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2. Overall Objectives
2.1. Overview

The overall objective of AriC is, through computer arithmetic, to improve computing at large, in terms
of performance, efficiency, and reliability. We work on arithmetic algorithms (integer and floating-point
arithmetic, complex arithmetic, multiple-precision arithmetic, finite-field arithmetic) and their implementa-
tion, approximation methods, Euclidean lattices and cryptology, certified computing and computer algebra.
Specifically, we focus on the following domains:

1. Floating-point arithmetic: The IEEE 754-2008 standard specifies the behavior of floating-point
arithmetic. We are interested in preparing future evolutions of the standard, in implementing it
efficiently on embedded processors, in exploring its “low level” properties for better numerical
analysis (for instance by finding certified and tight error bounds of numerical algorithms), and in
building correctly rounded mathematical function programs. We are also interested in designing
efficient algorithms and software for multiple-precision arithmetic and complex arithmetic.

2. Certified computing and computer algebra: We are interested in computing certified approxima-
tions using computer algebra and formal proof systems, in analyzing the fundamental algorithms
of semi-numerical computation, in finding best or nearly best approximations under special con-
straints, and in designing efficient algorithms for exact linear algebra. Also, we are working on the
development and standardization of interval arithmetic.

3. Cryptography and lattices: Lattice-based cryptography (LBC) is a fast developing field, raising
fascinating questions both on cryptography and lattices. Lattice algorithmics is an established
research area that is being revived by the amazing application that is LBC and by the new tools
and concepts that it introduced. We aim at contributing to a major technological switch, from
conventional to lattice-based cryptography. This will help suppress the main limitation to the
expansion of the cloud economy that are the privacy concerns. Further, thanks to the ubiquity of
lattices, our work may significantly impact several other fields, including coding, computer algebra,
and computer arithmetic.

3. Research Program
3.1. Lattice-based cryptography

Lattice-based cryptography (LBC) is an utterly promising, attractive (and competitive) research ground in
cryptography, thanks to a combination of unmatched properties:
• Improved performance. LBC primitives have low asymptotic costs, but remain cumbersome in

practice (e.g., for parameters achieving security against computations of up to 2100 bit operations).
To address this limitation, a whole branch of LBC has evolved where security relies on the
restriction of lattice problems to a family of more structured lattices called ideal lattices. Primitives
based on such lattices can have quasi-optimal costs (i.e., quasi-constant amortized complexities),
outperforming all contemporary primitives. This asymptotic performance sometimes translates into
practice, as exemplified by NTRUEncrypt.
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• Improved security. First, lattice problems seem to remain hard even for quantum computers.
Moreover, the security of most of LBC holds under the assumption that standard lattice problems
are hard in the worst case. Oppositely, contemporary cryptography assumes that specific problems
are hard with high probability, for some precise input distributions. Many of these problems were
artificially introduced for serving as a security foundation of new primitives.

• Improved flexibility. The master primitives (encryption, signature) can all be realized based on
worst-case (ideal) lattice assumptions. More evolved primitives such as ID-based encryption (where
the public key of a recipient can be publicly derived from its identity) and group signatures, that
were the playing-ground of pairing-based cryptography (a subfield of elliptic curve cryptography),
can also be realized in the LBC framework, although less efficiently and with restricted security
properties. More intriguingly, lattices have enabled long-wished-for primitives. The most notable
example is homomorphic encryption, enabling computations on encrypted data. It is the appropriate
tool to securely outsource computations, and will help overcome the privacy concerns that are
slowing down the rise of the cloud.

We will work on three directions, detailed now.

3.1.1. Lattice algorithms
All known lattice reduction algorithms follow the same design principle: perform a sequence of small
elementary steps transforming a current basis of the input lattice, where these steps are driven by the Gram-
Schmidt orthogonalisation of the current basis.

In the short term, we will fully exploit this paradigm, and hopefully lower the cost of reduction algorithms
with respect to the lattice dimension. We aim at asymptotically fast algorithms with complexity bounds closer
to those of basic and normal form problems (matrix multiplication, Hermite normal form). In the same vein,
we plan to investigate the parallelism potential of these algorithms.

