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        Scientific challenges, expected impact

        Computer-algebra systems have been advertised for decades as software
for “doing mathematics by computer” [66] . For
instance, computer-algebra libraries can uniformly generate a corpus
of mathematical properties about special functions so as to display
them on an interactive website. This was recently shown by the
computer-algebra component of the
team  [22] . Such
an automated generation significantly increases the reliability of the
mathematical corpus, in comparison to the content of existing static
authoritative handbooks. The importance of the validity of these
contents can be measured by the very wide audience that such handbooks
have had, to the point that a book
like  [17]  remains one of the most cited
mathematical publications ever and has motivated the 10-year-long
project of writing its
successor  [19] .
However, can the mathematics produced “by computer” be considered as
true mathematics? More specifically, whereas it is nowadays
well established that the computer helps in discovering and observing
new mathematical phenomenons, can the mathematical statements produced
with the aid of the computer and the mathematical results computed by
it be accepted as valid mathematics, that is, as having the status of
mathematical proofs?
Beyond the reported weaknesses or
controversial design choices of mainstream computer-algebra systems,
the issue is more of an epistemological nature. It will not find its
solution even in the advent of the ultimate computer-algebra system:
the social process of peer-reviewing just falls short of evaluating
the results produced by computers, as reported by
Th. Hales  [45]  after the publication of his proof of
the Kepler Conjecture about sphere packing.

        A natural answer to this deadlock is to move to an alternative kind of
mathematical software and to use a proof assistant to check the
correctness of the desired properties or formulas. The recent success
of large-scale formalization projects, like the Four-Color Theorem of
graph theory  [40] , the above-mentioned Kepler
Conjecture  [45] , and, very recently, the Odd Order
Theorem of group theory(http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/ ),
have increased the understanding of the appropriate
software-engineering methods for this peculiar kind of programming.
For computer algebra, this legitimates a move to proof assistants now.

        The Dynamic Dictionary of Mathematical Functions(http://ddmf.msr-inria.inria.fr/ )
(DDMF)  [22]  is
an online computer-generated handbook of mathematical functions that
ambitions to serve as a reference for a broad range of applications.
This software was developed by the computer-algebra component of the
team as a project(http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/ )
of the MSR–Inria  Joint Centre. It bases on a
library for the computer-algebra system Maple, Algolib(http://algo.inria.fr/libraries/ ), whose development
started 20 years ago in ÉPI Algorithms(http://algo.inria.fr/ ). As suggested by the constant
questioning of certainty by new potential users, DDMF deserves a
formal guarantee of correctness of its content, on a level that proof
assistants can provide. Fortunately, the maturity of
special-functions algorithms in Algolib makes DDMF a stepping stone
for such a formalization: it provides a well-understood and unified
algorithmic treatment, without which a formal certification would
simply be unreachable.

        The formal-proofs component of the team emanates from another project
of the MSR–Inria  Joint Centre, namely the Mathematical Components
project (MathComp)(http://www.msr-inria.fr/projects/mathematical-components/ ).
Over the last six years, the MathComp group endeavoured to develop
computer-checked libraries of formalized mathematics, using the
Coq proof assistant  [62] . The methodological
aim of the project was to understand the design methods leading to
successful large-scale formalizations. The work culminated with the recent
completion of a formal proof of the Odd Order Theorem, resulting in
the largest corpus of algebraic theories ever machine-checked with a
proof assistant and a whole methodology
to effectively combine these components in order to tackle complex
formalizations. In particular, these libraries provide a good number of the many
algebraic objects needed to reason about special functions and their
properties, like rational numbers, iterated sums, polynomials, and a
rich hierarchy of algebraic structures.

        The present team takes benefit from these recent advances to
explore the formal certification of the results collected in DDMF.
The aim of this project is to concentrate the formalization
effort on this delimited area, building on DDMF and the Algolib library, as
well as on the Coq system  [62]  and on the libraries
developed by MathComp.

        
        Use Computer Algebra but Convince Users beyond Reasonable Doubt

        The following few opinions on computer algebra are, we believe,
typical of computer-algebra users' doubts and difficulties when using
computer-algebra systems:

        
          	
             Fredrik Johansson, expert in the multi-precision numerical evaluation
of special functions and in fast computer-algebra algorithms, writes
on his blog  [51] : “Mathematica is great for
cross-checking numerical values, but it's not unusual to run into
bugs, so triple checking is a good habit.” One answer in the
discussion is: “We can claim that Mathematica has [...] an
impossible to understand semantics: If Mathematica's output is
wrong then change the input. If you don't like the answer, change the
question. That seems to be the philosophy behind.”

          

          	
             A professor's advice to students  [58]  on using Maple: “You
may wish to use Maple to check your homework answers. If you do then
keep in mind that Maple sometimes gives the wrong answer,
usually because you asked incorrectly, or because of niceties of
analytic continuation. You may even be bitten by an occasional
Maple bug, though that has become fairly unlikely. Even with as
powerful a tool as Maple you will still have to devise your own
checks and you will still have to think.”

          

          	
             Jacques Carette, former head of the maths group at Maplesoft, about a
bug  [18]  when asking Maple to take the limit
limit(f(n) * exp(-n), n = infinity)  for an undetermined
function f : “The problem is that there is an implicit
assumption in the implementation that unknown functions do not
`grow too fast'.”

