

[image: cover]

 SPADES

 Sound Programming of Adaptive Dependable Embedded Systems

 2013 Team Activity Report
	

 Research centre:
 Grenoble - Rhône-Alpes

 Field: Algorithmics, Programming, Software and Architecture
Theme: Embedded and Real-time Systems

 Keywords: Component Programming, Embedded Systems, Fault Tolerance, Formal Methods, Real-time

 Team Spades

 Members

 Overall Objectives

 Research Program	Introduction
	Components and contracts
	Real-time multicore programming
	Language-based fault tolerance

 Application Domains	Industrial Applications
	Industrial Design Tools
	Current Industrial Cooperations

 Software and Platforms	Implementations of
Synchronous Programs
	Apron and BddApron Libraries
	
 ReaVer

	Prototypes

 New Results	Components and Contracts
	Real-Time multicore programming
	Language Based Fault-Tolerance

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Team: 2013 January 01
Section: Members
Research Scientists
Jean-Bernard Stefani [Team leader, Senior Researcher, en détachement du Corps des Mines]
Pascal Fradet [Inria, Researcher, HdR]
Alain Girault [Inria, Senior Researcher, HdR]
Gregor Goessler [Inria, Researcher]
Bertrand Jeannet [Inria, Researcher, until Sep 2013]
Sophie Quinton [Inria, Researcher, from Nov 2013]
Faculty Member
Gwenaël Delaval [Associate professor, Université Joseph Fourier Grenoble I, until Apr 2013]
PhD Students
Vagelis Bebelis [STMicroelectronics, CIFRE grant]
Dmitry Burlyaev [Université Joseph Fourier Grenoble I]
Yoann Geoffroy [Université Joseph Fourier Grenoble I, MESR grant, from Oct 2013]
Quentin Sabah [STMicroelectronics, CIFRE grant until Jul 2013]
Gideon Smeding [DIGITEO, DIGITEO grant, until Apr 2013]
Post-Doctoral Fellows
Barbara Petit [Inria, ANR REVER project, until Oct 2013]
Wei-Tsun Sun [Inria, Inria grant]
External Collaborators
Damien Pous [CNRS, Researcher, LIP Lyon]
Xavier Nicollin [Associate Professor, Grenoble INP]
Visiting Scientists
Sidharta Andalam [TUM Create, Singapore, Mar 2013]
Ismail Assayad [Univ. Casablanca, Morroco, Sep 2013]
Christopher Shaver [UC Berkeley, USA, from Nov 2013 until Dec 2013]
Roopak Sinha [Univ. Auckland, New Zealand, from Jul 2013 until Aug 2013]
Eugene Yip [Univ. Auckland, New Zealand, Mar 2013]
Administrative Assistants
Diane Courtiol [Inria, until May 2013]
Helen Pouchot [Inria, from Jun 2013]
Other
Khanh Huu The Dam [Master, from Feb 2013 until Jun 2013]

 Overall Objectives

 	
 Overall Objectives

 Section:
 Overall Objectives

 Overall Objectives

 The Spades project-team aims at contributing to meet the challenge of designing and programming dependable embedded systems in an increasingly distributed and dynamic context. Specifically, by exploiting formal methods and techniques, Spades aims to answer three key questions:

 	
 How to program open networked embedded systems as dynamic adaptive modular structures?

 	
 How to program reactive systems with real-time and resource constraints on multicore architectures?

 	
 How to program reliable, fault-tolerant embedded systems with different levels of criticality?

 These questions above are not new, but answering them in the context of modern embedded systems, which are
increasingly distributed, open and dynamic in nature [34] ,
makes them more pressing and more difficult to address:
the targeted system properties – dynamic modularity, time-predictability, energy efficiency, and fault-tolerance –
are largely antagonistic (e.g., having a highly dynamic software structure is at variance with ensuring that resource and behavioral constraints are met).
Tackling these questions together is crucial to address this antagonism,
and constitutes a key point of the Spades research program.

 A few remarks are in order:

 	
 We consider these questions to be central in the construction of future embedded systems,
dealing as they are with, roughly, software architecture and the provision of real-time and fault-tolerance guarantees.
Building a safety-critical embedded system cannot avoid dealing with these three concerns.

 	
 The three questions above are highly connected. For instance, composability along time, resource consumption and reliability dimensions are key to the success of a component-based approach to embedded systems construction.

 	
 For us, “Programming” means any constructive process to build a running system.
It can encompass traditional programming as well as high-level design or “model-based engineering” activities,
provided that the latter are supported by effective compiling tools to produce a running system.

 	
 We aim to provide semantically sound programming tools for embedded systems.
This translates into an emphasis on formal methods and tools for the development of provably dependable systems.

 Research Program

 	Research Program	Introduction
	Components and contracts
	Real-time multicore programming
	Language-based fault tolerance

 Section:
 Research Program

 Introduction

 The SPADES research program is organized around three main themes,
Components and contracts, Real-time multicore programming, and
Language-based fault tolerance, that seek to answer the three key questions identified in Section
	2.1 .
We plan to do so by developing and/or building on programming languages and techniques based on formal methods and formal semantics
(hence the use of “sound programming” in the project-team title).
In particular, we seek to support design where correctness is obtained by construction, relying on proven tools and verified constructs,
with programming languages and programming abstractions designed with verification in mind.

 Section:
 Research Program

 Components and contracts

 Component-based construction has long been advocated as a key approach
to the “correct-by-construction” design of complex embedded systems [71] .
Witness component-based toolsets such as UC Berkeley's Ptolemy [58] ,
Verimag's BIP [41] , or the modular architecture frameworks used, for
instance, in the automotive industry (AUTOSAR) [31] .
For building large, complex systems, a key feature of component-based
construction is the ability to associate with components a set of
contracts, which can be understood as rich behavioral types that can be composed and verified
to guarantee a component assemblage will meet desired properties.
The goal in this theme is to study the formal foundations of the component-based construction of embedded systems,
to develop component and contract theories dealing with real-time, reliability and fault-tolerance aspects of components,
and to develop proof-assistant-based tools for the computer-aided design and verification of component-based systems.

 Formal models for component-based design are
an active area of research (see e.g., [32] , [33]). However, we are still missing a comprehensive
formal model and its associated behavioral theory able to deal at the same time with different forms of composition,
dynamic component structures, and
quantitative constraints (such as timing, fault-tolerance, or energy consumption).
Notions of contracts and interface theories have been proposed to support
modular and compositional design of correct-by-construction
embedded systems (see e.g., [43] , [44]
and the references therein), but having a comprehensive theory of contracts that deals with all the above
aspects is still an open question [76] . In particular, it is not clear how to accomodate different forms of composition,
reliability and fault-tolerance aspects, or to deal with evolving component structures in a theory of contracts.

 Dealing in the same component theory with heterogeneous forms of composition,
different quantitative aspects, and dynamic configurations, requires
to consider together the three elements that comprise a component model: behavior, structure and types.
Behavior refers to behavioral (interaction and execution) models that characterize the behavior of components and component assemblages
(e.g., transition systems and their multiple variants – timed, stochastic, etc.).
Structure refers to the organization of component assemblages or configurations, and the composition operators they involve.
Types refer to properties or contracts that can be attached to components and component interfaces to facilitate separate development
and ensure the correctness of component configurations with respect to certain properties.
Taking into account dynamicity requires to establish an explicit link between behavior and structure,
as well as to consider higher-order systems, both of which have a direct impact on types.

 We plan to develop our component theory by progressing on two fronts:
component calculi, and semantical framework.
The work on typed component calculi aims to elicit process calculi that capture the main insights
of component-based design and programming
and that can serve as a bridge towards actual architecture description and programming language developments.
The work on the semantical framework should, in the longer term, provide abstract mathematical models
for the more operational and linguistic analysis afforded by component calculi.
Our work on component theory will find its application in the development of a Coq-based toolchain for
the certified design and construction of dependable embedded systems, which constitutes our third main objective for
this axis.

 Section:
 Research Program

 Real-time multicore programming

 Programming real-time systems (i.e. systems whose correct behavior depends on meeting timing constraints)
requires appropriate languages (as exemplified by the family of synchronous languages [42]),
but also the support of efficient scheduling policies, execution time and schedulability analyses
to guarantee real-time constraints (e.g., deadlines) while making the most effective use of available (processing, memory, or networking) resources.
Schedulability analysis involves analyzing the worst-case behavior of real-time tasks under a given scheduling algorithm and is crucial to
guarantee that time constraints are met in any possible execution of the system.
Reactive programming and real-time scheduling and schedulability for multiprocessor systems are old subjects,
but they are nowhere as mature as their uniprocessor counterparts,
and still feature a number of open research questions [40] , [53] ,
in particular in relation with mixed criticality systems.
The main goal in this theme is to address several of these open questions.

 We intend to focus on two issues: multicriteria scheduling on multiprocessors,
and schedulability analysis for real-time multiprocessor systems. Beyond real-time aspects, multiprocessor environments, and multicore ones
in particular, are subject to several constraints in conjunction, typically involving real-time, reliability and energy-efficiency constraints,
making the scheduling problem more complex both for the offline and the online cases. Schedulability analysis for multiprocessor systems, in particular
for systems with mixed criticality tasks, is still very much an open research area.