Our long term goal is to go beyond the current design paradigm, to reach better trade-offs between run-time
and shortness of the output bases. To reach this objective, we first plan to strengthen our understanding of the
interplay between lattice reduction and numerical linear algebra (how far can we push the idea of working
on approximations of a basis?), to assess the necessity of using the Gram-Schmidt orthogonalisation (e.g.,
to obtain a weakening of LLL-reduction that would work up to some stage, and save computations), and
to determine whether working on generating sets can lead to more efficient algorithms than manipulating
bases. We will also study algorithms for finding shortest non-zero vectors in lattices, and in particular look for
quantum accelerations.

We will implement and distribute all algorithmic improvements, e.g., within the fplll library. We are interested
in high performance lattice reduction computations (see application domains below), in particular in connec-
tion/continuation with the HPAC ANR project (algebraic computing and high performance consortium).

3.1.2. Lattice-based cryptography
Our long term goal is to demonstrate the superiority of lattice-based cryptography over contemporary public-
key cryptographic approaches. For this, we will 1- Strengthen its security foundations, 2- Drastically improve
the performance of its primitives, and 3- Show that lattices allow to devise advanced and elaborate primitives.

The practical security foundations will be strengthened by the improved understanding of the limits of lattice
reduction algorithms (see last section). On the theoretical side, we plan to attack two major open problems:
Are ideal lattices (lattices corresponding to ideals in rings of integers of number fields) computationally as
hard to handle as arbitrary lattices? What is the quantum hardness of lattice problems?

Lattice-based primitives involve two types of operations: sampling from discrete Gaussian distributions (with
lattice supports), and arithmetic in polynomial rings such as (Z/qZ)[x]/(xn + 1) with n a power of 2. When
such polynomials are used (which is the case in all primitives that have the potential to be practical), then
the underlying algorithmic problem that is assumed hard involves ideal lattices. This is why it is crucial to
precisely understand the hardness of lattice problems for this family. We will work on improving both types of
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operations, both in software and in hardware, concentrating on values of q and n providing security. As these
problems are very arithmetic in nature, this will naturally be a source of collaboration with the other Themes
of the ARIC team.

Our main objective in terms of cryptographic functionality will be to determine the extent to which lattices
can help securing cloud services. For example, is there a way for users to delegate computations on their
outsourced dataset while minimizing what the server eventually learns about their data? Can servers compute
on encrypted data in an efficiently verifiable manner? Can users retrieve their files and query remote databases
anonymously provided they hold appropriate credentials? Lattice-based cryptography is the only approach so
far that has allowed to make progress into those directions. We will investigate the practicality of the current
constructions, the extension of their properties, and the design of more powerful primitives, such as functional
encryption (allowing the recipient to learn only a function of the plaintext message). To achieve these goals,
we will in particular focus on cryptographic multilinear maps.

This research axis of ARIC is gaining strength thanks to the recruitment of Benoit Libert. We will be
particularly interested in the practical and operational impacts, and for this reason we envision a collaboration
with an industrial partner.

3.1.3. Application domains
• Diophantine equations. Lattice reduction algorithms can be used to solve diophantine equations, and

in particular to find simultaneous rational approximations to real numbers. We plan to investigate the
interplay between this algorithmic task, the task of finding integer relations between real numbers,
and lattice reduction. A related question is to devise LLL-reduction algorithms that exploit specific
shapes of input bases. This will be done within the ANR DynA3S project.

• Communications. We will continue our collaboration with Cong Ling on the use of lattices in
communications. We plan to work on the wiretap channel over a fading channel (modeling cell phone
communications in a fast moving environment). The current approaches rely on ideal lattices, and
we hope to be able to find new approaches thanks to our expertise on them due to their use in lattice-
based cryptography. We will also tackle the problem of sampling vectors from Gaussian distributions
with lattice support, for a very small standard deviation parameter. This would significantly improve
current schemes for communication schemes based on lattices, as well as several cryptographic
primitives.

