting
from using a policy π-greedy w.r.t. some approximation V - instead of an optimal policy) in terms of
the approximation error ||V ∗ − V || of the optimal value function V ∗ by V . Approximation theory
and Statistical Learning theory provide us with bounds in terms of the number of sample data used
to represent the functions, and the capacity and approximation power of the considered function
spaces.

• Pontryagin’s maximum principle approach, based on sensitivity analysis of the performance measure
w.r.t. some control parameters. This approach, also called direct policy search in the Reinforcement
Learning community aims at directly finding a good feedback control law in a parameterized policy
space without trying to approximate the value function. The method consists in estimating the so-
called policy gradient, i.e. the sensitivity of the performance measure (the value function) w.r.t.
some parameters of the current policy. The idea being that an optimal control problem is replaced
by a parametric optimization problem in the space of parameterized policies. As such, deriving a
policy gradient estimate would lead to performing a stochastic gradient method in order to search
for a local optimal parametric policy.

Finally, many extensions of the Markov decision processes exist, among which the Partially Observable MDPs
(POMDPs) is the case where the current state does not contain all the necessary information required to decide
for sure of the best action.

3.2.2. Multi-arm Bandit Theory
Bandit problems illustrate the fundamental difficulty of decision making in the face of uncertainty: A decision
maker must choose between what seems to be the best choice (“exploit”), or to test (“explore”) some
alternative, hoping to discover a choice that beats the current best choice.

The classical example of a bandit problem is deciding what treatment to give each patient in a clinical trial
when the effectiveness of the treatments are initially unknown and the patients arrive sequentially. These
bandit problems became popular with the seminal paper [42], after which they have found applications in
diverse fields, such as control, economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is specified by K real-valued distributions. In each time step
a decision maker can select one of the distributions to obtain a sample from it. The samples obtained
are considered as rewards. The distributions are initially unknown to the decision maker, whose goal is to
maximize the sum of the rewards received, or equivalently, to minimize the regret which is defined as the loss
compared to the total payoff that can be achieved given full knowledge of the problem, i.e., when the arm
giving the highest expected reward is pulled all the time.
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The name “bandit” comes from imagining a gambler playing with K slot machines. The gambler can pull the
arm of any of the machines, which produces a random payoff as a result: When arm k is pulled, the random
payoff is drawn from the distribution associated to k. Since the payoff distributions are initially unknown,
the gambler must use exploratory actions to learn the utility of the individual arms. However, exploration has
to be carefully controlled since excessive exploration may lead to unnecessary losses. Hence, to play well,
the gambler must carefully balance exploration and exploitation. Auer et al. [34] introduced the algorithm
UCB (Upper Confidence Bounds) that follows what is now called the “optimism in the face of uncertainty
principle”. Their algorithm works by computing upper confidence bounds for all the arms and then choosing
the arm with the highest such bound. They proved that the expected regret of their algorithm increases at most
at a logarithmic rate with the number of trials, and that the algorithm achieves the smallest possible regret up
to some sub-logarithmic factor (for the considered family of distributions).

3.3. Statistical analysis of time series
Many of the problems of machine learning can be seen as extensions of classical problems of mathematical
statistics to their (extremely) non-parametric and model-free cases. Other machine learning problems are
founded on such statistical problems. Statistical problems of sequential learning are mainly those that are
concerned with the analysis of time series. These problems are as follows.

3.3.1. Prediction of Sequences of Structured and Unstructured Data
Given a series of observations x1, · · · , xn it is required to give forecasts concerning the distribution of the
future observations xn+1, xn+2, · · ·; in the simplest case, that of the next outcome xn+1. Then xn+1 is
revealed and the process continues. Different goals can be formulated in this setting. One can either make
some assumptions on the probability measure that generates the sequence x1, · · · , xn, · · ·, such as that the
outcomes are independent and identically distributed (i.i.d.), or that the sequence is a Markov chain, that it is
a stationary process, etc. More generally, one can assume that the data is generated by a probability measure
that belongs to a certain set C. In these cases the goal is to have the discrepancy between the predicted and the
“true” probabilities to go to zero, if possible, with guarantees on the speed of convergence.

Alternatively, rather than making some assumptions on the data, one can change the goal: the predicted
probabilities should be asymptotically as good as those given by the best reference predictor from a certain
pre-defined set.

Another dimension of complexity in this problem concerns the nature of observations xi. In the simplest case,
they come from a finite space, but already basic applications often require real-valued observations. Moreover,
function or even graph-valued observations often arise in practice, in particular in applications concerning Web
data. In these settings estimating even simple characteristics of probability distributions of the future outcomes
becomes non-trivial, and new learning algorithms for solving these problems are in order.

3.3.2. Hypothesis testing
Given a series of observations of x1, · · · , xn, · · · generated by some unknown probability measure µ, the
problem is to test a certain given hypothesis H0 about µ, versus a given alternative hypothesis H1. There
are many different examples of this problem. Perhaps the simplest one is testing a simple hypothesis “µ is
Bernoulli i.i.d. measure with probability of 0 equals 1/2” versus “µ is Bernoulli i.i.d. with the parameter
different from 1/2”. More interesting cases include the problems of model verification: for example, testing
that µ is a Markov chain, versus that it is a stationary ergodic process but not a Markov chain. In the case
when we have not one but several series of observations, we may wish to test the hypothesis that they are
independent, or that they are generated by the same distribution. Applications of these problems to a more
general class of machine learning tasks include the problem of feature selection, the problem of testing that
a certain behaviour (such as pulling a certain arm of a bandit, or using a certain policy) is better (in terms of
achieving some goal, or collecting some rewards) than another behaviour, or than a class of other behaviours.

The problem of hypothesis testing can also be studied in its general formulations: given two (abstract)
hypothesis H0 and H1 about the unknown measure that generates the data, find out whether it is possible
to test H0 against H1 (with confidence), and if yes then how can one do it.



Project-Team SequeL 7

3.3.3. Change Point Analysis
A stochastic process is generating the data. At some point, the process distribution changes. In the “offline”
situation, the statistician observes the resulting sequence of outcomes and has to estimate the point or the points
at which the change(s) occurred. In online setting, the goal is to detect the change as quickly as possible.

These are the classical problems in mathematical statistics, and probably among the last remaining statistical
problems not adequately addressed by machine learning methods. The reason for the latter is perhaps in that the
problem is rather challenging. Thus, most methods available so far are parametric methods concerning piece-
wise constant distributions, and the change in distribution is associated with the change in the mean. However,
many applications, including DNA analysis, the analysis of (user) behaviour data, etc., fail to comply with this
kind of assumptions. Thus, our goal here is to provide completely non-parametric methods allowing for any
kind of changes in the time-series distribution.

3.3.4. Clustering Time Series, Online and Offline
The problem of clustering, while being a classical problem of mathematical statistics, belongs to the realm
of unsupervised learning. For time series, this problem can be formulated as follows: given several samples
x1 = (x1

1, · · · , x1
n1

), · · · , xN = (x1
N , · · · , xNnN

), we wish to group similar objects together. While this is of
course not a precise formulation, it can be made precise if we assume that the samples were generated by k
different distributions.

The online version of the problem allows for the number of observed time series to grow with time, in general,
in an arbitrary manner.

3.3.5. Online Semi-Supervised Learning
Semi-supervised learning (SSL) is a field of machine learning that studies learning from both labeled and
unlabeled examples. This learning paradigm is extremely useful for solving real-world problems, where data
is often abundant but the resources to label them are limited.

Furthermore, online SSL is suitable for adaptive machine learning systems. In the classification case, learning
is viewed as a repeated game against a potentially adversarial nature. At each step t of this game, we observe
an example xt, and then predict its label ŷt.

The challenge of the game is that we only exceptionally observe the true label yt. In the extreme case, which
we also study, only a handful of labeled examples are provided in advance and set the initial bias of the system
while unlabeled examples are gathered online and update the bias continuously. Thus, if we want to adapt to
changes in the environment, we have to rely on indirect forms of feedback, such as the structure of data.

3.4. Statistical Learning and Bayesian Analysis
Before detailing some issues in these fields, let us remind the definition of a few terms.

Machine learning refers to a system capable of the autonomous acquisition and integration of
knowledge. This capacity to learn from experience, analytical observation, and other means,
results in a system that can continuously self-improve and thereby offer increased efficiency and
effectiveness.

Statistical learning is an approach to machine intelligence that is based on statistical modeling of
data. With a statistical model in hand, one applies probability theory and decision theory to get
an algorithm. This is opposed to using training data merely to select among different algorithms
or using heuristics/“common sense” to design an algorithm.

Bayesian Analysis applies to data that could be seen as observations in the more general meaning of
the term. These data may not only come from classical sensors but also from any device recording
information. From an operational point of view, like for statistical learning, uncertainty about
the data is modeled by a probability measure thus defining the so-called likelihood functions.
This last one depend upon parameters defining the state of the world we focus on for decision
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purposes. Within the Bayesian framework the uncertainty about these parameters is also modeled
by probability measures, the priors that are subjective probabilities. Using probability theory and
decision theory, one then defines new algorithms to estimate the parameters of interest and/or
associated decisions. According to the International Society for Bayesian Analysis (source:
http://bayesian.org), and from a more general point of view, this overall process could be
summarize as follows: one assesses the current state of knowledge regarding the issue of interest,
gather new data to address remaining questions, and then update and refine their understanding to
incorporate both new and old data. Bayesian inference provides a logical, quantitative framework
for this process based on probability theory.

Kernel method. Generally speaking, a kernel function is a function that maps a couple of points
to a real value. Typically, this value is a measure of dissimilarity between the two points.
Assuming a few properties on it, the kernel function implicitly defines a dot product in some
function space. This very nice formal property as well as a bunch of others have ensured a
strong appeal for these methods in the last 10 years in the field of function approximation. Many
classical algorithms have been “kernelized”, that is, restated in a much more general way than
their original formulation. Kernels also implicitly induce the representation of data in a certain
“suitable” space where the problem to solve (classification, regression, ...) is expected to be
simpler (non-linearity turns to linearity).

The fundamental tools used in SEQUEL come from the field of statistical learning [39]. We briefly present
the most important for us to date, namely, kernel-based non parametric function approximation, and non
parametric Bayesian models.

3.4.1. Non-parametric methods for Function Approximation
In statistics in general, and applied mathematics, the approximation of a multi-dimensional real function
given some samples is a well-known problem (known as either regression, or interpolation, or function
approximation, ...). Regressing a function from data is a key ingredient of our research, or to the least, a
basic component of most of our algorithms. In the context of sequential learning, we have to regress a function
while data samples are being obtained one at a time, while keeping the constraint to be able to predict points
at any step along the acquisition process. In sequential decision problems, we typically have to learn a value
function, or a policy.