          

        

        As explained by the expert views above, complaints by computer-algebra
users are often due to their misunderstanding of what a
computer-algebra systems is, namely a purely syntactic tool for
calculations, that the user must complement with a semantics. Still,
robustness and consistency of computer-algebra systems are not ensured
as of today, and, whatever Zeilberger may provocatively say in his
opinion 94  [67] , a
firmer logical foundation is necessary. Indeed, the fact is that many
“bugs” in a computer-algebra system cannot be fixed by just the usual debugging method of
tracking down the faulty lines in the code. It is sort of “by
design”: assumptions that too often remain implicit are really needed
by the design of symbolic algorithms and cannot easily be expressed in
the programming languages used in computer algebra
A similar certification initiative has
already been undertaken in the domain of numerical computing, in a
successful manner  [49] , [25] . It is natural to
undertake a similar approach for computer algebra.

        
        Make Computer Algebra and Formal Proofs Help One Another

        Some of the mathematical objects that interest us are still totally
untouched by formalization.
When implementing them and their theory inside a proof assistant, we
have to deal with the pervasive discrepancy between the published
literature and the actual implementation of computer-algebra
algorithms. Interestingly, this forces us to clarify our
computer-algebraic view on them, and possibly make us discover holes
lurking in published (human) proofs. We are therefore convinced
that the close interaction of researchers from both fields, which is
what we do in this team, is a strong asset.

        For a concrete example, the core of Zeilberger's creative telescoping
manipulates rational functions up to simplifications. In summation
applications, checking that these simplifications do not hide
problematic divisions by 0 is most often left to the reader. In the
same vein, in the case of integrals, the published algorithms do not
check the convergence of all integrals, especially in intermediate
calculations. Such checks are again left to the readers. In general,
we expect to revisit the existing algorithms to ensure that they are
meaningful for genuine mathematical sequences or functions, and not
only for algebraic idealizations.

        Another big challenge in this project originates in
the scientific difference between computer algebra and formal proofs.
Computer algebra seeks speed of calculation on concrete
instances of algebraic data structures (polynomials, matrices,
etc). For their part, formal proofs manipulate
symbolic expressions in terms of abstract variables
understood to represent generic elements of algebraic data
structures. In view of this, a continuous challenge is
to develop the right, hybrid thinking attitude that is able to
effectively manage concrete and abstract values simultaneously,
alternatively computing and proving with them.

        
        Experimental Mathematics with Special functions

        Applications in combinatorics and mathematical physics frequently involve
equations of so high orders and so large sizes, that computing or even storing
all their coefficients is impossible on existing computers. Making this
tractable is an extraordinary challenge. The approach we believe in is
to design algorithms of good, ideally quasi-optimal, complexity in order to
extract precisely the required data from the equations, while avoiding the
computationally intractable task of completely expanding them into an explicit
representation.

        Typical applications with expected high impact are the automatic
discovery and proof of results in combinatorics and mathematical physics for
which human proofs are currently unattainable.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Overall Objectives

        Research axes

        The implementation of certified symbolic computations on
special functions in the Coq proof assistant requires both
investigating new formalization techniques and renewing the
traditional computer-algebra viewpoint on these standard objects.
Large mathematical objects typical of computer algebra occur
during formalization, which also requires us to improve the
efficiency and ergonomics of Coq.
In order to feed this interdisciplinary activity with new motivating
problems, we additionally pursue a research activity oriented towards
experimental mathematics in application domains that involve special
functions. We expect these applications to pose new algorithmic
challenges to computer algebra, which in turn will deserve a
formal-certification effort. Finally, DDMF
is the motivation and the showcase of our progress on the
certification of these computations. While striving to provide a
formal guarantee of the correctness of the information it displays,
we remain keen on enriching its mathematical content
by developing new computer-algebra algorithms.

        
        Computer Algebra Certified by the Coq System

        Our formalization effort consists in organizing a cooperation
between a computer-algebra system and a proof assistant. The
computer-algebra system is used to produce efficiently algebraic data,
which are later processed by the proof assistant. The
success of this cooperation relies on three main ingredients.

        
        Libraries of formalized mathematics

        The appropriate framework for the study of efficient algorithms for
special functions is algebraic.
Representing algebraic theories as Coq formal libraries
takes benefit from the methodology emerging from the success of
ambitious projects like the formal proof of a major classification
result in finite-group theory (the Odd Order
Theorem)  [38] .

        Yet, a number of the objects we need to formalize in the
present context has never been investigated using any interactive
proof assistant, despite being considered as commonplaces in computer
algebra. For instance there is up to our knowledge no
available formalization of the theory of non-commutative rings,
of the algorithmic theory of
special-functions closures, or of the asymptotic study of special
functions. We expect our future formal libraries
to prove broadly reusable in later formalizations of seemingly
unrelated theories.

        
        Manipulation of larger algebraic data in a proof assistant

        Another peculiarity of the mathematical objects we are going to manipulate
with the Coq system is their size. In order to provide a formal guarantee
on the data displayed by DDMF, two related axes of research have to be
pursued.
First, efficient algorithms dealing with these large objects have
to be programmed and run in Coq.
Recent evolutions of the Coq system to improve the efficiency of
its internal computations  [20] , [23]  make this objective
reachable. Still, how to combine the aforementioned formalization
methodology with these cutting-edge evolutions of Coq remains
one of the prospective aspects of our project.
A second need is to help users interactively
manipulate large expressions occurring in their conjectures, an objective
for which little has been done so far. To address this need,
we work on improving the ergonomics of the system
in two ways: first, ameliorating the reactivity of Coq in its interaction
with the user; second, designing and implementing extensions of its
interface to ease our formalization activity. We expect the outcome of
these lines of research to be useful to a wider audience, interested in
manipulating large formulas on topics possibly unrelated to special functions.

