
Activity Report 2014

Project-Team APICS

Analysis and Problems of Inverse type in
Control and Signal processing

RESEARCH CENTER
Sophia Antipolis - Méditerranée

THEME
Optimization and control of dynamic
systems





Table of contents

1. Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3. Research Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Introduction 2
3.2. Range of inverse problems 3

3.2.1. Elliptic partial differential equations (PDE) 3
3.2.2. Systems, transfer and scattering 5

3.3. Approximation 6
3.3.1. Best analytic approximation 6
3.3.2. Best meromorphic and rational approximation 8

3.3.2.1. Scalar meromorphic and rational approximation 8
3.3.2.2. Matrix-valued rational approximation 9

3.3.3. Behavior of poles of meromorphic approximants 10
3.3.4. Miscellaneous 10

4. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4.1. Introduction 10
4.2. Inverse source problems in EEG 10
4.3. Inverse magnetization problems 11
4.4. Free boundary problems 12
4.5. Identification and design of microwave devices 12

5. New Software and Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1. RARL2 15
5.2. RGC 16
5.3. PRESTO-HF 16
5.4. Dedale-HF 17
5.5. easyFF 17
5.6. FindSources3D 19
5.7. Sollya 19

6. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1. Source recovery problems 20

6.1.1. EEG 20
6.1.2. Inverse Magnetization problems 21

6.2. Boundary value problems 23
6.3. Matching problems and their applications - De-embedding of filters in multiplexers 24

6.3.1. Matching problems and their applications 25
6.3.2. De-embedding of multiplexers 26

6.4. Stability of amplifiers 26
6.5. Approximation 27

6.5.1. Orthogonal Polynomials 28
6.5.2. Meromorphic approximation 28

7. Bilateral Contracts and Grants with Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1. Contract CNES-Inria-XLIM 28
7.2. Contract CNES-Inria-UPV/EHU 28
7.3. Contract BESA GmbH-Inria 29

8. Partnerships and Cooperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1. Regional Initiatives 29
8.2. National Initiatives 29

8.2.1. ANR 29
8.2.2. ANR MagLune 29



2 Activity Report INRIA 2014

8.3. European Initiatives 29
8.4. International Initiatives 29

8.4.1. Inria Associate Teams 29
8.4.2. Inria International Partners 30

8.5. International Research Visitors 30
8.6. List of international and industrial partners 30

9. Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.1. Promoting Scientific Activities 31

9.1.1. Scientific events selection 32
9.1.2. Journal 32

9.2. Teaching - Supervision - Juries 32
9.2.1. Teaching 32
9.2.2. Supervision 32
9.2.3. Juries 32

9.3. Popularization 32
9.4. Community services 32

10. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32



Project-Team APICS

Keywords: System Analysis And Control, Harmonic Analysis, Signal Processing, Identifica-
tion, Inverse Problem

Creation of the Project-Team: 2005 January 01.

1. Members
Research Scientists

Laurent Baratchart [Team leader, Inria, Senior Researcher, HdR]
Sylvain Chevillard [Inria, Researcher]
Juliette Leblond [Inria, Senior Researcher, HdR]
Martine Olivi [Inria, Researcher, HdR]
Fabien Seyfert [Inria, Researcher]

Engineer
David Martinez Martinez [Inria, from Nov 2014]

PhD Students
Matthias Caenepeel [Vrije Universiteit Brussel (VUB)]
Christos Papageorgakis [Inria, UNSA - ED STIC, since Oct. 2014, granted by BESA GmbH and BDO PACA;
part time with the team Athena]
Dmitry Ponomarev [Inria, UNSA - ED STIC, granted by MESR and Inria]

Post-Doctoral Fellow
Sanda Lefteriu [Inria, until Mar 2014, granted by CNES]

Other
Olga Permiakova [Internship, Master Computational Biology - UNSA, Inria, from April until Aug 2014]

2. Overall Objectives

2.1. Research Themes
The team develops constructive, function-theoretic approaches to inverse problems arising in modeling and
design, in particular for electro-magnetic systems as well as in the analysis of certain classes of signals.

Data typically consist of measurements or desired behaviors. The general thread is to approximate them by
families of solutions to the equations governing the underlying system. This leads us to consider various inter-
polation and approximation problems in classes of rational and meromorphic functions, harmonic gradients,
or solutions to more general elliptic partial differential equations (PDE), in connection with inverse potential
problems. A recurring difficulty is to control the singularities of the approximants.

The mathematical tools pertain to complex and harmonic analysis, approximation theory, potential theory,
system theory, differential topology, optimization and computer algebra. Targeted applications include:

• identification and synthesis of analog microwave devices (filters, amplifiers),

• non-destructive control from field measurements in medical engineering (source recovery in
magneto/electro-encephalography), paleomagnetism (determining the magnetization of rock sam-
ples), and nuclear engineering (plasma shaping in tokamaks).

In each case, the endeavor is to develop algorithms resulting in dedicated software.
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3. Research Program
3.1. Introduction

Within the extensive field of inverse problems, much of the research by Apics deals with reconstructing
solutions of classical elliptic PDEs from their boundary behavior. Perhaps the simplest example lies with
harmonic identification of a stable linear dynamical system: the transfer-function f can be evaluated at a point
iω of the imaginary axis from the response to a periodic input at frequency ω. Since f is holomorphic in the
right half-plane, it satisfies there the Cauchy-Riemann equation ∂f = 0, and recovering f amounts to solve a
Dirichlet problem which can be done in principle using, e.g. the Cauchy formula.

Practice is not nearly as simple, for f is only measured pointwise in the pass-band of the system which makes
the problem ill-posed [72]. Moreover, the transfer function is usually sought in specific form, displaying
the necessary physical parameters for control and design. For instance if f is rational of degree n, then
∂f =

∑n
1 ajδzj where the zj are its poles and δzj is a Dirac unit mass at zj . Thus, to find the domain of

holomorphy (i.e. to locate the zj) amounts to solve a (degenerate) free-boundary inverse problem, this time on
the left half-plane. To address such questions, the team has developed a two-step approach as follows.

Step 1: To determine a complete model, that is, one which is defined at every frequency, in a
sufficiently versatile function class (e.g. Hardy spaces). This ill-posed issue requires regularization,
for instance constraints on the behavior at non-measured frequencies.
Step 2: To compute a reduced order model. This typically consists of rational approximation of the
complete model obtained in step 1, or phase-shift thereof to account for delays. We emphasize that
deriving a complete model in step 1 is crucial to achieve stability of the reduced model in step 2.

Step 1 relates to extremal problems and analytic operator theory, see Section 3.3.1. Step 2 involves optimiza-
tion, and some Schur analysis to parametrize transfer matrices of given Mc-Millan degree when dealing with
systems having several inputs and outputs, see Section 3.3.2.2. It also makes contact with the topology of
rational functions, in particular to count critical points and to derive bounds, see Section 3.3.2. Step 2 raises
further issues in approximation theory regarding the rate of convergence and the extent to which singularities
of the approximant (i.e. its poles) tend to singularities of the approximated function; this is where logarithmic
potential theory becomes instrumental, see Section 3.3.3.

Applying a realization procedure to the result of step 2 yields an identification procedure from incomplete fre-
quency data which was first demonstrated in [78] to tune resonant microwave filters. Harmonic identification
of nonlinear systems around a stable equilibrium can also be envisaged by combining the previous steps with
exact linearization techniques from [36].

A similar path can be taken to approach design problems in the frequency domain, replacing the measured
behavior by some desired behavior. However, describing achievable responses in terms of the design parame-
ters is often cumbersome, and most constructive techniques rely on specific criteria adapted to the physics of
the problem. This is especially true of filters, the design of which traditionally appeals to polynomial extremal
problems [74], [59]. Apics contributed to this area the use of Zolotarev-like problems for multi-band synthesis,
although we presently favor interpolation techniques in which parameters arise in a more transparent manner,
see Section 3.2.2.

The previous example of harmonic identification quickly suggests a generalization of itself. Indeed, on
identifying C with R2, holomorphic functions become conjugate-gradients of harmonic functions, so that
harmonic identification is, after all, a special case of a classical issue: to recover a harmonic function on a
domain from partial knowledge of the Dirichlet-Neumann data; when the portion of boundary where data are
not available is itself unknown, we meet a free boundary problem. This framework for 2-D non-destructive
control was first advocated in [64] and subsequently received considerable attention. It makes clear how to
state similar problems in higher dimensions and for more general operators than the Laplacian, provided
solutions are essentially determined by the trace of their gradient on part of the boundary which is the case
for elliptic equations 1 [25], [83]. Such questions are particular instances of the so-called inverse potential
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problem, where a measure µ has to be recovered from the knowledge of the gradient of its potential (i.e.,
the field) on part of a hypersurface (a curve in 2-D) encompassing the support of µ. For Laplace’s operator,
potentials are logarithmic in 2-D and Newtonian in higher dimensions. For elliptic operators with non constant
coefficients, the potential depends on the form of fundamental solutions and is less manageable because it is
no longer of convolution type. Nevertheless it is a useful concept bringing perspective on how problems could
be raised and solved, using tools from harmonic analysis.

Inverse potential problems are severely indeterminate because infinitely many measures within an open set
produce the same field outside this set; this phenomenon is called balayage [71]. In the two steps approach
previously described , we implicitly removed this indeterminacy by requiring in step 1 that the measure be
supported on the boundary (because we seek a function holomorphic throughout the right half space), and
by requiring in step 2 that the measure be discrete in the left half-plane. The discreteness assumption also
prevails in 3-D inverse source problems, see Section 4.2. Conditions that ensure uniqueness of the solution to
the inverse potential problem are part of the so-called regularizing assumptions which are needed in each case
to derive efficient algorithms.

To recap, the gist of our approach is to approximate boundary data by (boundary traces of) fields arising
from potentials of measures with specific support. Note that it is different from standard approaches to inverse
problems, where descent algorithms are applied to integration schemes of the direct problem; in such methods,
it is the equation which gets approximated (in fact: discretized).

Along these lines, Apics advocates the use of steps 1 and 2 above, along with some singularity analysis,
to approach issues of nondestructive control in 2-D and 3-D [43] [5], [2]. The team is currently engaged
in two kinds of generalizations, to be described further in Section 3.2.1. The first deals with non-constant
conductivities in 2-D, where Cauchy-Riemann equations characterizing holomorphic functions are replaced by
conjugate Beltrami equations characterizing pseudo-holomorphic functions; next in line are 3-D situations that
we begin to consider, see Sections 6.2 and 4.4. There, we seek applications to inverse free boundary problems
such as plasma confinement in the vessel of a tokamak, or inverse conductivity problems like those arising in
impedance tomography. The second generalization lies with inverse source problems for the Laplace equation
in 3-D, where holomorphic functions are replaced by harmonic gradients; applications are to EEG/MEG and
inverse magnetization problems in paleomagnetism, see Section 4.2.

The approximation-theoretic tools developed by Apics to handle issues mentioned so far are outlined in
Section 3.3. In Section 3.2 to come, we describe in more detail which problems are considered and which
applications are targeted.

3.2. Range of inverse problems
3.2.1. Elliptic partial differential equations (PDE)

Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Christos Papageorgakis, Dmitry
Ponomarev.

By standard properties of conjugate differentials, reconstructing Dirichlet-Neumann boundary conditions for
a function harmonic in a plane domain, when these boundary conditions are known already on a subset E
of the boundary, is equivalent to recover a holomorphic function in the domain from its boundary values on
E. This is the problem raised on the half-plane in step 1 of Section 3.1. It makes good sense in holomorphic
Hardy spaces where functions are entirely determined by their values on boundary subsets of positive linear
measure, which is the framework for Problem (P ) that we set up in Section 3.3.1. Such issues naturally
arise in nondestructive testing of 2-D (or 3-D cylindrical) materials from partial electrical measurements on
the boundary. For instance, the ratio between the tangential and the normal currents (the so-called Robin

1There is a subtle difference here between dimension 2 and higher. Indeed, a function holomorphic on a plane domain is defined by its
non-tangential limit on a boundary subset of positive linear measure, but there are non-constant harmonic functions in the 3-D ball, C1

up to the boundary sphere, yet having vanishing gradient on a subset of positive measure of the sphere. Such a “bad” subset, however,
cannot have interior points on the sphere.
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coefficient) tells one about corrosion of the material. Thus, solving Problem (P ) where ψ is chosen to be
the response of some uncorroded piece with identical shape yields non destructive testing of a potentially
corroded piece of material, part of which is inaccessible to measurements. This was an initial application of
holomorphic extremal problems to non-destructive control [56], [60].

