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2. Overall Objectives

2.1. Overall Objectives
The main scientific objective of the VEGAS research team is to contribute to the development of an effective
geometric computing dedicated to non-trivial geometric objects. Included among its main tasks are the study
and development of new algorithms for the manipulation of geometric objects, the experimentation of algo-
rithms, the production of high-quality software, and the application of such algorithms and implementations
to research domains that deal with a large amount of geometric data, notably solid modeling and computer
graphics.

Computational geometry has traditionally treated linear objects like line segments and polygons in the plane,
and point sets and polytopes in three-dimensional space, occasionally (and more recently) venturing into the
world of non-linear curves such as circles and ellipses. The methodological experience and the know-how
accumulated over the last thirty years have been enormous.

http://www.loria.fr/equipes/vegas/
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For many applications, particularly in the fields of computer graphics and solid modeling, it is necessary
to manipulate more general objects such as curves and surfaces given in either implicit or parametric form.
Typically such objects are handled by approximating them by simple objects such as triangles. This approach
is extremely important and it has been used in almost all of the usable software existing in industry today. It
does, however, have some disadvantages. Using a tessellated form in place of its exact geometry may introduce
spurious numerical errors (the famous gap between the wing and the body of the aircraft), not to mention
that thousands if not hundreds of thousands of triangles could be needed to adequately represent the object.
Moreover, the curved objects that we consider are not necessarily everyday three-dimensional objects, but also
abstract mathematical objects that are not linear, that may live in high-dimensional space, and whose geometry
we do not control. For example, the set of lines in 3D (at the core of visibility issues) that are tangent to three
polyhedra span a piecewise ruled quadratic surface, and the lines tangent to a sphere correspond, in projective
five-dimensional space, to the intersection of two quadratic hypersurfaces.

Effectiveness is a key word of our research project. By requiring our algorithms to be effective, we imply that
the algorithms should be robust, efficient, and versatile. By robust we mean algorithms that do not crash on
degenerate inputs and always output topologically consistent data. By efficient we mean algorithms that run
reasonably quickly on realistic data where performance is ascertained both experimentally and theoretically.
Finally, by versatile we mean algorithms that work for classes of objects that are general enough to cover
realistic situations and that account for the exact geometry of the objects, in particular when they are curved.

3. Application Domains

3.1. Computer graphics
We are interested in the application of our work to virtual prototyping, which refers to the many steps required
for the creation of a realistic virtual representation from a CAD/CAM model.

When designing an automobile, detailed physical mockups of the interior are built to study the design and
evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and
difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and
immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup
for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility,
and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work
on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the
scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the
simulations.

3.2. Solid modeling
Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed
somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms
and deal with many of the same issues. But while the computational geometry community has been mathe-
matically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer
ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the
middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are
of interest to us, let us mention: the description of geometric shapes, the representation of solids, the
conversion between different representations, data structures for graphical rendering of models and robustness
of geometric computations.



Project-Team VEGAS 3

3.3. Fast prototyping
We work in collaboration with CIRTES on rapid prototyping. CIRTES, a company based in Saint-Dié-des-
Vosges, has designed a technique called Stratoconception©R where a prototype of a 3D computer model is
constructed by first decomposing the model into layers and then manufacturing separately each layer, typically
out of wood of standard thickness (e.g. 1 cm), with a three-axis CNC (Computer Numerical Controls) milling
machine. The layers are then assembled together to form the object. The Stratoconception©R technique is cheap
and allows fast prototyping of large models.

When the model is complex, for example an art sculpture, some parts of the models may be inaccessible to the
milling machine. These inaccessible regions are sanded out by hand in a post-processing phase. This phase
is very consuming in time and resources. We work on minimizing the amount of work to be done in this
last phase by improving the algorithmic techniques for decomposing the model into layers, that is, finding a
direction of slicing and a position of the first layer.

4. Software and Platforms
4.1. QI: Quadrics Intersection

QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of
an algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [7], [10] and represents
the first complete and robust solution to what is perhaps the most basic problem of solid modeling by implicit
curved surfaces.