        
        Formal-proof-producing normalization algorithms

        Our algorithm certifications inside Coq intends to simulate
well-identified components of our Maple packages, possibly by
reproducing them in Coq. It would however not have been judicious to
re-implement them inside Coq, since for a number of its
components, the output of the algorithm is more easily checked than
found, like for instance the solving of a linear system.
Rather, we delegate the discovery of the solutions to an
external, untrusted oracle like Maple. Trusted computations inside
Coq then formally validate the correctness of the a priori
untrusted output. More often than not, this consists in
implementing and executing normalization procedures inside
Coq. A challenge of this automation is to make sure they go to scale
while remaining efficient, which requires a Coq version of
non-trivial computer-algebra algorithms. A good example we expect to
work on is a non-commutative generalization of the normalization
procedure for elements of rings  [44] .

        
        Better Symbolic Computations with Special Functions

        Generally speaking, we design algorithms
for manipulating special functions symbolically,
whether univariate or with parameters, and for extracting
algorithmically any kind of algebraic and analytic information from
them, notably asymptotic.
Beyond this, the heart of our research is concerned with
parametrised definite summations and integrations. These very
expressive operations have far-ranging applications, for instance, to
the computation of integral transforms (Laplace, Fourier) or to the
solution of combinatorial problems expressed via integrals
(coefficient extractions, diagonals). The algorithms that we
design for them need to really operate on the level of linear
functional systems, differential and of recurrence.

        
        Special-function integration and summation

        Our long-term goal is to design fast algorithms for a general method
for special-function integration (creative telescoping), and
make them applicable to general special-function inputs. Still, our
strategy is to proceed with simpler, more specific classes first
(rational functions, then algebraic functions, hyperexponential
functions, D-finite functions, non-D-finite functions; two variables,
then many variables); as well, we isolate analytic questions by
first considering types of integration with a more purely algebraic
flavor (constant terms, algebraic residues, diagonals of
combinatorics). In particular, we expect to extend our recent new
approach  [28]  to more general classes
(algebraic with nested radicals, for example). Homologous problems
for summation will be addressed as well.

        
        Applications to experimental mathematics

        The algorithms of good complexity mentioned in the previous paragraphs
naturally help us deal with applications that involve equations of high orders
and large sizes.

        With regard to combinatorics, we expect to advance the algorithmic
classification of combinatorial classes like walks and urns. Here,
the goal is to determine if enumerating generating series are
rational, algebraic, or D-finite, for example.
Physical problems whose modelling involves special-function integrals
comprise the study of models of statistical mechanics, like the Ising
model for ferro-magnetism, or questions related to Hamiltonian systems.

        Number theory is another promising domain of applications. Here, we
attempt an experimental approach to the automated certification of integrality
of the coefficients of mirror maps for Calabi–Yau manifolds. This could also
involve the discovery of new Calabi–Yau operators and the certification of
the existing ones. We also plan to algorithmically discover and certify new
recurrences yielding good approximants needed in irrationality proofs.

        It is to be noted that in all of these application domains, we would
so far use general algorithms, as was done in earlier works of ours
[27] , [31] , [30] .
To push the scale of applications further, we plan to consider in each
case the specifics of the application domain to tailor our algorithms.

        
        Interactive and Certified Mathematical Web Sites

        In continuation of our past project of an encyclopedia at
http://ddmf.msr-inria.inria.fr/ ,
we ambition to
both enrich and certify the formulas
about the special functions that we provide online. For each
function, our website shows its essential properties and the
mathematical objects attached to it, which are often infinite in
nature (numerical evaluations, asymptotic expansions). An interactive
presentation has the advantage of allowing for
adaption to the user's needs. More advanced content will broaden the
encyclopedia:

        
          	
             the algorithmic discussion of equations with parameters, leading
to certified automatic case analysis based on arithmetic properties
of the parameters;

          

          	
             lists of summation and integral formulas involving special
functions, including validity conditions on the parameters;

          

          	
             guaranteed large-precision numerical evaluations.
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        This year, we complete a first work emblematic of the
interdisciplinary activity of the team: a computer-algebra based
formal proof of irrationality of the mathematical constant ζ(3),
that is, the evaluation at 3 of the Riemann zeta function of number
theory. This motivated collateral enhancements of libraries for the
interactive theorem prover Coq. This is described in more details in
the new results.
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        Studying special functions by computer algebra

        Computer algebra manipulates symbolic representations of exact
mathematical objects in a computer, in order to perform computations
and operations like simplifying expressions and solving equations for
“closed-form expressions”. The manipulations are often fundamentally
of algebraic nature, even when the ultimate goal is analytic. The
issue of efficiency is a particular one in computer algebra, owing to
the extreme swell of the intermediate values during calculations.

        Our view on the domain is that research on the algorithmic
manipulation of special functions is anchored between two paradigms:

        
          	
             adopting linear differential equations as the right data
structure for special functions,

          

          	
             designing efficient algorithms in a complexity-driven way.

          

        

        It aims at four kinds of algorithmic goals:

        
          	
             algorithms combining functions,

          

          	
             functional equations solving,

          

          	
             multi-precision numerical evaluations,

          

          	
             guessing heuristics.

          

        

        This interacts with three domains of research:

        
          	
             computer algebra, meant as the search for quasi-optimal
algorithms for exact algebraic objects,

          

          	
             symbolic analysis/algebraic analysis;

          

          	
             experimental mathematics (combinatorics, mathematical physics,
...).

          

        

        This view is made explicit in the present section.