Another application by the team deals with non-constant conductivity over a doubly connected domain, the
set E being now the outer boundary. Measuring Dirichlet-Neumann data on E, one wants to recover level
lines of the solution to a conductivity equation, which is a so-called free boundary inverse problem. For this,
given a closed curve inside the domain, we first quantify how constant the solution on this curve. To this
effect, we state and solve an analog of Problem (P ), where the constraint bears on the real part of the function
on the curve (it should be close to a constant there), in a Hardy space of a conjugate Beltrami equation, of
which the considered conductivity equation is the compatibility condition (just like the Laplace equation is
the compatibility condition of the Cauchy-Riemann system). Subsequently, a descent algorithm on the curve
leads one to improve the initial guess. For example, when the domain is regarded as separating the edge
of a tokamak’s vessel from the plasma (rotational symmetry makes this a 2-D situation), this method can
be used to estimate the shape of a plasma subject to magnetic confinement. It was successfully applied, in
collaboration with CEA (French nuclear agency) and the University of Nice (JAD Lab.), to data from Tore
Supra [63]. The procedure is fast because no numerical integration of the underlying PDE is needed, as an
explicit basis of solutions to the conjugate Beltrami equation in terms of Bessel functions was found in this
case. Generalizing this approach in a more systematic manner to free boundary problems of Bernoulli type,
using descent algorithms based on shape-gradient for such approximation-theoretic criteria, is an interesting
prospect, still to be pursued.

The piece of work we just mentioned requires defining and studying Hardy spaces of the conjugate-Beltrami
equation, which is an interesting topic by itself. For Sobolev-smooth coefficients of exponent greater than
2, this was done in references [4] and [14]. The case of the critical exponent 2 is treated in [34], which
apparently provides the first example of well-posedness for the Dirichlet problem in the non-strictly elliptic
case: the conductivity may be unbounded or zero on sets of zero capacity and, accordingly, solutions need not
be locally bounded.

The 3-D version of step 1 in Section 3.1 is another subject investigated by Apics: to recover a harmonic
function (up to a constant) in a ball or a half-space from partial knowledge of its gradient on the boundary.
This prototypical inverse problem (i.e. inverse to the Cauchy problem for the Laplace equation) often recurs
in electromagnetism. At present, Apics is involved with solving instances of this inverse problem arising
in two fields, namely medical imaging e.g. for electroencephalography (EEG) or magneto-encephalography
(MEG), and paleomagnetism (recovery of rocks magnetization) [2], [38], see Section 6.1. In this connection,
we collaborate with two groups of partners: Athena Inria project-team, CHU La Timone, and BESA company
on the one hand, Geosciences Lab. at MIT and Cerege CNRS Lab.on the other hand. The question is
considerably more difficult than its 2-D counterpart, due mainly to the lack of multiplicative structure for
harmonic gradients. Still, considerable progress has been made over the last years using methods of harmonic
analysis and operator theory.

The team is further concerned with 3-D generalizations and applications to non-destructive control of step 2
in Section 3.1. A typical problem is here to localize inhomogeneities or defaults such as cracks, sources or
occlusions in a planar or 3-dimensional object, knowing thermal, electrical, or magnetic measurements on the
boundary. These defaults can be expressed as a lack of harmonicity of the solution to the associated Dirichlet-
Neumann problem, thereby posing an inverse potential problem in order to recover them. In 2-D, finding
an optimal discretization of the potential in Sobolev norm amounts to solve a best rational approximation
problem, and the question arises as to how the location of the singularities of the approximant (i.e. its poles)
reflects the location of the singularities of the potential (i.e. the defaults we seek). This is a fairly deep issue in
approximation theory, to which Apics contributed convergence results for certain classes of fields expressed
as Cauchy integrals over extremal contours for the logarithmic potential [39], [53] [6]. Initial schemes to
locate cracks or sources via rational approximation on planar domains were obtained this way [56], [43], [46].
It is remarkable that finite inverse source problems in 3-D balls, or more general algebraic surfaces, can be
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approached using these 2-D techniques upon slicing the domain into planar sections [3], [9]. This bottom line
generates a steady research activity within Apics, and again applications are sought to medical imaging and
geosciences, see Sections 4.2, 4.3 and 6.1.

Conjectures can be raised on the behavior of optimal potential discretization in 3-D, but answering them is an
ambitious program still in its infancy.

3.2.2. Systems, transfer and scattering
Participants: Laurent Baratchart, Matthias Caenepeel, Sylvain Chevillard, Sanda Lefteriu, Martine Olivi,
Fabien Seyfert.

Through contacts with CNES (French space agency), members of the team became involved in identification
and tuning of microwave electromagnetic filters used in space telecommunications, see Section 4.5. The initial
problem was to recover, from band-limited frequency measurements, physical parameters of the device under
examination. The latter consists of interconnected dual-mode resonant cavities with negligible loss, hence its
scattering matrix is modeled by a 2× 2 unitary-valued matrix function on the frequency line, say the imaginary
axis to fix ideas. In the bandwidth around the resonant frequency, a modal approximation of the Helmholtz
equation in the cavities shows that this matrix is approximately rational, of Mc-Millan degree twice the number
of cavities.

This is where system theory comes into play, through the so-called realization process mapping a rational
transfer function in the frequency domain to a state-space representation of the underlying system of linear
differential equations in the time domain. Specifically, realizing the scattering matrix allows one to construct
a virtual electrical network, equivalent to the filter, the parameters of which mediate in between the frequency
response and the geometric characteristics of the cavities (i.e. the tuning parameters).

Hardy spaces provide a framework to transform this ill-posed issue into a series of regularized analytic and
meromorphic approximation problems. More precisely, the procedure sketched in Section 3.1 goes as follows:

1. infer from the pointwise boundary data in the bandwidth a stable transfer function (i.e. one which is
holomorphic in the right half-plane), that may be infinite dimensional (numerically: of high degree).
This is done by solving a problem analogous to (P ) in Section 3.3.1, while taking into account prior
knowledge on the decay of the response outside the bandwidth, see [13] for details.

2. A stable rational approximation of appropriate degree to the model obtained in the previous step is
performed. For this, a descent method on the compact manifold of inner matrices of given size and
degree is used, based on an original parametrization of stable transfer functions developed within
the team [13].

3. Realizations of this rational approximant are computed. To be useful, they must satisfy certain
constraints imposed by the geometry of the device. These constraints typically come from the
coupling topology of the equivalent electrical network used to model the filter. This network is
composed of resonators, coupled according to some specific graph. This realization step can be
recast, under appropriate compatibility conditions [8], as solving a zero-dimensional multivariate
polynomial system. To tackle this problem in practice, we use Gröbner basis techniques and
continuation methods which team up in the Dedale-HF software (see Section 5.4).

Let us mention that extensions of classical coupling matrix theory to frequency-dependent (reactive) couplings
have lately been carried-out [1] for wide-band design applications, although further study is needed to make
them computationally effective.

Subsequently Apics started to investigate issues pertaining to design rather than identification. Given the
topology of the filter, a basic problem in this connection is to find the optimal response subject to specifications
that bear on rejection, transmission and group delay of the scattering parameters. Generalizing the classical
approach based on Chebyshev polynomials for single band filters, we recast the problem of multi-band
response synthesis as a generalization of the classical Zolotarev min-max problem for rational functions
[29] [11]. Thanks to quasi-convexity, the latter can be solved efficiently using iterative methods relying on
linear programming. These were implemented in the software easy-FF (see Section 5.5). Currently, the team
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is engaged in synthesis of more complex microwave devices like multiplexers and routers, which connect
several filters through wave guides. Schur analysis plays an important role here, because scattering matrices of
passive systems are of Schur type (i.e. contractive in the stability region). The theory originates with the
work of I. Schur [77], who devised a recursive test to check for contractivity of a holomorphic function
in the disk. The so-called Schur parameters of a function may be viewed as Taylor coefficients for the
hyperbolic metric of the disk, and the fact that Schur functions are contractions for that metric lies at the
root of Schur’s test. Generalizations thereof turn out to be efficient to parametrize solutions to contractive
interpolation problems [31]. Dwelling on this, Apics contributed differential parametrizations (atlases of
charts) of lossless matrix functions [30][12], [10] which are fundamental to our rational approximation
software RARL2 (see Section 5.1). Schur analysis is also instrumental to approach de-embedding issues, and
provides one with considerable insight into the so-called matching problem. The latter consists in maximizing
the power a multiport can pass to a given load, and for reasons of efficiency it is all-pervasive in microwave
and electric network design, e.g. of antennas, multiplexers, wifi cards and more. It can be viewed as a rational
approximation problem in the hyperbolic metric, and the team presently gets to grips with this hot topic
using multipoint contractive interpolation in the framework of the (defense funded) ANR COCORAM, see
Sections 6.3.1 and 8.2.1.

In recent years, our attention was driven by CNES and UPV (Bilbao) to questions about stability of high-
frequency amplifiers, see Section 7.2. Contrary to previously discussed devices, these are active components.
The response of an amplifier can be linearized around a set of primary current and voltages, and then
admittances of the corresponding electrical network can be computed at various frequencies, using the so-
called harmonic balance method. The initial goal is to check for stability of the linearized model, so as to
ascertain existence of a well-defined working state. The network is composed of lumped electrical elements
namely inductors, capacitors, negative and positive reactors, transmission lines, and controlled current sources.
Our research so far focuses on describing the algebraic structure of admittance functions, so as to set up a
function-theoretic framework where the two-steps approach outlined in Section 3.1 can be put to work. The
main discovery so far is that the unstable part of each partial transfer function is rational, see Section 6.4.

3.3. Approximation
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Martine Olivi, Dmitry Ponomarev,
Fabien Seyfert.

3.3.1. Best analytic approximation
In dimension 2, the prototypical problem to be solved in step 1 of Section 3.1 may be described as: given a
domain D ⊂ R2, to recover a holomorphic function from its values on a subset K of the boundary of D. For
the discussion it is convenient to normalize D, which can be done by conformal mapping. So, in the simply
connected case, we fix D to be the unit disk with boundary unit circle T . We denote by Hp the Hardy space
of exponent p, which is the closure of polynomials in Lp(T )-norm if 1 ≤ p <∞ and the space of bounded
holomorphic functions in D if p =∞. Functions in Hp have well-defined boundary values in Lp(T ), which
makes it possible to speak of (traces of) analytic functions on the boundary.

To find an analytic function g in D matching some measured values f approximately on a sub-arc K of T , we
formulate a constrained best approximation problem as follows.

(P ) Let 1 ≤ p ≤ ∞, K a sub-arc of T , f ∈ Lp(K), ψ ∈ Lp(T rK) and M > 0; find a
function g ∈ Hp such that ‖g − ψ‖Lp(TrK) ≤M and g − f is of minimal norm in Lp(K)
under this constraint.

Here ψ is a reference behavior capturing a priori assumptions on the behavior of the model off K, while M is
some admissible deviation thereof. The value of p reflects the type of stability which is sought and how much
one wants to smooth out the data. The choice of Lp classes is suited to handle point-wise measurements.
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To fix terminology, we refer to (P ) as a bounded extremal problem. As shown in [42], [44], [50], the solution to
this convex infinite-dimensional optimization problem can be obtained when p 6= 1 upon iterating with respect
to a Lagrange parameter the solution to spectral equations for appropriate Hankel and Toeplitz operators. These
spectral equations involve the solution to the special caseK = T of (P ), which is a standard extremal problem
[66]:

(P0) Let 1 ≤ p ≤ ∞ and ϕ ∈ Lp(T ); find a function g ∈ Hp such that g − ϕ is of minimal
norm in Lp(T ).

The case p = 1 is more or less open.

Various modifications of (P ) can be set up in order to meet specific needs. For instance when dealing with
lossless transfer functions (see Section 4.5), one may want to express the constraint on T rK in a point-wise
manner: |g − ψ| ≤M a.e. on T rK, see [45]. In this form, the problem comes close to (but still is different
from) H∞ frequency optimization used in control [68], [76]. One can also impose bounds on the real or
imaginary part of g − ψ on T rK, which is useful when considering Dirichlet-Neuman problems, see [70].