• Cryptanalysis of variants of RSA. Lattices have been used extensively to break variants of the RSA
encryption scheme, via Coppersmith’s method to find small roots of polynomials. We plan to work
with Nadia Heninger (U. of Pennsylvania) on improving these attacks, to make them more practical.
This is an excellent test case for testing the practicality of LLL-type algorithm. Nadia Heninger has
a strong experience in large scale cryptanalysis based on Coppersmith’s method (http://smartfacts.
cr.yp.to/)

3.2. Efficient approximation methods
3.2.1. Computer algebra generation of certified approximations.

We plan to focus on the generation of certified and efficient approximations for solutions of linear differential
equations. These functions cover many classical mathematical functions and many more can be built by
combining them. One classical target area is the numerical evaluation of elementary or special functions. This
is currently performed by code specifically handcrafted for each function. The computation of approximations
and the error analysis are major steps of this process that we want to automate, in order to reduce the probability
of errors, to allow one to implement “rare functions”, to quickly adapt a function library to a new context: new
processor, new requirements – either in terms of speed or accuracy.

http://smartfacts.cr.yp.to/
http://smartfacts.cr.yp.to/
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In order to significantly extend the current range of functions under consideration, several methods originating
from approximation theory have to be considered (divergent asymptotic expansions; Chebyshev or generalized
Fourier expansions; Padé approximants; fixed point iterations for integral operators). We have done prelimi-
nary work on some of them. Our plan is to revisit them all from the points of view of effectivity, computational
complexity (exploiting linear differential equations to obtain efficient algorithms), as well as in their ability to
produce provable error bounds. This work is to constitute a major progress towards the automatic generation
of code for moderate or arbitrary precision evaluation with good efficiency. Other useful, if not critical, ap-
plications are certified quadrature, the determination of certified trajectories of spatial objects and many more
important questions in optimal control theory.

3.2.2. Digital Signal Processing.
As computer arithmeticians, a wide and important target for us is the design of efficient and certified linear
filters in digital signal processing (DSP). Actually, following the advent of Matlab as the major tool for filter
design, the DSP experts now systematically delegate to Matlab all the part of the design related to numerical
issues. And yet, various key Matlab routines are neither optimized, nor certified. Therefore, there is a lot of
room for enhancing numerous DSP numerical implementations and there exist several promising approaches
to do so.

The first important challenge that we want to address is the development and the implementation of optimal
methods for rounding the coefficients involved in the design of the filter. If done in a naive way, this rounding
may lead to a significant loss of performance. We will study in particular FIR and IIR filters.

3.2.3. Table Maker’s Dilemma (TMD).
There is a clear demand for hardest-to-round cases, and several computer manufacturers recently contacted
us to obtain new cases. These hardest-to-tound cases are a precious help for building libraries of correctly
rounded mathematical functions. The current code, based on Lefèvre algorithm, will be rewritten and formal
proofs will be done. We plan to use uniform polynomial approximation and diophantine techniques in order to
tackle the case of the IEEE quad precision and analytic number theory techniques (exponential sums estimates)
for counting the hardest-to-round cases.

3.3. High-performance reliable kernels
The main theme here is the study of fundamental operations (“kernels”) on a hierarchy of symbolic or numeric
data types spanning integers, floating-point numbers, polynomials, power series, as well as matrices of all
these. Fundamental operations include basic arithmetic (e.g., how to multiply or how to invert) common to all
such data, as well as more specific ones (change of representation/conversions, GCDs, determinants, etc.). For
such operations, which are ubiquitous and at the very core of computing (be it numerical, symbolic, or hybrid
numeric-symbolic), our goal is to ensure both high-performance and reliability.

3.3.1. Algorithmic design and analysis of symbolic or numerical algorithms.
On the symbolic side, we have so far obtained fast algorithms for basic operations on both polynomial matrices
and structured matrices, but in a rather independent way. Both types turn out to have much in common, but this
is sometimes not reflected by the complexities obtained, especially for applications in cryptology and coding
theory. Our long term goal in this area is thus to explore these connections further, to provide a more unified
treatment and bridge these complexity gaps, and to produce associated efficient implementations. A first step
towards this goal will be the design and implementation of enhanced algorithms for various generalizations
of Hermite-Padé approximation; in the context of list decoding, this should in particular make it possible to
improve over the structured-matrix approach, which is so far the fastest known.