QI is written in C++ and builds upon the LiDIA computational number theory library [29] bundled with
the GMP multi-precision integer arithmetic [28]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [10] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under the free for non-commercial use Inria license
and will be distributed under the QPL license in the next release. The implementation can also be queried via
a web interface [30].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.

4.2. Isotop: Topology and Geometry of Planar Algebraic Curves
ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from Inria Paris - Rocquencourt. It is based on the
method described in [4] which incorporates several improvements over previous methods. In particular, our
approach does not require generic position.

Isotop is registered at the APP (June 15th 2011) with reference IDDN.FR.001.240007.000.S.P.2011.000.10000.
This version is competitive with other implementations (such as ALCIX and INSULATE developed at MPII
Saarbrücken, Germany and TOP developed at Santander Univ., Spain). It performs similarly for small-degree
curves and performs significantly better for higher degrees, in particular when the curves are not in generic
position.

http://www.cirtes.fr/
http://www.cirtes.fr/
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We are currently working on an improved version integrating our new bivariate polynomial solver.

4.3. CGAL: Computational Geometry Algorithms Library
Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. we want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, we contributed a model of the Univariate Algebraic Kernel concept for algebraic
computations [32] (see Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency
of the computation of arrangements of polynomial functions in CGAL [34]. We are currently developing a
model of the Bivariate Algebraic Kernel based a new bivariate polynomial solver.

4.4. Fast_polynomial: fast polynomial evaluation software
The library fast_polynomial 1 provides fast evaluation and composition of polynomials over several types of
data. It is interfaced for the computer algebra system Sage and its algorithms are documented2. This software
is meant to be a first step toward a certified numerical software to compute the topology of algebraic curves
and surfaces. It can also be useful as is and is submitted for integration in the computer algebra system Sage.

This software is focused on fast online computation, multivariate evaluation, modularity, and efficiency.

Fast online computation. The library is optimized for the evaluation of a polynomial on several point arguments
given one after the other. The main motivation is numerical path tracking of algebraic curves, where a given
polynomial criterion must be evaluated several thousands of times on different values arising along the path.

Multivariate evaluation. The library provides specialized fast evaluation of multivariate polynomials with
several schemes, specialized for different types such as mpz big ints, boost intervals with hardware precision,
mpfi intervals with any given precision, etc.

Modularity. The evaluation scheme can be easily changed and adapted to the user needs. Moreover, the code
is designed to easily extend the library with specialization over new C++ objects.

Efficiency. The library uses several tools and methods to provide high efficiency. First, the code uses templates,
such that after the compilation of a polynomial for a specific type, the evaluation performance is equivalent
to low-level evaluation. Locality is also taken into account: the memory footprint is minimized, such that
an evaluation using the classical Hörner scheme will use O(1) temporary objects and divide and conquer
schemes will use O(log n) temporary objects, where n is the degree of the polynomial. Finally, divide and
conquer schemes can be evaluated in parallel, using a number of threads provided by the user.

5. New Results

5.1. Classical and probabilistic computational geometry
Participants: Xavier Goaoc, Guillaume Moroz, Sylvain Lazard, Marc Pouget.

1http://trac.sagemath.org/sage_trac/ticket/13358
2http://arxiv.org/abs/1307.5655

http://www.cgal.org
http://trac.sagemath.org/sage_trac/ticket/13358
http://arxiv.org/abs/1307.5655
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5.1.1. Probabilistic complexity analysis of random geometric structures
Average-case analysis of data-structures or algorithms is commonly used in computational geometry when the
more classical worst-case analysis is deemed overly pessimistic. Since these analyses are often intricate, the
models of random geometric data that can be handled are often simplistic and far from "realistic inputs".