        
        Equations as a data structure

        Numerous special functions satisfy linear differential and/or
recurrence equations. Under a mild technical condition, the existence
of such equations induces a finiteness property that makes the main
properties of the functions decidable. We thus speak of
D-finite functions. For example, 60 % of the chapters in the
handbook  [17]  describe D-finite functions.
In addition, the class is closed under a rich set of algebraic operations.
This makes linear functional equations just the right data structure
to encode and manipulate special functions. The power of this
representation was observed in the early
1990s  [68] , leading to the design of many
algorithms in computer algebra.
Both on the theoretical and algorithmic sides, the study of D-finite
functions shares much with neighbouring mathematical domains:
differential algebra,
D-module theory,
differential Galois theory,
well as their counterparts for recurrence equations.

        
        Algorithms combining functions

        Differential/recurrence equations that define special functions can be
recombined  [68]  to define: additions and
products of special functions; compositions of special functions;
integrals and sums involving special functions. Zeilberger's fast
algorithm for obtaining recurrences satisfied by parametrised binomial
sums was developed in the early 1990s already  [69] .
It is the basis of all modern definite summation and integration
algorithms. The theory was made fully rigorous and algorithmic in
later works, mostly by a group in Risc  (Linz, Austria) and by members
of the
team  [57] , [65] , [34] , [32] , [33] , [52] .
The past ÉPI Algorithms contributed several implementations
(gfun  [60] ,
Mgfun  [34] ).

        
        Solving functional equations

        Encoding special functions as defining linear functional equations
postpones some of the difficulty of the problems to a delayed solving
of equations. But at the same time, solving (for special classes of
functions) is a sub-task of many algorithms on special functions,
especially so when solving in terms of polynomial or rational
functions.
A lot of work has been done in this direction in the 1990s;
more intensively since the 2000s, solving differential and recurrence
equations in terms of special functions has also been investigated.

        
        Multi-precision numerical evaluation

        A major conceptual and algorithmic difference exists for numerical
calculations between data structures that fit on a machine word and
data structures of arbitrary length, that is, multi-precision
arithmetic. When multi-precision floating-point numbers became
available, early works on the evaluation of special functions were
just promising that “most” digits in the output were correct, and
performed by heuristically increasing precision during intermediate
calculations, without intended rigour. The original theory
has evolved in a
twofold way since the 1990s:
by making computable all constants hidden in asymptotic
approximations, it became possible to guarantee a prescribed
absolute precision; by employing state-of-the-art algorithms on
polynomials, matrices, etc, it became possible to have evaluation
algorithms in a time complexity that is not more than a few times the
output size. On the implementation side, several original works
exist, one of which (NumGfun  [56] ) is
used in our DDMF.

        
        Guessing heuristics

        “Differential approximation”, or “Guessing”, is an operation to get an ODE
likely to be satisfied by a given approximate series expansion of an unknown
function. This has been used at least since the 1970s
and is a key stone in spectacular applications in experimental
mathematics  [31] . All this is based
on subtle algorithms for Hermite–Padé approximants  [21] . Moreover,
guessing can at times be complemented by proven quantitative results that turn
the heuristics into an algorithm  [29] .
This is a promising algorithmic approach that deserves more attention than it
has received so far.

        
        Complexity-driven design of algorithms

        The main concern of computer algebra has long been to prove the feasibility of
a given problem, that is, to show the existence of an algorithmic solution for
it. However, with the advent of faster and faster computers, complexity
results have ceased to be of theoretical interest only. Nowadays, a large
track of works in computer algebra is interested in developing fast
algorithms, with time complexity as close as possible to linear in their
output size. After most of the more pervasive objects like integers,
polynomials, and matrices have been endowed with fast algorithms for the main
operations on them  [39] , the community, including ourselves, started to
turn its attention to differential and recurrence objects in the
2000s.
The subject is still not as developed as in the commutative case, and a major
challenge remains to understand the combinatorics behind summation and
integration. On the methodological side, several paradigms occur repeatedly in
fast algorithms: “divide and conquer” to balance calculations, “evaluation and
interpolation” to avoid intermediate swell of data, etc.  [26] .

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Research Program

        Trusted computer-algebra calculations

        
        Encyclopedias

        Handbooks collecting mathematical properties aim at serving as
reference, therefore trusted, documents. The decision of
several authors or maintainers of such knowledge bases to move from paper
books  [17] , [19] , [61]  to websites and wikis (for instance
http://dlmf.nist.gov/ 
for special functions or http://oeis.org/  for integer sequences)
allows for a more collaborative effort in proof reading.
Another step toward further confidence is to manage
to generate the content of an encyclopedia by
computer-algebra programs, as is the case with the Wolfram Functions
Site (http://functions.wolfram.com/ ) or
DDMF (http://ddmf.msr-inria.inria.fr/ ).
Yet, due to the lingering doubts about computer-algebra systems,
some encyclopedias propose both cross-checking by different
systems and handwritten companion paper proofs of their
content (http://129.81.170.14/~vhm/Table.html ).
As of today, there is no encyclopedia certified with formal
proofs.

        
        Computer algebra and symbolic logic

        Several attempts have been
made in order to extend existing computer-algebra systems with
symbolic manipulations of logical formulas.
Yet, these works are more about extending the
expressivity of computer-algebra systems than about improving the
standards of correctness and
semantics of the systems. Conversely, several projects have addressed
the communication of a proof system with a computer-algebra
system, resulting in an increased
automation available in the proof
system, to the price of the uncertainty of the computations
performed by this oracle.