Many methods have been proposed for this purpose. We are looking for suitable ones to cope with the problems
we wish to solve. In reinforcement learning, the value function may have areas where the gradient is large;
these are areas where the approximation is difficult, while these are also the areas where the accuracy of the
approximation should be maximal to obtain a good policy (and where, otherwise, a bad choice of action may
imply catastrophic consequences).

We particularly favor non parametric methods since they make quite a few assumptions about the function
to learn. In particular, we have strong interests in l1-regularization, and the (kernelized-)LARS algorithm. l1-
regularization yields sparse solutions, and the LARS approach produces the whole regularization path very
efficiently, which helps solving the regularization parameter tuning problem.

3.4.2. Nonparametric Bayesian Estimation
Numerous problems may be solved efficiently by a Bayesian approach. The use of Monte-Carlo methods
allows us to handle non–linear, as well as non–Gaussian, problems. In their standard form, they require
the formulation of probability densities in a parametric form. For instance, it is a common usage to use
Gaussian likelihood, because it is handy. However, in some applications such as Bayesian filtering, or blind
deconvolution, the choice of a parametric form of the density of the noise is often arbitrary. If this choice
is wrong, it may also have dramatic consequences on the estimation quality. To overcome this shortcoming,
one possible approach is to consider that this density must also be estimated from data. A general Bayesian
approach then consists in defining a probabilistic space associated with the possible outcomes of the object
to be estimated. Applied to density estimation, it means that we need to define a probability measure on the

http://bayesian.org
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probability density of the noise: such a measure is called a random measure. The classical Bayesian inference
procedures can then been used. This approach being by nature non parametric, the associated frame is called
Non Parametric Bayesian.

In particular, mixtures of Dirichlet processes [38] provide a very powerful formalism. Dirichlet Processes are
a possible random measure and Mixtures of Dirichlet Processes are an extension of well-known finite mixture
models. Given a mixture density f(x|θ), and G(dθ) =

∑∞
k=1 ωkδUk

(dθ), a Dirichlet process, we define a
mixture of Dirichlet processes as:

F (x) =

∫
Θ

f(x|θ)G(dθ) =

∞∑
k=1

ωkf(x|Uk) (4)

where F (x) is the density to be estimated. The class of densities that may be written as a mixture of Dirichlet
processes is very wide, so that they really fit a very large number of applications.

Given a set of observations, the estimation of the parameters of a mixture of Dirichlet processes is performed
by way of a Monte Carlo Markov Chain (MCMC) algorithm. Dirichlet Process Mixture are also widely used in
clustering problems. Once the parameters of a mixture are estimated, they can be interpreted as the parameters
of a specific cluster defining a class as well. Dirichlet processes are well known within the machine learning
community and their potential in statistical signal processing still need to be developed.

3.4.3. Random Finite Sets for multisensor multitarget tracking
In the general multi-sensor multi-target Bayesian framework, an unknown (and possibly varying) number of
targets whose states x1, ...xn are observed by several sensors which produce a collection of measurements
z1, ..., zm at every time step k. Well-known models to this problem are track-based models, such as the joint
probability data association (JPDA), or joint multi-target probabilities, such as the joint multi-target probability
density. Common difficulties in multi-target tracking arise from the fact that the system state and the collection
of measures from sensors are unordered and their size evolve randomly through time. Vector-based algorithms
must therefore account for state coordinates exchanges and missing data within an unknown time interval.
Although this approach is very popular and has resulted in many algorithms in the past, it may not be the
optimal way to tackle the problem, since the sate and the data are in fact sets and not vectors.

The random finite set theory provides a powerful framework to deal with these issues. Mahler’s work on
finite sets statistics (FISST) provides a mathematical framework to build multi-object densities and derive the
Bayesian rules for state prediction and state estimation. Randomness on object number and their states are
encapsulated into random finite sets (RFS), namely multi-target(state) sets X = {x1, ..., xn} and multi-sensor
(measurement) set Zk = {z1, ..., zm}. The objective is then to propagate the multitarget probability density
fk|k(X|Z(k)) by using the Bayesian set equations at every time step k:

fk+1|k(X|Z(k)) =

∫
fk+1|k(X|W )fk|k(W |Z(k))δW

fk+1|k+1(X|Z(k+1)) =
fk+1(Zk+1|X)fk+1|k(X|Z(k))∫
fk+1(Zk+1|W )fk+1|k(W |Z(k))δW

(5)

where:

• X = {x1, ..., xn} is a multi-target state, i.e. a finite set of elements xi defined on the single-target
space X; 2

• Zk+1 = {z1, ..., zm} is the current multi-sensor observation, i.e. a collection of measures zi pro-
duced at time k + 1 by all the sensors;

• Z(k) =
⋃
t6k Zt is the collection of observations up to time k;

2The state xi of a target is usually composed of its position, its velocity, etc.
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• fk|k(W |Z(k)) is the current multi-target posterior density in state W ;

• fk+1|k(X|W ) is the current multi-target Markov transition density, from state W to state X;

• fk+1(Z|X) is the current multi-sensor/multi-target likelihood function.

Although equations (5) may seem similar to the classical single-sensor/single-target Bayesian equations, they
are generally intractable because of the presence of the set integrals. For, a RFS Ξ is characterized by the
family of its Janossy densities jΞ,1(x1), jΞ,2(x1, x2)... and not just by one density as it is the case with
vectors. Mahler then introduced the PHD, defined on single-target state space. The PHD is the quantity whose
integral on any region S is the expected number of targets inside S. Mahler proved that the PHD is the first-
moment density of the multi-target probability density. Although defined on single-state space X, the PHD
encapsulates information on both target number and states.

4. Application Domains

4.1. In Short
SEQUEL aims at solving problems of prediction, as well as problems of optimal and adaptive control. As such,
the application domains are very numerous.

The application domains have been organized as follows:

• adaptive control,

• signal processing and functional prediction,

• medical applications,

• web mining,

• computer games.

4.2. Adaptive Control
Adaptive control is an important application of the research being done in SEQUEL. Reinforcement learning
(RL) precisely aims at controling the behavior of systems and may be used in situations with more or less
information available. Of course, the more information, the better, in which case methods of (approximate)
dynamic programming may be used [40]. But, reinforcement learning may also handle situations where the
dynamics of the system is unknown, situations where the system is partially observable, and non stationary
situations. Indeed, in these cases, the behavior is learned by interacting with the environment and thus naturally
adapts to the changes of the environment. Furthermore, the adaptive system may also take advantage of expert
knowledge when available.

Clearly, the spectrum of potential applications is very wide: as far as an agent (a human, a robot, a virtual
agent) has to take a decision, in particular in cases where he lacks some information to take the decision, this
enters the scope of our activities. To exemplify the potential applications, let us cite:

• game softwares: in the 1990’s, RL has been the basis of a very successful Backgammon program,
TD-Gammon [46] that learned to play at an expert level by basically playing a very large amount of
games against itself. Today, various games are studied with RL techniques.

• many optimization problems that are closely related to operation research, but taking into account
the uncertainty, and the stochasticity of the environment: see the job-shop scheduling, or the cellular
phone frequency allocation problems, resource allocation in general [40]

• we can also foresee that some progress may be made by using RL to design adaptive conversational
agents, or system-level as well as application-level operating systems that adapt to their users habits.
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More generally, these ideas fall into what adaptive control may bring to human beings, in making
their life simpler, by being embedded in an environment that is made to help them, an idea phrased
as “ambient intelligence”.

• The sensor management problem consists in determining the best way to task several sensors when
each sensor has many modes and search patterns. In the detection/tracking applications, the tasks
assigned to a sensor management system are for instance:

– detect targets,

– track the targets in the case of a moving target and/or a smart target (a smart target can
change its behavior when it detects that it is under analysis),

– combine all the detections in order to track each moving target,

– dynamically allocate the sensors in order to achieve the previous three tasks in an optimal
way. The allocation of sensors, and their modes, thus defines the action space of the
underlying Markov decision problem.

In the more general situation, some sensors may be localized at the same place while others are
dispatched over a given volume. Tasking a sensor may include, at each moment, such choices as
where to point and/or what mode to use. Tasking a group of sensors includes the tasking of each
individual sensor but also the choice of collaborating sensors subgroups. Of course, the sensor
management problem is related to an objective. In general, sensors must balance complex trade-
offs between achieving mission goals such as detecting new targets, tracking existing targets, and
identifying existing targets. The word “target” is used here in its most general meaning, and the
potential applications are not restricted to military applications. Whatever the underlying application,
the sensor management problem consists in choosing at each time an action within the set of available
actions.

• sequential decision processes are also very well-known in economy. They may be used as a decision
aid tool, to help in the design of social helps, or the implementation of plants (see [44], [43] for such
applications).

4.3. Signal Processing
Applications of sequential learning in the field of signal processing are also very numerous. A signal is
naturally sequential as it flows. It usually comes from the recording of the output of sensors but the recording
of any sequence of numbers may be considered as a signal like the stock-exchange rates evolution with respect
to time and/or place, the number of consumers at a mall entrance or the number of connections to a web site.
Signal processing has several objectives: predict , estimate, remove noise, characterize or classify. The signal is
often considered as sequential: we want to predict, estimate or classify a value (or a feature) at time t knowing
the past values of the parameter of interest or past values of data related to this parameter. This is typically the
case in estimation processes arising in dynamical systems.

Signals may be processed in several ways. One of the best–known way is the time-frequency analysis in
which the frequencies of each signal are analyzed with respect to time. This concept has been generalized
to the time-scale analysis obtained by a wavelet transform. Both analysis are based on the projection of the
original signal onto a well-chosen function basis. Signal processing is also closely related to the probability
field as the uncertainty inherent to many signals leads to consider them as stochastic processes: the Bayesian
framework is actually one of the main frameworks within which signals are processed for many purposes. It is
worth noting that Bayesian analysis can be used jointly with a time-frequency or a wavelet analysis. However,
alternatives like belief functions came up these last years. Belief functions were introduced by Demspter few
decades ago and have been successfully used in the few past years in fields where probability had, during many
years, no alternatives like in classification. Belief functions can be viewed as a generalization of probabilities
which can capture both imprecision and uncertainty. Belief functions are also closely related to data fusion.
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4.4. Medical Applications
One of the initial motivations of the multi-arm bandit theory stems from clinical trials when one researches
the effects of different treatments while maximizing the improvement of the patients’ health states.

Medical health-care and in particular patient-management is up today one of the most important applications
of the sequential decision making. This is because the treatment of the more complex health problems is
typically sequential: A physician repeatedly observes the current state of the patient and makes the decision in
order to improve the health condition as measured for example by qualys (quality adjusted life years).