Complexity analysis of random geometric structures made simpler. In a joint work with Olivier Devillers
and Marc Glisse (Inria Geometrica), we presented a new simple scheme for the analysis of geometric
structures. While this scheme only produces results up to a polylog factor, it is much simpler to apply than
the classical techniques and therefore succeeds in analyzing new input distributions related to smoothed
complexity analysis. We illustrated our method on two classical structures: convex hulls and Delaunay
triangulations. Specifically, we gave short and elementary proofs of the classical results that n points uniformly
distributed in a ball inRd have a convex hull and a Delaunay triangulation of respective expected complexities
Θ̃(n((d+1)/(d−1))) and Θ̃(n). We then prove that if we start with n points well-spread on a sphere, e.g. an
(ε, κ)-sample of that sphere, and perturb that sample by moving each point randomly and uniformly within
distance at most δ of its initial position, then the expected complexity of the convex hull of the resulting point

set is Θ̃(
√

(n)
(1−1/d)

δ−(d−1)/(4d)). We presented these results in the Symposium on Computational Geometry
2013 [20].

Monotonicity of the number of facets of random polytopes. We also proved a result on the size of the
convex hull Kn of n points sampled uniformly in a convex set K. More precisely, let uK,i

n be the expected
number of facets of dimension i of the convex hull. We proved that, in the plane, uK,0

n is an increasing
sequence. In higher dimension, if K is a convex, smooth, compact body, then we showed that the sequence
uK,d−1
n is asymptotically increasing. This result, published in the Electronic Communications in Probability

[13], was obtained in collaboration with Olivier Devillers and Marc Glisse (Inria Geometrica) and Matthias
Reitzner (Osnabruck Univ.).

Worst-case silhouette size of random polytopes. Finally, we studied from a probabilistic point of view the
size of the silhouette of a polyhedron. While the silhouette size of a polyhedron with n vertices may be linear
for some view points, several experimental and theoretical studies show a sublinear behavior for a wide range
of constraints. The latest result on the subject proves a bound in Θ(

√
n) on the size of the silhouette from a

random view point of polyhedra of size n approximating non-convex surfaces in a reasonable way [9]. This
result considers the polyhedron given and average the sizes of the silhouettes over all view points. This year,
we addressed the problem of bounding the worst-case size of the silhouette where the average is taken over a
set of polyhedra. Namely, we consider random polytopes defined as the convex hull of a Poisson point process
on a sphere in R3 such that its average number of points is n. We show that the expectation over all such
random polytopes of the maximum size of their silhouettes viewed from infinity is Θ(

√
n). This work was

done in collaboration with Marc Glisse (Inria Geometrica) and Julien Michel (Université de Poitiers) [24].

5.1.2. Embedding geometric structures
We continued working this year on the problem of embedding geometric objects on a grid of R3. Essentially all
industrial applications take, as input, models defined with a fixed-precision floating-point arithmetic, typically
doubles. As a consequence, geometric objects constructed using exact arithmetic must be embedded on a
fixed-precision grid before they can be used as input in other software. More precisely, the problem is, given
a geometric object, to find a similar object representable with fixed-precision floating-point arithmetic, where
similar means topologically equivalent, close according to some distance function, etc. We are working on the
problem of rounding polyhedral subdivisions on a grid of R3, where the only known method, due to Fortune
in 1999, considers a grid whose refinement depends on the combinatorial complexity of the input, which does
not solve the problem at hand. This project is joint work with Olivier Devillers (Inria Geometrica) and William
Lenhart (Williams College, USA).
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5.1.3. Bounded-Curvature Shortest Paths
We considered the problem of computing shortest paths having curvature at most one almost everywhere and
visiting a sequence of n points in the plane in a given order. This problem is a sub-problem of the Dubins
Traveling Salesman Problem and also arises naturally in path planning for point car-like robots in the presence
of polygonal obstacles. We showed that when consecutive waypoints are distance at least four apart, this
question reduces to a family of convex optimization problems over polyhedra in Rn. This result, done in
collaboration with Hyo-Sil Kim (KAIST) was published in the SIAM Journal on Computing [15].

5.1.4. Approximating Geodesics in Meshes
A standard way to approximate the distance between any two vertices p and q on a mesh is to compute, in
the associated graph, a shortest path from p to q that goes through one of k sources, which are well-chosen
vertices. Precomputing the distance between each of the k sources to all vertices of the graph yields an efficient
computation of approximate distances between any two vertices. One standard method for choosing k sources,
which has been used extensively and successfully for isometry-invariant surface processing, is the so-called
Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the
farthest vertex from the already selected sources.