The analog of Problem (P ) on an annulus, K being now the outer boundary, can be seen as a means to
regularize a classical inverse problem occurring in nondestructive control, namely to recover a harmonic
function on the inner boundary from Dirichlet-Neumann data on the outer boundary (see Sections 3.2.1,
4.2, 6.1.1, 6.2). It may serve as a tool to approach Bernoulli type problems, where we are given data on
the outer boundary and we seek the inner boundary, knowing it is a level curve of the solution.. In this case,
the Lagrange parameter indicates how to deform the inner contour in order to improve data fitting. Similar
topics are discussed in Sections 3.2.1 and 6.2 for more general equations than the Laplacian, namely isotropic
conductivity equations of the form div(σ∇u) = 0 where σ is no longer constant. Then, the Hardy spaces
in Problem (P ) are those of a so-called conjugate Beltrami equation: ∂f = ν∂f [69], which are studied for
1 < p <∞ in [14], [4], [61] and [34]. Expansions of solutions needed to constructively handle such issues in
the specific case of linear fractional conductivities (these occur in plasma shaping) have been expounded in
[63].

Though originally considered in dimension 2, Problem (P ) carries over naturally to higher dimensions where
analytic functions get replaced by gradients of harmonic functions. Namely, given some open set Ω ⊂ Rn and
some Rn-valued vector field V on an open subset O of the boundary of Ω, we seek a harmonic function in Ω
whose gradient is close to V on O.

When Ω is a ball or a half-space, a substitute for holomorphic Hardy spaces is provided by the Stein-Weiss
Hardy spaces of harmonic gradients [80]. Conformal maps are no longer available when n > 2, so that Ω can
no longer be normalized. More general geometries than spheres and half-spaces have not been much studied
so far.

On the ball, the analog of Problem (P ) is

(P1) Let 1 ≤ p ≤ ∞ andB ⊂ Rn the unit ball. FixO an open subset of the unit sphere S ⊂ Rn.
Let further V ∈ Lp(O) and W ∈ Lp(S rO) be Rn-valued vector fields. Given M > 0, find a
harmonic gradient G ∈ Hp(B) such that ‖G−W‖Lp(SrO) ≤M and G− V is of minimal
norm in Lp(O) under this constraint.

When p = 2, Problem (P1) was solved in [2] as well as its analog on a shell. The solution extends the
one given in [42] for the 2-D case, using a generalization of Toeplitz operators. Thecas of the shell was
motivated An important ingredient is a refinement of the Hodge decomposition, that we call the Hardy-Hodge
decomposition, allowing us to express a Rn-valued vector field in Lp(S), 1 < p <∞, as the sum of a vector
field in Hp(B), a vector field in Hp(Rn rB), and a tangential divergence free vector field on S; the space
of such fields is denoted by D(S). If p = 1 or p =∞, Lp must be replaced by the real Hardy space or the
space of functions with bounded mean oscillation. More generally this decomposition, which is valid on any
sufficiently smooth surface (see Section 6.1), seems to play a fundamental role in inverse potential problems.
In fact, it was first introduced formally on the plane to describe silent magnetizations supported in R2 (i.e.
those generating no field in the upper half space) [38].
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Just like solving problem (P ) appeals to the solution of problem (P0), our ability to solve problem (P1) will
depend on the possibility to tackle the special case where O = S:

(P2) Let 1 ≤ p ≤ ∞ and V ∈ Lp(S) be a Rn-valued vector field. Find a harmonic gradient
G ∈ Hp(B) such that ‖G− V ‖Lp(S) is minimum.

Problem (P2) is simple when p = 2 by virtue of the Hardy Hodge decomposition together with orthogonality
of H2(B) and H2(Rn rB), which is the reason why we were able to solve (P1) in this case. Other values
of p cannot be treated as easily and are currently investigated by Apics, especially the case p =∞ which is of
particular interest and presents itself as a 3-D analog to the Nehari problem [75].

Companion to problem (P2) is problem (P3) below.

(P3) Let 1 ≤ p ≤ ∞ and V ∈ Lp(S) be a Rn-valued vector field. Find G ∈ Hp(B) and
D ∈ D(S) such that ‖G+D − V ‖Lp(S) is minimum.

Note that (P2) and (P3) are identical in 2-D, since no non-constant tangential divergence-free vector field
exists on T . It is no longer so in higher dimension, where both (P2) and (P3) arise in connection with source
recovery in electro/magneto encephalography and paleomagnetism, see Sections 3.2.1 and 4.2.

3.3.2. Best meromorphic and rational approximation
The techniques set forth in this section are used to solve step 2 in Section 3.2 and instrumental to approach
inverse boundary value problems for the Poisson equation ∆u = µ, where µ is some (unknown) distribution.

3.3.2.1. Scalar meromorphic and rational approximation

We put RN for the set of rational functions with at most N poles in D. By definition, meromorphic functions
in Lp(T ) are (traces of) functions in Hp +RN .

A natural generalization of problem (P0) is:

(PN ) Let 1 ≤ p ≤ ∞, N ≥ 0 an integer, and f ∈ Lp(T ); find a function gN ∈ Hp +RN such
that gN − f is of minimal norm in Lp(T ).

Only for p =∞ and f continuous is it known how to solve (PN ) in closed form. The unique solution is given
by AAK theory (named after Adamjan, Arov and Krein), which connects the spectral decomposition of Hankel
operators with best approximation [75].

The case where p = 2 is of special importance for it reduces to rational approximation. Indeed, if we write
the Hardy decomposition f = f+ + f− where f+ ∈ H2 and f− ∈ H2(CrD), then gN = f+ + rN where
rN is a best approximant to f− from RN in L2(T ). Moreover, rN has no pole outside D, hence it is a stable
rational approximant to f−. However, in contrast to the case where p =∞, this best approximant may not be
unique.

The former Miaou project (predecessor of Apics) designed a dedicated steepest-descent algorithm for the case
p = 2 whose convergence to a local minimum is guaranteed; until now it seems to be the only procedure
meeting this property. This gradient algorithm proceeds recursively with respect to N on a compactification
of the parameter space [35]. Although it has proved to be effective in all applications carried out so far (see
Sections 4.2, 4.5), it is still unknown whether the absolute minimum can always be obtained by choosing initial
conditions corresponding to critical points of lower degree (as is done by the RARL2 software, Section 5.1).

In order to establish global convergence results, Apics has undertaken a deeper study of the number and
nature of critical points (local minima, saddle points...), in which tools from differential topology and operator
theory team up with classical interpolation theory [47], [49]. Based on this work, uniqueness or asymptotic
uniqueness of the approximant was proved for certain classes of functions like transfer functions of relaxation
systems (i.e. Markov functions) [51] and more generally Cauchy integrals over hyperbolic geodesic arcs [54].
These are the only results of this kind. Research by Apics on this topic remained dormant for a while by
reasons of opportunity, but revisiting the work [32] in higher dimension is still a worthy endeavor. Meanwhile,
an analog to AAK theory was carried out for 2 ≤ p <∞ in [50]. Although not as effective computationally,
it was recently used to derive lower bounds [26]. When 1 ≤ p < 2, problem (PN ) is still quite open.
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A common feature to the above-mentioned problems is that critical point equations yield non-Hermitian
orthogonality relations for the denominator of the approximant. This stresses connections with interpolation,
which is a standard way to build approximants, and in many respects best or near-best rational approximation
may be regarded as a clever manner to pick interpolation points. This was exploited in [55], [52], and is
used in an essential manner to assess the behavior of poles of best approximants to functions with branched
singularities, which is of particular interest for inverse source problems (cf. Sections 5.6 and 6.1).

In higher dimensions, the analog of Problem (PN ) is best approximation of a vector field by gradients of
discrete potentials generated by N point masses. This basic issue is by no means fully understood, and it is
an exciting research prospect. It is connected with certain generalizations of Toeplitz or Hankel operators, and
with constructive approaches to so-called weak factorizations for real Hardy functions [62].

Besides, certain constrained rational approximation problems, of special interest in identification and design
of passive systems, arise when putting additional requirements on the approximant, for instance that it should
be smaller than 1 in modulus (i.e. a Schur function). In particular, Schur interpolation lately received renewed
attention from the team, in connection with matching problems. There, interpolation data are subject to a well-
known compatibility condition (positive definiteness of the so-called Pick matrix), and the main difficulty is
to put interpolation points on the boundary of D while controlling both the degree and the extremal points of
the interpolant. Results obtained by Apics in this direction generalize a variant of contractive interpolation
with degree constraint studied in [67], see Section 6.3.1. We mention that contractive interpolation with
nodes approaching the boundary has been a subsidiary research topic by the team in the past, which plays
an interesting role in the spectral representation of certain non-stationary stochastic processes [40], [37]. The
subject is intimately connected to orthogonal polynomials on the unit circle, and this line of investigation
has recently evolved towards an asymptotic study of orthogonal polynomials on planar domains, which is
an active area in approximation theory with application to quantum particle systems and Hele-Shaw flows.
Section 6.5.1.

3.3.2.2. Matrix-valued rational approximation

Matrix-valued approximation is necessary to handle systems with several inputs and outputs but it generates
additional difficulties as compared to scalar-valued approximation, both theoretically and algorithmically. In
the matrix case, the McMillan degree (i.e. the degree of a minimal realization in the System-Theoretic sense)
generalizes the usual notion of degree for rational functions.

The basic problem that we consider now goes as follows: let F ∈ (H2)
m×l and n an integer; find a rational

matrix of size m× l without poles in the unit disk and of McMillan degree at most n which is nearest possible
to F in (H2)

m×l. Here the L2 norm of a matrix is the square root of the sum of the squares of the norms of its
entries.

The scalar approximation algorithm derived in [35] and mentioned in Section 3.3.2.1 generalizes to the matrix-
valued situation [65]. The first difficulty here is to parametrize inner matrices (i.e. matrix-valued functions
analytic in the unit disk and unitary on the unit circle) of given McMillan degree degree n. Indeed, inner
matrices play the role of denominators in fractional representations of transfer matrices (using the so-called
Douglas-Shapiro-Shields factorization). The set of inner matrices of given degree is a smooth manifold that
allows one to use differential tools as in the scalar case. In practice, one has to produce an atlas of charts
(local parametrizations) and to handle changes of charts in the course of the algorithm. Such parametrization
can be obtained using interpolation theory and Schur-type algorithms, the parameters of which are vectors or
matrices ( [30], [10], [12]). Some of these parametrizations are also interesting to compute realizations and
achieve filter synthesis ([10] [12]). The rational approximation software “RARL2” developed by the team is
described in Section 5.1.

Difficulties relative to multiple local minima of course arise in the matrix-valued case as well, and deriving
criteria that guarantee uniqueness is even more difficult than in the scalar case. The case of rational functions of
degree n or small perturbations thereof (the consistency problem) was solved in [48]. Matrix-valued Markov
functions are the only known example beyond this one [33].
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Let us stress that RARL2 seems the only algorithm handling rational approximation in the matrix case that
demonstrably converges to a local minimum while meeting stability constraints on the approximant.

3.3.3. Behavior of poles of meromorphic approximants
Participant: Laurent Baratchart.

We refer here to the behavior of poles of best meromorphic approximants, in the Lp-sense on a closed curve, to
functions f defined as Cauchy integrals of complex measures whose support lies inside the curve. Normalizing
the contour to be the unit circle T , we are back to Problem (PN ) in Section 3.3.2.1; invariance of the latter
under conformal mapping was established in [5]. Research so far has focused on functions whose singular set
inside the contour is zero or one-dimensional.

Generally speaking in approximation theory, assessing the behavior of poles of rational approximants is essen-
tial to obtain error rates as the degree goes large, and to tackle constructive issues like uniqueness. However,
as explained in Section 3.2.1, Apics considers this issue foremost as a means to extract information on singu-
larities of the solution to a Dirichlet-Neumann problem. The general theme is thus: how do the singularities
of the approximant reflect those of the approximated function? This approach to inverse problem for the 2-D
Laplacian turns out to be attractive when singularities are zero- or one-dimensional (see Section 4.2). It can be
used as a computationally cheap initial condition for more precise but much heavier numerical optimizations
which often do not even converge unless properly initialized. As regards crack detection or source recovery,
this approach boils down to analyzing the behavior of best meromorphic approximants of a function with
branch points. For piecewise analytic cracks, or in the case of sources, we were able to prove ([5], [6], [39]),
that the poles of the approximants accumulate, when the degree goes large, to some extremal cut of minimum
weighted logarithmic capacity connecting the singular points of the crack, or the sources [43]. Moreover, the
asymptotic density of the poles turns out to be the Green equilibrium distribution on this cut in D, therefore it
charges the singular points if one is able to approximate in sufficiently high degree (this is where the method
could fail, because high-order approximation requires rather precise data).