Moreover, machine learning methods may be used for at least two means in neuroscience:

1. as in any other (experimental) scientific domain, the machine learning methods relying heavily on
statistics, they may be used to analyse experimental data,

2. dealing with induction learning, that is the ability to generalize from facts which is an ability
that is considered to be one of the basic components of “intelligence”, machine learning may be
considered as a model of learning in living beings. In particular, the temporal difference methods
for reinforcement learning have strong ties with various concepts of psychology (Thorndike’s law of
effect, and the Rescorla-Wagner law to name the two most well-known).

4.5. Web Mining
We work on the news/ad recommendation. These online learning algorithms reached a critical importance
over the last few years due to these major applications. After designing a new algorithm, it is critical to be
able to evaluate it without having to plug it into the real application in order to protect user experiences or/and
the company’s revenue. To do this, people used to build simulators of user behaviors and try to achieve good
performances against it. However designing such a simulator is probably much more difficult than designing
the algorithm itself! An other common way to evaluate is to not consider the exploration/exploitation dilemma
(also known as “Cold Start” for recommender systems). Lately data-driven methods have been developed.
We are working on building automatic replay methodology with some theoretical guarantees. This work also
exhibits strong link with the choice of the number of contexts to use with recommender systems wrt your
audience.

An other point is that web sites must forecast Web page views in order to plan computer resource allocation and
estimate upcoming revenue and advertising growth. In this work, we focus on extracting trends and seasonal
patterns from page view series. We investigate Holt-Winters/ARIMA like procedures and some regularized
models for making short-term prediction (3-6 weeks) wrt to logged data of several big media websites. We
work on some news event related webpages and we feel that kind of time series deserves a particular attention.
Self-similarity is found to exist at multiple time scales of network traffic, and can be exploited for prediction.
In particular, it is found that Web page views exhibit strong impulsive changes occasionally. The impulses
cause large prediction errors long after their occurrences and can sometimes be predicted (e.g., elections, sport
events, editorial changes,holidays) in order to improve accuracies. It also seems that some promising model
could arise from using global trends shift in the population.

4.6. Games
The problem of artificial intelligence in games consists in choosing actions of players in order to produce
artificial opponents. Most games can be formalized as Markov decision problems, so they can be approached
with reinforcement learning.

In particular, SEQUEL was a pioneer of Monte Carlo Tree Search, a technique that obtained spectacular
successes in the game of Go. Other application domains include the game of poker and the Japanese card
game of hanafuda.
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5. Software and Platforms

5.1. Computer Games
Participant: Rémi Coulom.

• Crazy Stone is a top-level Go-playing program that has been developed by Rémi Coulom since
2005. Crazy Stone won several major international Go tournaments in the past. In 2013, a new
version was released in Japan. This new version won the 6th edition of the UEC Cup (the most
important international computer-Go tournament). It also won the first edition of the Denseisen, by
winning a 4-stone handicap game against 9-dan professional player Yoshio Ishida. It is distributed
as a commercial product by Unbalance Corporation (Japan). 6-month work in 2013. URL: http://
remi.coulom.free.fr/CrazyStone/

• Kifu Snap is an Android image-recognition app. It can automatically recognize a Go board from
a picture, and analyze it with Crazy Stone. It was released on Google Play in November, 2013.
6-month work in 2013. URL: http://remi.coulom.free.fr/kifu-snap/

6. New Results

6.1. Decision-making Under Uncertainty
6.1.1. Reinforcement Learning

Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model [2]
We consider the problem of learning the optimal action-value function in discounted-reward Markov decision
processes (MDPs). We prove new PAC bounds on the sample-complexity of two well-known model-based
reinforcement learning (RL) algorithms in the presence of a generative model of the MDP: value iteration and
policy iteration. The first result indicates that for an MDP with N state-action pairs and the discount factor
γin[0, 1) only O(N log(N/δ)/ [(1 - γ)3 ε2]) state-transition samples are required to find an ε-optimal estimation
of the action-value function with the probability (w.p.) 1-δ. Further, we prove that, for small values of ε, an
order of O(N log(N/δ)/ [(1 - γ)3 ε2]) samples is required to find an ε-optimal policy w.p. 1-δ. We also prove
a matching lower bound of Ω(N log(N/δ)/ [(1 - γ)3 ε2]) on the sample complexity of estimating the optimal
action-value function. To the best of our knowledge, this is the first minimax result on the sample complexity
of RL: The upper bound matches the lower bound interms of N , ε, δ and 1/(1 -γ) up to a constant factor. Also,
both our lower bound and upper bound improve on the state-of-the-art in terms of their dependence on 1/(1-γ).

Regret Bounds for Reinforcement Learning with Policy Advice [13]
In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned
from prior experience or provided by advisors. We present a reinforcement learning with policy advice (RLPA)
algorithm which leverages this input set and learns to use the best policy in the set for the reinforcement
learning task at hand. We prove that RLPA has a sub-linear regret of Õ(

√
T ) relative to the best input policy,

and that both this regret and its computational complexity are independent of the size of the state and action
space. Our empirical simulations support our theoretical analysis. This suggests RLPA may offer significant
advantages in large domains where some prior good policies are provided.

Optimistic planning for belief-augmented Markov decision processes [11]

http://remi.coulom.free.fr/CrazyStone/
http://remi.coulom.free.fr/CrazyStone/
http://remi.coulom.free.fr/kifu-snap/
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This paper presents the Bayesian Optimistic Planning (BOP) algorithm, a novel model-based Bayesian
reinforcement learning approach. BOP extends the planning approach of the Optimistic Planning for Markov
Decision Processes (OP-MDP) algorithm [10], [9] to contexts where the transition model of the MDP is
initially unknown and progressively learned through interactions within the environment. The knowledge
about the unknown MDP is represented with a probability distribution over all possible transition models
using Dirichlet distributions, and the BOP algorithm plans in the belief-augmented state space constructed by
concatenating the original state vector with the current posterior distribution over transition models. We show
that BOP becomes Bayesian optimal when the budget parameter increases to infinity. Preliminary empirical
validations show promising performance.

Aggregating optimistic planning trees for solving markov decision processes [16]
This paper addresses the problem of online planning in Markov decision processes using a generative model
and under a budget constraint. We propose a new algorithm, ASOP, which is based on the construction of
a forest of single successor state planning trees, where each tree corresponds to a random realization of the
stochastic environment. The trees are explored using a "safe" optimistic planning strategy which combines the
optimistic principle (in order to explore the most promising part of the search space first) and a safety principle
(which guarantees a certain amount of uniform exploration). In the decision-making step of the algorithm, the
individual trees are aggregated and an immediate action is recommended. We provide a finite-sample analysis
and discuss the trade-off between the principles of optimism and safety. We report numerical results on a
benchmark problem showing that ASOP performs as well as state-of-the-art optimistic planning algorithms.

Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning [20]
We consider an agent interacting with an environment in a single stream of actions, observations, and rewards,
with no reset. This process is not assumed to be a Markov Decision Process (MDP). Rather, the agent has
several representations (mapping histories of past interactions to a discrete state space) of the environment
with unknown dynamics, only some of which result in an MDP. The goal is to minimize the average regret
criterion against an agent who knows an MDP representation giving the highest optimal reward, and acts
optimally in it. Recent regret bounds for this setting are of order O(T 2/3) with an additive term constant yet
exponential in some characteristics of the optimal MDP. We propose an algorithm whose regret after T time
steps is O(

√
T ), with all constants reasonably small. This is optimal in T since O(

√
T ) is the optimal regret

in the setting of learning in a (single discrete) MDP.

Competing with an Infinite Set of Models in Reinforcement Learning [21]
We consider a reinforcement learning setting where the learner also has to deal with the problem of finding a
suitable state-representation function from a given set of models. This has to be done while interacting with the
environment in an online fashion (no resets), and the goal is to have small regret with respect to any Markov
model in the set. For this setting, recently the BLBãlgorithm has been proposed, which achieves regret of order
T 2/3, provided that the given set of models is finite. Our first contribution is to extend this result to a countably
infinite set of models. Moreover, the BLBr˜egret bound suffers from an additive term that can be exponential
in the diameter of the MDP involved, since the diameter has to be guessed. The algorithm we propose avoids
guessing the diameter, thus improving the regret bound.

A review of optimistic planning in Markov decision processes [30]
We review a class of online planning algorithms for deterministic and stochastic optimal control problems,
modeled as Markov decision processes. At each discrete time step, these algorithms maximize the predicted
value of planning policies from the current state, and apply the first action of the best policy found. An overall
receding-horizon algorithm results, which can also be seen as a type of model-predictive control. The space
of planning policies is explored optimistically, focusing on areas with largest upper bounds on the value -
or upper confidence bounds, in the stochastic case. The resulting optimistic planning framework integrates
several types of optimism previously used in planning, optimization, and reinforcement learning, in order to
obtain several intuitive algorithms with good performance guarantees. We describe in detail three recent such
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algorithms, outline the theoretical guarantees on their performance, and illustrate their behavior in a numerical
example.

6.1.2. Multi-arm Bandit Theory
Automatic motor task selection via a bandit algorithm for a brain-controlled button [4]
Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such
as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance,
specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a
new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous
brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on
the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the
adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We
also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on
inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and
a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of
this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in
precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online
tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to
optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be
tested in a given time span, the proposed method could contribute to reducing ’BCI illiteracy’.

Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation [3]
We consider optimal sequential allocation in the context of the so-called stochastic multi-armed bandit model.
We describe a generic index policy, in the sense of Gittins (1979), based on upper confidence bounds of the arm
payoffs computed using the Kullback-Leibler divergence. We consider two classes of distributions for which
instances of this general idea are analyzed: The kl-UCB algorithm is designed for one-parameter exponential
families and the empirical KL-UCB algorithm for bounded and finitely supported distributions. Our main
contribution is a unified finite-time analysis of the regret of these algorithms that asymptotically matches the
lower bounds of Lai and Robbins (1985) and Burnetas and Katehakis (1996), respectively. We also investigate
the behavior of these algorithms when used with general bounded rewards, showing in particular that they
provide significant improvements over the state-of-the-art.

Sequential Transfer in Multi-armed Bandit with Finite Set of Models [14]
Learning from prior tasks and transferring that experience to improve future performance is critical for building
lifelong learning agents. Although results in supervised and reinforcement learning show that transfer may
significantly improve the learning performance, most of the literature on transfer is focused on batch learning
tasks. In this paper we study the problem of sequential transfer in online learning, notably in the multi–armed
bandit framework, where the objective is to minimize the total regret over a sequence of tasks by transferring
knowledge from prior tasks. Under the assumption that the tasks are drawn from a stationary distribution over
a finite set of models, we define a novel bandit algorithm based on a method-of-moments approach for the
estimation of the possible tasks and derive regret bounds for it. We introduce a novel bandit algorithm based
on a method-of-moments approach for estimating the possible tasks and derive regret bounds for it. Finally,
we report preliminary empirical results confirming the theoretical findings.