        
        Certifying systems for computer algebra

        More ambitious projects have
tried to design a
new computer-algebra system providing an environment where the user could
both program efficiently
and elaborate formal and machine-checked proofs of correctness, by
calling a general-purpose proof assistant like the Coq
system. This approach requires a huge manpower and a daunting effort
in order to re-implement a complete computer-algebra system, as well
as the libraries of formal mathematics required by such formal proofs.

        
        Semantics for computer algebra

        The move to machine-checked proofs of the mathematical correctness of
the output of computer-algebra implementations demands a prior
clarification about the often implicit assumptions on
which the presumably correctly implemented algorithms
rely. Interestingly, this preliminary work,
which could be considered as independent from a formal certification
project, is seldom precise or even available in the literature.

        
        Formal proofs for symbolic components of computer-algebra systems

        A number of authors have investigated ways to organize the
communication of a chosen computer-algebra system with a chosen proof
assistant in order to certify specific components of the computer-algebra
systems, experimenting various combinations of systems
and various formats for mathematical exchanges.
Another line of
research consists in the implementation and certification of
computer-algebra algorithms inside the
logic  [64] , [44] , [53]  or as a proof-automation
strategy. Normalization algorithms are of
special interest when they allow to check results possibly obtained by
an external computer-algebra oracle  [37] . A discussion
about the systematic separation of the search for a solution and
the checking of the solution is already clearly outlined
in  [50] .

        
        Formal proofs for numerical components of computer-algebra systems

        Significant progress has been made in the certification of numerical
applications by formal proofs. Libraries formalizing and implementing
floating-point arithmetic as well as
large numbers and arbitrary-precision arithmetic
are available. These libraries are used to certify
floating-point programs, implementations of
mathematical functions and for
applications like hybrid systems.
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        Machine-checked proofs of formalized mathematics

        To be checked by a machine, a proof needs to be expressed in a constrained,
relatively simple formal language. Proof assistants provide facilities to
write proofs in such languages.
But, as merely writing, even in a formal language, does not constitute
a formal proof just per se, proof assistants also provide a proof checker:
a small and well-understood piece of software in charge of verifying
the correctness of arbitrarily large proofs.
The gap between the low-level formal language a machine can check and the
sophistication of an average page of mathematics is conspicuous and
unavoidable.
Proof assistants try to bridge this gap by offering facilities, like
notations or automation, to support convenient formalization methodologies.
Indeed, many aspects, from the logical foundation to the user interface,
play an important role in the feasibility of formalized mathematics inside
a proof assistant.

        
        Logical foundations and proof assistants

        While many logical foundations for mathematics have been proposed,
studied, and implemented, type theory is the one that
has been more successfully employed to formalize mathematics, to the
notable exception of the Mizar system  [54] ,
which is based on set theory. In particular, the calculus of construction
(CoC)  [35]  and its
extension with inductive types
(CIC)  [36] , have been studied for more than
20 years and been implemented by several independent tools (like
Lego, Matita, and Agda). Its reference implementation,
Coq  [62] , has been used for several large-scale
formalizations projects (formal certification of a compiler back-end;
four-color theorem).
Improving the type theory underlying the Coq
system remains an active area of research.
Other systems based on different type theories do exist and, whilst
being more oriented toward software verification, have been also used
to verify results of mainstream mathematics (prime-number theorem;
Kepler conjecture).

        
        Computations in formal proofs

        The most distinguishing feature of CoC is that computation is promoted to
the status of rigorous logical argument. Moreover, in its extension CIC,
we can recognize the key ingredients of a functional
programming language like inductive types, pattern matching, and recursive
functions.
Indeed, one can program effectively inside tools based on CIC like Coq.
This possibility has paved
the way to many effective formalization techniques that were essential
to the most impressive formalizations made in CIC.

        Another milestone in the promotion of the computations-as-proofs
feature of Coq has been the integration of compilation
techniques in the system to speed up evaluation.
Coq can now run realistic programs in the logic, and hence easily
incorporates calculations into proofs that
demand heavy computational steps.

        Because of their different choice for the underlying logic, other proof
assistants have to simulate computations outside the formal system, and
indeed fewer attempts to formalize mathematical proofs involving heavy
calculations have been made in these tools.
The only notable, but still unfinished,
exception, the Kepler conjecture, required
a significant work to
optimize the rewriting engine that simulates evaluation in Isabelle/HOL.

        
        Large-scale computations for proofs inside the Coq system

        Programs run and proved correct inside the logic are especially useful
for the conception of automated decision procedures.
To this end, inductive types are used as an internal language
for the description of mathematical objects by their syntax, thus enabling
programs to reason and compute by case analysis and
recursion on symbolic expressions.

        The output of complex and optimized programs external
to the proof assistant can also be stamped with a formal proof of
correctness when their result is easier to check than to
find. In that case one can benefit from their efficiency
without compromising the level of confidence on their output at the
price of writing and certify a
checker inside the logic. This approach, which has been successfully
used in various contexts,
is very relevant to the present research team.

        
        Relevant contributions from the Mathematical Component libraries

        Representing abstract algebra in a proof assistant has been studied
for long.
The libraries developed by the MathComp team
for the proof of the Odd Order Theorem provide a rather
comprehensive hierarchy of structures;
however, they originally feature a large number of instances of structures
that they need to organize.
On the methodological side,
this hierarchy is an incarnation of an original
work  [38] 
based on various mechanisms, primarily type inference, typically employed
in the area of programming languages.
A large amount of information that is implicit in
handwritten proofs, and that must become explicit at formalization time,
can be systematically recovered following this methodology.