The case of two-dimensional singularities is still an outstanding open problem.

It is remarkable that inverse source problems inside a sphere or an ellipsoid in 3-D can be approached with
such 2-D techniques, as applied to planar sections (see Section 6.1). The technique is implemented in the
software FindSources3D, see Section 5.6.

3.3.4. Miscellaneous
Participant: Sylvain Chevillard.

Sylvain Chevillard, joined team in November 2010. His coming resulted in Apics hosting a research activity in
certified computing, centered on the software Sollya of which S. Chevillard is a co-author, see Section 5.7. On
the one hand, Sollya is an Inria software which still requires some tuning to a growing community of users. On
the other hand, approximation-theoretic methods at work in Sollya are potentially useful for certified solutions
to constrained analytic problems described in Section 3.3.1. However, developing Sollya is not a long-term
objective of Apics.

4. Application Domains

4.1. Introduction
Application domains are naturally linked to the problems described in Sections 3.2.1 and 3.2.2. By and large,
they split into a systems-and-circuits part and an inverse-source-and-boundary-problems part, united under a
common umbrella of function-theoretic techniques as described in Section 3.3.

4.2. Inverse source problems in EEG
Participants: Laurent Baratchart, Juliette Leblond.
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This work is performed in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena Project-
Team, and Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines de Paris).

Solving overdetermined Cauchy problems for the Laplace equation on a spherical layer (in 3-D) in order to
extrapolate incomplete data (see Section 3.2.1) is a necessary ingredient of the team’s approach to inverse
source problems, in particular for applications to EEG. Indeed, the latter involves propagating the initial
conditions through several layers of different conductivities, from the boundary shell down to the center of
the domain where the singularities (i.e. the sources) lie. Once propagated to the innermost sphere, it turns
out that traces of the boundary data on 2-D cross sections coincide with analytic functions with branched
singularities in the slicing plane [3]. The singularities are related to the actual location of the sources, namely
their moduli reach in turn a maximum when the plane contains one of the sources. Hence we are back to
the 2-D framework of Section 3.3.3, and recovering these singularities can be performed via best rational
approximation. The goal is to produce a fast and sufficiently accurate initial guess on the number and location
of the sources in order to run heavier descent algorithms on the direct problem, which are more precise but
computationally costly and often fail to converge if not properly initialized.

Numerical experiments give very good results on simulated data and we are now engaged in the process of
handling real experimental data (see Sections 5.6 and 6.1), in collaboration with the Athena team at Inria
Sophia Antipolis, neuroscience teams in partner-hospitals (la Timone, Marseille), and the BESA company
(Munich).

4.3. Inverse magnetization problems
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev.

Generally speaking, inverse potential problems, similar to the one appearing in Section 4.2, occur naturally
in connection with systems governed by Maxwell’s equation in the quasi-static approximation regime. In
particular, they arise in magnetic reconstruction issues. A specific application is to geophysics, which led us
to form the Inria Associate Team “IMPINGE” (Inverse Magnetization Problems IN GEosciences) together
with MIT and Vanderbilt University. A recent collaboration with Cerege (CNRS, Aix-en-Provence), in the
framework of the ANR-project MagLune, completes this picture, see Section 8.2.2.

To set up the context, recall that the Earth’s geomagnetic field is generated by convection of the liquid
metallic core (geodynamo) and that rocks become magnetized by the ambient field as they are formed or after
subsequent alteration. Their remanent magnetization provides records of past variations of the geodynamo,
which is used to study important processes in Earth sciences like motion of tectonic plates and geomagnetic
reversals. Rocks from Mars, the Moon, and asteroids also contain remanent magnetization which indicates the
past presence of core dynamos. Magnetization in meteorites may even record fields produced by the young
sun and the protoplanetary disk which may have played a key role in solar system formation.

For a long time, paleomagnetic techniques were only capable of analyzing bulk samples and compute their net
magnetic moment. The development of SQUID microscopes has recently extended the spatial resolution to
sub-millimeter scales, raising new physical and algorithmic challenges. This associate team aims at tackling
them, experimenting with the SQUID microscope set up in the Paleomagnetism Laboratory of the department
of Earth, Atmospheric and Planetary Sciences at MIT. Typically, pieces of rock are sanded down to a thin slab,
and the magnetization has to be recovered from the field measured on a parallel plane at small distance above
the slab.

Mathematically speaking, both inverse source problems for EEG from Section 4.2 and inverse magnetization
problems described presently amount to recover the (3-D valued) quantity m (primary current density in case
of the brain or magnetization in case of a thin slab of rock) from measurements of the vector potential:∫

Ω

divm(x′) dx′

|x−x′|
, (1)
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outside the volume Ω of the object. The difference is that the distribution m is located in a volume in the
case of EEG, and on a plane in the case of rock magnetization. This results in quite different identifiability
properties, see [38] and Section 6.1.2.

4.4. Free boundary problems
Participants: Laurent Baratchart, Juliette Leblond.

This work is conducted in part with Yannick Privat, CNRS, Lab. J.-L. Lions, Paris.

The team has engaged in the study of problems with variable conductivity σ, governed by a 2-D equation
of the form div(σ∇u) = 0. Such equations are in one-to-one correspondence with real parts of solutions to
conjugate-Beltrami equations ∂f = ν∂f , so that complex analysis is a tool to study them, see [4], [14], [34].
This research was prompted by issues in plasma confinement for thermonuclear fusion in a tokamak, more
precisely with the extrapolation of magnetic data on the boundary of the chamber from the outer boundary
of the plasma, which is a level curve for the poloidal flux solving the original div-grad equation. Solving this
inverse problem of Bernoulli type is of importance to determine the appropriate boundary conditions to be
applied to the chamber in order to shape the plasma [58]. Investigations started in collaboration with CEA-
IRFM (Cadarache) and the Laboratoire J.-A. Dieudonné at the Univ. of Nice-SA. Within the team, they now
expand to cover Dirichlet-Neumann problems for larger classes of conductivities, cf. in particular [34] (see
Section 6.2).

4.5. Identification and design of microwave devices
Participants: Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.

This is joint work with Stéphane Bila (XLIM, Limoges) and Jean-Paul Marmorat (Centre de mathématiques
appliquées (CMA), École des Mines de Paris).

One of the best training grounds for function-theoretic applications by the team is the identification and
design of physical systems whose performance is assessed frequency-wise. This is the case of electromagnetic
resonant systems which are of common use in telecommunications.

In space telecommunications (satellite transmissions), constraints specific to on-board technology lead to the
use of filters with resonant cavities in the microwave range. These filters serve multiplexing purposes (before
or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically coupled by irises
(orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the Maxwell equations,
forcing the tangent electrical field along the body of the cavity to be zero. A deeper study of the Helmholtz
equation states that an essentially discrete set of wave vectors is selected. In the considered range of frequency,
the electrical field in each cavity can be decomposed along two orthogonal modes, perpendicular to the axis
of the cavity (other modes are far off in the frequency domain, and their influence can be neglected).

Each cavity (see Figure 1) has three screws, horizontal, vertical and midway (horizontal and vertical are two
arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all cavities
show the same orientation, and when the directions of the irises are the same, as well as the input and output
slits). Since screws are conductors, they behave as capacitors; besides, the electrical field on the surface has to
be zero, which modifies the boundary conditions of one of the two modes (for the other mode, the electrical
field is zero hence it is not influenced by the screw), the third screw acts as a coupling between the two modes.
The effect of an iris is opposite to that of a screw: no condition is imposed on a hole, which results in a
coupling between two horizontal (or two vertical) modes of adjacent cavities (in fact the iris is the union of
two rectangles, the important parameter being their width). The design of a filter consists in finding the size of
each cavity, and the width of each iris. Subsequently, the filter can be constructed and tuned by adjusting the
screws. Finally, the screws are glued. In what follows, we shall consider a typical example, a filter designed
by the CNES in Toulouse, with four cavities near 11 GHz.
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Figure 1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes
within the cavity, so that 16 quantities must be optimized. Quantities such as the diameter and length of the

cavities, or the width of the 11 slits are fixed during the design phase.

Near the resonance frequency, a good approximation of Maxwell’s equations is given by the solution of
a second order differential equation. Thus, one obtains an electrical model of the filter as a sequence of
electrically-coupled resonant circuits, each circuit being modeled by two resonators, one per mode, the
resonance frequency of which represents the frequency of a mode, and whose resistance accounts for electric
losses (current on the surface) of the cavities.

This way, the filter can be seen as a quadripole, with two ports, when plugged on a resistor at one end and fed
with some potential at the other end. One is now interested in the power which is transmitted and reflected.
This leads one to define a scattering matrix S, which may be considered as the transfer function of a stable
causal linear dynamical system, with two inputs and two outputs. Its diagonal terms S1,1, S2,2 correspond
to reflections at each port, while S1,2, S2,1 correspond to transmission. These functions can be measured at
certain frequencies (on the imaginary axis). The filter is rational of order 4 times the number of cavities (that
is 16 in the example on Figure 2), and the key step consists in expressing the components of the equivalent
electrical circuit as functions of the Sij (since there are no formulas expressing the lengths of the screws
in terms of parameters of this electrical model). This representation is also useful to analyze the numerical
simulations of the Maxwell equations, and to check the quality of design, in particular the absence of higher
resonant modes.

In fact, resonance is not studied via the electrical model, but via a low-pass equivalent circuit obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e. the underlying system may
no longer have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the strategy for identification is as follows:

• measuring the scattering matrix of the filter near the optimal frequency over twice the pass band
(which is 80MHz in the example).

• Solving bounded extremal problems for the transmission and the reflection (the modulus of he
response being respectively close to 0 and 1 outside the interval measurement, cf. Section 3.3.1).
This provides us with a scattering matrix of order roughly 1/4 of the number of data points.
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• Approximating this scattering matrix by a rational transfer-function of fixed degree (8 in this
example) via the Endymion or RARL2 software (cf. Section 3.3.2.2).

• A realization of the transfer function is thus obtained, and some additional symmetry constraints are
imposed.

• Finally one builds a realization of the approximant and looks for a change of variables that eliminates
non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
the group of orthogonal complex matrices (symmetry forces this type of transformation).

Figure 2. Nyquist Diagram. Rational approximation (degree 8) and data - S22.

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relative L2 error is less than 10−3. This is illustrated by a reflection diagram (Figure 2).
Non-physical couplings are less than 10−2.

The above considerations are valid for a large class of filters. These developments have also been used for the
design of non-symmetric filters, which are useful for the synthesis of repeating devices.

The team also investigates problems relative to the design of optimal responses for microwave devices. The
resolution of a quasi-convex Zolotarev problems was proposed, in order to derive guaranteed optimal multi-
band filter responses subject to modulus constraints [11]. This generalizes the classical single band design
techniques based on Chebyshev polynomials and elliptic functions. The approach relies on the fact that
the modulus of the scattering parameter |S1,2| admits a simple expression in terms of the filtering function
D = |S1,1|/|S1,2|, namely

|S1,2|2 =
1

1 +D2
.

The filtering function appears to be the ratio of two polynomials p1/p2, the numerator of the reflection and
transmission scattering factors, that can be chosen freely. The denominator q is obtained as the unique stable
unitary polynomial solving the classical Feldtkeller spectral equation:

qq∗ = p1p
∗
1 + p2p

∗
2.
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The relative simplicity of the derivation of a filter’s response, under modulus constraints, owes much to the
possibility of forgetting about Feldtkeller’s equation and express all design constraints in terms of the filtering
function. This no longer the case when considering the synthesis N -port devices for N > 3, like multiplexers,
routers power dividers or when considering the synthesis of filters under matching conditions. The efficient
derivation of multiplexers responses is among the team’s recent investigation, where techniques based on
constrained Nevanlinna-Pick interpolation problems are being considered (see Section 6.3.1).