 Distributed reactive programming is rightly singled out as a major open issue in the recent,
but heavily biased (it essentially ignores recent research in synchronous and dataflow programming),
survey by Bainomugisha et al. [40] . For our part, we intend to focus on two questions:
devising synchronous programming languages for distributed systems and precision-timed architectures,
and devising dataflow languages for multiprocessors supporting dynamicity and parametricity while enjoying effective analyses for meeting
real-time, resource and energy constraints in conjunction.

 Section:
 Research Program

 Language-based fault tolerance

 Tolerating faults is a clear and present necessity in networked embedded systems.
At the hardware level, modern multicore architectures are manufactured using inherently unreliable
technologies [47] , [65] .
The evolution of embedded systems towards increasingly distributed architectures highlighted in the introductory section
means that dealing with partial failures, as in Web-based distributed systems, becomes an important issue.
While fault-tolerance is an old and much researched topic, several important questions remain open:
automation of fault-tolerance provision, composable abstractions for fault-tolerance,
fault diagnosis, and fault isolation.

 The first question is related to the old question of “system structure for fault-tolerance” as originally discussed by Randell for software fault tolerance [84] , and concerns in part our ability to clearly separate fault-tolerance aspects from the design and programming of purely “functional” aspects of an application. The classical arguments in favor of a clear separation of fault-tolerance concerns from application code revolve around reduced code and maintenance complexity [54] .
The second question concerns the definition of appropriate abstractions for the modular construction of fault-tolerant embedded systems.
The current set of techniques available for building such systems spans a wide range, including exception handling facilities, transaction management
schemes, rollback/recovery schemes, and replication protocols.
Unfortunately, these different techniques do not necessarily compose well
– for instance, combining exception handling and transactions is non trivial, witness the flurry of recent work on the topic, see e.g., [70] and the references therein –,
they have no common semantical basis, and they suffer from limited programming language support.
The third question concerns the identification of causes for faulty behavior in component-based assemblages.
It is directly related to the much researched area of fault diagnosis, fault detection and isolation [72] .

 We intend to address these questions by leveraging programming language techniques
(programming constructs, formal semantics, static analyses, program transformations) with the goal to achieve provable fault-tolerance,
i.e. the construction of systems whose fault-tolerance can be formally ensured using verification tools and proof assistants.
We aim in this axis to address some of the issues raised by the above open questions
by using aspect-oriented programming techniques and program transformations to automate
the inclusion of fault-tolerance in systems (software as well as hardware), by exploiting reversible programming models to investigate
composable recovery abstractions, and by leveraging causality analyses to study fault-ascription in component-based systems.
Compared to the huge literature on fault-tolerance in general, in particular in the systems area (see e.g., [67]
for an interesting but not so recent survey), we find by comparison much less work exploiting formal language techniques and tools
to achieve or support fault-tolerance.
The works reported in [46] , [48] , [50] , [59] , [73] , [83] , [89]
provide a representative sample of recent such works.

 A common theme in this axis is the use and exploitation of causality information.
Causality, i.e., the logical dependence of an effect on a cause, has long been studied in disciplines such as
philosophy [78] , natural sciences, law [79] , and statistics [81] ,
but it has only recently emerged as an important focus of research in computer science.
The analysis of logical causality has applications in many areas of computer science. For instance,
tracking and analyzing logical causality between events in the execution of a concurrent system is required to ensure
reversibility [75] , to allow the diagnosis of faults in a complex concurrent system [68] ,
or to enforce accountability [74] , that is, designing systems in such a way that it can be determined without
ambiguity whether a required safety or security property has been violated, and why. More generally, the goal of fault-tolerance
can be understood as being to prevent certain causal chains from occurring by designing systems such that each causal chain
either has its premises outside of the fault model (e.g., by introducing redundancy [67]),
or is broken (e.g., by limiting fault propagation [86]).

 Application Domains

 	Application Domains	Industrial Applications
	Industrial Design Tools
	Current Industrial Cooperations

 Section:
 Application Domains

 Industrial Applications

 Our applications are in the embedded system area, typically:
transportation, energy production, robotics, telecommunications,
systems on chip (SoC). In some areas, safety is critical, and
motivates the investment in formal methods and techniques for
design.
But even in less critical contexts, like telecommunications and
multimedia, these techniques can be beneficial in improving the
efficiency and the quality of designs, as well as the cost of
the programming and the validation processes.

 Industrial acceptance of formal techniques, as well as their
deployment, goes necessarily through their usability by
specialists of the application domain, rather than of the formal
techniques themselves. Hence, we are looking to propose
domain-specific (but generic) realistic models,
validated through experience (e.g., control tasks systems), based
on formal techniques with a high degree of automation (e.g., synchronous models), and tailored for concrete functionalities
(e.g., code generation).

 Section:
 Application Domains

 Industrial Design Tools

 The commercially available design tools (such as UML with
real-time extensions, Matlab / Simulink /
dSpace (http://www.dspaceinc.com)) and execution
platforms (OS such as VxWorks , QNX, real-time versions of
Linux ...) start now to provide besides their core
functionalities design or verification methods. Some of them,
founded on models of reactive systems, come close to tools with
a formal basis, such as for example StateMate by iLogix .

 Regarding the synchronous approach, commercial tools are
available:
Scade (http://www.esterel-technologies.com)
(based on Lustre), ControlBuild and
RT-Builder (based on Signal) from
Geensys (http://www.geensoft.com) (part of Dassault Systemes),
specialized environments like CellControl for industrial
automatism (by the Inria spin-off Athys – now part of
Dassault Systemes). One can observe that behind the variety of actors,
there is a real consistency of the synchronous technology, which
makes sure that the results of our work related to the
synchronous approach are not restricted to some language due to
compatibility issues.

 Section:
 Application Domains

 Current Industrial Cooperations

 Regarding applications and case studies with industrial end-users of
our techniques, we cooperate with STM icroelectronics on dynamic data-flow models
of computation for streaming applications, dedicated to high
definition video applications for their new Sthorm manycore chip.

 Software and Platforms

 	Software and Platforms	Implementations of
Synchronous Programs
	Apron and BddApron Libraries
	
 ReaVer

	Prototypes

 Section:
 Software and Platforms

 Implementations of
Synchronous Programs

 Participant :
	Alain Girault.

 We have been cooperating for several years with the Inria team Aoste (Inria Sophia-Antipolis and Rocquencourt) on the topic of fault
tolerance and reliability of safety critical embedded systems. In
particular, we have implemented several new heuristics for fault
tolerance and reliability within SynDEx (http://www-rocq.inria.fr/syndex). Our first
scheduling heuristic produces static multiprocessor schedules tolerant
to a specified number of processor and communication link
failures [62] . The basic principles upon which we
rely to make the schedules fault tolerant are, on the one hand, the
active replication of the operations [63] , and on the
other hand, the active replication of communications for
point-to-point communication links, or their passive replication
coupled with data fragmentation for multi-point communication media
(i.e., buses) [64] . Our second scheduling heuristic
is multi-criteria: it produces a static multiprocessor
schedule such that the reliability is maximized, the power consumption
is minimized, and the execution time is
minimized [12] [4] [37] , [38] . Our
results on fault tolerance are summarized in a web
page (http://pop-art.inrialpes.fr/~girault/Projets/FT).

 Section:
 Software and Platforms

 Apron and BddApron Libraries

 Participant :
	Bertrand Jeannet.

 Principles

 The Apron library (http://apron.cri.ensmp.fr/library/)
is dedicated to the static analysis of the numerical variables of a
program by abstract interpretation [51] . Many abstract
domains have been designed and implemented for analysing the possible
values of numerical variables during the execution of a program (see
Figure 1). However, their API diverge largely
(datatypes, signatures, ...), and this does not ease their
diffusion and experimental comparison w.r.t. efficiency and precision
aspects.

 The Apron library provides:

 	
 a uniform API for existing numerical abstract domains;

 	
 a higher-level interface to the client tools, by
factorizing functionalities that are largely independent of
abstract domains.

 From an abstract domain designer point of view, the benefits of the
Apron library are:

 	
 the ability to focus on core, low-level functionalities;

 	
 the help of generic services adding higher-level services for free.

 For the client static analysis community, the benefits are a
unified, higher-level interface, which allows experimenting,
comparing, and combining abstract domains.

 Figure
	1. Typical static analyser and examples of abstract domains

 	

 	
 [image: IMG/bertrand1.png]

 The BddApron library (http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/index.html)
aims at a similar goal, by adding finite-types variables and
expressions to the concrete semantics of Apron domains. It is built
upon the Apron library and provides abstract domains for the
combination of finite-type variables (booleans, enumerated types,
bit vectors) and numerical variables (integers, rationals,
floating-point numbers). It first allows the manipulation of
expressions that freely mix, using BDDs and MTBDDs, finite-type and
numerical Apron expressions and conditions. It then provides
abstract domains that combine BDDs and Apron abstract values for
representing invariants holding on both finite-type variables and
numerical variables.