We analyzed the stretch factor FFPS of approximate geodesics computed using FPS, which is the maximum,
over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph.
We show that FFPS can be bounded in terms of the minimal value F∗ of the stretch factor obtained using
an optimal placement of k sources as FFPS ≤ 2r2eF

∗ + 2r2e + 8re + 1, where re is the ratio of the lengths of
the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point
sampling has been used successfully for isometry-invariant shape processing. Furthermore, we showed that it
is NP-complete to find k sources that minimize the stretch factor [25].

5.1.5. On Point-sets that Support Planar Graphs
A set of points is said universal if it supports a crossing-free drawing of any planar graph. For a planar graph
with n vertices, if bends on edges of the drawing are permitted, universal point-sets of size n are known, but
only if the bend-points are in arbitrary positions. If the locations of the bend-points must also be specified as
part of the point-set, no result was known, and we prove that any planar graph with n vertices can be drawn
on a universal set S of O(n2/ log n) points with at most one bend per edge and with the vertices and the bend
points in S. If two bends per edge are allowed, we show thatO(n log n) points are sufficient, and if three bends
per edge are allowed, Θ(n) points are sufficient. When no bends on edges are permitted, no universal point-set
of size o(n2) is known for the class of planar graphs. We show that a set of n points in balanced biconvex
position supports the class of maximum-degree-3 series-parallel lattices. These results were published this
year in the journal Computational Geometry: Theory and Application [14].

We also considered the setting in which graphs are drawn with curved edges. We proved that, surprisingly,
there exists a universal set of n points in the plane for which every n-vertex planar graph admits a planar
drawing in which the edges are drawn as a circular arc. This result was presented in the Canadian Conference
on Computational Geometry [17].

5.2. Non-linear computational geometry
Participants: Guillaume Moroz, Sylvain Lazard, Marc Pouget, Yacine Bouzidi, Laurent Dupont.

5.2.1. Solving bivariate systems and topology of algebraic curves
In the context of our algorithm Isotop for computing the topology of algebraic curves [4], we work on the
problem of solving a system of two bivariate polynomials. We focus on the problem of computing a Rational
Univariate Representation (RUR) of the solutions, that is, roughly speaking, a univariate polynomial and two
rational functions which map the roots of the polynomial to the two coordinates of the solutions of the system.
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Separating linear forms. We first presented an algorithm for computing a separating linear form of a system
of bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes
different values when evaluated at distinct (complex) solutions of the system. In other words, a separating
linear form defines a shear of the coordinate system that sends the algebraic system in generic position, in
the sense that no two distinct solutions are vertically aligned. The computation of such linear forms is at the
core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions
and, moreover, the computation of a separating linear form is the bottleneck of these algorithms, in terms of
worst-case bit complexity. Given two bivariate polynomials of total degree at most d with integer coefficients
of bitsize at most τ , our algorithm computes a separating linear form in ÕB(d8 + d7τ) bit operations in the
worst case, which decreases by a factor d2 the best known complexity for this problem (ÕB refers to the
complexity where polylogarithmic factors are omitted and OB refers to the bit complexity). This result was
presented at the International Symposium on Symbolic and Algebraic Computation in 2013 [19] and submitted
to a journal [23].

Solving bivariate systems & RURs. Given such a separating linear form, we also presented an algorithm
for computing a RUR with worst-case bit complexity in ÕB(d7 + d6τ) and a bound on the bitsize of its
coefficients in Õ(d2 + dτ). We showed in addition that isolating boxes of the solutions of the system can be
computed from the RUR with ÕB(d8 + d7τ) bit operations. Finally, we showed how a RUR can be used to
evaluate the sign of a bivariate polynomial (of degree at most d and bitsize at most τ ) at one real solution
of the system in ÕB(d8 + d7τ) bit operations and at all the Θ(d2) real solutions in only O(d) times that for
one solution. These results were also presented at the International Symposium on Symbolic and Algebraic
Computation in 2013 [18] and submitted to a journal [22].