Optimizing P300-speller sequences by RIP-ping groups apart [25]
So far P300-speller design has put very little emphasis on the design of optimized flash patterns, a surprising
fact given the importance of the sequence of flashes on the selection outcome. Previous work in this domain
has consisted in studying consecutive flashes, to prevent the same letter or its neighbors from flashing
consecutively. To this effect, the flashing letters form more random groups than the original row-column
sequences for the P300 paradigm, but the groups remain fixed across repetitions. This has several important
consequences, among which a lack of discrepancy between the scores of the different letters. The new approach
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proposed in this paper accumulates evidence for individual elements, and optimizes the sequences by relaxing
the constraint that letters should belong to fixed groups across repetitions. The method is inspired by the theory
of Restricted Isometry Property matrices in Compressed Sensing, and it can be applied to any display grid size,
and for any target flash frequency. This leads to P300 sequences which are shown here to perform significantly
better than the state of the art, in simulations and online tests.

Stochastic Simultaneous Optimistic Optimization [26]
We study the problem of global maximization of a function f given a finite number of evaluations perturbed by
noise. We consider a very weak assumption on the function, namely that it is locally smooth (in some precise
sense) with respect to some semi-metric, around one of its global maxima. Compared to previous works on
bandits in general spaces (Kleinberg et al., 2008; Bubeck et al., 2011a) our algorithm does not require the
knowledge of this semi-metric. Our algorithm, StoSOO, follows an optimistic strategy to iteratively construct
upper confidence bounds over the hierarchical partitions of the function domain to decide which point to
sample next. A finite-time analysis of StoSOO shows that it performs almost as well as the best specifically-
tuned algorithms even though the local smoothness of the function is not known.

Toward optimal stratification for stratified monte-carlo integration [9]
We consider the problem of adaptive stratified sampling for Monte Carlo integration of a noisy function, given
a finite budget n of noisy evaluations to the function. We tackle in this paper the problem of adapting to the
function at the same time the number of samples into each stratum and the partition itself. More precisely, it is
interesting to refine the partition of the domain in area where the noise to the function, or where the variations
of the function, are very heterogeneous. On the other hand, having a (too) refined stratification is not optimal.
Indeed, the more refined the stratification, the more difficult it is to adjust the allocation of the samples to the
stratification, i.e. sample more points where the noise or variations of the function are larger. We provide in
this paper an algorithm that selects online, among a large class of partitions, the partition that provides the
optimal trade-off, and allocates the samples almost optimally on this partition

Thompson sampling for one-dimensional exponential family bandits [18]
Thompson Sampling has been demonstrated in many complex bandit models, however the theoretical guar-
antees available for the parametric multi-armed bandit are still limited to the Bernoulli case. Here we extend
them by proving asymptotic optimality of the algorithm using the Jeffreys prior for 1-dimensional exponential
family bandits. Our proof builds on previous work, but also makes extensive use of closed forms for Kullback-
Leibler divergence and Fisher information (and thus Jeffreys prior) available in an exponential family. This
allow us to give a finite time exponential concentration inequality for posterior distributions on exponential
families that may be of interest in its own right. Moreover our analysis covers some distributions for which no
optimistic algorithm has yet been proposed, including heavy-tailed exponential families.

Finite-Time Analysis of Kernelised Contextual Bandits [27]
We tackle the problem of online reward maximisation over a large finite set of actions described by their
contexts. We focus on the case when the number of actions is too big to sample all of them even once. However
we assume that we have access to the similarities between actions’ contexts and that the expected reward is an
arbitrary linear function of the contexts’ images in the related reproducing kernel Hilbert space (RKHS). We
propose KernelUCB, a kernelised UCB algorithm, and give a cumulative regret bound through a frequentist
analysis. For contextual bandits, the related algorithm GP-UCB turns out to be a special case of our algorithm,
and our finite-time analysis improves the regret bound of GP-UCB for the agnostic case, both in the terms of
the kernel-dependent quantity and the RKHS norm of the reward function. Moreover, for the linear kernel, our
regret bound matches the lower bound for contextual linear bandits.

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning
[33]
This work covers several aspects of the optimism in the face of uncertainty principle applied to large scale
optimization problems under finite numerical budget. The initial motivation for the research reported here
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originated from the empirical success of the so-called Monte-Carlo Tree Search method popularized in
computer-go and further extended to many other games as well as optimization and planning problems.
Our objective is to contribute to the development of theoretical foundations of the field by characterizing
the complexity of the underlying optimization problems and designing efficient algorithms with performance
guarantees. The main idea presented here is that it is possible to decompose a complex decision making
problem (such as an optimization problem in a large search space) into a sequence of elementary decisions,
where each decision of the sequence is solved using a (stochastic) multi-armed bandit (simple mathematical
model for decision making in stochastic environments). This so-called hierarchical bandit approach (where the
reward observed by a bandit in the hierarchy is itself the return of another bandit at a deeper level) possesses
the nice feature of starting the exploration by a quasi-uniform sampling of the space and then focusing
progressively on the most promising area, at different scales, according to the evaluations observed so far,
and eventually performing a local search around the global optima of the function. The performance of the
method is assessed in terms of the optimality of the returned solution as a function of the number of function
evaluations. Our main contribution to the field of function optimization is a class of hierarchical optimistic
algorithms designed for general search spaces (such as metric spaces, trees, graphs, Euclidean spaces, ...) with
different algorithmic instantiations depending on whether the evaluations are noisy or noiseless and whether
some measure of the ”smoothness” of the function is known or unknown. The performance of the algorithms
depend on the local behavior of the function around its global optima expressed in terms of the quantity of
near-optimal states measured with some metric. If this local smoothness of the function is known then one
can design very efficient optimization algorithms (with convergence rate independent of the space dimension),
and when it is not known, we can build adaptive techniques that can, in some cases, perform almost as well as
when it is known.

6.2. Statistical analysis of time series
6.2.1. Change Point Analysis

Nonparametric multiple change point estimation in highly dependent time series [17]
Given a heterogeneous time-series sample, it is required to find the points in time (called change points) where
the probability distribution generating the data has changed. The data is assumed to have been generated by
arbitrary, unknown, stationary ergodic distributions. No modeling, independence or mixing are made. A novel,
computationally efficient, nonparametric method is proposed, and is shown to be asymptotically consistent in
this general framework; the theoretical results are complemented with experimental evaluations.

6.2.2. Clustering Time Series, Online and Offline
A Binary-Classification-Based Metric between Time-Series Distributions and Its Use in Statistical and
Learning Problems [6]
A metric between time-series distributions is proposed that can be evaluated using binary classification
methods, which were originally developed to work on i.i.d. data. It is shown how this metric can be used for
solving statistical problems that are seemingly unrelated to classification and concern highly dependent time
series. Specifically, the problems of time-series clustering, homogeneity testing and the three-sample problem
are addressed. Universal consistency of the resulting algorithms is proven under most general assumptions.
The theoretical results are illustrated with experiments on synthetic and real-world data.

6.2.3. Semi-Supervised and Unsupervised Learning
Learning from a Single Labeled Face and a Stream of Unlabeled Data [19]
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Face recognition from a single image per person is a challenging problem because the training sample is
extremely small. We consider a variation of this problem. In our problem, we recognize only one person, and
there are no labeled data for any other person. This setting naturally arises in authentication on personal
computers and mobile devices, and poses additional challenges because it lacks negative examples. We
formalize our problem as one-class classification, and propose and analyze an algorithm that learns a non-
parametric model of the face from a single labeled image and a stream of unlabeled data. In many domains,
for instance when a person interacts with a computer with a camera, unlabeled data are abundant and easy to
utilize. This is the first paper that investigates how these data can help in learning better models in the single-
image-per-person setting. Our method is evaluated on a dataset of 43 people and we show that these people
can be recognized 90% of time at nearly zero false positives. This recall is 25+% higher than the recall of
our best performing baseline. Finally, we conduct a comprehensive sensitivity analysis of our algorithm and
provide a guideline for setting its parameters in practice.

Unsupervised model-free representation learning [23]
Numerous control and learning problems face the situation where sequences of high-dimensional highly
dependent data are available, but no or little feedback is provided to the learner. In such situations it may
be useful to find a concise representation of the input signal, that would preserve as much as possible of
the relevant information. In this work we are interested in the problems where the relevant information is in
the time-series dependence. Thus, the problem can be formalized as follows. Given a series of observations
X_0, · · · , X_n coming from a large (high-dimensional) space X, find a representation function f mapping
X to a finite space Y such that the series f(X_0), · · · , f(X_n) preserve as much information as possible
about the original time-series dependence in X_0, · · · , X_n. For stationary time series, the function f can
be selected as the one maximizing the time-series information I_∞(f) = h_0(f(X))− h_∞(f(X)) where
h_0(f(X)) is the Shannon entropy of f(X_0) and h_∞(f(X)) is the entropy rate of the time series
f(X_0), · · · , f(X_n), · · ·. In this paper we study the functional I_∞(f) from the learning-theoretic point
of view. Specifically, we provide some uniform approximation results, and study the behaviour of I_∞(f) in
the problem of optimal control.

Time-series information and learning [22]
Given a time series X_1, · · · , X_n, · · · taking values in a large (high-dimensional) space X, we would
like to find a function f from X to a small (low-dimensional or finite) space Y such that the time series
f(X_1), · · · , f(X_n), · · · retains all the information about the time-series dependence in the original se-
quence, or as much as possible thereof. This goal is formalized in this work, and it is shown that the target
function f can be found as the one that maximizes a certain quantity that can be expressed in terms of entropies
of the series (f(X_i))_i ∈ N. This quantity can be estimated empirically, and does not involve estimating the
distribution on the original time series (X_i)_i ∈ N.

6.3. Statistical Learning and Bayesian Analysis
6.3.1. Dictionary learning

Learning a common dictionary over a sensor network [10]
We consider the problem of distributed dictionary learning, where a set of nodes is required to collectively learn
a common dictionary from noisy measurements. This approach may be useful in several contexts including
sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear regression
problem. In this work we focus on a diffusion-based adaptive dictionary learning strategy: each node records
independent observations and cooperates with its neighbors by sharing its local dictionary. The resulting
algorithm corresponds to a distributed alternate optimization. Beyond dictionary learning, this strategy could
be adapted to many matrix factorization problems in various settings. We illustrate its efficiency on some
numerical experiments.