        Small-scale reflection  [41] 
is another methodology promoted by the MathComp team.
Its ultimate goal is to ease formal proofs by systematically
dealing with as many bureaucratic steps as possible,
by automated computation.
For instance, as opposed to the style advocated by Coq's standard
library, decidable predicates are systematically represented
using computable boolean functions: comparison on integers
is expressed as program, and to state that a≤b one compares
the output of this program run on a and b with true.
In many cases, for example when a and b are values, one can prove
or disprove the inequality by pure computation.

        The MathComp library was consistently designed after uniform principles
of software engineering.
These principles range from simple ones, like naming conventions, to
more advanced ones, like generic programming,
resulting in a robust and reusable collection of formal mathematical
components. This large body of formalized mathematics covers a broad
panel of algebraic theories, including of course advanced topics of
finite group theory, but also linear algebra, commutative
algebra, Galois theory, and representation theory.
We refer the interested reader to the online documentation
of these libraries  [63] , which represent about 150,000
lines of code and include roughly 4,000 definitions and 13,000
theorems.

        Topics not addressed by these libraries and that might be relevant to
the present project include real analysis and differential
equations. The most advanced work of formalization on these domains is
available in the HOL-Light system [46] , [47] , [48] , although some existing developments of
interest [24] , [55]  are also available for Coq.
Another aspect of the MathComp libraries that needs improvement,
owing to the size of the data we manipulate, is the
connection with efficient data structures and implementations, which
only starts to be explored.

        
        User interaction with the proof assistant

        The user of a proof assistant describes the proof he wants to
formalize in the system using a textual language.
Depending on the peculiarities of the formal system and the
applicative domain, different proof languages have been developed.
Some proof assistants promote the use of a declarative
language,
when the Coq and Matita systems are more oriented toward a procedural
style.

        The development of the large, consistent body of MathComp
libraries has prompted the need to design an alternative and coherent
language extension for the Coq proof assistant  [43] , [42] , enforcing
the robustness of proof scripts to the numerous changes induced by
code refactoring and enhancing the support for the methodology
of small-scale reflection.

        The development of large libraries is quite a novelty for the Coq system.
In particular any long-term development process requires the iteration of
many refactoring steps and very little support is provided by most
proof assistants, with the notable exception of
Mizar  [59] .
For the Coq system,
this is an active area of
research.
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        Experimental mathematics with special functions

        Applications in combinatorics and mathematical physics frequently involve
equations of so high orders and so large sizes, that computing or even storing
all their coefficients is impossible on existing computers. Making this
tractable is another challenge of our project. The approach we believe in is
to design algorithms of good, ideally quasi-optimal, complexity in order to
extract precisely the required data from the equations, while avoiding the
computationally intractable task of completely expanding them into an explicit
representation.

        Typical applications with expected high impact are the automatic
discovery and proof of results in combinatorics and mathematical physics for
which human proofs are currently unattainable.
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        Mgfun

        (1994–): Maple package for symbolic
summation, integration, and other closure properties of multivariate
special functions.

        Now distributed as part of
Algolib, a collection of packages for combinatorics and
manipulations of special functions, available at
http://algo.inria.fr/libraries/ .
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        DDMF

        (2007–): Web site consisting
of interactive tables of mathematical formulas on elementary and
special functions. The formulas are automatically generated by
OCaml and computer-algebra routines. Users can ask for more terms
of the expansions, more digits of the numerical values, proofs of
some of the formulas, etc. See
http://ddmf.msr-inria.inria.fr/ .
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        DynaMoW

        (2007–): Programming tool
for controlling the generation of mathematical websites that embed
dynamical mathematical contents generated by computer-algebra
calculations. Written in OCaml. See
http://ddmf.msr-inria.inria.fr/DynaMoW/ .
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        Ring

        (2004–): Coq normalization
tool and decision procedure for expressions in commutative ring
theories. Written in Coq and OCaml. Integrated in the standard
distribution of the Coq proof assistant since 2005.
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        SSReflect

        (2006–):
Extension of the language of the Coq system. Originally written by
G. Gonthier for his formal proof of the Four-Color Theorem.
A. Mahboubi and E. Tassi
participate to its development, maintenance, distribution,
user support and have written its user manual. See
http://www.msr-inria.fr/projects/mathematical-components/ .
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        Coqfinitgroup

        (2006–):
Coq libraries that cover the mechanization of the proof of the
Odd Order Theorem. Stable libraries are distributed with the
SSReflect extension. A. Mahboubi is one of the main contributors to
the code and its documentation. E. Tassi contributed to the design
of core data structures and to parts of the formalization. A formal
proof was completed in September 2012, and the content of the
libraries, under continued improvements in view of potential reuse,
is available online at
http://www.msr-inria.fr/projects/mathematical-components/ .
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        Creative telescoping for bivariate hyperexponential functions

        In [8] , we gave a new algorithm for the
symbolic integration of bivariate hyperexponential functions, which
outperforms state-of-the-art implementations like Maple's function
DEtools[Zeilberger]. The approach was to extend Hermite's
reduction for rational functions and the Hermite-like reduction for
hyperexponential functions in a suitable way. A key feature of the
algorithm is that it can avoid the costly computation of certificates.
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        Creative telescoping for rational functions

        In [10]  we described a precise and elementary
algorithmic version of the Griffiths–Dwork method for the creative
telescoping of rational functions. This leads to bounds on the order
and degree of the coefficients of the differential equation, and to
the first complexity result which is single exponential in the number
of variables. One of the important features of the algorithm is that
it does not need to compute certificates. The approach is vindicated
by a prototype implementation.