 Implementation and Distribution

 The Apron library (Fig. 2) is written in ANSI C,
with an object-oriented and thread-safe design. Both
multi-precision and floating-point numbers are supported. A
wrapper for the Ocaml language is available, and a C++ wrapper is
on the way. It has been distributed since June 2006 under the LGPL
license and available at http://apron.cri.ensmp.fr .
Its development has still progressed much since. There are already
many external users (ProVal/Démons, LRI Orsay, France —
CEA-LIST, Saclay, France — Analysis of Computer Systems
Group, New-York University, USA — Sierum software analysis
platform, Kansas State University, USA — NEC Labs, Princeton,
USA — EADS CCR, Paris, France — IRIT, Toulouse, France). It
is currently packaged as a Redhat and Debian package.

 The BddApron library is written in Ocaml , using polymorphism
features of Ocaml to make it generic. It is also thread-safe. It
provides two different implementations of the same domain, each one
presenting pros and cons depending on the application. It is
currently used by the ConcurInterproc interprocedural and
concurrent program analyzer.

 Figure
	2. Organisation of the Apron library

 	

 	
 [image: IMG/bertrand2.png]

 Section:
 Software and Platforms

 ReaVer

 Participant :
	Bertrand Jeannet.

 ReaVer (REActive VERifier
(http://members.ktvam.at/schrammel/research/reaver)) is
a tool framework for the safety verification of discrete and hybrid
systems specified by logico-numerical data-flow languages, like
Lustre , Lucid Synchrone or Zelus . It provides time-unbounded analysis
based on abstract interpretation techniques.

 It features partitioning techniques and several logico-numerical
analysis methods based on Kleene iteration with widening and
descending iterations, abstract acceleration, max-strategy
iteration, and relational abstractions; logico-numerical product
and power domains (based on the APRON and BddApron domain
libraries) with convex polyhedra, octagons, intervals, and
template polyhedra; and front-ends for the hybrid NBac format,
Lustre via lus2nbac, and Zelus /Lucid Synchrone . Compared to
NBac , it is connected to higher-level, more recent synchronous
and hybrid languages, and provides many more options regarding
analysis techniques.

 It has been used for several experimental comparisons published in
papers. It integrates all the methods developed by Peter Schrammel
in his PhD.

 Section:
 Software and Platforms

 Prototypes

 Logical Causality

 Participant :
	Gregor Goessler.

 We are developing LoCa , a prototype tool written in Scala that
implements the analysis of logical causality described
in
	6.1.1 . LoCa currently supports causality
analysis in Bip . The core analysis engine is implemented as an
abstract class, such that support for other models of computation
(MOC) can be added by instantiating the class with the basic
operations of the MOC.

 Cosyma

 Participant :
	Gregor Goessler.

 We have developed Cosyma , a tool for automatic controller synthesis
for incrementally stable switched systems based on multi-scale
discrete abstractions. The tool accepts a
description of a switched system represented by a set of differential
equations and the sampling parameters used to define an approximation
of the state-space on which discrete abstractions are computed. The
tool generates a controller — if it exists — for the system that
enforces a given safety or time-bounded reachability specification.

 Automatic Controller Generation

 Participant :
	Alain Girault.

 We have developed a software tool chain to allow the specification of
models, controller synthesis, and the execution or simulation of
the results. It is based on existing synchronous tools, and thus
consists primarily in the use and integration of
Sigali (http://www.irisa.fr/vertecs/Logiciels/sigali.html)
and Mode Automata (http://www-verimag.imag.fr). It is
the result of a collaboration with Emil Dumitrescu (INSA Lyon)
and Eric Rutten from the Ctrl-A Inria team.

 Useful component templates and relevant properties can be
materialized, on one hand, by libraries of task models, and, on the
other hand, by properties and synthesis objectives.

 The Interproc family of static analyzers

 Participant :
	Bertrand Jeannet [contact person] .

 These analyzers and libraries are of general use for people
working in the static analysis and abstract interpretation
community.

 	
 Fixpoint (http://http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint):
a generic fix-point engine written in Ocaml . It allows the user to
solve systems of fix-point equations on a lattice, using a
parameterized strategy for the iteration order and the application
of widening. It also implements recent techniques for improving the
precision of analysis by alternating post-fixpoint computation with
widening and descending iterations in a sound
way [66] .

 	
 Interproc (http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc):
a simple interprocedural static analyzer that infers properties on
the numerical variables of programs in a toy language. It is aimed
at demonstrating the use of the previous library and the
above-described Apron library, and more generally at disseminating
the knowledge in abstract interpretation. It is also deployed
through a
web-interface (http://pop-art.inrialpes.fr/interproc/interprocweb.cgi).

 	
 ConcurInterproc extends Interproc with
concurrency, for the analysis of multithreaded programs interacting
via shared global variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi).

 	
 PInterproc extends Interproc with pointers to
local variables. It is also deployed through a
web-interface (http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi).

 The SIAAM virtual machine

 Participants :
	Quentin Sabah, Jean-Bernard Stefani [contact person] .

 The SIAAM abstract machine is an object-based realization of the Actor model of concurrent computation.
Actors can exchange arbitrary object graphs in messages while still enjoying a strong isolation property.
It guarantees that each actor can only directly access objects in its own local heap, and that information
between actors can only flow via message exchange [10] . The SIAAM machine has been implemented for Java as a modified Jikes virtual machine. The resulting SIAAM software comprises:

 	
 A modified Jikes RVM that implements actors and actor isolation as specified by the SIAAM machine.

 	
 A set of static analyses build using the Soot Java optimization framework for optimizing the execution
of the SIAAM/Jikes virtual machine, and for helping programmers diagnose potential performance issues.

 	
 A formal proof using the Coq proof assistant of the SIAAM isolation property.

 New Results

 	New Results	Components and Contracts
	Real-Time multicore programming
	Language Based Fault-Tolerance

 Section:
 New Results

 Components and Contracts

 Participants :
	Gregor Goessler, Quentin Sabah, Jean-Bernard Stefani.

 Analysis of logical causality

 The failure of one component may entail a cascade of failures in other
components; several components may also fail independently. In such
cases, elucidating the exact scenario that led to the failure is a
complex and tedious task that requires significant expertise.

 The notion of causality (did an event e cause an event e'?)
has been studied in many disciplines, including philosophy, logic,
statistics, and law. The definitions of causality studied in these
disciplines usually amount to variants of the counterfactual test
“e is a cause of e' if both e and e' have occurred, and in a
world that is as close as possible to the actual world but where e
does not occur, e' does not occur either”. Surprisingly, the study
of logical causality has so far received little attention in computer
science, with the notable exception of [69] and
its instantiations. However, this approach relies on a causal model
that may not be known, for instance in presence of black-box
components.

 Improving on previous results, we have proposed
in [21] an approach to enhance the fault diagnosis
in black-box component-based systems, in which only events on
component interfaces are observable. For such systems, we have
described a causality analysis framework that helps us establish the
causal relationship between component failures and system failures,
given an observed system execution trace. The analysis is based on a
formalization of counterfactual reasoning, and applicable to real-time
systems. We have illustrated the analysis with a case study from the
medical device domain.

 In [5] we have proposed a formal
framework for reasoning about causality, and blaming system-level
failures on the component(s) that caused them. The framework is
general in the sense that it applies to many different models of
computation and communication (MoC), such as synchronous and
asynchronous computation, and communication by messages or shared
variables.
We are currently instantiating the framework to specific MoC, in
particular, to timed automata, and developing a refinement of our
original approach that reduces the number of false positives.

 Supporting isolation for actors in shared memory

 The actor model of concurrency, as supported e.g., by the Erlang programming language,
is an appealing programming model for the construction of concurrent and distributed systems, and
multicore programming in particular. Although much work has taken place in particular during the past ten years
on efficient implementations of the actor model, the design space is far from being completely understood.

 As part of Quentin Sabah's thesis [10] , we have developed a variant of the actor model that,
in contrast
to previous works, ensures a strict isolation between actors while imposing no restriction on the form of data exchanged in messages.
We have formally specified an abstract machine, called SIAAM (see Sec.
	5.4.5),
for an extension of the Java language with our actor model, and implemented
it as a modified Jikes virtual machine, a state of the art Java virtual machine.
A combination of points-to and live variable analyses has been implemented using the Soot framework, that can be used to remove unnecessary read and write checks for isolation. A diagnosis tool built on top of the analyses helps programmers to pinpoint potential problems (exceptions raised indicating a potential violation of isolation).
We have shown with artificial and small applicative benchmarks that, using our analyses to improve performance, our implementation is reasonably efficient and imposes low overhead for the benefit of strict isolation.

 In addition, we have developed a Coq proof of the isolation property enforced by SIAAM, namely that no information
between actors can take place outside of message exchanges, despite the presence of a shared heap between actors.

 Section:
 New Results

 Real-Time multicore programming

 Participants :
	Vagelis Bebelis, Gwenaël Delaval, Pascal Fradet, Alain Girault, Gregor Goessler, Bertrand Jeannet, Gideon Smeding, Jean-Bernard Stefani.