Distributed dictionary learning over a sensor network [29]
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We consider the problem of distributed dictionary learning, where a set of nodes is required to collec- tively
learn a common dictionary from noisy measure- ments. This approach may be useful in several con- texts
including sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear
regression problem. In this work we focus on a diffusion-based adaptive dictionary learning strategy: each
node records observations and cooperates with its neighbors by sharing its local dictionary. The resulting
algorithm corresponds to a distributed block coordi- nate descent (alternate optimization). Beyond dictio- nary
learning, this strategy could be adapted to many matrix factorization problems and generalized to var- ious
settings. This article presents our approach and illustrates its efficiency on some numerical examples.

6.4. Applications
6.4.1. Medical Applications

Outlier detection for patient monitoring and alerting [5]
We develop and evaluate a data-driven approach for detecting unusual (anomalous) patient-management
decisions using past patient cases stored in electronic health records (EHRs). Our hypothesis is that a patient-
management decision that is unusual with respect to past patient care may be due to an error and that it is
worthwhile to generate an alert if such a decision is encountered. We evaluate this hypothesis using data
obtained from EHRs of 4486 post-cardiac surgical patients and a subset of 222 alerts generated from the data.
We base the evaluation on the opinions of a panel of experts. The results of the study support our hypothesis
that the outlier-based alerting can lead to promising true alert rates. We observed true alert rates that ranged
from 25% to 66% for a variety of patient-management actions, with 66% corresponding to the strongest
outliers.

6.5. Miscellaneous
6.5.1. Miscellaneous

A confidence-set approach to signal denoising [7]
The problem of filtering of finite-alphabet stationary ergodic time series is considered. A method for con-
structing a confidence set for the (unknown) signal is proposed, such that the resulting set has the following
properties. First, it includes the unknown signal with probability γ, where γ is a parameter supplied to the
filter. Second, the size of the confidence sets grows exponentially with a rate that is asymptotically equal to the
conditional entropy of the signal given the data. Moreover, it is shown that this rate is optimal. We also show
that the described construction of the confidence set can be applied to the case where the signal is corrupted
by an erasure channel with unknown statistics.

Quantification adaptative pour la stéganalyse d’images texturées [28]
Nous cherchons à améliorer les performances d’un schéma de stéganalyse (i.e. la détection de messages
cachées) pour des images texturées. Le schéma de stéganographie étudié consiste à modifier certains pixels de
l’image par une perturbation +/-1, et le schéma de stéganalyse utilise les caractéristiques construites à partir
de la probabilité conditionnelle empirique de différences de 4 pixels voisins. Dans sa version originale, la
stéganalyse n’est pas trés efficace sur des images texturées et ce travail vise àâ¤ explorer plusieurs techniques
de quantification en utilisant d’abord un pas de quantification plus important puis une quantification adaptative
scalaire ou vectorielle. Les cellules de la quantification adaptative sont générées en utilisant un K-means
ou un K-means ”équilibré” de manière à ce chaque cellule quantifie approximativement le même nombre
d’échantillon. Nous obtenons un gain maximal de classification de 3% pour un pas de quantification uniforme
de 3. En utilisant l’algorithme K-means équilibré sur [-18,18], le gain par rapport à la version de base est de
4.7%.

Cost-sensitive Multiclass Classification Risk Bounds [8]
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A commonly used approach to multiclass classification is to replace the 0-1 loss with a convex surrogate so
as to make empirical risk minimization computationally tractable. Previous work has uncovered sufficient and
necessary conditions for the consistency of the resulting procedures. In this paper, we strengthen these results
by showing how the 0-1 excess loss of a predictor can be upper bounded as a function of the excess loss
of the predictor measured using the convex surrogate. The bound is developed for the case of cost-sensitive
multiclass classification and a convex surrogate loss that goes back to the work of Lee, Lin and Wahba. The
bounds are as easy to calculate as in binary classification. Furthermore, we also show that our analysis extends
to the analysis of the recently introduced "Simplex Coding" scheme.

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris [12]
Tetris is a video game that has been widely used as a benchmark for various optimization techniques including
approximate dynamic programming (ADP) algorithms. A look at the literature of this game shows that while
ADP algorithms that have been (almost) entirely based on approximating the value function (value function
based) have performed poorly in Tetris, the methods that search directly in the space of policies by learning
the policy parameters using an optimization black box, such as the cross entropy (CE) method, have achieved
the best reported results. This makes us conjecture that Tetris is a game in which good policies are easier to
represent, and thus, learn than their corresponding value functions. So, in order to obtain a good performance
with ADP, we should use ADP algorithms that search in a policy space, instead of the more traditional
ones that search in a value function space. In this paper, we put our conjecture to test by applying such an
ADP algorithm, called classification-based modified policy iteration (CBMPI), to the game of Tetris. Our
experimental results show that for the first time an ADP algorithm, namely CBMPI, obtains the best results
reported in the literature for Tetris in both small 10× 10 and large 10× 20 boards. Although the CBMPI’s
results are similar to those of the CE method in the large board, CBMPI uses considerably fewer (almost 1/6)
samples (calls to the generative model) than CE.

A Generalized Kernel Approach to Structured Output Learning [15]
We study the problem of structured output learning from a regression perspective. We first provide a general
formulation of the kernel dependency estimation (KDE) problem using operator-valued kernels. We show that
some of the existing formulations of this problem are special cases of our framework. We then propose a
covariance-based operator-valued kernel that allows us to take into account the structure of the kernel feature
space. This kernel operates on the output space and encodes the interactions between the outputs without any
reference to the input space. To address this issue, we introduce a variant of our KDE method based on the
conditional covariance operator that in addition to the correlation between the outputs takes into account the
effects of the input variables. Finally, we evaluate the performance of our KDE approach using both covariance
and conditional covariance kernels on two structured output problems, and compare it to the state-of-the-art
kernel-based structured output regression methods.

Gossip-based distributed stochastic bandit algorithms [24]
The multi-armed bandit problem has attracted remarkable attention in the machine learning community and
many efficient algorithms have been proposed to handle the so-called exploitation-exploration dilemma in
various bandit setups. At the same time, significantly less effort has been devoted to adapting bandit algorithms
to particular architectures, such as sensor networks, multi-core machines, or peer-to-peer (P2P) environments,
which could potentially speed up their convergence. Our goal is to adapt stochastic bandit algorithms to P2P
networks. In our setup, the same set of arms is available in each peer. In every iteration each peer can pull one
arm independently of the other peers, and then some limited communication is possible with a few random
other peers. As our main result, we show that our adaptation achieves a linear speedup in terms of the number
of peers participating in the network. More precisely, we show that the probability of playing a suboptimal arm
at a peer in iteration t=Ω(logN) is proportional to 1/(Nt) where N denotes the number of peers. The theoretical
results are supported by simulation experiments showing that our algorithm scales gracefully with the size of
network.

Sur quelques problèmes non-supervisés impliquant des séries temporelles hautement dèpendantes [1]
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Cette thèse est consacrée à l’analyse théorique de problèmes non supervisés impliquant des séries temporelles
hautement dépendantes. Plus particulièrement, nous abordons les deux problèmes fondamentaux que sont le
problème d’estimation des points de rupture et le partitionnement de séries temporelles. Ces problèmes sont
abordés dans un cadre extrêmement général oùles données sont générées par des processus stochastiques er-
godiques stationnaires. Il s’agit de l’une des hypothèses les plus faibles en statistiques, comprenant non seule-
ment, les hypothèses de modèles et les hypothèses paramétriques habituelles dans la littérature scientifique,
mais aussi des hypothèses classiques d’indépendance, de contraintes sur l’espace mémoire ou encore des hy-
pothèses de mélange. En particulier, aucune restriction n’est faite sur la forme ou la nature des dépendances,
de telles sortes que les échantillons peuvent être arbitrairement dépendants. Pour chaque problème abordé,
nous proposons de nouvelles méthodes non paramétriques et nous prouvons de plus qu’elles sont, dans ce
cadre, asymptotiquement consistantes. Pour l’estimation de points de rupture, la consistance asymptotique
se rapporte à la capacité de l’algorithme à produire des estimations des points de rupture qui sont asympto-
tiquement arbitrairement proches des vrais points de rupture. D’autre part, un algorithme de partitionnement
est asymptotiquement consistant si le partitionnement qu’il produit, restreint à chaque lot de séquences, coïn-
cides, à partir d’un certain temps et de manière consistante, avec le partitionnement cible. Nous montrons que
les algorithmes proposés sont implémentables efficacement, et nous accompagnons nos résultats théoriques
par des évaluations expérimentales. L’analyse statistique dans le cadre stationnaire ergodique est extrêmement
difficile. De manière générale, il est prouvé que les vitesses de convergence sont impossibles à obtenir. Dès
lors, pour deux échantillons générés indépendamment par des processus ergodiques stationnaires, il est prouvé
qu’il est impossible de distinguer le cas où les échantillons sont générés par le même processus de celui où ils
sont générés par des processus différents. Ceci implique que des problèmes tels le partitionnement de séries
temporelles sans la connaissance du nombre de partitions ou du nombre de points de rupture ne peut admettre
de solutions consistantes. En conséquence, une tâche difficile est de découvrir les formulations du problème
qui en permettent une résolution dans ce cadre général. La principale contribution de cette thèse est de démon-
trer (par construction) que malgré ces résultats d’impossibilités théoriques, des formulations naturelles des
problèmes considérés existent et admettent des solutions consistantes dans ce cadre général. Ceci inclut la dé-
monstration du fait que le nombre de points de rupture corrects peut être trouvé, sans recourir à des hypothèses
plus fortes sur les processus stochastiques. Il en résulte que, dans cette formulation, le problème des points
de rupture peut être réduit à du partitionnement de séries temporelles. Les résultats présentés dans ce travail
formulent les fondations théoriques pour l’analyse des données séquentielles dans un espace d’applications
bien plus large.

Actor-Critic Algorithms for Risk-Sensitive MDPs [32]
In many sequential decision-making problems we may want to manage risk by minimizing some measure
of variability in rewards in addition to maximizing a standard criterion. Variance-related risk measures are
among the most common risk-sensitive criteria in finance and operations research. However, optimizing many
such criteria is known to be a hard problem. In this paper, we consider both discounted and average reward
Markov decision processes. For each formulation, we first define a measure of variability for a policy, which
in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive a formula
for computing its gradient. We then devise actor-critic algorithms for estimating the gradient and updating
the policy parameters in the ascent direction. We establish the convergence of our algorithms to locally risk-
sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a traffic signal control
application.