On the numerical side, we will continue to revisit and improve the classical error bounds of numerical analysis
in the light of all the subtleties of IEEE floating-point arithmetic. These aspects will be developed jointly with
the “symbolic floating-point” approach presented in the next paragraph. A complementary approach will also
be studied, based on the estimation (possibly via automatic differentiation) of condition numbers in order to
identify inputs leading to large backward errors. Finally, concerning interval arithmetic, a thorough analysis
of the accuracy of several representations, such as mid-rad, is also to be done.
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3.3.2. Symbolic floating-point arithmetic.
Our work on the analysis of algorithms in floating-point arithmetic leads us to manipulate floating-point data
in their greatest generality, that is, as symbolic expressions in the base and the precision. A long-term goal
here is to develop theorems as well as efficient data structures and algorithms for handling such quantities by
computer rather than by hand as we do now. This is a completely new direction, whose main outcome will
be a “symbolic floating-point toolbox” distributed in computer algebra systems like Sage and or Maple. In
particular, such a toolbox will provide a way to check automatically the certificates of optimality we have
obtained on the error bounds of various numerical algorithms. A PhD student has started on this subject in
September 2014.

3.3.3. High-performance multiple precision arithmetic libraries.
Many numerical problems require higher precision than the conventional floating-point (single, double)
formats. One solution is to use multiple precision libraries such as GNU MPFR, which allow the manipulation
of very high precision numbers, but their generality (they are able to handle numbers with millions of digits),
is a quite heavy alternative when high performance is needed. Our objective is to design a multiple precision
arithmetic library that would allow to tackle problems where a precision of a few hundred bits is sufficient,
but which have strong performance requirements. Applications include the process of long-term iteration
of chaotic dynamical systems ranging from the classical Henon map to calculations of planetary orbits.
The designed algorithms will be formally proved. We are in close contact with Warwick Tucker (Uppsala
University, Sweden) and Mioara Joldes (LAAS, Toulouse) on this topic. A PhD student funded by a Région
Rhône-Alpes grant has started on this topic in September 2014.

3.3.4. Interactions between arithmetics.
We will work on the interplay between floating-point and integer arithmetics, and especially on how to make
the best use of both integer and floating-point basic operations when designing floating-point numerical kernels
for embedded devices. This will be done in the context of the Metalibm ANR project and of our collaboration
with STMicroelectronics. In addition, our work on the IEEE 1788 standard leads naturally to the development
of associated reference libraries for interval arithmetic. A first direction will be to implement IEEE 1788
interval arithmetic using the fixed-precision hardware available for IEEE 754-2008 floating-point arithmetic.
Another one will be to provide efficient support for multiple-precision intervals, in mid-rad representation and
by developing MPFR-based code-generation tools aimed at handling families of functions.

3.3.5. Adequation algorithms/architectures.
So far, we have investigated how specific instructions like the fused multiply-add (FMA) impact the accuracy
of computations, and have proposed several highly accurate FMA-based algorithms. The FMA being available
on several recent architectures, we now want to understand its impact on such algorithms in terms of
practical performances. This should be a medium term project, leading to FMA-based algorithms with best
speed/accuracy/robustness tradeoff. On the other hand (and on the long term), a major issue is how to
exploit the various levels of parallelism of recent and upcoming architectures to ensure simultaneously high
performance and reliability. A first direction will be to focus on SIMD parallelism, offered by instruction sets
via vector instructions. This kind of parallelism should be key for small numerical kernels like elementary
functions, complex arithmetic, or low-dimensional matrix computations. A second direction will be at the
multi-core processor level, especially for larger numerical or algebraic problems (and in conjunction with
SIMD parallelism when handling sub-problems of small enough dimension). Finally, we will work on aspects
of automatic adaptation (auto-tuning) to such architectural features, not only for speed, but also for accuracy.
This could be done via the design and implementation of heuristics capable of inserting more accurate codes,
based for example on error-free transforms, whenever needed.

4. Application Domains
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4.1. Hardware Arithmetic
The application domains of hardware arithmetic operators are

• digital signal processing;

• image processing;

• embedded applications;

• reconfigurable computing;

• cryptography.

4.2. Floating-point and Validated Numerics
Our expertise on validated numerics is useful to analyze and improve, and guarantee the quality of numerical
results in a wide range of applications including:

• scientific simulation;

• global optimization;

• control theory.

Much of our work, in particular the development of correctly rounded elementary functions, is critical to the

• reproducibility of floating-point computations.

4.3. Cryptography, Cryptology, Communication Theory
Lattice reduction algorithms have direct applications in

• public-key cryptography.

Another interesting field of application is

• communications theory.

5. New Software and Platforms

5.1. Overview
AriC software realizations are accessible from the web page http://www.ens-lyon.fr/LIP/AriC/ware. We
describe below only those which progressed in 2014.