 A time predictable programming language for multicores

 Time predictability (PRET) is a topic that emerged in 2007 as a
solution to the ever increasing unpredictability of today's embedded
processors, which results from features such as multi-level caches or
deep pipelines [57] . For many real-time systems, it is
mandatory to compute a strict bound on the program's execution
time. Yet, in general, computing a tight bound is extremely
difficult [90] . The rationale of PRET is to simplify
both the programming language and the execution platform to allow more
precise execution times to be easily computed [39] .

 Following our past results on the Pret-C programming
language [35] , we have proposed a time predictable
synchronous programming language for multicores, called ForeC . It
extends C with a small set of Esterel -like synchronous primitives to
express concurrency, interaction with the environment, looping, and a
synchronization barrier [22] (like the
pause statement in Esterel). ForeC threads communicate with
each other via shared variables, the values of which are combined at
the end of each tick to maintain deterministic execution. ForeC is
compiled into threads that are then statically scheduled for a target
multicore chip. Our WCET analysis takes into account the access to the
shared TDMA bus and the necessary administration for the shared
variables. We achieve a very precise WCET (the over-approximation
being less than 2%) thanks to a reachable space exploration of the
threads' states.

 This work
has been conducted within the Rippes associated team.

 WCET analysis

 Our past work on the WCET analysis of Pret-C programs has led us to
design static analyses, for instance to prune unfeasible paths in the
control flow graph [36] . In 2013, we have worked on
how to take into account direct mapped instruction caches in WCET
analysis. Instruction caches are essential to address if one wants to
analyze large embedded programs. Our cache analysis technique offers
the same precision as the most precise techniques [80] ,
while improving analysis time by up to 240 times. This improvement is
achieved by analyzing individual blocks of the control flow graph
separately, and by proposing a tailored abstract domain to represent
efficiently the cache
state [14] , [25] . In contrast
with previous abstract analysis
methods [88] , [85] , our analysis is able to offer
the same precision as the concrete approaches [80] .

 Tradeoff exploration between reliability, power
consumption, and execution time

 For autonomous critical real-time embedded systems (e.g., satellites),
guaranteeing a very high level of reliability is as important as
keeping the power consumption as low as possible. We have designed an
off-line ready list scheduling heuristics which, from a given software
application graph and a given multiprocessor architecture (homogeneous
and fully connected), produces a static multiprocessor schedule that
optimizes three criteria: its length (crucial for real-time
systems), its reliability (crucial for dependable systems), and
its power consumption (crucial for autonomous systems). Our
tri-criteria scheduling heuristics, TSH, uses the active
replication of the operations and the data-dependencies to increase
the reliability, and uses dynamic voltage and frequency scaling
to lower the power consumption [37] , [38] . TSH implements a
ready list scheduling heuristics, and we have formulated a new
multi-criteria cost function such that we are able to prove rigorously
that the static schedules we generate meet both the reliability
constraint and the power consumption constraint [12] .

 By running TSH on a single problem instance, we are able to provide
the Pareto front for this instance in 3D, therefore exposing the user
to several tradeoffs between the power consumption, the reliability
and the execution time. Thanks to extensive simulation results, we
have shown how TSH behaves in practice. Firstly, we have compared TSH
versus an optimal Mixed Linear Integer Program on small instances; the
experimental results show that TSH behaves very well compared to
the ILP. Secondly, we have compared TSH with the ECS heuristic
(Energy-Conscious Scheduling [77]); the experimental
results show that TSH performs systematically better than ECS.

 This is a joint work with Ismail Assayad (U. Casablanca, Morocco) and
Hamoudi Kalla (U. Batna, Algeria), who both visit the team regularly.

 Modular distribution

 Synchronous programming languages describe functionally centralized
systems, where every value, input, output, or function is always
directly available for every operation. However, most embedded systems
are nowadays composed of several computing resources. The aim of this
work is to provide a language-oriented solution to describe
functionally distributed reactive systems. This research
started within the Inria large scale action Synchronics and
is a joint work with Marc Pouzet (ENS, Parkas team from Rocquencourt)
and Xavier Nicollin (Grenoble INP, Verimag lab).

 We are working on type systems to formalize, in a uniform way, both
the clock calculus and the location calculus of a synchronous
data-flow programming language (the Heptagon language, inspired from
Lucid Synchrone [49]). On one hand, the clock
calculus infers the clock of each variable in the program and checks
the clock consistency: e.g., a time-homogeneous function, like
+ , should be applied to variables with identical clocks. On
the other hand, the location calculus infers the spatial distribution
of computations and checks the spatial consistency: e.g., a
centralized operator, like + , should be applied to
variables located at the same location. Compared to the PhD
of Gwenaël Delaval [55] , [56] , the goal is to
achieve modular distribution. By modular, we mean that we want
to compile each function of the program into a single function capable
of running on any computing location. We make use of our uniform type
system to express the computing locations as first-class abstract
types, exactly like clocks. It allows us to compile a typed
variable (typed by both the clock and the location calculi) into
if ... then ... else ... structures, whose conditions will be
valuations of the clock and location variables.

 We currently work on an example of software-defined radio. We have
shown on this example how to use a modified clock calculus to describe
the localisation of values as clocks, and the architecture as clocks
(for the computing resources) and their relations (for communication
links).

 Distribution of synchronous programs under real-time
constraints

 The goal of Gideon Smeding's PhD thesis [11]
was to propose a quasi-synchronous framework encompassing constraints
on the relative speed of clocks, together with a formalism for
reasoning about clock-dependent properties within the model. This
framework should provide a seamless link between synchronous models
and their asynchronous implementation.

 The quasi-synchronous approach developed
in [11] considers independently clocked,
synchronous components that interact via communication-by-sampling or
FIFO channels. We have defined relative drift bounds on pairs of
recurring events such as clock ticks or the arrival of a
message. Drift bounds express constraints on the stability of clocks,
e.g., at least two ticks of one per three consecutive ticks of the
other. We can thus move from total synchrony, where all clocks tick
simultaneously, to global asynchrony by relaxing the drift bounds. As
constraints are more relaxed, behavior diverges more and more from
synchronous system behavior. In many systems, such as distributed
control systems, occasional deviations of input and output signals of
the controller from their behavior in the synchronous model may be
acceptable as long as the frequency of such deviations is bounded. The
approach of [11] takes as inputs a program
written in a Lustre-like language extended with asynchronous
communication by sampling, application requirements on the
distribution in the form of weakly-hard
constraints [45] bounding e.g., the tolerated
loss of data tokens, and platform assertions (e.g., relative clock
speeds, available communication resources), and verifies whether the
program meets the requirements under the platform assertions.

 Analysis and scheduling of parametric dataflow models

 Recent data-flow programming environments support applications whose
behavior is characterized by dynamic variations in resource
requirements. The high expressive power of the underlying models (e.g., Kahn Process Networks or the CAL actor language) makes it challenging to
ensure predictable behavior. In particular, checking liveness
(i.e., no part of the system will deadlock) and boundedness (i.e., the system can be executed in finite memory) is known to be hard or
even undecidable for such models. This situation is troublesome for
the design of high-quality embedded systems.

 Last year, we have introduced the schedulable parametric data-flow (SPDF)
MoC for dynamic streaming
applications [60] . SPDF extends the standard
dataflow model by allowing rates to be parametric.
SPDF was designed to be statically analyzable while
retaining sufficient expressive power.

 Following the same lines, we have recently proposed
the Boolean Parametric Data Flow (BPDF)
MoC which combines integer parameters (to express dynamic rates) and boolean parameters (to express
the activation and deactivation of communication channels) [15] , [26] , [24] .
High dynamism is provided by integer parameters which can
change at each basic iteration and boolean parameters which
can change even within the iteration.
We have presented static analyses which ensure statically the liveness
and the boundedness of BDPF graphs.
Our case studies are video decoders for
high definition video streaming such as VC-1.

 We have proposed a generic and flexible framework to generate
parallel ASAP schedules targeted to the new Sthorm many-core platform
designed by STMicroelectronics [29] , [23] .
The parametric dataflow graph is
associated with generic or user-defined specific constraints aimed at
minimizing, timing, buffer sizes, power consumption, or other
criteria. The scheduling algorithm executes with minimal overhead and
can be adapted to different scheduling policies just by changing some
constraints. The safety of both the dataflow graph and constraints
can be checked statically and all schedules are guaranteed to be
bounded and deadlock free. This parallel scheduling framework has been developed
for a parametric MoC without booleans. We are now focusing on extending
it to BPDF applications.

 This research is the central topic of Vagelis Bebelis' PhD thesis.
It is conducted in collaboration with STMicroelectronics.

 Abstract Acceleration of general linear loops

 We have investigated abstract acceleration techniques for computing loop
invariants for numerical programs with linear assignments and
conditionals.
Whereas abstract interpretation techniques typically
over-approximate the set of reachable states iteratively, abstract
acceleration captures the effect of the loop with a single,
non-iterative transfer function applied to the initial states at the
loop head.

 In contrast to previous acceleration techniques, our approach applies
to any linear loop without restrictions. Its novelty lies in the use
of the Jordan normal form decomposition of the loop body to derive
symbolic expressions for the entries of the matrix modeling the effect
of n>=0 iterations of the loop. The entries of such a matrix depend on
n through complex polynomial, exponential and trigonometric
functions. Therefore, we introduced an abstract domain for matrices
that captures the linear inequality relations between these complex
expressions. This results in an abstract matrix for describing the
fixpoint semantics of the loop.
We also developed a technique to take into account the guard of
the loop by bounding the number of loop iterations, which relies
again on the Jordan normal form decomposition.