Through contacts with CNES (Toulouse) and UPV (Bilbao), Apics got further involved three years ago with
the design of amplifiers which, unlike filters, are active devices. A prominent issue here is stability. A twenty
years back, it was not possible to simulate unstable responses, and only after building a device could one
detect instability. The advent of so-called harmonic balance techniques, which compute steady state responses
of linear elements in the frequency domain and look for a periodic state in the time domain of a network
connecting these linear elements via static nonlinearities made it possible to compute the harmonic response
of a (possibly nonlinear and unstable) device [82]. This has had tremendous impact on design, and there is a
growing demand for software analyzers.

There are two types of stability involved. The first is stability of a fixed point around which the linearized
transfer function accounts for small signal amplification. The second is stability of a limit cycle which is
reached when the input signal is no longer small and truly nonlinear amplification is attained (e.g. because
of saturation). Work by the team so far is concerned with the first type of stability, and emphasis is put on
defining and extracting the “unstable part” of the response, see Section 6.4.

5. New Software and Platforms

5.1. RARL2
Participant: Martine Olivi [corresponding participant].

Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées
(CMA), École des Mines de Paris).

RARL2 (Réalisation interne et Approximation Rationnelle L2) is a software for rational approximation (see
Section 3.3.2.2) http://www-sop.inria.fr/apics/RARL2/rarl2.html.

The software RARL2 computes, from a given matrix-valued function in H
2m×l

, a local best rational
approximant in the L2 norm, which is stable and of prescribed McMillan degree (see Section 3.3.2.2). It
was initially developed in the context of linear (discrete-time) system theory and makes an heavy use of the
classical concepts in this field. The matrix-valued function to be approximated can be viewed as the transfer
function of a multivariable discrete-time stable system. RARL2 takes as input either:

• its internal realization,

• its first N Fourier coefficients,

• discretized (uniformly distributed) values on the circle. In this case, a least-square criterion is used
instead of the L2 norm.

It thus performs model reduction in case 1) and 2) and frequency data identification in case 3). In the case of
band-limited frequency data, it could be necessary to infer the behavior of the system outside the bandwidth
before performing rational approximation (see Section 3.2.2). An appropriate Möbius transformation allows
to use the software for continuous-time systems as well.

The method is a steepest-descent algorithm. A parametrization of MIMO systems is used, which ensures that
the stability constraint on the approximant is met. The implementation, in Matlab, is based on state-space
representations.

http://www-sop.inria.fr/apics/RARL2/rarl2.html
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The number of local minima can be large so that the choice of an initial point for the optimization may play a
crucial role. In this connection, two methods can be used: 1) An initialization with a best Hankel approximant.
2) An iterative research strategy on the degree of the local minima, similar in principle to that of RARL2,
increases the chance of obtaining the absolute minimum by generating, in a structured manner, several initial
conditions.

RARL2 performs the rational approximation step in our applications to filter identification (see Section 4.5)
as well as sources or cracks recovery (see Section 4.2). It was released to the universities of Delft, Maastricht,
Cork, Brussels and Macao. The parametrization embodied in RARL2 was also used for a multi-objective
control synthesis problem provided by ESTEC-ESA, The Netherlands. An extension of the software to the
case of triple poles approximants is now available. It is used by FindSources3D (see Section 5.6).

5.2. RGC
Participant: Fabien Seyfert [corresponding participant].

Status: A stable version is maintained.

This software is developed in collaboration with Jean-Paul Marmorat (Centre de mathématiques appliquées
(CMA), École des Mines de Paris).

The identification of filters modeled by an electrical circuit that was developed by the team (see Section 4.5)
led us to compute the electrical parameters of the underlying filter. This means finding a particular realization
(A,B,C,D) of the model given by the rational approximation step. This 4-tuple must satisfy constraints that
come from the geometry of the equivalent electrical network and translate into some of the coefficients in
(A,B,C,D) being zero. Among the different geometries of coupling, there is one called “the arrow form”
[57] which is of particular interest since it is unique for a given transfer function and is easily computed. The
computation of this realization is the first step of RGC. Subsequently, if the target realization is not in arrow
form, one can nevertheless show that it can be deduced from the arrow-form by a complex- orthogonal change
of basis. In this case, RGC starts a local optimization procedure that reduces the distance between the arrow
form and the target, using successive orthogonal transformations. This optimization problem on the group of
orthogonal matrices is non-convex and has many local and global minima. In fact, there is not even uniqueness
of the filter realization for a given geometry. Moreover, it is often relevant to know all solutions of the problem,
because the designer is not even sure, in many cases, which one is being handled. The assumptions on the
reciprocal influence of the resonant modes may not be equally well satisfied for all such solutions, hence some
of them should be preferred for the design. Today, apart from the particular case where the arrow form is the
desired form (this happens frequently up to degree 6) the RGC software is not guaranteed to provide a solution.
In contrast, the software Dedale-HF (see Section 5.4), which is the successor of RGC, is guaranteed to solve
this constraint realization problem.

5.3. PRESTO-HF
Participant: Fabien Seyfert [corresponding participant].

Status: Currently under development. A stable version is maintained.

PRESTO-HF: a toolbox dedicated to lowpass parameter identification for microwave filters http://www-
sop.inria.fr/apics/Presto-HF. In order to allow the industrial transfer of our methods, a Matlab-based toolbox
has been developed, dedicated to the problem of identification of low-pass microwave filter parameters. It
allows one to run the following algorithmic steps, either individually or in a single shot:

• determination of delay components caused by the access devices (automatic reference plane adjust-
ment),

• automatic determination of an analytic completion, bounded in modulus for each channel,

• rational approximation of fixed McMillan degree,

• determination of a constrained realization.

http://www-sop.inria.fr/apics/Presto-HF
http://www-sop.inria.fr/apics/Presto-HF
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For the matrix-valued rational approximation step, Presto-HF relies on RARL2 (see Section 5.1). Constrained
realizations are computed by the RGC software. As a toolbox, Presto-HF has a modular structure, which allows
one for example to include some building blocks in an already existing software.

The delay compensation algorithm is based on the following assumption: far off the passband, one can
reasonably expect a good approximation of the rational components of S11 and S22 by the first few terms of
their Taylor expansion at infinity, a small degree polynomial in 1/s. Using this idea, a sequence of quadratic
convex optimization problems are solved, in order to obtain appropriate compensations. In order to check the
previous assumption, one has to measure the filter on a larger band, typically three times the pass band.

This toolbox is currently used by Thales Alenia Space in Toulouse, Thales airborn systems and a license
agreement has been recently negotiated with TAS-Espagna. XLIM (University of Limoges) is a heavy user
of Presto-HF among the academic filtering community and some free license agreements are currently being
considered with the microwave department of the University of Erlangen (Germany) and the Royal Military
College (Kingston, Canada). A time-limited license has been bought by Flextronics for testing purposes.

5.4. Dedale-HF
Participant: Fabien Seyfert [corresponding participant].

Status: Currently under development. A stable version is maintained.

Dedale-HF is a software dedicated to solve exhaustively the coupling matrix synthesis problem in reasonable
time for the filtering community. Given a coupling topology, the coupling matrix synthesis problem (C.M.
problem for short) consists in finding all possible electromagnetic coupling values between resonators that
yield a realization of given filter characteristics. Solving the latter problem is crucial during the design step of
a filter in order to derive its physical dimensions as well as during the tuning process where coupling values
need to be extracted from frequency measurements (see Figure 3).

Dedale-HF consists in two parts: a database of coupling topologies as well as a dedicated predictor-corrector
code. Roughly speaking each reference file of the database contains, for a given coupling topology, the
complete solution to the C.M. problem associated to particular filtering characteristics. The latter is then
used as a starting point for a predictor-corrector integration method that computes the solution to the C.M.
corresponding to the user-specified filter characteristics. The reference files are computed off-line using
Gröbner basis techniques or numerical techniques based on the exploration of a monodromy group. The use of
such continuation techniques, combined with an efficient implementation of the integrator, drastically reduces
the computational time.

Access to the database and integrator code is done via the web on http://www-sop.inria.fr/apics/Dedale/WebPages.
The software is free of charge for academic research purposes: a registration is however needed in order to
access full functionality. Up to now 90 users have registered world wide (mainly: Europe, U.S.A, Canada and
China) and 4000 reference files have been downloaded.

A license for this software has been sold end of 2011 to TAS-Espagna, in order to tune filters with topologies
having multiple solutions. For this, Dedale-HF teams up with Presto-HF.

5.5. easyFF
Participant: Fabien Seyfert.

Status: A stable version is maintained.

This software has been developed by Vincent Lunot (Taiwan Univ.) during his PhD. He still continues to
maintain it.

EasyFF is a software dedicated to the computation of complex, in particular multi-band filtering functions. The
software takes as input, specifications on the modulus of the scattering matrix (transmission and rejection), the
filter’s order and the number of transmission zeros. The output is an "optimal" filtering characteristic in the
sense that it is the solution of an associated min-max Zolotarev problem. Computations are based on a Remez-
type algorithm (if transmission zeros are fixed) or on linear programming techniques if transmission zeros are
part of the optimization [11].

http://www-sop.inria.fr/apics/Dedale
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Figure 3. Overall scheme of the design and tuning process of a microwave filter.
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5.6. FindSources3D
Participant: Juliette Leblond [corresponding participant].

Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena
Project-Team, and with Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines
de Paris).

FindSources3D 2 is a software dedicated to source recovery for the inverse EEG problem, in 3-layer spherical
settings, from point-wise data (see http://www-sop.inria.fr/apics/FindSources3D/). Through the algorithm
described in [9] and Section 4.2, it makes use of the software RARL2 (Section 5.1) for the rational
approximation step in plane sections.

A new release of FindSources3D is now available, which will be demonstrated and distributed, in particular
to the medical team we maintain contact with (hosp. la Timone, Marseille). The preliminary step (“cortical
mapping”) is now solved using expansion in spherical harmonics, along with a constrained approximation
scheme.

Another release is being prepared, due to strong interest by the German company BESA GmbH 3, which
develops EEG software for research and clinical applications. A deeper collaboration with this company started
last year. Figure 4 shows good results on a two sources distribution recovered by FindSources3D from values
of the potential at electrodes on a sphere (scalp) generated by BESA’s simulator. There, the localization error is
satisfactory, see [28]. Altogether FindSources3D provides suitable initial guess to heavier dedicated recovery
tools, including an estimate of the number of sources see Section 6.1.1.

Figure 4. Recovered 2 sources by FindSources3D (courtesy of BESA).

5.7. Sollya
Participant: Sylvain Chevillard [corresponding participant].

Status: Currently under development. A stable version is maintained.

This software is developed in collaboration with Christoph Lauter (LIP6) and Mioara Joldeş (LAAS).

Sollya is an interactive tool where the developers of mathematical floating-point libraries (libm) can experi-
ment before actually developing code. The environment is safe with respect to floating-point errors, i.e. the
user precisely knows when rounding errors or approximation errors happen, and rigorous bounds are always
provided for these errors.

2CeCILL license, APP version 2.0 (2012): IDDN.FR.001.45009.001.S.A.2009.000.10000
3http://www.besa.de/

http://www-sop.inria.fr/apics/FindSources3D/
http://www.besa.de/
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Among other features, it offers a fast Remez algorithm for computing polynomial approximations of real
functions and also an algorithm for finding good polynomial approximants with floating-point coefficients
to any real function. As well, it provides algorithms for the certification of numerical codes, such as Taylor
Models, interval arithmetic or certified supremum norms.

It is available as a free software under the CeCILL-C license at http://sollya.gforge.inria.fr/.

6. New Results

6.1. Source recovery problems
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Christos Papageorgakis, Olga Permi-
akova, Dmitry Ponomarev.

The research in this section is partly joint work with Qian Tao (Univ. Macao).

It was proved in [38] that a vector field with n+ 1 components on Rn can be expressed uniquely as the sum of
(the trace on Rn of) a harmonic gradient in the upper half-space, of (the trace on Rn of) a harmonic gradient in
the lower half-space, and of a tangential divergence free vector field on Rn. This decomposition, that we call
the Hardy-Hodge decomposition, is valid not only for Lp vector fields as mentioned in Section 3.3.1, but in
much more general distribution spaces like W−∞,p which contains all distributions with compact support
or BMO−∞ which contains all finite sums of derivatives of bounded functions. This year we extended
the decomposition to smooth hypersurfaces, where divergence-free distributions may be defined as those
annihilating tangential gradient vector fields. We also studied the case where the hypersurface is only Lipschitz
smooth, and then we proved the decomposition in Lp provided that p is close enough to 2 (how close depends
on the Lipschitz constant of the hypersurface).