      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Complexity of the uncoupling of linear functional systems

        Uncoupling algorithms transform a linear differential system of first
order into one or several scalar differential equations. We examined
in [9]  two approaches to uncoupling: the
cyclic-vector method (CVM) and the
Danilevski-Barkatou-Zürcher algorithm (DBZ). We gave tight
size bounds on the scalar equations produced by CVM, and
designed a fast variant of CVM whose complexity is
quasi-optimal with respect to the output size. We exhibited a strong
structural link between CVM and DBZ enabling to show
that, in the generic case, DBZ has polynomial complexity and
that it produces a single equation, strongly related to the output of
CVM. We proved that algorithm CVM is faster than
DBZ by almost two orders of magnitude, and provided
experimental results that validate the theoretical complexity
analyses.
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        Computation of integrals related to the Ising model

        We showed in [2]  that the n-fold integrals of the
magnetic susceptibility of the Ising model, as well as various other
n-fold integrals of the “Ising class”, or n-fold integrals from
enumerative combinatorics, like lattice Green functions, correspond to
a distinguished class of functions generalising algebraic functions:
they are actually diagonals of rational functions. This
algebraic structure explains many remarkable properties of the
integrals of the Ising class.
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        Non-D-finite excursions in the quarter plane

        The number of excursions (finite paths starting and ending at the
origin) having a given number of steps and obeying various geometric
constraints is a classical topic of combinatorics and probability
theory. We proved in [3]  that the sequence
of numbers of excursions in the quarter plane corresponding to a
nonsingular step set S⊆{0,±1}2 with infinite
group does not satisfy any nontrivial linear recurrence with
polynomial coefficients. Accordingly, in those cases, the trivariate
generating function of the numbers of walks with given length and
prescribed ending point is not D-finite. This solves an open problem
in the field of lattice path combinatorics.
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        A human proof of Gessel's lattice path conjecture

        Gessel walks are planar walks confined to the positive quarter plane,
that move by unit steps in any of the following directions: West,
North-East, East, and South-West. In 2001, Ira Gessel conjectured a
closed-form expression for the number of Gessel walks of a given
length starting and ending at the origin. In 2008, Kauers, Koutschan,
and Zeilberger gave a computer-aided proof of this conjecture. The
same year, Bostan and Kauers showed, using again computer algebra
tools, that the trivariate generating function of Gessel walks is
algebraic. We proposed in [15]  the first “human
proofs” of these results. They are derived from a new expression for
the generating function of Gessel walks.
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        Efficient algorithms for rational first integrals

        We presented in [14]  fast algorithms for
computing rational first integrals with bounded degree of a planar
polynomial vector field. Our approach is inspired by an idea of
Ferragut and Giacomini. We improve upon their work by proving that
rational first integrals can be computed via systems of
linear equations instead of systems of quadratic
equations. This leads to a probabilistic algorithm with arithmetic
complexity Õ(N2ω) and to a deterministic algorithm
solving the problem in Õ(d2N2ω+1) arithmetic
operations, where N denotes the given bound for the degree of the
rational first integral, and where d≤N is the degree of the
vector field, and ω the exponent of linear algebra. By
comparison, the best previous algorithm uses at least dω+1N4ω+4 arithmetic operations. The new algorithms are very
efficient in practice.
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        Reactive document checking in Coq

        In an effort to improve the reactivity of Coq, the way it processes and
checks a single document has been completely
redesigned [7] . The current
development version is
able to reschedule the tasks to be performed in order to minimize the
time required to give interactive feedback to the user. On typical
documents taken from the formal proof of the Odd Order Theorem, the
worst reaction time of the tool dropped from 5 minutes to 9 seconds.
This improvement will be part of the next stable release of the Coq
system.
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        Efficient normalization of ring/field
expressions in Coq

        The implementation of Coq's proof commands for manipulation of ring/field expressions has been
improved in response to the demand for better efficiency that emerged
in the formalization of Apéry's irrationality proof of ζ(3).
The data structure used for the abstract syntax tree of
ring/field expressions has been refined to enable a more efficient and
more precise interpretation into concrete ring/field expressions.
Moreover the collection of non-nullity conditions for denominators in a field
expressions has been speeded up, making the type-checking time of a field
normalization proof not be dominated by this collecting phase.
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        Documentation of Coq's canonical structures

        The device employed to model a hierarchy of algebraic structures with
overloaded notations in Coq has been documented
in [6]  and in the user manual of the tool.
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        Maintenance and development of the SSReflect
extension for Coq and its user manual

        The Small Scale Reflection extension of Coq has been maintained
together with its user manual. Some new linguistic constructs to
model non-structural reasoning and to enable the user to better
factor out repeated arguments have been developed and
documented. Some language constructs have been made compatible with
the type-classes mechanism offered by Coq. The release of version 1.5
has been prepared.
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        Efficient proof-search techniques in
sequent calculus

        We have proposed in [11]  a sequent calculus which
is focussed, polarized, and
parameterized by an abstract notion of theory. This new combination of
features aims at proposing a framework which is adapted to the
simulation in sequent calculus of efficient, general-purpose decision
procedures (tableaux methods, satisfiability, ...) that can interact
with theory-specific decision procedures (for linear arithmetics,
arrays, ...). In particular we propose a tight simulation of the
Davis–Putnam–Logemann–Loveland algorithm modulo theory, and
show how to simulate some advanced optimizations that are crucial to
realistic implementations of SMT solvers.
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        A formal proof of the irrationality
of ζ(3)

        We have obtained a formal proof, machine-checked by the Coq
proof assistant, of the irrationality of the constant ζ(3), under the
single assumption of the asymptotic behavior of the least common
multiple of the first n natural numbers. The core of this formal
proof is based on (untrusted) computer-algebra calculations
performed outside the proof assistant with the Algolib Maple
library. Then, we verify formally and a posteriori the desired
properties of the objects computed by Maple and complete the proof of
irrationality.
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        Documentation of the Mathematical
Components libraries

        The approach to finite-group theory adopted in the libraries
formalizing in Coq the proof of the Odd Order Theorem has been
documented in [5] .
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        Bilateral Grants with Industry

        The team is involved in two Common Research Agreements in the MSR–Inria  Joint Centre:

        
          	
             DDMF (Dynamic Dictionary of Mathematical Functions).