 Our approach integrates smoothly into standard abstract interpreters
and can handle programs with nested loops and loops containing
conditional branches. We evaluate it over small but complex loops that
are commonly found in control software, comparing it with other tools
for computing linear loop invariants. The loops in our benchmarks
typically exhibit polynomial, exponential and oscillatory behaviors
that present challenges to existing approaches, that are either too
unprecise (classical abstract interpretation) or limited to a
restricted class of loops (e.g., translation with resets in the case of
abstract acceleration, or stable loops, in the sense of control
theory, for ellipsoid methods). Our approach finds non-trivial
invariants to prove useful bounds on the values of variables for such
loops, clearly outperforming the existing approaches in terms of
precision while exhibiting good performance.

 A paper presenting this technique has been accepted to POPL'2014.
An extended version has been published in arXiv [30] .

 Synthesis of switching controllers using approximately
bisimilar multiscale abstractions

 The use of discrete abstractions for continuous dynamics has become
standard in hybrid systems design (see e.g., [87] and
the references therein). The main advantage of this approach is that
it offers the possibility to leverage controller synthesis techniques
developed in the areas of supervisory control of discrete-event
systems [82] . The first attempts to compute discrete
abstractions for hybrid systems were based on traditional systems
behavioral relationships such as simulation or bisimulation, initially
proposed for discrete systems most notably in the area of formal
methods. These notions require inclusion or equivalence of observed
behaviors which is often too restrictive when dealing with systems
observed over metric spaces. For such systems, a more natural
abstraction requirement is to ask for closeness of observed
behaviors. This leads to the notions of approximate simulation and
bisimulation introduced in [61] .

 These approaches are based on sampling of time and space where the
sampling parameters must satisfy some relation in order to obtain
abstractions of a prescribed precision. In particular, the smaller the
time sampling parameter, the finer the lattice used for approximating
the state-space; this may result in abstractions with a very large
number of states when the sampling period is small. However, there
are a number of applications where sampling has to be fast; though
this is generally necessary only on a small part of the state-space.
We have been exploring two approaches to overcome this state-space
explosion.

 In [52] , we have proposed a technique
for the synthesis of safety controllers for switched systems using
multi-scale abstractions that allow us to deal with fast switching
while keeping the number of states in the abstraction at a reasonable
level. The finest scales of the abstraction are effectively explored
only when fast switching is needed, that is when the system approaches
the unsafe set. We have implemented these results in the tool Cosyma (COntroller SYnthesis using Multi-scale
Abstractions, see Sec.
	5.4.2) [20] . The tool accepts a
description of a switched system represented by a set of differential
equations and the sampling parameters used to define an approximation
of the state-space on which discrete abstractions are computed. The
tool generates a controller — if it exists — for the system that
enforces a given safety or time-bounded reachability specification.

 In [19] , we have presented an approach using
mode sequences of given length as symbolic states for our
abstractions. We have shown that the resulting symbolic models are
approximately bisimilar to the original switched system and that an
arbitrary precision can be achieved by considering sufficiently long
mode sequences. The advantage of this approach over existing ones is
double: first, the transition relation of the symbolic model admits a
very compact representation under the form of a shift operator;
second, our approach does not use lattices over the state-space and
can potentially be used for higher dimensional systems. We have
provided a theoretical comparison with the lattice-based approach and
presented a simple criterion enabling to choose the most appropriate
approach for a given switched system. We have applied the approach to
a model of road traffic for which we have synthesized a schedule for
the coordination of traffic lights under constraints of safety and
fairness.

 Section:
 New Results

 Language Based Fault-Tolerance

 Participants :
	Dmitry Burlyaev, Pascal Fradet, Alain Girault, Jean-Bernard Stefani.

 Automatic Transformations for Fault tolerant Circuits

 In the recent years, we have studied the implementation of specific
fault tolerance techniques in real-time embedded systems using program
transformation [1] .
We are now investigating the use of automatic transformations to ensure
fault-tolerance properties in digital circuits. To this aim,
we consider program transformations for hardware description languages (HDL).
We have designed a simple hardware description language
inspired from Lustre and Lucid Synchrone.
It is a core functional language manipulating synchronous boolean streams.
We consider both single-event upsets (SEU) and single-event transients (SET)
and all fault models of the form
“at most 1 SEU or SET within n clock signals”.
The language's semantics as well as fault modes have been formalized in
Coq and many basic (library) properties have been shown on that language.

 We have expressed several variants of triple modular redundancy (TMR)
as program transformations.
We have proposed a verification-based approach to minimize the
number of voters in TMR [16] .
Our technique guarantees that the resulting circuit (i) is fault
tolerant to the soft-errors defined by the fault model and (ii) is
functionally equivalent to the initial one. Our approach operates
at the logic level and takes into account the input and output
interface specifications of the circuit. Its implementation makes
use of graph traversal algorithms, fixed-point iterations, and
BDDs. Experimental results on the ITC’99 benchmark suite
indicate that our method significantly decreases the number of
inserted voters which entails a hardware reduction of up to
55% and a clock frequency increase of up to 35% compared
to full TMR. We address scalability issues arising from formal
verification with approximations and assess their efficiency and
precision.

 We are currently studying the definition of other fault-tolerant techniques
(e.g., time redundancy, mixed time/space redundancy) as program transformations.
We are also considering the use of the Coq proof assistant to certify
that the transformations make the programs
fault tolerant w.r.t. specific fault models.
Our long term goal is to design an aspect-like
language allowing users to specify and tune a wide range of fault
tolerance techniques, while ensuring that the corresponding transformations ensure
well-defined fault-tolerance properties. The advantage would be to produce
fault-tolerant circuits by specifying fault-tolerant properties/strategies
separately from their functional specifications.

 Concurrent flexible reversibility

 In the recent years, we have been investigating reversible concurrent computation, and investigated various
reversible concurrent programming models, with the hope that reversibility can shed some light on the common semantic
features underlying various forms of fault recovery techniques (including, exceptions, transactions,
and checkpoint/rollback schemes).

 As part of this research program, we have devised a reversible variant of the higher-order π-calculus,
equipped with an imperative rollback operation that allows a concurrent program to be rolled back to a past execution
state, and a primitive form of compensation to control (forward execution) after a rollback
operation [18] . We have shown that these two extensions provide very powerful primitives for
programming different forms of rollback/compensation schemes. We have shown in particular that they are
powerful enough to provide a faithful encoding of a notion of communicating transaction proposed in the literature.
We have started the development of a behavioral theory for this 𝖼𝗋𝗈𝗅𝗅π calculus, and proved in particular
a context lemma, similar to that of the π-calculus, although the reversible machinery makes its proof more
involved.

 This work was done in collaboration with Inria teams Focus in Bologna and Celtique in Rennes,
and as part of the ANR REVER project.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 	
 With ST Microelectronics: CIFRE contract for the PhD of Vagelis
Bebelis. This work is described in Section
	6.2.6 .

 	
 With ARGOSIM SA: “Study and transfer contract” for the
development by Bertrand Jeannet and the cession to ARGOSIM of the
PolyCart library. PolyCart is a library for the manipulation of
cartesian products of polyhedra and intervals.

 Dissemination

 	Dissemination	Scientific Animation
	Teaching - Supervision - Juries

 Section:
 Dissemination

 Scientific Animation

 	
 Pascal Fradet served in the program committees of
MODULARITY 2014 and of JFLA 2013 and JFLA 2014 (Journées
Francophones des Langages Applicatifs).

 	
 Alain Girault served in the program committees of the
international conferences DAC 2013 and MSR 2013.

 	
 Gregor Goessler served in the program committees of the
international conferences Component-Based Software Engineering
(CBSE) 2013 and Design, Automation, and Test in Europe (DATE) 2014
and the workshop Hybrid Systems and Biology (HSB) 2013.

 	
 Jean-Bernard Stefani is the current Chair of IFIP Working Group
WG6.1, that sponsors the international conference series DAIS,
FORTE, ICTSS, and Middleware. He is the current chair of the FORTE
Steering Committee and a member of the Discotec joint international
conference (hosting Coordination, DAIS and FORTE).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Supervision

 	
 PhD: Quentin Sabah, “Simple Isolation for An Abstract Actor
Machine”, Grenoble University, 4/12/2013, advised by Jean-Bernard
Stefani.

 	
 PhD: Gideon Smeding, “Verification of Weakly-Hard Requirements
on Quasi-Synchronous Systems”, Grenoble University, 19/12/2013,
co-advised by Gregor Goessler and Joseph Sifakis.

 	
 PhD in progress: Vagelis Bebelis, “Advanced dataflow
programming for embedded systems”, Grenoble University, since
12/2011, co-advised by Pascal Fradet and Alain Girault.

 	
 PhD in progress: Dmitry Burlyaev, “Specification and synthesis
of fault-tolerant circuits”, Grenoble University, since 12/2011,
co-advised by Pascal Fradet and Alain Girault.