The Hardy-Hodge decomposition was used in [38] to find the kernel of the planar magnetization operator,
namely a potential of the form (1) with m supported in a plane generates the zero field above that plane if,
and only if there is no harmonic gradient from below in the Hardy-Hodge decomposition of m. The above
mentioned generalization is now to the effect that a magnetization supported on a bounded closed surface (e.g.
a sphere) is silent in the unbounded component of the complement of that surface if, and only if there is no
harmonic gradient from inside in its Hardy-Hodge decomposition. An article is being written on this topic.

We also considered the case where m is compactly supported in the bounded component of the complement
of that surface. Then m is silent if and only if it is the sum of a divergence-free distribution and of finitely
many derivatives of gradients of Sobolev functions having zero trace on the surface [41].

These results shed light on the indeterminacy of inverse source problems.

6.1.1. EEG
This work is conducted in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena EPI, and
with Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines de Paris).

In 3-D, functional or clinically active regions in the cortex are often modeled by point-wise sources that
must be localized from measurements of a potential on the scalp. Inside the cortex, identified to a ball
after the cortical mapping step, the potential satisfies a Poisson equation whose right-hand side is a linear
combination of gradients of Dirac masses (the sources in EEG). In the work [3] it was shown how best rational
approximation on a family of circles, cut along parallel planes on the sphere, can be used to recover the sources
when they are at most 2 of them. Later, results on the behavior of poles in best rational approximation of fixed
degree to functions with branch points [6] helped justifying the technique for finitely many sources (see section
4.2).

http://sollya.gforge.inria.fr/


Project-Team APICS 21

The dedicated software FindSources3D (see section 5.6), developed, in collaboration with the team Athena
and the CMA, dwells on these ideas. Functions to be approximated in 2-D slices turn out to have additional
multiple poles at their branch points so that, in the rational approximation step, it is beneficial to consider
approximants with multiple poles as well (for EEG data, one should consider triple poles). Though numerically
observed in [9], there is no mathematical justification so far why these multiple poles are attracted more
strongly than simple poles to the singularities of the approximated function. This intriguing property, however,
definitely helps source recovery [28]. This year we used it to automatically estimate the “most plausible”
number of sources (numerically: up to 3 at the moment). Such enhancements were prompted by a developing
collaboration with the BESA company, which is interested in automatic detection of the number of sources
(which was left to the user until recently).

Soon, magnetic data from MEG (magneto-encephalography) will become available together with EEG data;
indeed, it is now possible to use simultaneously the corresponding measurement devices. We expect this to
improve the accuracy of our algorithms.

In relation to other brain exploration modalities like electrical impedance tomography (EIT, see [16]), we also
consider identifying electrical conductivity in the head. This is the topic of the PhD of C. Papageorgakis, co-
advised with the Athena project-team and BESA GmbH. Specifically, in layered models, we are concerned
with estimating conductivity of the skull (intermediate layer). Indeed, the skull consists of a hard bone part,
the conductivity of which is more or less known, and spongy bone compartments whose conductivities may
vary considerably with individuals.

A preliminary question in this connection is: can one uniquely recover a homogeneous skull conductivity from
a single EEG recording when the sources and the conductivities of other layers are known? And if sources are
not known, which additional information do we need? These are issues currently under investigation. To put
them into perspective, recall the famous Caldèron problem of deducing a bounded (nonconstant) conductivity
from the knowledge of all possible pairs consisting of a potential and its current flux at the boundary. In
dimension 3, when the conductivity is not smooth (less than 3/2 of a derivative), it is unknown whether the
problem is even injective (i.e. if two conductivities can have the same pairs of boundary potential and flux). A
weaker, discrete version of this problem is: if the conductivity takes on finitely many values and the geometry
of the level sets is known, does a finite set of pairs of boundary potential and flux allow one to recover it? This
is a significant question to be tackled for the purpose of source recovery in EEG with known geometry but
unknown conductivities inside the head.

6.1.2. Inverse Magnetization problems
This work is carried out in the framework of the “équipe associée Inria” IMPINGE, comprising Eduardo
Andrade Lima and Benjamin Weiss from the Earth Sciences department at MIT (Boston, USA) and Douglas
Hardin and Edward Saff from the Mathematics department at Vanderbilt University (Nashville, USA),

Localizing magnetic sources from measurements of the magnetic field away from the support of the magneti-
zation is the fundamental issue under investigation by IMPINGE. The goal is to determine magnetic properties
of rock samples (e.g. meteorites or stalactites), from fine field measurements close to the sample that can nowa-
days be obtained using SQUIDs (superconducting coil devices). Currently, rock samples are cut into thin slabs
and the magnetization distribution is considered to lie in a plane, which makes for a somewhat less indetermi-
nate framework than EEG because “less” magnetizations can produce the same field (for the slab has no inner
volume). Note however that EEG data consist of both potential and current values at the boundary, whereas in
the present setting only values of the normal magnetic field are provided to us.

Figure 5 presents a schematic view of the experimental setup: the sample lie on a horizontal plane at height 0
and its support is included in a rectangle. The vertical component Bz of the field produced by the sample is
measured on points of a horizontal N ×N rectangular grid at height h.

We set up last year a heuristic procedure to recover regularly spaced dipolar magnetizations, i.e. magnetizations
composed of dipoles placed at the points of a regular rectangular n× n grid. The latter seems general enough
a model class to approximate magnetizations commonly encountered in samples. However, for reasons of
computational complexity, n is significantly smaller than N which limits the power of the model. Each
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Figure 5. Schematic view of the experimental setup

dipole of the n× n grid is determined by the 3 components of its moment, thus the magnetization can be
represented by a real 3n2-vector. If we denote by A the matrix of the operator that maps such a vector X to
the vector b of measurements (which belongs to RN2

), we want to find X such that AX is close to b. For
computational simplicity, we use a Euclidean criterion ‖AX − b‖2, which reduces the problem to a singular
value decomposition of A. The inverse problem being ill-posed, A is poorly conditioned and we must resort to
a regularization technique. The one we developed initially has been based on iteratively cropping the support of
b, using a threshold on the intensity of the dipoles at each step, so as to reduce the number of active components
in b. Preliminary experiments were performed last year on synthetic data and also on a real example (Lonar
spherule).

This year, we performed more systematic experiments on real data (namely Allende chondrules and Hawaian
basalt) provided by the SQUID scanning microscope at MIT lab. Cropping the support of b using thresholding
has proved efficient to improve ill-conditioning for samples with localized support embedded in the slab
(e.g., chondrules). On the other hand, when the support of the sample is spread out (e.g., Hawaian basalt),
the reduction of active components of b was insignificant. We used this inversion procedure to estimate the
net moment. The importance of the latter has been emphasized by the geophysicists at MIT for at least
two reasons: firstly it yields important geological information on the sample in particular to estimate the
magnitude of the ambient magnetic field at the time the rock was formed. Secondly, it may to some extent
be measured independently, using a magnetometer, thereby allowing one to cross-validate the approach. A
third, computational reason is that knowledge of the net moment should pave the way to a numerically stable
reconstruction of an equivalent unidirectional magnetization. The support of the latter would provide us with
valuable information to test for unidirectionality of the true magnetization, which is an important question to
physicists.

When the support can be significantly shrunk while keeping the residue small (i.e., explaining the data
satisfactorily), estimates of the net moment based on the dipolar model obtained by inversion seem to be
good. They apparently supersede the measurements by magnetometers as well as by dipole fitting procedures
set up at MIT. It is interesting to notice that the magnetization obtained by our inversion procedure, either
before or after shrinking the support, often does not resemble the true magnetization, even when it yields
correct moment and field. This can be seen on synthetic examples and may be surmised on real data, thereby
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confirming that recovering the net moment and recovering the magnetization are rather different problems, the
latter being considerably more ill-posed than the former.

One specific difficulty with chondrule-type examples has been to account for their thickness: they are indeed
small spheres and their 3-D character cannot be completely ignored. In order to use the inversion procedure set
up in the plane, we investigated the following question. Assume that the sample has some thickness, but small
enough that the magnetization at a point P = (x, y, z) inside the sample depends only on x and y (possibly
weighted by some function that depends only on z), i.e. that it is of the form m(x, y)φ(z). If we consider a
(truly) planar magnetization with the same distribution m(x, y) but on a plane lying at some nonzero height
ε, how to choose ε so as to produce a field at height h which is closest to the field produced by the thick
magnetization? This has been the object of the internship of Olga Permiakova who used local expansion of the
dipole-to-field map (see her report 4). An article is being written on this subject.

The case where the magnetization is flat but spread out on the sample is more difficult. First of all, the
computational effort becomes significant and led us to use the cluster at Inria Sophia Antipolis. We succeeded
in obtaining full inversions for the Hawaian basalt. The residue (approximation error) is moderate but not
impressively small, which indicates that we reach the limit of modeling magnetizations by a regular grid of
dipoles. However the computation of the moment compares favorably with estimates previously obtained by a
different technique at MIT lab. Still, using a cluster and two days of evaluation to obtain a coarse estimate of
the net moment of a sample is rather inefficient and calls for new investigations.

We also experimented an alternative regularization procedure, based on L2 minimization under L1 penalty
as solved by the SALSA algorithm. Such methods are quite popular today for sparse recovery. However,
the computational load, as well as the quality of the results, do not differ significantly from those obtained
previously.

We now develop new methods in order to estimate the net moment of the magnetization, based on improve-
ments of previously used Fourier techniques, and recently we reformulated the problem with the help of Kelvin
transforms. It has been realized that the success of net moment recovery hinges on the ability to extrapolate
the measurements. In particular, we managed to considerably improve previous estimates by means of data
extension based on dipolar field asymptotics.

In the course of inverting the field map, we singled out magnetizations which are numerically (almost) silent
from above though not from below. This illustrates how ill-posed (unstable) the problem, as theory predicts
that no compactly supported magnetization can be exactly silent from above without being also exactly silent
from below. Although such magnetizations seem to have small moment and therefore do not endanger the
possibility of recovering the net moment, their existence is certainly an obstacle to inversion of the field map
without extra measurements or hypotheses (e.g., measuring from below or assuming unidirectionality).

In the course of the doctoral work by D. Ponomarev, the study of the 2D spectral decomposition of the
truncated Poisson operator has been undertaken. It is a simplified version of the relation between the
magnetization and the magnetic potential. We considered several formulations in terms of singular integral
equations and matrix Riemann-Hilbert problems, and focused on finding closed form solutions for various
approximations of the Poisson operator in terms of a the ratio between the distance h to the measurement
plane and the sample support size.

Lately, Apics became a partner of the ANR project MagLune, dealing with Lunar magnetism, a in collabora-
tion with the Geophysics and Planetology Department of Cerege, CNRS, Aix-en-Provence, see section 8.2.2.
The research is just starting, and will focus on computing net moments of lunar rock samples collected by
NASA.

6.2. Boundary value problems
Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev.

4http://www-sop.inria.fr/apics/IMPINGE/Documents/Report_Permiakova_Olga.pdf

http://www-sop.inria.fr/apics/IMPINGE/Documents/Report_Permiakova_Olga.pdf
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Collaboration with Laurent Bourgeois (ENSTA ParisTech, Lab. Poems), Elodie Pozzi (Univ. Bordeaux, IMB),
Emmanuel Russ (Univ. Grenoble, IJF).

Generalized Hardy classes
As we mentioned in section 4.4, 2-D diffusion equations of the form div(σ∇u) = 0 with real non-negative
valued conductivity σ can be viewed as compatibility conditions for the so-called conjugate Beltrami equation:
∂f = ν∂f with ν = (1− σ)/(1 + σ) [4]. Thus, the conjugate Beltrami equation is a means to replace the
initial second order diffusion equation by a first order system of two real equations, merged into a single
complex one. Hardy spaces under study here are those of this conjugate Beltrami equation: they are comprised
of solutions to that equation in the considered domain whose Lp means over curves tending to the boundary
of the domain remain bounded. They will for example replace holomorphic Hardy spaces in problem (P )
when dealing with non-constant (isotropic) conductivity. Their traces merely lie in Lp (1 < p <∞), which
is suitable for identification from point-wise measurements, and turn out to be dense on strict subsets of
the boundary. This allows one to state Cauchy problems as bounded extremal issues in Lp classes of
generalized analytic functions, in a manner which is reminiscent of what we discussed for analytic functions
in section 3.3.1.