This work is done in collaboration with Fabrice Rouillier (project-team Ouragan at Inria Paris-Rocquencourt).

5.2.2. Reflection through quadric mirror surfaces
We addressed the problem of finding the reflection point on a quadric mirror surfaces of a light ray emanating
from a 3D point source P1 and going through another 3D point P2, the camera center of projection. This is
a classical problem known as Alhazen’s problem dating from around 1000 A.D. and based on the work of
Ptolomy around 150 A.D. [31], [33]. We proposed a new algorithm for this problem based on our algorithm
for the computation of the intersection of quadrics [7], [30] and using a characterization the reflection point as
the tangential intersection point between the mirror and an ellipsoid with foci P1 and P2. The implementation
is in progress. This work is done in collaboration with Nuno Gonçalves, University of Coimbra (Portugal).

5.2.3. Fast polynomial evaluation and composition
Evaluating a polynomial can be done with different evaluation schemes. The Hörner scheme for example
allows to evaluate a polynomial of degree n in O(n) arithmetic operations. When the cost of the arithmetic
operations is constant, such as in floating point arithmetic, this leads toO(n) binary operations. However, with
integers, the size of the elements grows linearly after each multiplication and this may lead to O(n2) binary
operations. This problem arises also with polynomial composition.

The best way to handle these cases is to use divide-and-conquer algorithms to keep a linear complexity in the
degree up to logarithmic factors. State-of-the-art algorithms split at the highest pure power of 2 lower or equal
to n

2 . However when n is not a pure power of 2, this strategy might not be optimal.

We developed the library fast_polynomial to explore different divide-and-conquer schemes and observed
notably that splitting at bn2 c is more efficient in some cases. In particular, this evaluation scheme does not
suffer the staircase effect observed in state-of-the-art evaluations. Experimentally, it is always faster than our
own implementation of the classical divide-and-conquer scheme, and faster than the state of the art library
Flint 2 when the degree of the input polynomial is between 2k and 2k + 2k−1. These results are presented in
the technical report [26].

5.3. Combinatorics and combinatorial geometry
Participant: Xavier Goaoc.
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5.3.1. Simplifying inclusion-exclusion formulas
In a joint work with Jiří Matoušek, Pavel Paták, Zuzana Safernová, Martin Tancer (Charles University, Prague,
Czech republic), we worked on computing simplified inclusion-exclusion formulas. Let F = {F1, F2, ..., Fn}
be a family of n sets on a ground set S, such as a family of balls in Rd. For every finite measure
µ on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that
µ(F1 ∪ F2 ∪ · · · ∪ Fn) =

∑
I:∅6=I⊆[n] (−1)

|I|+1
µ
(⋂

i∈I Fi

)
; that is, the measure of the union is expressed

using measures of various intersections. The number of terms in this formula is exponential in n, and a
significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas
for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of
n sets with m nonempty fields in the Venn diagram admits an inclusion-exclusion formula with mO(log2 n)

terms and with ±1 coefficients, and that such a formula can be computed in mO(log2 n) expected time.
We also construct systems of n sets on n points for which every valid inclusion-exclusion formula has the
sum of absolute values of the coefficients at least Ω(n3/2). This work was presented at the EUROCOMB
conference [21] in September 2013.