 	
 PhD in progress: Yoann Geoffroy, “Towards a general causality analysis framework”,
Grenoble University, since 10/2013,
co-advised by Gregor Goessler and Daniel Le Métayer (Privatics Inria team).

 Juries

 	
 Alain Girault was referee for the PhD thesis of Hervé Yviquel
(University of Rennes 1) and for the PhD thesis of Léonard
Gérard (University of Orsay).

 	
 Jean-Bernard Stefani was referee for the PhD thesis of
Cédric Pasteur (University of Paris VI).

 Bibliography

 Major publications by the team in recent years

 	[1]

 	T. Ayav, P. Fradet, A. Girault.
Implementing Fault-Tolerance in Real-Time Programs by Automatic Program Transformations, in: ACM Trans. Embedd. Comput. Syst., July 2008, vol. 7, no 4, pp. 1–43.

 	[2]

 	E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.-B. Stefani.
The Fractal Component Model and its Support in Java, in: Software - Practice and Experience, 2006, vol. 36, no 11-12.

 	[3]

 	S. Djoko Djoko, R. Douence, P. Fradet.
Aspects preserving properties, in: Science of Computer Programming, 2012, vol. 77, no 3, pp. 393-422.

 	[4]

 	A. Girault, H. Kalla.
A Novel Bicriteria Scheduling Heuristics Providing a Guaranteed Global System Failure Rate, in: IEEE Trans. Dependable Secure Comput., December 2009, vol. 6, no 4, pp. 241–254, Research report Inria 6319.
http://hal.inria.fr/inria-00177117

 	[5]

 	G. Goessler, D. Le Métayer.
A General Trace-Based Framework of Logical Causality, in: FACS - 10th International Symposium on Formal Aspects of Component Software - 2013, Nanchang, Chine, 2013.
http://hal.inria.fr/hal-00924048

 	[6]

 	G. Goessler, J. Sifakis.
Composition for Component-based Modeling, in: Science of Computer Programming, 3 2005, vol. 55, no 1–3, pp. 161–183.

 	[7]

 	B. Jeannet, A. Loginov, T. Reps, M. Sagiv.
A Relational Approach to Interprocedural Shape Analysis, in: ACM Trans. on Programming Languages and Systems, 2010, vol. 32, no 2.
http://doi.acm.org/10.1145/1667048.1667050

 	[8]

 	T. Le Gall, B. Jeannet.
Lattice Automata: A Representation of Languages over an Infinite Alphabet, and some Applications to Verification, in: Static Analysis Symposium, SAS'07, Copenhagen (Denmark), LNCS, August 2007, vol. 4634.
http://pop-art.inrialpes.fr/people/bjeannet/publications/sas07.ps

 	[9]

 	S. Lenglet, A. Schmitt, J.-B. Stefani.
Characterizing Contextual Equivalence in Calculi with Passivation, in: Inf. Comput., 2011, vol. 209, no 11, pp. 1390-1433.

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[10]

 	Q. Sabah.
SIAAM: Isolation dynamique pour une machine abstraite à base d'acteurs, Université de Grenoble, December 2013.
http://hal.inria.fr/tel-00933072

 	[11]

 	G. Smeding.
Vérification de propriétés faiblement dures des systèmes quasi-synchrones, Université de Grenoble, December 2013.
http://hal.inria.fr/tel-00925626

 Articles in International Peer-Reviewed Journals

 	[12]

 	I. Assayad, A. Girault, H. Kalla.
Tradeoff exploration between reliability, power consumption, and execution time for embedded systems, in: Software Tools for Technology Transfer (STTT), June 2013, vol. 15, no 3, pp. 229-245. [
DOI : 10.1007/s10009-012-0263-9]
http://hal.inria.fr/hal-00923926

 	[13]

 	A. Benoit, F. Dufossé, A. Girault, Y. Robert.
Reliability and performance optimization of pipelined real-time systems, in: Journal of Parallel and Distributed Computing, 2013, vol. 73, no 6, pp. 851-865. [
DOI : 10.1016/j.jpdc.2013.02.009]
http://hal.inria.fr/hal-00926123

 International Conferences with Proceedings

 	[14]

 	S. Andalam, R. Sinha, P. Roop, A. Girault, J. Reineke.
Precise timing analysis for direct-mapped caches, in: Design Automaton Conference, DAC, Austin, TX, United States, ACM, June 2013. [
DOI : 10.1145/2463209.2488917]
http://hal.inria.fr/hal-00842368

 	[15]

 	V. Bebelis, P. Fradet, A. Girault, B. Lavigueur.
BPDF: A Statically Analyzable Dataflow Model with Integer and Boolean Parameters, in: International Conference on Embedded Software, EMSOFT'13, Montreal, Canada, ACM, September 2013.
http://hal.inria.fr/hal-00842421

 	[16]

 	D. Burlyaev, P. Fradet, A. Girault.
Verification-guided Voter Minimization in Triple-Modular Redundant Circuits, in: Design, Automation and Test in Europe Conference, DATE'14, Dresden, Germany, November 2013.
http://hal.inria.fr/hal-00911768

 	[17]

 	G. Gössler, D. Le Métayer.
A General Trace-Based Framework of Logical Causality, in: FACS - 10th International Symposium on Formal Aspects of Component Software - 2013, Nanchang, China, 2013.
http://hal.inria.fr/hal-00924048

 	[18]

 	I. Lanese, M. Lienhardt, C. Mezzina, A. Schmitt, J.-B. Stefani.
Concurrent Flexible Reversibility, in: 22nd European Symposium on Programming, ESOP 2013, Rome, Italy, M. Felleisen, P. Gardner (editors), Lecture Notes in Computer Science (LNCS), Springer, March 2013, vol. 7792, pp. 370-390. [
DOI : 10.1007/978-3-642-37036-6_21]
http://hal.inria.fr/hal-00811629

 	[19]

 	E. Le Corronc, A. Girard, G. Gössler.
Mode Sequences as Symbolic States in Abstractions of Incrementally Stable Switched Systems, in: CDC - 52nd Conference on Decision and Control - 2013, Florence, Italy, IEEE, December 2013.
http://hal.inria.fr/hal-00924815

 	[20]

 	S. Mouelhi, A. Girard, G. Goessler.
CoSyMA: a tool for controller synthesis using multi-scale abstractions, in: HSCC'13 - 16th International Conference on Hybrid systems: computation and control, Philadelphie, United States, ACM, 2013, pp. 83-88. [
DOI : 10.1145/2461328.2461343]
http://hal.inria.fr/hal-00839613

 	[21]

 	S. Wang, A. Ayoub, B. Kim, G. Gössler, O. Sokolsky, I. Lee.
A Causality Analysis Framework for Component-based Real-time Systems, in: RV - 4th International Conference on Runtime Verification - 2013, Rennes, France, A. Legay, S. Bensalem (editors), Springer, 2013, vol. 8174, pp. 285-303.
http://hal.inria.fr/hal-00919081

 	[22]

 	E. Yip, P. Roop, M. Biglari-Abhari, A. Girault.
Programming and Timing Analysis of Parallel Programs on Multicores, in: International Conference on Application of Concurrency to System Design, ACSD'13, Barcelona, Spain, IEEE, July 2013, pp. 167–176.
http://hal.inria.fr/hal-00842402

 Conferences without Proceedings

 	[23]

 	V. Bebelis, P. Fradet, A. Girault, B. Lavigueur.
A Framework to Schedule Parametric Dataflow Applications on Many-Core Platforms, in: CPC 2013, 17th Workshop on Compilers for Parallel Computing, Lyon, France, July 2013.
http://hal.inria.fr/hal-00923670

 	[24]

 	V. Bebelis, P. Fradet, A. Girault, B. Lavigueur.
BPDF: A Statically Analyzable Dataflow Model with Integer and Boolean Parameters, in: The Tenth Biennial Ptolemy Miniconference, Berkeley, United States, November 2013.
http://hal.inria.fr/hal-00923672

 Internal Reports

 	[25]

 	S. Andalam, R. Sinha, P. S. Roop, A. Girault, J. Reineke.
Precise Modelling of Instruction Cache Behaviour, Inria, January 2013, no RR-8214, 62 p.
http://hal.inria.fr/hal-00781566

 	[26]

 	V. Bebelis, P. Fradet, A. Girault, B. Lavigueur.
BPDF: Boolean Parametric Data Flow, Inria, July 2013, no RR-8333, 21 p.
http://hal.inria.fr/hal-00846645

 	[27]

 	Z. E. Bhatti, R. Sinha, P. Roop.
Unified Functional Safety Assessment of Industrial Automation Systems, Inria, September 2013, no RR-8357.
http://hal.inria.fr/hal-00858218

 	[28]

 	G. Gössler, D. Le Métayer.
A General Trace-Based Framework of Logical Causality, Inria, October 2013, no RR-8378.
http://hal.inria.fr/hal-00873665

 Other Publications

 	[29]

 	V. Bebelis, P. Fradet, A. Girault, B. Lavigueur.
A Flexible Approach for Scheduling Parametric Data Flow Applications on Sthorm, March 2013, Poster at Workshop on Platform 2012 / STHORM embedded many-core acceleration, DATE 2013.
http://hal.inria.fr/hal-00923669

 	[30]

 	B. Jeannet, P. Schrammel, S. Sankaranarayanan.
Abstract Acceleration of General Linear Loops, November 2013, Extended version of the POPL'14 paper.
http://hal.inria.fr/hal-00924264

 References in notes

 	[31]

 	Automotive Open System Architecture, 2003.
http://www.autosar.org

 	[32]

 	G. Leavens, M. Sitaraman (editors)
Foundations of Component-Based Systems, Cambridge University Press, 2000.

 	[33]

 	Z. Liu, H. Jifeng (editors)
Mathematical Frameworks for Component Software - Models for Analysis and Synthesis, World Scientific, 2006.