The study of such Hardy spaces for Lipschitz σ was reduced in [4] to that of spaces of pseudo-holomorphic
functions with bounded coefficients, which were apparently first considered on the disk by S. Klimentov.
Solutions factorize as esF , where F is a holomorphic Hardy function while s is in the Sobolev spaceW 1,r for
all r <∞ (Bers factorization), and the analog to the M. Riesz theorem holds which amounts to solvability of
the Dirichlet problem with Lp boundary data. The case of finitely connected domains was carried out in [14].

This year, we addressed in [25] the uniqueness issue for the classical Robin inverse problem on a Lipschitz-
smooth domain Ω ⊂ Rn, with L∞ Robin coefficient, L2 Neumann data and isotropic conductivity of class
W 1,r(Ω), r > n. The Robin inverse problem consists in recovering the ratio of the normal derivative and the
solution (the so-called Robin coefficient) on a subset of the boundary, knowing them on the complementary
subset. We showed that uniqueness of the Robin coefficient on a subset of the boundary, given Cauchy data
on the complementary subset, does hold when n = 2 whenever the boundary subsets are of positive Lebesgue
measure. We also showed that this no longer holds in higher dimension, and we gave counterexamples when
n = 3. The subsets in these counterexamples look very bad, and it is natural to ask whether uniqueness prevails
if they have interior points. This raises an interesting open issue on harmonic gradients, namely: can a nonzero
harmonic function vanish together with its normal derivative on a subset of the boundary of positive measure,
and still the Robin coefficient is bounded in a neighborhood of that set? This question is worth investigating

Best constrained analytic approximation
Several questions about the behavior of solutions to the bounded extremal problem (P ) in section 3.3.1,
and of some generalizations thereof, are still under study by Apics.. We considered additional interpolation
constraints on the disk in problem (P ), and derived new stability estimates for the solution [24]. An article
is being written on the subject. Ongoing work is geared towards applications of [24]. New insight leads us
to relate these results to overdetermined boundary value problems for 2D Laplace equations on irregular
boundaries. This has applications in set-ups where measurements are obtained from oddly distributed sensors.
Treating some of the measurements as pointwise interpolation constraints seems a reasonable strategy in
comparison with interpolation of the data along a geometrically complicated boundary. Such interpolation
constraints arise naturally in inverse boundary problems like plasma shaping, when some of the measurements
are performed inside the chamber of the tokamak, see section 4.4.

6.3. Matching problems and their applications - De-embedding of filters in
multiplexers
Participants: Laurent Baratchart, Martine Olivi, Sanda Lefteriu, David Martinez Martinez, Fabien Seyfert.

This work has been done in collaboration with Stéphane Bila (Xlim, Limoges, France), Hussein Ezzedin
(Xlim, Limoges, France), Damien Pacaud (Thales Alenia Space, Toulouse, France), Giuseppe Macchiarella
(Politecnico di Milano, Milan, Italy), and Matteo Oldoni (Siae Microelettronica, Milan, Italy).
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6.3.1. Matching problems and their applications
Filter synthesis is usually performed under the hypothesis that both ports of the filter are loaded on a constant
resistive load (usually 50 Ohm). In complex systems, filters are however cascaded with other devices, and end
up being loaded, at least at one port, on a non purely resistive frequency varying load. This is for example
the case when synthesizing a multiplexer: each filter is here loaded at one of its ports on a common junction.
Thus, the load is by construction non constant with the frequency, and not purely resistive either. Likewise,
in an emitter-receiver, the antenna is followed by a filter. Whereas the antenna can usually be regarded as a
resistive load at some frequencies, this is far from being true on the whole working band. A mismatch between
the antenna and the filter, however, causes irremediable power losses, both in emission and transmission. Our
goal is therefore to develop a filter synthesis method that allows to match varying loads on specific frequency
bands.

Figure 6. Filter plugged on a system with reflexion coefficient L11

Figure 6 shows a filter with scattering matrix S, plugged at its right port on a frequency varying load with
reflexion parameter L1,1. If the filter is lossless, simple algebraic manipulations show that on the frequency
axis the reflexion parameter satisfies:

|G1,1| =
∣∣∣∣ S2,2 − L1,1

1− S2,2L1,1

∣∣∣∣ .
The matching problem of minimizing |G1,1| amounts therefore to minimize the pseudo-hyperbolic distance
between the filter’s reflexion parameter S2,2 and the load’s reflexion L1,1, on a given frequency band. For a
broad class of filters, namely those that can be modeled by a circuit of n coupled resonators, the scattering
matrix S is a rational function of McMillan degree n in the frequency. The matching problem appears therefore
as a rational approximation problem in hyperbolic metric. When n is fixed, the latter is non-convex and led
us to seek methods to derive good initial guesses for classical descent algorithms. To this effect, if S2,2 = p/q
we considered the following interpolation problem: given n frequency points w1 · · ·wn and a transmission
polynomial r, to find a unitary polynomial p of degree n such that:

j = 1..n,
p

q
(wj) = L1,1(wj)
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where q is the unique monic Hurwitz polynomial of degree n satisfying the Feldtkeller equation

qq∗ = pp∗ + rr∗,

which accounts for the losslessness of the filter. This problem can be seen as an extended Nevanlinna-Pick
interpolation problem, that was considered in [67] when the interpolation points wj lie in the open left half-
plane. The method in the last reference does not extend to imaginary interpolation point and we used rather
different, differential-topological techniques to prove that this problem has a unique solution, which can be
computed by continuation. In the setting of multiplexer synthesis, where this result must e applied recursively
to each filter, we showed the existence of a fixed point for the tuning procedure, based on Brouwer’s fixed point
theorem. These results were presented at the MTNS [18], at the plenary of session of Ernsi workshop 2014,
and they lie at the heart of the ANR Cocoram on co-integration of filters and antennas (8.2.1). Implementation
of the continuation algorithm has been done under contract with CNES and yields encouraging results.
Generalizations of the interpolation problem where the monic condition is relaxed are under study in the
framework of co-integration of filters and antennas.

6.3.2. De-embedding of multiplexers
This work is pursued in collaboration with Thales Alenia Space, Siae Microelettronica, Xlim and under
contract with CNES-Toulouse (see section 7.1).

Let S be the scattering parameters of a multiplexer composed of aN -port junction with response T andN − 1
filters with responses F1, · · ·FN−1, as plotted on Figure 7. The de-embedding problem is to recover the Fk and
it can be stated under various hypotheses. Last year we studied this problem when S and T are known [79] but
no special structure for the Fk is assumed. It was shown that for generic T and for N > 3, the de-embedding
problem has a unique solution. In practice, however, the junction’s response is far from being generic, as it
is usually obtained via assembly of T-junctions. This makes the problem extremely sensitive to measurement
noise. It was also noticed that in practical applications, scattering measurements of the junction are hardly
available.

It is therefore natural to consider the following de-embedding problem. Given S, and under the assumption
that
• the Fk are rational of known McMillan degree,
• the coupling geometry of their circuital realization is known,

what can be said about the filter’s response? Note that the above assumptions do not bear on the junction.
Nevertheless, we showed that the filter’s responses are identifiable up to a constant matrix chained at their
nearest port to the junction [73]. It was proved also that the uncertainty induced by the chain matrix bears
only on the resonant frequency of the last cavity of each filter, as well as on their output coupling. Most of the
filters’ parameters can therefore be recovered in principle. The approach is constructive and relies on rational
approximation to certain scattering parameters, as well as on some extraction procedure similar to Darlington’s
synthesis. Software development is under way and experimental studies have started on data provided to
us by Thales Alenia Space and by Siae Microelettronica. A mid-term objective is to extend Presto-HF (see
Section 5.3) so as to handle de-embedding problems for multiplexers and more generally for multi-ports.

6.4. Stability of amplifiers
Participants: Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.

This work is performed under contract with CNES-Toulouse and the University of Bilbao. The goal is to help
designing amplifiers, in particular to detect instability at an early stage of the design.

Currently, electrical engineers from the University of Bilbao, under contract with CNES (the French Space
Agency), use heuristics to detect instability before an amplifying circuit is physically built. Our goal is to set
up a rigorously founded algorithm, based on properties of transfer functions of such amplifiers, which belong
to particular classes of analytic functions.
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Figure 7. Multiplexer made of a junction T and filtering devices F1, F2 · · ·FN

In non-degenerate cases, non-linear electrical components can be replaced by their first order approximation
when studying stability in the small signal regime. Using this approximation, diodes appear as negative
resistors and transistors as current sources controlled by the voltage at certain nodes of the circuit.

Over the last three years, we studied several features of transfer functions of amplifying electronic circuits:

• We characterized the class of transfer functions which can be realized with ideal components
linearized active components, together with standard passive components (resistors, inductors,
capacitors and transmission lines). It is exactly the field of rational functions in the complex variable
and in the hyperbolic cosines and identity-times-hyperbolic sines of polynomials of degree 2 with
real negative roots.

• We introduced a realistic notion of stability, by terming stable a circuit whose transfer function
belongs to H∞, as long a sufficiently high resistor is added in parallel to that circuit.

• We constructed unstable circuits having no pole in the right half-plane, which came as a surprise to
our partners.

• In order to circumvent these pathological examples, we introduced a realistic hypothesis that there
are small inductive and capacitive effects to active components. Our main result is that a realistic
circuit without poles on the imaginary axis is unstable if and only if it has poles in the right half-
plane. Moreover, there can only be finitely many of them.

This year, we were led to modify our definition of stability, taking a hint from scattering theory. We say that
a transfer function Z is stable whenever (R− Z)/(R+ Z) belongs to H∞ with uniformly bounded H∞-
norm for all R large enough. Equivalently, this means that the circuit can amplify signals but not require an
unbounded amount of energy from the primary power circuit. This new definition is really about energy, hence
is more natural. Also, it allows us a unified characterization in the corner case where instabilities are located
on the imaginary axis. We obtained this way a nice characterization: Z is stable if and only if it has no pole in
the open right half plane, while each pole it may have on the imaginary axis is simple and has a residue with
strictly positive real part. We published a research report [23] and an article is being written to report on our
results.

6.5. Approximation
Participant: Laurent Baratchart.
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6.5.1. Orthogonal Polynomials
This is joint work with Nikos Stylianopoulos (Univ. of Cyprus).

We study the asymptotic behavior of weighted orthogonal polynomials on a bounded simply connected plane
domain Ω. The n-th orthogonal polynomial Pn has degree n, positive leading coefficient, and satisfies∫

Ω

PnP kw dm = δn,k

where w is an integrable positive weight and δn,k is the Kronecker symbol. When Ω is smooth while w is
Hölder-continuous and non-vanishing, it is known that

Pn(z) =

(
n+ 1

π

)1/2

Φn
Φ′

Sw(z)
{1 + o(1)},

locally uniformly outside the convex hull of Ω, where Φ is the conformal map from the complement of Ω onto
the complement of the unit disk and Sw is the so-called Szegö function of the trace of w on the boundary
∂Ω [81]. If we compare it with classical exterior Szegő asymptotics, the formula asserts that Pn behaves
asymptotically like the n-th orthogonal polynomial with respect to a weight supported on ∂Ω (the trace of w),
up to a factor

√
(n+ 1)/π.

When Ω is the unit disk, we proved this result under unprecedented weak assumptions on w, namely w(reiθ)
should converge in Lp(T ) as r → 1 for some p > 1 and its log− should be bounded in the real Hardy space
H1. An article is being written on these findings and the case of a smooth domain Ω, more general than a disk,
is under examination.

6.5.2. Meromorphic approximation
This is joint work with Maxim Yattselev (Purdue Univ. at Indianapolis, USA).

We proved in [6] that the normalized counting measure of poles of best H2 approximants of degree n
to a function analytically continuable, except over finitely many branchpoints lying outside the unit disk,
converges to the Green equilibrium distribution of the compact set of minimal Green capacity outside
of which the function is single valued (the normalized counting measure is the probability measure with
equal mass at each pole). This result warrants source recovery techniques used in section 6.1.1. Here we
consider the corresponding problem for best uniform meromorphic approximants on the unit circle (so-called
AAK approximants after Adamjan, Arov and Krein), in the case where the function may have poles and
essential singularities. This year, we established a similar result when the function has finitely many essential
singularities. The general case is still pending.