Bayesian Policy Gradient and Actor-Critic Algorithms [31]
Policy gradient methods are reinforcement learning algorithms that adapt a parameterized policy by following
a performance gradient estimate. Many conventional policy gradient methods use Monte-Carlo techniques to
estimate this gradient. The policy is improved by adjusting the parameters in the direction of the gradient
estimate. Since Monte-Carlo methods tend to have high variance, a large number of samples is required to
attain accurate estimates, resulting in slow convergence. In this paper, we first propose a Bayesian framework
for policy gradient, based on modeling the policy gradient as a Gaussian process. This reduces the number of
samples needed to obtain accurate gradient estimates. Moreover, estimates of the natural gradient as well as
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a measure of the uncertainty in the gradient estimates, namely, the gradient covariance, are provided at little
extra cost. Since the proposed Bayesian framework considers system trajectories as its basic observable unit, it
does not require the dynamic within each trajectory to be of any special form, and thus, can be easily extended
to partially observable problems. On the downside, it cannot take advantage of the Markov property when the
system is Markovian. To address this issue, we then extend our Bayesian policy gradient framework to actor-
critic algorithms and present a new actor-critic learning model in which a Bayesian class of non-parametric
critics, based on Gaussian process temporal difference learning, is used. Such critics model the action-value
function as a Gaussian process, allowing Bayes’ rule to be used in computing the posterior distribution over
action-value functions, conditioned on the observed data. Appropriate choices of the policy parameterization
and of the prior covariance (kernel) between action-values allow us to obtain closed-form expressions for the
posterior distribution of the gradient of the expected return with respect to the policy parameters. We perform
detailed experimental comparisons of the proposed Bayesian policy gradient and actor-critic algorithms with
classic Monte-Carlo based policy gradient methods, as well as with each other, on a number of reinforcement
learning problems.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
• Deezer, 2013-2014

Participants: Jérémie Mary, Philippe Preux, Romaric Gaudel.

A research project has started on June 2013 in collaboration with the Deezer company. The goal is
to build a system which automatically recommends music to users. That goal is an extension of the
bandit setting to the Collaborative Filtering problem.

• Nuukik, 2013-2014
Participant: Jérémie Mary.

Nuukik is a start-up from Hub Innovation in Lille. It proposes a recommender systems for e-
commerce based on matrix factorization. We worked with them specifically on the cold start problem
(i.e when you have absolutely no data on a product or a customer). This led to promising result and
allowed us to close the gap between bandits and matrix factorization. This work led to a patent
submission in december 2013.

• TBS, 2012-2013
Participants: Jérémie Mary, Philippe Preux.

A research project has started in September 2012 in collaboration with the TBS company. The goal
is to understand and predict the audience of news related websites. These websites tend to present an
ergodic frequentation with respect to a context. The main goal is to separate the effect of the context
(big events, elections, ...) and the impact of the policies of the news websites. This work is based
on data originating from major French media websites and also involves research of tendencies on
the web (as Google Trends and Google Flu do). Used algorithms mix methods from time series
prediction (ARIMA and MARSS models) and machine learning methods (L1 penalization, SVM).

• Squoring Technologies, 2011-2014
Participants: Boris Baldassari, Philippe Preux.

Boris Baldassari has been hired by Squoring Technologies (Toulouse) as a PhD student in May
2011. He works on the use of machine learning to improve the quality of the software development
process. During his first year as a PhD student, Boris investigated the existing norms and measures
of quality of software development process. He also dedicated some time to gather some relevant
datasets, which are made of either the sequence of source code releases over a multi-years period,
or all the versions stored on an svn repository (svn or alike). Information from mailing-lists (bugs,
support, ...) may also be part of these datasets. Tools in machine learning capable of dealing with

http://www.deezer.com
http://www.nuukik.com
http://www.tbsfrance.com/
http://www.squoring.com/
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this sort of data have also been investigated. Goals that may be reached in this endeavor have also
been precised.

• INTEL Corp., 2013 - 2014
Participants: Philippe Preux, Michal Valko, Rémi Munos, Adrien Hoarau.

This is a research project on Algorithmic Determination of IoT Edge Analytics Requirements. We
are attempting to solve the problem of how to automatically predict the system requirements for
edge node analytics in the Internet of Things (IoT). We envision that a flexible extensible system
of edge analytics can be created for IoT management; however, edge nodes can be very different
in terms of the systems requirements around: processing capability, wireless communication, secu-
rity/cryptography, guaranteed responsiveness, guaranteed quality of service and on-board memory
requirements. One of the challenges of managing a heterogeneous Internet of Things is determining
the systems requirements at each edge node in the network.

We suggest exploiting opportunity of being able to automatically customize large scale IoT systems
that could comprise heterogeneous edge nodes and allow a flexible and scalable component and
firmware SoC systems to be matched to the individual need of enterprise/ government level IoT cus-
tomers. We propose using large scale sequential decision learning algorithms, particularly contextual
bandit modeling to automatically determine the systems requirements for edge analytics. These al-
gorithms have an adaptive property that allows for the addition of new nodes and the re-evaluation
of existing nodes under dynamic and potentially adversarial conditions.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR-Lampada

Participants: Mohammad Ghavamzadeh, Jérémie Mary, Olivier Nicol, Philippe Preux, Daniil Ryabko.

• Title: Learning Algorithms, Models and sPArse representations for structured DAta

• Type: National Research Agency (ANR-09-EMER-007)

• Coordinator: Inria Lille – Nord Europe (Mostrare)

• Others partners: Laboratoire d’Informatique Fondamentale de Marseille; Laboratoire Hubert Curien
à Saint Etienne; Laboratoire d’Informatique de Paris 6.

• Web site: http://lampada.gforge.inria.fr/

• Duration: ends mid-2014

• Abstract: Lampada is a fundamental research project on machine learning and structured data.
Lampada focuses on scaling learning algorithms to handle large sets of complex data. The main
challenges are 1) high dimension learning problems, 2) large sets of data and 3) dynamics of data.
We consider evolving data. The representation of these data involves both structure and content
information and are typically large sequences, trees and graphs. The main application domains are
web2, social networks and biological data.

The project proposes to study formal representations of such data together with incremental or
sequential machine learning methods and similarity learning methods.

The representation research topic includes condensed data representation, sampling, prototype
selection and representation of streams of data. Machine learning methods include edit distance
learning, reinforcement learning and incremental methods, density estimation of structured data and
learning on streams.

• Activity Report:

http://www.intel.com/
http://lampada.gforge.inria.fr/
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Philippe Preux has collaborated with Ludovic Denoyer and Gabriel Dulac-Arnold from LIP’6 to
investigate further the idea of datum-wise representation, introduced in 2011.

Mohammad Ghavamzadeh and Philippe Preux have collaborated with Hachem Kadri on an operator-
based approach for structured output [15].

Daniil Ryabko has developed a theory for unsupervised learning of time-series dependence, where
the time series are either coming from a stationary environment or are a result of interaction with
a Markovian environment with a continuous state space. Danil Ryabko and Jeremie Mary have
developed methods for using binary classification methods for solving various unsupervised learning
problems about time series.

8.1.2. ANR CO-ADAPT
Participant: Rémi Munos.

• Title: Brain computer co-adaptation for better interfaces
• Type: National Research Agency (ANR-09-EMER-002)
• Coordinator: Maureen Clerc
• Other Partners: Inria Odyssee project (Maureen Clerc), the INSERM U821 team (Olivier Bertrand),

the Laboratory of Neurobiology of Cognition (CNRS) (Boris Burle) and the laboratory of Analysis,
topology and probabilities (CNRS and University of Provence) (Bruno Torresani).

• Web site: https://twiki-sop.inria.fr/twiki/bin/view/Projets/Athena/CoAdapt/WebHome
• Duration: 2009-2014
• Abstract: The aim of Co-Adapt is to propose new directions for BCI design, by modeling explicitly

the co-adaptation taking place between the user and the system. The goal of CoAdapt is to study
the co-adaptation between a user and a BCI system in the course of training and operation. The
quality of the interface will be judged according to several criteria (reliability, learning curve, error
correction, bit rate). BCI will be considered under a joint perspective: the user’s and the system’s.
From the user’s brain activity, features must be extracted, and translated into commands to drive
the BCI system. From the point of view of the system, it is important to devise adaptive learning
strategies, because the brain activity is not stable in time. How to adapt the features in the course
of BCI operation is a difficult and important topic of research. We will investigate Reinforcement
Learning (RL) techniques to address the above questions.

• Activity Report: The performances of a BCI can vary greatly across users but also depend on the
tasks used, making the problem of appropriate task selection an important issue. We develop an
adaptive algorithm, UCB-classif, based on the stochastic bandit theory. This shortens the training
stage, thereby allowing the exploration of a greater variety of tasks. By not wasting time on inefficient
tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and
a more efficient use of the BCI training session. See [4] and https://twiki-sop.inria.fr/twiki/bin/view/
Projets/Athena/CoAdapt/WebHome

8.1.3. ANR AMATIS
Participant: Pierre Chainais.

• Title: Multifractal Analysis and Applications to Signal and Image Processing
• Type: National Research Agency
• Coordinator: Univ. Paris-Est-Créteil (S. Jaffard)
• Duration: 2011-2015
• Other Partners: Univ. Paris-Est Créteil, Univ. Sciences et Technologies de Lille and Inria (Lille),

ENST (Telechom ParisTech), Univ. Blaise Pascal (Clermont-Ferrand), and Univ. Bretagne Sud
(Vannes), Statistical Signal Processing group at the Physics Department at the Ecole Normale
Supérieure de Lyon, one researcher from the Math. Department of Institut National des Sciences
Appliquees de Lyon and two researchers from the Laboratoire d’Analyse, Topologie et Probabilités
(LAPT) of Aix-Marseille University.

https://twiki-sop.inria.fr/twiki/bin/view/Projets/Athena/CoAdapt/WebHome
https://twiki-sop.inria.fr/twiki/bin/view/Projets/Athena/CoAdapt/WebHome
https://twiki-sop.inria.fr/twiki/bin/view/Projets/Athena/CoAdapt/WebHome
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• Abstract: Multifractal analysis refers to two concepts of different natures: On the theoretical side, it
corresponds to pointwise singularity characterization and fractional dimension determination ; on the
applied side, it is associated with scale invariance characterization, involving a family of parameters,
the scaling function, used in classification or model selection. Following the seminal ideas of Parisi
and Frisch in the mid-80s, these two components are usually related by a Legendre transform,
stemming from a heuristic argument relying on large deviation and statistical thermodynamics
principles: The multifractal formalism. This led to new theoretical approaches for the study of
singularities of functions and measures, as well as efficient tools for classification and models
selection, that allowed to settle longstanding issues (e.g., concerning the modeling of fully developed
turbulence). Though this formalism has been shown to hold for large classes of functions of widely
different origins, the generality of its level of validity remains an open issue. Despite its popularity in
applications, the interactions between theoretical developments and applications are unsatisfactory.
Its use in image processing for instance is still in its infancy. This is partly due to discrepancy between
the theoretical contributions mostly grounded in functional analysis and geometric measure theory,
and applications naturally implying a stochastic or statistical framework. The AMATIS project aims
at addressing these issues, by proposing a consistent and documented framework combining different
theoretical approaches and bridging the gap towards applications. To that end, it will both address
a number of challenging theoretical issues and devote significant efforts to elaborating a WEB
platform with softwares and documentation. It will combine the efforts of mathematicians with those
of physicists and experts in signal and image processing. Dissemination among and interactions
between scientific fields are also intended via the organization of summer schools and workshop.