 	[34]

 	ARTEMIS Joint Undertaking.
ARTEMIS Strategic Research Agenda, 2011.

 	[35]

 	S. Andalam, P. Roop, A. Girault.
Predictable Multithreading of Embedded Applications Using PRET-C, in: International Conference on Formal Methods and Models for Codesign, MEMOCODE'10, Grenoble, France, IEEE, July 2010, pp. 159–168.

 	[36]

 	S. Andalam, P. Roop, A. Girault.
Pruning Infeasible Paths for Tight WCRT Analysis of Synchronous Programs, in: Design Automation and Test in Europe Conference, DATE'11, Grenoble, France, April 2011.

 	[37]

 	I. Assayad, A. Girault, H. Kalla.
Tradeoff Exploration between Reliability, Power Consumption, and Execution Time, in: International Conference on Computer Safety, Reliability and Security, SAFECOMP'11, Napoli, Italy, LNCS, Springer-Verlag, September 2011, vol. 6894, pp. 437–451.

 	[38]

 	I. Assayad, A. Girault, H. Kalla.
Scheduling of Real-Time Embedded Systems under Reliability and Power Constraints, in: International Conference on Complex Systems, ICCS'12, Agadir, Morocco, IEEE, November 2012.

 	[39]

 	P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel, J. Reineke, C. Rochange, M. Sebatian, R. von Hanxleden, R. Wilhelm, W. Yi.
Building Timing Predictable Embedded Systems, in: ACM Trans. Embedd. Comput. Syst., 2014, To appear.

 	[40]

 	E. Bainomugisha, A. Carreton, T. Van Cutsem, S. Mostinckx, W. De Meuter.
A Survey on Reactive Programming, in: ACM Computing Surveys, 2013, vol. 45, no 4.

 	[41]

 	A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis.
Rigorous Component-Based System Design Using the BIP Framework, in: IEEE Software, 2011, vol. 28, no 3.

 	[42]

 	A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, R. de Simone.
The synchronous languages 12 years later, in: Proceedings of the IEEE, 2003, vol. 91, no 1.

 	[43]

 	A. Benveniste, J. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-Vicentelli, T. Henzinger, K. Larsen.
Contracts for the Design of Embedded Systems Part I: Methodology and Use Cases, in: Proceedings of the IEEE, 2012.

 	[44]

 	A. Benveniste, J. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-Vicentelli, T. Henzinger, K. Larsen.
Contracts for the Design of Embedded Systems Part II: Theory, in: Proceedings of the IEEE, 2012.

 	[45]

 	G. Bernat, A. Burns, A. Llamosí.
Weakly Hard Real-Time Systems, in: IEEE Transactions on Computers, 2001, vol. 50, no 4, pp. 308-321.
http://doi.ieeecomputersociety.org/10.1109/12.919277

 	[46]

 	B. Bonakdarpour, S. S. Kulkarni, F. Abujarad.
Symbolic synthesis of masking fault-tolerant distributed programs, in: Distributed Computing, 2012, vol. 25, no 1.

 	[47]

 	S. Borkar.
Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation, in: IEEE Micro, 2005, vol. 25, no 6.

 	[48]

 	R. Bruni, H. C. Melgratti, U. Montanari.
Theoretical foundations for compensations in flow composition languages, in: 32nd ACM Symposium on Principles of Programming Languages (POPL), ACM, 2005.

 	[49]

 	P. Caspi, M. Pouzet.
Synchronous Kahn Networks, in: ACM SIGPLAN International Conference on Functional Programming, ICFP'96, Philadelphia (PA), USA, ACM Press, May 1996.

 	[50]

 	T. Chothia, D. Duggan.
Abstractions for fault-tolerant global computing, in: Theor. Comput. Sci., 2004, vol. 322, no 3.

 	[51]

 	P. Cousot, R. Cousot.
Abstract Interpretation and Application to Logic Programs, in: Journal of Logic Programming, 1992, vol. 13, no 2–3, pp. 103–179.

 	[52]

 	J. Cámara, A. Girard, G. Goessler.
Safety Controller Synthesis for Switched Systems Using Multi-Scale Symbolic Models, in: CDC-ECC, IEEE, 2011, pp. 520-525.

 	[53]

 	R. I. Davis, A. Burns.
A Survey of Hard Real-Time Scheduling for Multiprocessor Systems, in: ACM Computing Surveys, 2011, vol. 43, no 4.

 	[54]

 	V. De Florio, C. Blondia.
A Survey of Linguistic Structures for Application-Level Fault-Tolerance, in: ACM Computing Surveys, 2008, vol. 40, no 2.

 	[55]

 	G. Delaval.
Répartition modulaire de programmes synchrones, INPG, Inria Grenoble Rhône-Alpes, July 2008, PhD thesis.

 	[56]

 	G. Delaval, A. Girault, M. Pouzet.
A Type System for the Automatic Distribution of Higher-order Synchronous Dataflow Programs, in: International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES'08, Tucson (AZ), USA, ACM, June 2008, pp. 101–110.
ftp://ftp.inrialpes.fr/pub/bip/pub/girault/Publications/Lctes08/main.pdf

 	[57]

 	S. A. Edwards, E. A. Lee.
The Case for the Precision Timed (PRET) Machine, in: 44th Design Automation Conference (DAC), IEEE, 2007.

 	[58]

 	J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. Xiong.
Taming heterogeneity - the Ptolemy approach, in: Proceedings of the IEEE, 2003, vol. 91, no 1.

 	[59]

 	J. Field, C. A. Varela.
Transactors: a programming model for maintaining globally consistent distributed state in unreliable environments, in: 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, 2005.

 	[60]

 	P. Fradet, A. Girault, P. Poplavko.
SPDF: A Schedulable Parametric Data-Flow MoC, in: Design Automation and Test in Europe, DATE'12, Dresden, Germany, 2012.
http://hal.inria.fr/hal-00744376

 	[61]

 	A. Girard, G. Pappas.
Approximation metrics for discrete and continuous systems, in: IEEE Trans. on Automatic Control, 2007, vol. 52, no 5, pp. 782–798.

 	[62]

 	A. Girault.
System-Level Design of Fault-Tolerant Embedded Systems, October 2006, vol. 67, pp. 25–26.

 	[63]

 	A. Girault, H. Kalla, M. Sighireanu, Y. Sorel.
An Algorithm for Automatically Obtaining Distributed and Fault-Tolerant Static Schedules, in: International Conference on Dependable Systems and Networks, DSN'03, San-Francisco (CA), USA, IEEE, June 2003.

 	[64]

 	A. Girault, H. Kalla, Y. Sorel.
Transient Processor/Bus Fault Tolerance for Embedded Systems, in: IFIP Working Conference on Distributed and Parallel Embedded Systems, DIPES'06, Braga, Portugal, Springer, October 2006, pp. 135–144.

 	[65]

 	D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin, A. Meixner, A. Biswas, X. Vera.
Architectures for Online Error Detection and Recovery in Multicore Processors, in: Design Automation and Test in Europe (DATE), 2011.

 	[66]

 	D. Gopan, T. Reps.
Guided Static Analysis, in: Static Analysis Symposium, SAS'07, LNCS, August 2007, vol. 4634, pp. 349–365.
http://dx.doi.org/10.1007/978-3-540-74061-2_22

 	[67]

 	F. C. Gärtner.
Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environments, in: ACM Computing Surveys, 1999, vol. 31, no 1.

 	[68]

 	S. Haar, E. Fabre.
Diagnosis with Petri Net Unfoldings, in: Control of Discrete-Event Systems, Lecture Notes in Control and Information Sciences, Springer, 2013, vol. 433, chap. 15.

 	[69]

 	J. Halpern, J. Pearl.
Causes and Explanations: A Structural-Model Approach. Part I: Causes, in: British Journal for the Philosophy of Science, 2005, vol. 56, no 4, pp. 843-887.

 	[70]

 	D. Harmanci, V. Gramoli, P. Felber.
Atomic Boxes: Coordinated Exception Handling with Transactional Memory, in: 25th European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science, 2011, vol. 6813.

 	[71]

 	T. Henzinger, J. Sifakis.
The Embedded Systems Design Challenge, in: Formal Methods 2006, Lecture Notes in Computer Science, Springer, 2006, vol. 4085.

 	[72]

 	I. Hwang, S. Kim, Y. Kim, C. E. Seah.
A Survey of Fault Detection, Isolation and Reconfiguration Methods, in: IEEE Trans. on Control Systems Technology, 2010, vol. 18, no 3.