7. Bilateral Contracts and Grants with Industry
7.1. Contract CNES-Inria-XLIM

This contract (reference Inria: 7066, CNES: 127 197/00) involving CNES, XLIM and Inria, focuses on the
development of synthesis algorithms for N -ports microwave devices. The objective is to derive analytical
procedures for the design of multiplexers and routers, as opposed to "black box optimization" which is usually
employed in this field (for N ≥ 3). Emphasis at the moment bears on so-called “star-topologies”.

7.2. Contract CNES-Inria-UPV/EHU
This contract (reference CNES: RS14/TG-0001-019) involving CNES, University of Bilbao (UPV/EHU) and
Inria aims at setting up a methodology for testing the stability of amplifying devices. The work at Inria is
concerned with the design of frequency optimization techniques to identify the unstable part of the linearized
response and analyze the linear periodic components.
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7.3. Contract BESA GmbH-Inria
This is a research agreement between Inria (Apics and Athena teams) and the German company BESA 5,
which deals with head conductivity estimation and co-advising of the doctoral work of C. Papageorgakis, see
Section 6.1.1. BESA is funding half of the corresponding research grant, the other half is supported by Region
PACA (BDO), see Section 8.1.1.

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Contract Provence Alpes Côte d’Azur (PACA) Region - Inria, BDO

Contract (no. 2014-05764) funding the research grant of C. Papageorgakis, see Sections 6.1.1, 7.3.

8.2. National Initiatives
8.2.1. ANR

The ANR (Astrid) project COCORAM (Co-design et co-intégration de réseaux d’antennes actives multi-
bandes pour systèmes de radionavigation par satellite) started January 2014. We are associated with three other
teams from XLIM (Limoges University), respectively specialized in filters, antennas and amplifiers design.
The core idea of the project is to work on the co-integration of various microwave devices in the context of
GPS satellite systems in particular it provides us with an opportunity to work on matching problems (see
Section 6.3.1).

8.2.2. ANR MagLune
The ANR project MagLune (Magnétisme de la Lune) has been approved by July 2014. It involves the
Cerege (Centre de Recherche et d’Enseignement de Géosciences de l’Environnement, joint laboratory between
Université Aix-Marseille, CNRS and IRD), the IPGP (Institut de Physique du Globe de Paris) and ISTerre
(Institut des Sciences de la Terre). Associated with Cerege are Inria (Apics team) and Irphe (Institut de
Recherche sur les Phénomènes Hors Équilibre, joint laboratory between Université Aix-Marseille, CNRS
and École Centrale de Marseille). The goal of this project (led by geologists) is to understand the past
magnetic activity of the Moon, especially to answer the question whether it had a dynamo in the past and
which mechanisms were at work to generate it. Apics will participate in the project by providing mathematical
tools and algorithms to recover the remanent magnetization of rock samples from the moon on the basis of
measurements of the magnetic field it generates. The techniques described in Section 6.1 are instrumental for
this purpose.

8.3. European Initiatives
8.3.1. Collaborations with Major European Organizations

Apics is part of the European Research Network on System Identification (ERNSI) since 1992.

System identification deals with the derivation, estimation and validation of mathematical models of
dynamical phenomena from experimental data.

8.4. International Initiatives
8.4.1. Inria Associate Teams
8.4.1.1. IMPINGE

5http://www.besa.de/

http://www.besa.de/
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Title: Inverse Magnetization Problems IN GEosciences.

Inria principal investigator: Laurent Baratchart

International Partner (Institution - Laboratory - Researcher):

MIT - Department of Earth, Atmospheric and Planetary Sciences (United States) - Ben-
jamin Weiss

Duration: 2013 - 2015

See details at : http://www-sop.inria.fr/apics/IMPINGE/

The purpose of the associate team IMPINGE is to develop efficient algorithms to recover the
magnetization distribution of rock slabs from measurements of the magnetic field above the slab
using a SQUID microscope (developed at MIT). The US team also involves a group at Vanderbilt
Univ.

8.4.2. Inria International Partners
8.4.2.1. Declared Inria International Partners

MIT-France seed funding is a competitive collaborative research program ran by the Massachusetts Institute
of Technology (Cambridge, Ma, USA). Together with E. Lima and . Weiss from the Earth and Planetary
Sciences dept. at MIT, Apics obtained two-years support from the above-mentioned program to run a project
entitled: “Development of Ultra-high Sensitivity Magnetometry for Analyzing Ancient Rock Magnetism”

Cyprus NF grant was obtained by N. Stylianopoulos (Univ. Cyprus) to conduct joint research with L.
Baratchart, E.B. Saff (Vanderbilt Univ.) and V. Totik (Univ. Szeged, Hungary). The title of the grant is: “Or-
thogonal polynomials in the complex plane: distribution of zeros, strong asymptotics and shape reconstruc-
tion”.

8.5. International Research Visitors
8.5.1. Visits of International Scientists

• Doug Hardin (Vanderbilt Univ., Nashville, USA, Aug 2014)

• Benjamin Lanfer (BESA, Munich, Germany, Oct 2014)

• Eduardo A. Lima (MIT, Cambridge, USA, Mar 2014)

• Moncef Mahjoub (ENIT LAMSIN, Tunis, Tunisia, Jun 2014)

• Michael Northington (Vanderbilt Univ., Nashville, USA, Aug 2014)

• Yves Rolain (Vrije Universiteit Brussel, Belgium, June 2014)

• Maxim Yattselev (Indiana University–Purdue University, Indianapolis, USA, May 2014)

8.5.1.1. Internships

• Olga Permiakova, Master 2 Computational Biology - UNSA (5 months), Inverse source problem for
electromagnetic fields, with physical applications.

8.6. List of international and industrial partners
• Collaboration under contract with Thales Alenia Space (Toulouse, Cannes, and Paris), CNES

(Toulouse), XLIM (Limoges), University of Bilbao (Universidad del País Vasco / Euskal Herriko
Unibertsitatea, Spain), BESA company (Munich), Flextronics.

http://www-sop.inria.fr/apics/IMPINGE/
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• Regular contacts with research groups at UST (Villeneuve d’Asq), Universities of Bordeaux-I
(Talence), Orléans (MAPMO), Aix-Marseille (CMI-LATP), Nice Sophia Antipolis (Lab. JAD),
Grenoble (IJF and LJK), Paris 6 (P. et M. Curie, Lab. JLL), Inria Saclay (Lab. Poems), Cerege-
CNRS (Aix-en-Provence), CWI (the Netherlands), MIT (Boston, USA), Vanderbilt University
(Nashville USA), Steklov Institute (Moscow), Michigan State University (East-Lansing, USA),
Texas A&M University (College Station USA), University of Urana-Champaign at Indianapolis
(Indianapolis, USA), Politecnico di Milano (Milan, Italy), University of Trieste (Italy), RMC
(Kingston, Canada), University of Leeds (UK), of Maastricht (The Netherlands), of Cork (Ireland),
Vrije Universiteit Brussel (Belgium), TU-Wien (Austria), TFH-Berlin (Germany), ENIT (Tunis),
KTH (Stockholm), University of Cyprus (Nicosia, Cyprus), University of Macau (Macau, China),
SIAE Microelettronica (Milano).

• The project is involved in the GDR-project AFHP (CNRS), in the ANR (Astrid program) project
COCORAM (with XLIM, Limoges, and DGA), in the ANR (Défis de tous les savoirs program)
project MagLune (with Cerege, IPGP, ISTerre, Irphe), in a MIT-France collaborative seed funding,
in the Associate Inria Team IMPINGE (with MIT, Boston), and in a CSF program (with University
of Cyprus).

9. Dissemination

9.1. Promoting Scientific Activities
• L. Baratchart was a plenary speaker at Constructive Functions 2014 (June 2014) in Nashville, USA

(TN). He was an invited speaker at the Complex Analysis Meeting of the Russian Academy of
Sciences (April 2014) in Saint Petersburg, Russia, at the International Conference on Orthogonal
Polynomials, Integrable Systems and their Applications (October 2014) in Shanghai, China, and at
the conference Foundations of Constructive Mathematics (December 2014) in Montevideo. He was
a visitor at Vanderbilt university, at MIT, at the University of Macao and at the University of Cyprus.
He was a speaker at the seminar of Université de Bordeaux.

• M. Caenepeel gave a talk at the 33th Benelux Meeting on Systems and Control (The Netherlands)
at the 18th IEEE Workshop on Signal and Power Integrity in Ghent (Belgium) and he presented a
poster at the ERNSI meeting in Ostende (Belgium).

• S. Chevillard gave a talk at PICOF 2014 (May 2014) in Hammamet, Tunisia, at Constructive
Functions 2014 (June 2014) in Nashville, USA (TN). He was an invited speaker at “Journée
scientifique SMAI-SIGMA 2014” (November 2014) in Paris.

• J. Leblond organized an invited session at PICOF 2014 6 (May 2014). A poster about joint work on
source estimation in EEG was presented at OHBM 2014 7 [28].

• S. Lefteriu was an invited speaker at the Max Planck Institute and presented a poster at the meeting
of the working group GT Identification.

• M. Olivi gave a talk at the MTNS 2014 conference in Groningen (The Netherlands) [18].

• D. Ponomarev gave a talk at the 10th AIMS Conference on Dynamical Systems, Differential
Equations and Applications (July 2014) , in Madrid, Spain, at the seminar of the team Analyse,
Géométrie, Topologie (AGT), Institut de Mathématiques de Marseille, Aix-Marseille Université
(May 2014), and at the seminar of the team Defi, Inria Saclay - Ecole Polytechnique (Nov. 2014).

• F. Seyfert gave a talk at the MTNS 2014 in Groeningen, at the IMS 2014 in Tampa and was invited
to give a plenary lecture at the Ernsi meeting in Ostende.

6http://www.lamsin.tn/picof14/
7http://www.humanbrainmapping.org/i4a/pages/index.cfm?pageID=3565

http://www.lamsin.tn/picof14/
http://www.humanbrainmapping.org/i4a/pages/index.cfm?pageID=3565
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9.1.1. Scientific events selection
9.1.1.1. member of the conference program committee

L. Baratchart was a member of the program committee of MTNS (Mathematical Theory of Networks and
Systems) 2014, Groningen, The Netherlands.

9.1.2. Journal
9.1.2.1. member of the editorial board

L. Baratchart is a member of the Editorial Boards of Constructive Methods and Function Theory and Complex
Analysis and Operator Theory.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Colles: S. Chevillard is giving “Colles” at Centre International de Valbonne (CIV) (2 hours per
week).

9.2.2. Supervision
PhD in progress: D. Ponomarev, Inverse problems for planar conductivity and Schrödinger PDEs,
since Nov. 2012 (advisors: J. Leblond, L. Baratchart).
PhD in progress: M. Caenepeel, The development of models for the design of RF/microwave filters,
since Feb. 2013 (advisors: Y. Rolain, M. Olivi, F. Seyfert).
PhD in progress: C. Papageorgakis, Conductivity model estimation, since Oct 2014 (advisors: J.
Leblond, M. Clerc, B. Lanfer).

9.2.3. Juries
• M. Olivi was a referee of the PhD manuscript of P. Vuillemin (Univ. Toulouse) and of the PhD

manuscript of F. Cheng (Univ. Lorraine).
• J. Leblond was a member of the PhD defense committee of L. Jassionnesse (Univ. Dijon, Nov 2014).
• F. Seyfert was a member of the PhD defense committee of Le Ha Vy Nguyen (Univ. Paris Sud, Inria

project DISCO)

9.3. Popularization
• L. Baratchart was a speaker at “Café in” (Oct. 2014, Inria Sophia-Antipolis-Méditerranée).
• J. Leblond is a member of the Committee MASTIC. She was an invited speaker at the seminar

associated with the lecture by G. Berry at the Collège de France (Jan. 2014).
• M. Olivi is president of the Committee MASTIC (Commission d’Animation et de Médiation

Scientifique) https://project.inria.fr/mastic/. She is responsible for Scientific Mediation.

9.4. Community services
• S. Chevillard is representative at the “comité de centre” and at the “comité des projets” (Research

Center Inria-Sophia).
• J. Leblond is an elected member of the “Conseil Scientifique”and of the “Commission Administra-

tive Paritaire” of Inria. She is one of the two researchers in charge of the mission “Conseil et soutien
aux chercheurs” within the Research Center.

• M. Olivi is responsible for scientific mediation and co-president of the committee MASTIC.
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