• Activity Report: a collaboration with P. Bas (CR CNRS, LAGIS) deals with the steganalysis
of textured images. While steganography aims at hiding a message within some support, e.g. a
numerical image, steganalysis aims at detecting the presence or not of any hidden message in the
support. Steganalysis involves two main tasks: first identify relevant features which may be sensitive
to the presence of a hidden message, then use supervised classification to build a detector. While
the steganalysis of usual images has been well studied, the case of textured images, for which
multifractal models may be relevant, is much more difficult. Indeed, textured images have a rich and
disordered content which favors hiding information in an unperceptible manner. A student internship
of 8 months at Master level in 2012 has led us to consider a very fundamental question. Steganalysis
is usually proceeded to a classification based on histograms of features (bag of words). We consider
the problem of the optimization of the bins of such histograms with respect to the performance of
the classifier. We have shown that a balanced version of K-means which fills each cell equally yields
an efficient quantization to this respect [28].

8.1.4. National Partners
• Laboratoire de Mathématiques d’Orsay, France.

– Mylène Maïda Collaborator

Ph. Preux has collaborated with M. Maïda and co-advised a student of the École Centrale
de Lille. The motivation of this collaboration is the study of random matrices and the
potential use of this theory in machine learning.

• LIF - CMI - Université de Provence.

– Julien Audiffren Collaborator
M. Valko, A. Lazaric, and M. Ghavamzadeh work with Julien on Semi-Supervised Ap-
prenticeship Learning. We have recently developed a maximum entropy algorithm that
outperforms the approach without unlabeled data.

• Laboratoire Lagrange, Université de Nice, France.

– Cédric Richard Collaborator
We have had collaboration on the topic of dictionary learning over a sensor network. We
have published 2 conference papers [29] and [10].
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• Laboratoire de Mécanique de Lille, Université de Lille 1, France.
– Jean-Philippe Laval Collaborator

We co-supervise a starting PhD student (Linh Van Nguyen) on the topic of high resolution
field reconstruction from low resolution measurements in turbulent flows.

• Biophotonics team at the Interdisciplinary Research Institute (IRI), Villeneuve d’Ascq, France.
– Aymeric Leray Collaborator

We have co-supervised an intern student (Pierre Pfennig, 2 months) on the topic of
quantitative guarantees of a super resolution method via concentration inequalities. A
paper is submitted to ICASSP 2014.

• LAGIS, Ecole Centrale Lille - Université de Lille 1, France.
– Patrick Bas Collaborator

We have a collaboration on the topic of adaptive quantization to optimize classification
from histrograms of features with an applicaiton to the steganalysis of textured images.

8.2. European Initiatives
8.2.1. FP7 Projects
8.2.1.1. CompLACS

Type: COOPERATION
Defi: Composing Learning for Artificial Cognitive Systems
Instrument: Specific Targeted Research Project
Objectif: Cognitive Systems and Robotics
Duration: March 2011 - February 2015
Coordinator: University College London
Partner:
• Centre for Computational Statistics and Machine Learning, University College London

(United Kingdom)
• Department of Computer Science, University of Bristol (United Kingdom)
• Department of Computer Science, Royal Holloway, University of London (United King-

dom)
• SNN Machine Learning, Radboud Universiteit Nijmegen (The Netherlands)
• Institut für Softwaretechnik und Theoretische Informatik, TU Berlin (Germany)
• University of Leoben (Austria)
• Computer Science Department, Technische Universitaet Darmstadt (Germany)

Inria contact: Rémi MUNOS
Website: COMPLACS
Abstract: One of the aspirations of machine learning is to develop intelligent systems that can address
a wide variety of control problems of many different types. However, although the community
has developed successful technologies for many individual problems, these technologies have not
previously been integrated into a unified framework. As a result, the technology used to specify,
solve and analyse one control problem typically cannot be reused on a different problem. The
community has fragmented into a diverse set of specialists with particular solutions to particular
problems. The purpose of this project is to develop a unified toolkit for intelligent control in many
different problem areas. This toolkit will incorporate many of the most successful approaches to a
variety of important control problems within a single framework, including bandit problems, Markov
Decision Processes (MDPs), Partially Observable MDPs (POMDPs), continuous stochastic control,
and multi-agent systems. In addition, the toolkit will provide methods for the automatic construction
of representations and capabilities, which can then be applied to any of these problem types. Finally,
the toolkit will provide a generic interface to specifying problems and analysing performance, by
mapping intuitive, human-understandable goals into machine-understandable objectives, and by
mapping algorithm performance and regret back into human-understandable terms.

http://www.complacs.org/pmwiki.php/CompLACS/Organization


Project-Team SequeL 27

8.2.2. Collaborations with Major European Organizations
Alexandra Carpentier: University of Cambridge (UK).
Michal Valko collaborates with Alexandra on extreme event detection (such as network intrusion)
with limited allocation capabilities.
Prof. Marcello Restelli and Prof. Nicola Gatti: Politecnico di Milano (Italy).
A. Lazaric continued his collaboration on transfer in reinforcement learning which is leading to an
extended version of the last year work on transfer of samples in MDPs. Furthermore, we are going
to submit an extended version of an application of multi-arm bandit in a strategic environment such
as sponsored search auctions.

8.3. International Initiatives
8.3.1. Inria Associate Teams

• Inria principal investigator: Mohammad Ghavamzadeh and Rémi Munos
– Institution: McGill university (Canada)
– Laboratory: Reasoning and Learning Lab
– Principal investigator:

* Prof. Joelle Pineau Collaborator

* Prof. Doina Precup Collaborator

* Amir massoud Farahmand Collaborator

• Duration: January 2013 - January 2015

8.3.2. Inria International Partners
8.3.2.1. Declared Inria International Partners

Ronald Ortner and Peter Auer: Montanuniversität Leoben (Austria).
Reinforcement learning (RL) deals with the problem of interacting with an unknown stochastic
environment that occasionally provides rewards, with the goal of maximizing the cumulative reward.
The problem is well-understood when the unknown environment is a finite-state Markov process.
This collaboration is centered around reducing the general RL problem to this case.

In particular, the following problems are considered: representation learning, learning in continuous-
state environments, bandit problems with dependent arms, and pure exploration in bandit problems.
On each of these problems we have successfully collaborated in the past, and plan to sustain this
collaboration possibly extending its scopes.

8.3.2.2. Informal International Partners

• eHarmony Research, California.
– Václav Petříček Collaborator

Michal Valko has started to collaborate with eHarmony on sequential decision making for
online dating and offline evaluation.

• University of Alberta, Edmonton, Alberta, Canada.
– Csaba Szepesvári and Bernardo Avila Pires Collaborator

We have been collaborating on the topic of risk bounds in cost-sensitive multiclass
classification this year. We have an accepted paper [8] at ICML.

• Technion - Israel Institute of Technology, Haifa, Israel.
– Odalric-Ambrym Maillard Collaborator

Daniil Ryabko has worked with Odalric Maillard on representation learning for reinforce-
ment learning problems. It led to a paper in AISTATS [21].
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• School of Computer Science, Carnegie Mellon University, USA.
– Prof. Emma Brunskill Collaborator
– Mohammad Gheshlaghi Azar, PhD Collaborator

A. Lazaric started a profitable collaboration on transfer in multi-arm bandit and reinforce-
ment learning which led to two publications at ECML and NIPS. We are currently working
on extensions of the previous algorithms and development of novel regret minimisation al-
gorithms in non-iid settings.

• Technicolor Research, Palo Alto.
– Branislav Kveton Collaborator

Michal Valko and Rémi Munos worked with Branislav on Spectral Bandits aimed at
recommendation for the entertainment content recommendation. Michal continued the
ongoing research on online semi-supervised learning and this year delivered the algorithm
for a challenging single picture per person setting [19]. Victor Gabillon has spent 6 month
at Technicolor as an intern to work on the sequential learning with submodularity, which
resulted in 1 accepted paper at NIPS and two submissions to ICML.

8.4. International Research Visitors
8.4.1. Visits of International Scientists
8.4.1.1. Internships

• Daniele Calandriello, student at Politecnico di Milano, Italy

Period: since April 2013.

He is working with A. Lazaric on multi-task reinforcement learning.

8.4.2. Visits to International Teams
• Rémi Munos, since July 2013, Microsoft Research New-England, USA
• Mohammad Ghavamzadeh, since November 2013, Adobe Research, San Jose, CA
• Victor Gabillon visited Technicolor research lab, Palo Alto, from March to September 2013.
• Azadeh Khaleghi visited Walt Disney Animation Studios, Burbank, from March to September 2013.

9. Dissemination

9.1. Scientific Animation
9.1.1. Awards

• Crazy Stone won the 6th edition of the UEC Cup (the most important international computer-Go
tournament). It also won the first edition of the Denseisen, by winning a 4-stone handicap game
against 9-dan professional player Yoshio Ishida.

• Alexandra Carpentier obtained an AFIA ex-aequo accessit for her PhD, (french machine learn-
ing/artificial intelligence second price).

9.1.2. Tutorials
• Tutorial by Rémi Munos at AAAI 2013: From Bandits to Monte Carlo Tree Search: The optimistic

principle applied to Optimization and Planning.

9.1.3. Conferences, Workshops and Schools
• Philippe Preux and Marc Tommasi were the main organizers of the Conférence sur l’Apprentissage

Automatique (CAP’13).
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• Rémi Munos was the main organizer of the 8ith Journées Francophones sur la Planification, la
Décision et l’Apprentissage (JFPDA’13) along with Marta Soare, Raphael Fonteneau, Michal Valko
and Alessandro Lazaric.

• Rémi Munos was co-chair of the Algorithmic Learning Conference, in Singapore, 2013.

9.1.4. Invited Talks
• Daniil Ryabko gave a talk entitled “Time-series information and unsupervised representation learn-

ing” at SMILE seminar in Paris
• Michal Valko gave an talk “Sequential Face Recognition with Minimal Feedback” which was

opening talk of the series named 30 minutes of Science, a new format at Inria Lille to support
intra-center collaboration.

• Rémi Munos gave a course (6 hours) at the Summer School Netadis in Hillerod, Denmark in
September 2013.