5.3.2. Helly numbers of acyclic families
In a joint work with Éric Colin de Verdière (CNRS-ENS) and Grégory Ginot (IMJ-UPMC), we worked on
applications of algebraic topology to combinatorial geometry, and more precisely on extending classical
results on nerve complexes. The nerve complex of a family is an abstract simplicial complex that encode
its intersection patterns. Nerves are widely used in computational geometry and topology, in particular in
reconstruction problems where one aims at inferring the geometry of an object from a point sample while
guaranteeing that the topology is correct. Indeed, the nerve theorem ensures that the nerve of a family of
geometric objects has the same “topology” (formally: homotopy type) as the union of the objects whenever
they form a “good cover”, that is, when any subset of the objects has an empty or contractible intersection. We
relaxed this “good cover” condition to allow for families of non-connected sets. We defined an analogue of the
nerve, called the multinerve, that is suitable for general acyclic families, and we proved that this combinatorial
structure enjoys an analogue of the nerve theorem. Using multinerve, we could derive a new topological
Helly-type theorem for acyclic families that generalizes previous results of Amenta, Kalai and Meshulam,
and Matoušek. We finally used this new Helly-type theorem to (re)prove, in a unified way, bounds on
transversal Helly numbers in geometric transversal theory. This article was submitted to the journal Advances
in mathematics in 2012; it was accepted in 2013 and will appear in 2014 [16].

5.3.3. Set systems and families of permutations with small traces
In a joint work with Otfried Cheong (KAIST, South Korea) and Cyril Nicaud (Univ. Marne-La-Vallée), we
studied two problems of the following flavor: how large can a family of combinatorial objects defined on
a finite set be if its number of distinct “projections” on any small subset is bounded? We first consider set
systems, where the “projections” is the standard notion of trace, and for which we generalized Sauer’s Lemma
on the size of set systems with bounded VC-dimension. We then studied families of permutations, where
the “projections” corresponds to the notion of containment used in the study of permutations with excluded
patterns, and for which we delineated the main growth rates ensured by projection conditions. One of our
motivations for considering these questions is the “geometric permutation problem” in geometric transversal
theory, a question that has been open for two decades. This work was submitted to the European Journal of
Combinatorics in 2012 and published in 2013 [12].

6. Partnerships and Cooperations

6.1. National Initiatives
6.1.1. ANR PRESAGE
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The white ANR grant PRESAGE brings together computational geometers (from the VEGAS and GEOMET-
RICA projects of Inria) and probabilistic geometers (from Universities of Rouen, Orléans and Poitiers) to
tackle new probabilistic geometry problems arising from the design and analysis of geometric algorithms and
data structures. We focus on properties of discrete structures induced by or underlying random continuous
geometric objects.

This is a four year project, with a total budget of 400kE, that started on Dec. 31st, 2011. It is coordinated by
Xavier Goaoc (VEGAS).

6.1.2. ANR SingCAST
The objective of the young-researcher ANR grant SingCAST is to intertwine further symbolic/numeric
approaches to compute efficiently solution sets of polynomial systems with topological and geometrical
guarantees in singular cases. We focus on two applications: the visualization of algebraic curves and surfaces
and the mechanical design of robots.

After identifying classes of problems with restricted types of singularities, we plan to develop dedicated
symbolic-numerical methods that take advantage of the structure of the associated polynomial systems
that cannot be handled by purely symbolical or numerical methods. Thus we plan to extend the class of
manipulators that can be analyzed, and the class of algebraic curves and surfaces that can be visualized with
certification.

This is a 3.5 years project, with a total budget of 100kE, that will start on March 1st 2014, coordinated by
Guillaume Moroz.

6.2. International Research Visitors
Nuno Gonçalves, University of Coimbra (Portugal), visited the VEGAS project for 1 week in January.

William J. Lenhart, Williams College (USA), visited the VEGAS project for 2 weeks in May..

6.2.1. Internships

Ioannis Psarros
Subject: Common tangents to ellipsoids in R3.
Date: from Apr. 2013 until July 2013.
Institution: University of Athens, Greece.

Oswald Hounkounou
Subject: Study with computer algebra system of a conjecture relating the width of a convex
polygon with the width of its inscribed triangles.
Date: from Apr. 2013 until Aug. 2013.
Institution: Telecom Nancy de l’université de Lorraine.

Judit Recknagel
Subject: Topology of planar singular curves resultant of two trivariate polynomials.
Date: from Apr. 2013 until Aug. 2013
Institution: Halle-Wittenberg university, Germany.

7. Dissemination
7.1. Scientific Animation

Program and Paper Committee:
• Sylvain Lazard: Program committee of the European Workshop on Computational Geometry (Eu-

roCG’13).
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Editorial responsibilities:
• Sylvain Petitjean: Editor of Graphical Models (Elsevier).