5.2. GNU MPFR
Participant: Vincent Lefèvre [correspondant].

GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying
the good ideas from the IEEE-754 standard), in particular correct rounding in 5 rounding modes. GNU MPFR
provides about 80 mathematical functions, in addition to utility functions (assignments, conversions...). Special
data (Not a Number, infinities, signed zeros) are handled like in the IEEE-754 standard.

MPFR was one of the main pieces of software developed by the old SPACES team at Loria. Since late 2006,
with the departure of Vincent Lefèvre to Lyon, it has become a joint project between the Caramel (formerly
SPACES then CACAO) and the AriC (formerly Arénaire) project-teams. MPFR has been a GNU package
since 26 January 2009.

An MPFR-MPC developers meeting took place from 20 to 22 January 2014 in Nancy. There was no new
release this year, but various developments were done in the trunk.

http://www.ens-lyon.fr/LIP/AriC/ware
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The main work done in the AriC project-team:

• Changed the behavior of the mpfr_set_exp function to avoid undefined behavior in some cases
(this change mainly impacted the internal usage).

• Bug fixes and various improvements (portability, efficiency, etc.).

• The mpfr_sum function is being rewritten (new-sum branch); see Section 6.2.8.

URL: http://www.mpfr.org/

GNU MPFR is on the Black Duck Open Hub community platform for free and open source software: https://
www.openhub.net/p/gnu-mpfr

• ACM: D.2.2 (Software libraries), G.1.0 (Multiple precision arithmetic), G.4 (Mathematical soft-
ware).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.

• APP: no longer applicable (copyright transferred to the Free Software Foundation).

• License: LGPL version 3 or later.

• Type of human computer interaction: C library, callable from C or other languages via third-party
interfaces.

• OS/Middleware: any OS, as long as a C compiler is available.

• Required library or software: GMP.

• Programming language: C.

• Documentation: API in texinfo format (and other formats via conversion); algorithms are also
described in a separate document.

5.3. Exhaustive Tests for the Correct Rounding of Mathematical Functions
Participant: Vincent Lefèvre.

The search for the worst cases for the correct rounding (hardest-to-round cases) of mathematical functions
(exp, log, sin, cos, etc.) in a fixed precision (mainly double precision) using Lefèvre’s algorithm is imple-
mented by a set of utilities written in Perl, with calls to Maple/intpakX for computations on intervals and with
C code generation for fast computations. It also includes a client-server system for the distribution of intervals
to be tested and for tracking the status of intervals (fully tested, being tested, aborted).

The Perl scripts have been improved (in particular, for the interaction with Grid Engine).

5.4. FPLLL: A Lattice Reduction Library
Participant: Damien Stehlé [correspondant].

fplll contains several algorithms on lattices that rely on floating-point computations. This includes implemen-
tations of the floating-point LLL reduction algorithm, offering different speed/guarantees ratios. It contains a
“wrapper” choosing the estimated best sequence of variants in order to provide a guaranteed output as fast
as possible. In the case of the wrapper, the succession of variants is oblivious to the user. It also includes a
rigorous floating-point implementation of the Kannan-Fincke-Pohst algorithm that finds a shortest non-zero
lattice vector, and the BKZ reduction algorithm.

The fplll library is used or has been adapted to be integrated within several mathematical computation
systems such as Magma, Sage, and PariGP. It is also used for cryptanalytic purposes, to test the resistance
of cryptographic primitives.

This year, several improvements to the BKZ (block Korkine Zolotarev) algorithm have been implemented.
Further, the library is now hosted on github.

http://www.mpfr.org/
https://www.openhub.net/p/gnu-mpfr
https://www.openhub.net/p/gnu-mpfr
http://gmplib.org/
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URL: https://github.com/dstehle/fplll

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software)

• APP: Procedure started

• License: LGPL v2.1

• Type of human computer interaction: C++ library callable, from any C++ program.

• OS/Middleware: any, as long as a C++ compiler is available.

• Required library or software: MPFR and GMP.

• Programming language: C++.