             Goal: Automate exact computations of the mathematical formulas on
the special functions of mathematical analysis and present them on
an interactive mathematical dictionary online.

             Leader: F. Chyzak.
Participants: A. Bostan, P. Lairez.

             Website: http://ddmf.msr-inria.inria.fr/ .

          

          	
             Mathematical Components.

             Goal: Investigate the design of large-scale,
modular and reusable libraries of formalized mathematics. Developed
using the Coq proof assistant. This project successfully
formalized the proof of the Odd Order Theorem, resulting in
a corpus of libraries related to various areas of algebra.

             Leader: G. Gonthier (MSR Cambridge).
Participants: A. Mahboubi, E. Tassi.

             Website: http://www.msr-inria.fr/projects/mathematical-components/ .
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        Scientific Animation

        The team started a seminar, first on an irregular basis, but with the
view of running more regular sessions. It attracted researchers from
teams in the neighbouring environment and had 8 sessions in 2013.

        F. Chyzak is part of the scientifique committee of the Journées
Nationales de Calcul Formel, the annual meeting of the French
computer algebra community.

        A. Mahboubi and E. Tassi have organized the 5th edition of the Coq
international workshop (satellite of the Itp 2013 conference, Rennes,
July 2013).

        A. Mahboubi has participated to the organization of the Lix Colloquium
(November 2013) and of the satellite PSATT international workshop.

        A. Mahboubi has served in the program committee of the 5th edition of the Coq
international workshop.

        A. Mahboubi has served in the program committee of the ITP 2013
international conference.

        A. Bostan has served as the Poster Committee Chair for the ISSAC 2013
international conference.

        A. Bostan has served in the program committee of the MEGA 2013
international conference.

        A. Bostan has served in the program committee of the FPSAC 2013
international conference.

        A. Bostan has served in the program committee of the SYNASC 2013
international conference.

        A. Bostan is part of the Scientific advisory board of the MEGA conference series.

        A. Mahboubi and E. Tassi have given an invited tutorial at the ITP
2013 international conference (Rennes, France).

        A. Mahboubi has given an invited talk at the Calculemus 2013
conference (Bath, United Kingdom).

        A. Mahboubi has given an invited talk at the Colloquium of the
Institute of Mathematics at the University of Nantes (France).

        A. Mahboubi has given an invited talk, joint with G. Gonthier at the
Dutch Mathematical Congress 2013 (Nijmegen, Netherlands).

        A. Mahboubi has given an invited talk at the British Colloquium for
Theoretical Computer Sciences (Bath, United Kingdom).
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        Teaching

        
          	
             Master : A. Bostan, Algorithmes efficaces en calcul formel, 12h, M2, MPRI, France

          

          	
             Master : F. Chyzak, Algorithmes efficaces en calcul formel, 12h, M2, MPRI, France

          

          	
             Master : A. Mahboubi, Assistants de preuves, 18h, M2, MPRI, France

          

          	
             Agrégation de Mathématiques : A. Bostan, Préparation épreuve de modélisation, option C, 12h, ÉNS Cachan, France

          

        

        
        Supervision

        
          	
             PhD: B. Morcrette, Combinatoire analytique et modèles d'urnes, June 2013, Ph. Flajolet, M. Soria and Ph. Dumas

          

          	
             PhD in progress: A. Barillec, Asymptotique automatique certifiée des fonctions spéciales, September 2013, F. Chyzak and A. Mahboubi

          

          	
             PhD in progress: L. Dumont, Algorithmique efficace pour les diagonales, applications en combinatoire, physique et théorie des nombres, September 2013, A. Bostan and B. Salvy

          

          	
             PhD in progress: P. Lairez, Algorithmique efficace pour la création télescopique, et ses applications, September 2011, A. Bostan and B. Salvy

          

          	
             L3: D. Rouhling, ÉNS Lyon, Proof search modulo a
theory in sequent calculus, June–July 2013, S. Graham-Lengrand
(CNRS, LIX) and A. Mahboubi

          

        

        
        Juries

        
          	
             A. Mahboubi has served as examiner in the PhD jury of Mahfuza
Farooque, Automated reasoning techniques as proof-search in sequent
calculus, December 19, 2013.

          

          	
             A. Bostan has served as examiner in the PhD jury of Basile Morcrette, Combinatoire analytique et modèles d'urnes, Université Paris 6, June 26, 2013.
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        Popularization

        
          	
             A. Mahboubi has given a lecture to laureates of the
Olympiades académiques de mathématiques, académie de Créteil.

             http://maths.ac-creteil.fr/spip/spip.php?article463 .

          

          	
             A. Mahboubi has been involved in the scientific committee for the
elaboration of the board game Mémoire Vive produced by the
Inria communication services.

          

          	
             A. Mahboubi has given a talk at the forum STIC Paris-Saclay
(Palaiseau, France) in November 2013.
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