 	[73]

 	V. Izosimov, P. Pop, P. Eles, Z. Peng.
Scheduling and Optimization of Fault-Tolerant Embedded Systems with Transparency/Performance Trade-Offs, in: ACM Trans. Embedded Comput. Syst., 2012, vol. 11, no 3, 61 p.

 	[74]

 	R. Küsters, T. Truderung, A. Vogt.
Accountability: definition and relationship to verifiability, in: ACM Conference on Computer and Communications Security, 2010, pp. 526-535.

 	[75]

 	I. Lanese, C. A. Mezzina, J.-B. Stefani.
Reversing Higher-Order Pi, in: 21th International Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science, Springer, 2010, vol. 6269.

 	[76]

 	E. A. Lee, A. L. Sangiovanni-Vincentelli.
Component-based design for the future, in: Design, Automation and Test in Europe, DATE 2011, IEEE, 2011.

 	[77]

 	Y. Lee, A. Zomaya.
Minimizing Energy Consumption for Precedence-Constrained Applications Using Dynamic Voltage Scaling, in: IEEE/ACM International Symposium on Cluster Computing and the Grid, SCCG'09, 2009.

 	[78]

 	P. Menzies.
Counterfactual Theories of Causation, in: Stanford Encyclopedia of Philosophy, E. Zalta (editor), Stanford University, 2009.
http://plato.stanford.edu/entries/causation-counterfactual

 	[79]

 	M. Moore.
Causation and Responsibility, Oxford, 1999.

 	[80]

 	H. Negi, T. Mitra, A. Roychoudhury.
Accurate Estimation of Cache-Related Preemption Delay, in: International Conference on Hardware-Software Codesign and System Synthesis, CODES+ISSS'03, ACM, 2003, pp. 201–206.

 	[81]

 	J. Pearl.
Causal inference in statistics: An overview, in: Statistics Surveys, 2009, vol. 3, pp. 96-146.

 	[82]

 	P. Ramadge, W. Wonham.
Supervisory Control of a Class of Discrete Event Processes, in: SIAM Journal on control and optimization, January 1987, vol. 25, no 1, pp. 206–230.

 	[83]

 	G. Ramalingam, K. Vaswani.
Fault tolerance via idempotence, in: 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, 2013.

 	[84]

 	B. Randell.
System Structure for Software Fault Tolerance, in: IEEE Trans. on Software Engineering, 1975, vol. 1, no 2.

 	[85]

 	J. Reineke, D. Grund, C. Berg, R. Wilhelm.
Timing Predictability of Cache Replacement Policies, in: Real-Time Syst., November 2007, vol. 37, no 2, pp. 99–122.
http://rw4.cs.uni-saarland.de/~grund/papers/rts07-predictability.pdf

 	[86]

 	J. Rushby.
Partitioning for Safety and Security: Requirements, Mechanisms, and Assurance, NASA Langley Research Center, 1999, no CR-1999-209347.

 	[87]

 	P. Tabuada.
Verification and Control of Hybrid Systems - A Symbolic Approach, Springer, 2009.

 	[88]

 	H. Theiling, C. Ferdinand, R. Wilhelm.
Fast and Precise WCET Prediction by Separate Cache and Path Analyses, in: Real-Time Syst., May 2000, vol. 18, no 2/3, pp. 157–179.

 	[89]

 	D. Walker, L. W. Mackey, J. Ligatti, G. A. Reis, D. I. August.
Static typing for a faulty lambda calculus, in: 11th ACM SIGPLAN International Conference on Functional Programming (ICFP), ACM, 2006.

 	[90]

 	R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P. Puschner, J. Staschulat, P. Stenström.
The Determination of Worst-Case Execution Times — Overview of the Methods and Survey of Tools, in: ACM Trans. Embedd. Comput. Syst., April 2008, vol. 7, no 3.

 OEBPS/uid79.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR Projects

 PiCoq (ANR project)

 Participants :
	Barbara Petit, Jean-Bernard Stefani.

 The goal of the PiCoq project is to develop an environment for the formal verification of properties of distributed, component-based programs. The project's approach lies at the interface between two research areas: concurrency theory and proof assistants. Achieving this goal relies on three scientific advances, which the project intends to address:

 		
 Finding mathematical frameworks that ease modular reasoning about concurrent and distributed systems: due to their large size and complex interactions, distributed systems cannot be analysed in a global way. They have to be decomposed into modular components, whose individual behaviour can be understood.

 		
 Improving existing proof techniques for distributed/modular systems: while behavioural theories of first-order concurrent languages are well understood, this is not the case for higher-order ones. We also need to generalise well-known modular techniques that have been developed for first-order languages to facilitate formalisation in a proof assistant, where source code redundancies should be avoided.

 		
 Defining core calculi that both reflect concrete practice in distributed component programming and enjoy nice properties w.r.t. behavioural equivalences.

 The project partners include Inria (Celtique and Spades teams), LIP (Plume team), and Université de Savoie.
The project runs from November 2010 to October 2014.

 REVER (ANR project)

 Participants :
	Barbara Petit, Jean-Bernard Stefani.

 The REVER project aims to develop semantically well-founded and composable abstractions for dependable distributed computing on the basis of a reversible programming model, where reversibility means the ability to undo any program execution and to revert it to a state consistent with the past execution. The critical assumption behind REVER is that by combining reversibility with notions of compensation and modularity, one can develop systematic and composable abstractions for dependable programming.

 The REVER work program is articulated around three major objectives:

 		
 To investigate the semantics of reversible concurrent processes.

 		
 To study the combination of reversibility with notions of compensation, isolation and modularity in a concurrent and
distributed setting.

 		
 To investigate how to support these features in a practical (typically, object-oriented and functional) programming
language design.

 The project partners are Inria (Focus and Spades teams), Université de Paris VII (PPS laboratory), and CEA (List laboratory).
The project runs from December 2011 to November 2015.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid89.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams

 RIPPES

 		
 Title: RIgorous Programming of Predictable Embedded Systems

 		
 Inria principal investigator: Alain Girault

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 University of California Berkeley (USA) – EECS Department,
Ptolemy group – Prof. Edward Lee.

 		
 University of Auckland (New Zealand) – ECE Department –
Prof. Partha Roop.

 		
 Duration: January 2013 – December 2015

 		
 See also: https://wiki.inria.fr/rippes/Main_Page

 		
 The Rippes associated team gathers the SPADES team from Inria
Grenoble, the Ptolemy group from UC Berkeley (EECS
Department), and the Embedded Systems Research group from U. of
Auckland (ECE Department). The planned research seeks to reconcile
two contradictory objectives of embedded systems, more
predictability and more adaptivity. We propose to address these
issues by exploring two complementary research directions: (1) by
starting from a classical concurrent C or Java programming language
and enhancing it to provide more predictability, and (2) by
starting from a very predictable model of computation (SDF) and
enhancing it to provide more adaptivity.

OEBPS/IMG/bertrand1.png
Prosram
i
Tront-ont

¥

Semante Eaations

ya

[

[—

bl i

| AR

Soiver] = it
= i congrence

T e sty Sorme skot et Jomes o el A, il ndered

B —

OEBPS/IMG/bertrand2.png

OEBPS/IMG/iTunesArtwork.png
Activity Report 2013
Project-Team Spades

Sound Programming of
Adaptive Dependable
Embedded Systems

OEBPS/uid100.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits of International Scientists

 		
 January and February 2013: Ismail Assayad
(Ass. Prof. U. Casablanca) visited Inria Grenoble to work on
multi-criteria optimisation and scheduling for embedded system.

 		
 March 2013: Eugene Yip (PhD student, U. Auckland) visited Inria
Grenoble to work on the semantics of the ForeC PRET programming
language (Rippes associated team).

 		
 March 2013: Hokeun Kim (PhD student, UC Berkeley) visited Inria
Grenoble to work on the Rippes associated team.

 		
 March 2013: Partha Roop (Senior Lecturer, U. Auckland) visited
Inria Grenoble to work on the ForeC PRET programming language
(Rippes associated team).

 		
 July 2013: Eugene Yip (PhD student, U. Auckland) visited Inria
Grenoble to work on the semantics of the ForeC PRET programming
language (Rippes associated team).

 		
 July 2013: Matthew Kuo (PhD student, U. Auckland) visited Inria
Grenoble to work on tickpad memories for PRET programs (Rippes associated team).

 		
 December 2013: Chris Shaver (PhD student, UC Berkeley) visited
Inria Grenoble to work on parametric data-flow models of computation
(Rippes associated team).

 Visits to International Teams

 		
 Vagelis Bebelis visited the University of California Berkeley
(USA) in October 2013 to work on a parametric dataflow models of
computation and on its implementation within the Ptolemy II
framework.

 Inria International Partners

 Informal International Partners

 We have a long lasting informal collaboration with Prof. Ivan Lanese
(U. Bologna, Italy) on component programming and reversability. He
visits the team regularly.

 We have a long lasting informal collaboration with Prof. Ismail
Assayad (U. Casablanca, Morocco) and Prof. Hamoudi Kalla (U. Batna,
Algeria) on fault-tolerant embedded systems, multi-criteria
optimization, reliability, and power consumption. They both visit the
team regularly.