• Rémi Munos was invited to give a talk at CMU in November 2013.
• Alessandro Lazaric was invited to give a talk at CMU in March 2013.
• Pierre Chainais gave a talk "Learning a common dictionary over a sensor network" at GDR Phénix

- ISIS workshop about "Analysis and inference for networks" in Paris in november 2013.
• Pierre Chainais gave a tutorial talk on "Multifractal analysis of images and applicaitons" at the

"Groupe Image of the company TOTAL in Paris La Défense on sept. 11th, 2013.
• Jérémie Mary gave a invited talk "Recommendation system from a bandit perspective" at GDR

"Estimation et traitement statistique en grande dimension" on May 16th, 2013 - Télécom Paristech.
• Jérémie Mary gave an invited talk "Bandit point of view on recommenders" at Large-scale Online

Learning and Decision Making Workshop Cumberland Lodge, Windsor, UK in September, 2013.
• Jeremie Mary gave an invited talk on recommender systems at "Journées rencontres AFIA/IHM" in

may 2013.

9.1.5. Review Activities
• Participation to the program committee of international conferences

– International Conference on Pattern Recognition Applications and Methods (ICPRAM
2013)

– Algorithmic Learning Theory (ALT 2013)
– AAAI Conference on Artificial Intelligence (AAAI 2013)
– European Workshop on Reinforcement Learning (EWRL 2013)
– Annual Conference on Neural Information Processing Systems (NIPS 2013)
– International Conference on Artificial Intelligence and Statistics (AISTATS 2013)
– European Conference on Machine Learning (ECML 2013)
– International Conference on Machine Learning (ICML 2013 and 2014)
– International Conference on Uncertainty in Artificial Intelligence (UAI 2013)
– French Conference on Planning, Decision-making, and Learning in Control Systems

(JFPDA 2013)
– IEEE FUSION 2013
– IEEE Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2013)
– ICML workshop “Prediction with Sequential Models”

• International journal and conference reviewing activities (in addition to the conferences in which
we belong to the PC)

– IEEE Transactions on Image Processing
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– Journal of Statistical Physics
– Digital Signal Processing
– IEEE Transactions on Information Theory
– IEEE Statistical Signal Processing SSP’2013
– European Signal Processing Conference EUSIPCO 2013
– 10th International Conference on Sampling Theory and Applications (SampTA 2013)
– IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2013

& 2014)
– Annual Conference on Neural Information Processing Systems (NIPS 2013)
– International Conference on Machine Learning (ICML 2013)
– European Conference on Machine Learning (ECML 2013)
– Uncertainty in Artificial Intelligence (UAI 2013)
– Machine Learning Journal (MLJ)
– Journal of Machine Learning Research (JMLR)
– Journal of Artificial Intelligence Research (JAIR)
– IEEE Transactions on Automatic Control (TAC)
– IEEE Transactions of Signal Processing
– Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
– Mathematics of Operations Research (MOR)

9.1.6. Evaluation activities, expertise
• M. Ghavamzadeh is in the Editorial Board Member of Machine Learning Journal (MLJ, 2011-

present).
• M. Ghavamzadeh is in the Steering Committee Member of the European Workshop on Reinforce-

ment Learning (EWRL, 2011-present).
• P. Preux, R. Gaudel and J. Mary are experts for Crédit Impôt Recherche (CIR).
• E. Duflos is a project proposal reviewer for ANR.
• R. Munos is a Member of the Belgium Commission Evaluation F.R.S-FNRS, 2013.

9.1.7. Other Scientific Activities
• R. Munos was Vice Président du Comité des Projets at Inria Lille-Nord Europe, until July 2013.
• D. Ryabko is a member of COST-GTRI committee at Inria.
• D. Ryabko is a general advisor at Inria Lille.
• E. Duflos is Director of Research of Ecole Centrale de Lille since September 2011.
• E. Duflos is the Head of the Signal and Image Team of LAGIS (UMR CNRS 8219).
• R. Gaudel is board member of LIFL.
• R. Gaudel manages the proml mailing list. This mailing list gathers French-speaking researchers

from Machine Learning community.
• P. Chainais is a member of the administration council of GRETSI, the French association of

researchers in signal and image processing.
• P. Chainais is co-responsible for the action "Machine Learning" of the GDR ISIS which gathers

french researchers in signal and image processing at the national level.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching
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Ecole Centrale de Lille: P. Chainais, , “Machine Learning”, 36 hours, 3rd year.
Ecole Centrale de Lille: P. Chainais, “Wavelets and Applications”, 24 hours, 2nd year.
Ecole Centrale de Lille: P. Chainais, “Introduction to Matlab”, 16 hours, 3rd year.
Ecole Centrale de Lille: P. Chainais, “Signal processing”, 22 hours, 1st year.
Ecole Centrale de Lille: P. Chainais, “Data Compression”, 16 hours, 2nd year.
Ecole Centrale de Lille: Ph. Preux, “Data Data Data Data”, 2 hours, 3rd year.
P. Chainais is Responsible for a new 3rd year program called Decision making & Data analysis.
Master: O. Pietquin, “Decision under uncertainty”, 46 hours, M2, Master in Computer Science,
Université de Lille 1.
Master: A. Lazaric, “Introduction to Reinforcement Learning”, 30h eq. TD, M2, Master “Mathema-
tiques, Vision, Apprentissage”, ENS Cachan.
Master: R. Gaudel, “Data Mining”, 30h eq. TD, M2, Université Lille 3.
Master: R. Gaudel, “Web Mining”, 32h eq. TD, M2, Université Lille 3.
Master: R. Gaudel, “Algorithmic”, 19h eq. TD, M2, Université Lille 3.
Master: Ph. Preux, “Mathematics, Computer Science, and Modeling”, M1 of psychology, Université
of Lille 3.
Master: Ph. Preux, “Algorithms, and programming in Python”, M1 MIASHS, Université of Lille 3.
Licence: Ph. Preux, “Algorithms, and programming in Python”, L3 MIASHS, Université of Lille 3.
Licence: R. Gaudel, “Programing”, 2× 16h eq. TD, L1, Université Lille 3.
Licence: R. Gaudel, “Logic”, 31.5h eq. TD, L3, Université Lille 3.
Licence: R. Gaudel, “Information and Communication Technologies”, 2× 16h eq. TD, L1, Univer-
sité Lille 3.
Licence: R. Gaudel, “Artificial Intelligence”, 31.5h eq. TD, L2, Université Lille 3.
Licence: R. Gaudel,, “C2i”, 25h eq. TD, L1-3, Université Lille 3.
Licence: R. Mary,, “C2i”, 25h eq. TD, L1-3, Université Lille 3.
Master: J. Mary, “Programmation et analyse de donnée en R”, 24h eq TD, M1, Université de Lille
3, France.
Master: J. Mary, “Programmation web avancée”, 24h eq TD,M2, Université de Lille 3, France.
Master: J. Mary, “Programmation objet et Design Pattern”, 48h eq TD,M2, Université de Lille 3,
France.
Master: J. Mary, “Algorithmique”, 12h eq TD,M1, Université de Lille 3, France.
Master (3rd year of Engineer School): J. Mary, “Machine Learning avec R" , 16 hours, M2, Option
"Data Analysis and Decision", Ecole Centrale de Lille, France.
Master (3rd year of Engineer School): E. Duflos, “Advanced Estimation" , 20 hours, M2, Option
"Data Analysis and Decision", Ecole Centrale de Lille, France.
Master (3rd year of Engineer School): E. Duflos, “Multi-Objects Filreting" , 16 hours, M2, Option
"Data Analysis and Decision", Ecole Centrale de Lille, France.

9.2.2. Supervision
PhD: Azadeh Khaleghi, “Sur Quelques Problèmes non supervisés impliquant des séries temporelles
hautement dépendantes”, Nov. 2013, Université de Lille 1, advisor: D. Ryabko.
PhD in progress: Boris Baldassari, Apprentissage automatique et développement logiciel, since May
2011, advisor: Ph. Preux.
PhD in progress: Gabriel Dulac-Arnold, A General Sequential Model for Constrained Classification,
since Oct. 2011, advisor: Ph. Preux, L. Denoyer, P. Gallinari.
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PhD in progress: Victor Gabillon, “Active Learning in Classification-based Policy Iteration”, since
Sep. 2009, advisor: Ph. Preux, M. Ghavamzadeh.
PhD in progress: Frédéric Guillou, “Sequential Recommender System”, since Oct. 2013, advisor:
Ph. Preux, J. Mary, R. Gaudel.
PhD in progress: vicenzo Musco, “Topology and evolution of software graphs”, since Oct. 2013,
advisor: P. Preux, M. Monperrus
PhD in progress: Olivier Nicol, “Data-driven evaluation of Contextual Bandit algorithms and
applications to Dynamic Recommendation”, since Nov. 2010, advisor: Ph. Preux, J. Mary.
PhD in progress: Adrien Hoarau, “Multi-arm Bandit Theory”, since Oct. 2012, advisor: R. Munos.
PhD in progress: Tomáš Kocák, “Sequential Learning with Similarities”, since Oct. 2013, advisor:
R. Munos, M. Valko
PhD in progress: Emilie Kaufmann, “Bayesian Bandits”, since Oct. 2011, advisor: R. Munos, O.
Cappé, A. Garivier.
PhD in progress: Amir Sani, “Learning under uncertainty”, Oct. 2011, since advisor: R. Munos, A.
Lazaric.
PhD in progress: Marta Soare, “Pure Exploration in Multi-arm Bandit”, since Oct. 2012, advisor: R.
Munos, A. Lazaric.
PhD in progress: Hong Phuong Dang, Bayesian non parametric methods for dictionary learning and
inverse problems, since Oct. 2013, advisor: P. Chainais.
PhD in progress: Linh Van Nguyen, High resolution reconstruction from low resolution measure-
ments of velocity fields in turbulent flows, since Oct. 2013, advisor: P. Chainais & J.p. Laval (Labo-
ratoire de Mécanique de Lille).

9.2.3. Juries
• member of the recruitement committee for an assistant professor position at Université de Lille 3: R.

Gaudel, Ph. Preux
• member of the recruitement committee for an assistant professor position at Université de Lille 1: P.

Chainais
• member of the recruitement committee for a professor position at Université de Paris 6: Ph. Preux
• Member of the jury DR2 Inria 2013: R. Munos
• Member of the jury CR2 Rocquencourt Inria 2013: R. Munos

9.3. Popularization
• “Small or big (data), make it sequentially!”, J. Mary, Ph. Preux, invited talk at Euratechnologies,

March 2013.
• Inria publishes an article about Face Recognition, Michal Valko, http://www.inria.fr/centre/lille/

actualites/intel-collabore-avec-inria, March 2013
• Jérémie Mary highlighted on TV and on Inria website: you are how you browse: http://www.inria.

fr/en/centre/lille/news/you-are-how-you-browse, Dec. 2013
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