Workshop organizations:
• Sylvain Lazard co-organized with S. Whitesides (Victoria University) the 12th Inria - McGill -

Victoria Workshop on Computational Geometry 3 at the Bellairs Research Institute of McGill
University in Feb. (1 week workshop on invitation).

• Marc Pouget co-organized the Journées Informatiques et Géométrie 4 at Inria Nancy 14-15 Nov.
• Guillaume Moroz organized the session Calcul formel et numérique oh the Rencontres Arithmétiques

de l’Informatique Mathématique 5 at the Institut Henri Poincaré Paris 18-20 Nov.

Other responsibilities:
• Sylvain Lazard: Head of the Inria Nancy-Grand Est PhD and Post-doc hiring committee (since 2009).

Member of the Bureau du Département Informatique de Formation Doctorale of the École Doctorale
IAEM (since 2009). “Chargé de formation par la recherche” for Inria Nancy-Grand Est.

• Laurent Dupont: Member of Commission Pédagogique Nationale Infocom/SRC (since 2011). Mem-
ber of Commission Information Scientifique (Inria/Loria).

• Xavier Goaoc: Chair of the Inria COST-GTRI committee (2011– august 2013).
• Guillaume Moroz: Vice delegate of the Commission des Utilisateurs des Moyens Informatiques pour

la Recherche.
• Sylvain Petitjean: Director of the Inria Nancy Grand-Est. Member of Inria’s Executive committee.
• Marc Pouget: Member of the CGAL Editorial Board (since 2008).

7.2. Teaching - Supervision - Juries
7.2.1. Teaching

Licence: Laurent Dupont, Systèmes de Gestion de Bases de Données Avancé, 40h, L3, Université de
Lorraine (IUT Charlemagne).
Licence: Laurent Dupont, Concepts et Outils Internet, 40h, L1, Université de Lorraine (IUT Charle-
magne).
Licence: Laurent Dupont, Programmation Objet et Évènementielle, 40h, L2, Université de Lorraine
(IUT Charlemagne).
Licence: Laurent Dupont, Rich Internet Applications, 40h, L2, Université de Lorraine (IUT Charle-
magne).
Licence: Laurent Dupont and Yacine Bouzidi, Programmation de Sites Web Dynamiques, 70h, L2,
Université de Lorraine (IUT Charlemagne).
Licence: Laurent Dupont, Algorithmique, 80h, L1, Université de Lorraine (IUT Charlemagne)
Licence: Laurent Dupont Programmation Objet, 40h, L1, Université de Lorraine (IUT Charle-
magne)
Master: Marc Pouget, Introduction à la géométrie algorithmique, 10.5h, M2, École Nationale
Supérieure de Géologie, France.
Doctorat: Marc Pouget, Postdoctoral Summer: Convex hulls and point location, 15h, IMPA, Rio de
Janeiro, Brazil.
Licence: Sylvain Lazard, Algorithms and Complexity, 25h, L3, Université de Lorraine.
Licence: Yacine Bouzidi, Certification informatique et internet, 54h, L1, Université de Lorraine.

3Workshop on Computational Geometry
4http://jig2013.sciencesconf.org/
5http://raim2013.lip6.fr/

http://www.loria.fr/~lazard/BellairsWorkshops/Bellairs-2013/
http://jig2013.sciencesconf.org/
http://raim2013.lip6.fr/
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Licence: Yacine Bouzidi, Langage orienté objet, Java, 24h, L3, Université de Lorraine.

Licence: Yacine Bouzidi, Langage d’interrogation des bases de données, 20h, L3, Université de
Lorraine.

7.2.2. Supervision
PhD in progress : Yacine Bouzidi, Résolution de systèmes bivariés et topologie de courbes planes,
Oct. 2010, Sylvain Lazard et Marc Pouget.

7.3. Popularization
Guillaume Moroz: Member of the organizing committee of the Olympiades académiques de mathé-
matiques.
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