• Documentation: available in html format on URL: https://github.com/dstehle/fplll

5.5. Sipe
Participant: Vincent Lefèvre.

Sipe is a mini-library in the form of a C header file, to perform radix-2 floating-point computations in very
low precisions with correct rounding, either to nearest or toward zero. The goal of such a tool is to do proofs
of algorithms/properties or computations of tight error bounds in these precisions by exhaustive tests, in order
to try to generalize them to higher precisions. The currently supported operations are addition, subtraction,
multiplication (possibly with the error term), fused multiply-add/subtract (FMA/FMS), and miscellaneous
comparisons and conversions. Sipe provides two implementations of these operations, with the same API and
the same behavior: one based on integer arithmetic, and a new one based on floating-point arithmetic.

New in 2014:

• sipe_to_mpfr function;

• support for __float128 from GCC/libquadmath (implementing the binary128 format);

• some corrections.

URL: https://www.vinc17.net/research/sipe/

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.

• License: LGPL version 2.1 or later.

• Type of human computer interaction: C header file.

• OS/Middleware: any OS.

• Required library or software: GCC compiler.

• Programming language: C.

• Documentation: comment at the beginning of the code and Research report Inria RR-7832.

5.6. Gfun
Participant: Bruno Salvy.

Gfun is a Maple package for the manipulation of linear recurrence or differential equations. It provides tools for
guessing a sequence or a series from its first terms; for manipulating rigorously solutions of linear differential
or recurrence equations, using the equation as a data-structure. This year, the implementation effort was
focused on speeding up the guessing routines in the case of sequences with symbolic parameters that come up
in general hypergeometric identities.

https://github.com/dstehle/fplll
https://github.com/dstehle/fplll
https://www.vinc17.net/research/sipe/
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6. New Results

6.1. Arithmetic operators
6.1.1. A table-based method to evaluate trigonometric functions

Linear (order-one) function evaluation schemes, such as bipartite and multipartite tables, are usually effective
for low precision approximations. For high output precision, the lookup table size is often too large for
practical use. Dong Wang and Milos Ercegovac (UC Los Angeles) and Nicolas Brisebarre and Jean-Michel
Muller investigate the so-called (M,p, k) scheme that reduces the range of input argument to a very small
interval so that trigonometric functions can be approximated with very small lookup tables and a few
additions/subtractions. An optimized hardware architecture is proposed and implemented in both FPGA device
and standard cell based technology. Experimental results show that the proposed scheme achieves more than
50% reduction in total chip area compared with the best linear approach for 24-bit evaluation [14].

6.2. Floating-Point arithmetic
6.2.1. On the computation of the reciprocal of floating point expansions using an adapted

Newton-Raphson iteration
Many numerical problems require a higher computing precision than that offered by common floating point
(FP) formats. One common way of extending the precision is to represent numbers in a multiple component
format. With so-called floating point expansions, numbers are represented as the unevaluated sum of standard
machine precision FP numbers. This format offers the simplicity of using directly available and highly
optimized FP operations and is used by multiple-precisions libraries such as Bailey’s ‘Q’D or the analogue
Graphics Processing Units tuned version, GQD. Mioara Joldes (LAAS), Jean-Michel Muller, and Valentina
Popescu introduced a new algorithm for computing the reciprocal FP expansion a−1 of a FP expansion a. Their
algorithm is based on using an adapted Newton-Raphson iteration where “truncated” operations (additions,
multiplications) involving FP expansions are used. The error analysis given shows that their algorithm allows
for computations of very accurate quotients. Precisely, after i ≥ 0 iterations, the computed FP expansion
x = x0 + · · ·+ x2i−1 satisfies the relative error bound |x−a

−1

a−1 | ≤2−2i(p−3)−1, where p > 4 is the precision
of the FP representation used (p = 24 for single precision and p = 53 for double precision) [19].

6.2.2. Error bounds on complex floating-point multiplication with a fused-multiply add
The accuracy analysis of complex floating-point multiplication done by Brent, Percival, and Zimmermann
[Math. Comp., 76:1469–1481, 2007] is extended by Peter Kornerup (Odense Univ. Denmark), Claude-Pierre
Jeannerod, Nicolas Louvet, and Jean-Michel Muller [42] to the case where a fused multiply-add (FMA)
operation is available. Considering floating-point arithmetic with rounding to nearest and unit roundoff u,
they show that the bound

√
5u on the normwise relative error |ẑ/z − 1| of a complex product z can be

decreased further to 2uwhen using the FMA in the most naive way. Furthermore, they prove that the term 2u is
asymptotically optimal not only for this naive FMA-based algorithm, but also for two other algorithms, which
use the FMA operation as an efficient way of implementing rounding error compensation. Thus, although
highly accurate in the componentwise sense, these two compensated algorithms bring no improvement to the
normwise accuracy 2u already achieved using the FMA naively. Asymptotic optimality is established for each
algorithm thanks to the explicit construction of floating-point inputs for which it is proven that the normwise
relative error then generated satisfies |ẑ/z − 1| → 2u as u→ 0. All these results hold for IEEE floating-point
arithmetic, with radix β ≥ 2, precision p ≥ 2, and rounding to nearest; it is only assumed that underflows and
overflows do not occur and, when bounding errors from below, that βp−1 ≥ 12.
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6.2.3. Refined error analysis of the Cornea-Harrison-Tang method for ab+ cd

In their book Scientific Computing on Itanium-based Systems, Cornea, Harrison, and Tang introduced an
accurate algorithm for evaluating expressions of the form ab+ cd in binary floating-point arithmetic, assuming
a fused-multiply add instruction is available. They showed that if p is the precision of the floating-point format
and if u = 2−p, the relative error of the result is of order u. Jean-Michel Muller improved their proof to show
that the relative error is bounded by 2u+ 7u2 + 6u3. Furthermore, by building an example for which the
relative error is asymptotically (as p→∞ or, equivalently, as u→ 0) equivalent to 2u, he proved that this
error bound is asymptotically optimal [11]. Claude-Pierre Jeannerod then showed in [41] that an error bound
of the form 2u+ 2u2 +O(u3) in fact holds for any radix β ≥ 2, with u = 1

2β
1−p. He also showed that the

possibility of removing the O(u2) term from this bound depends on the radix parity and the tie-breaking
strategy used for rounding: if β is odd or rounding is to nearest even then the simpler bound 2u is obtained,
while if β is even and rounding is to nearest away, then there exist floating-point inputs a, b, c, d that lead to a
relative error larger than 2u+ 1

βu
2.

6.2.4. On the maximum relative error when computing integer powers by iterated
multiplications in floating-point arithmetic
Stef Graillat (Paris 6 University), Vincent Lefèvre and Jean-Michel Muller improved the usual relative error
bound for the computation of xn through iterated multiplications by x in binary floating-point arithmetic. The
obtained error bound is only slightly better than the usual one, but it is simpler. They also discussed the more
general problem of computing the product of n terms [7].

6.2.5. Improved error bounds for numerical linear algebra
When computing matrix factorizations and solving linear systems in floating-point arithmetic, classical
rounding error analyses provide backward error bounds whose leading terms have the form γn = nu/(1− nu)
for suitable values of n and with u the unit roundoff. With Siegfried M. Rump (Hamburg University of
Technology), Claude-Pierre Jeannerod showed in [13] that for LU and Cholesky factorizations as well as
for triangular system solving, γn can be replaced by the O(u2)-free and unconditional constant nu. To get
these new bounds the main ingredient is a general framework for bounding expressions of the form |ρ− s|,
where s is the exact sum of a floating-point number and n− 1 real numbers, and where ρ is a real number
approximating the computed sum ŝ.

6.2.6. On relative errors of floating-point operations
Rounding error analyses of numerical algorithms are most often carried out via repeated applications
of the so-called standard models of floating-point arithmetic. Given a round-to-nearest function RN
and barring underflow and overflow, such models bound the relative errors E1(t) = |t−RN(t)|/|t| and
E2(t) = |t−RN(t)|/|RN(t)| by the unit roundoff u. In [34] Claude-Pierre Jeannerod and Siegfried M. Rump
(Hamburg University of Technology) investigated the possibility of refining these bounds, both in the case of
an arbitrary real t and in the case where t is the exact result of an arithmetic operation on some floating-point
numbers. They provided explicit and attainable bounds on E1(t), which are all less than or equal to u/(1 + u)
and, therefore, smaller than u. For E2(t) the bound u is attainable whenever t = x± y or t = xy or, in base
> 2, t = x/y with x, y two floating-point numbers. However, for division in base 2 as well as for square root,
smaller bounds are derived, which are also shown to be attainable. This set of sharp bounds was then applied
to the rounding error analysis of various numerical algorithms: in all cases, they obtained either much shorter
proofs of the best-known error bounds for such algorithms, or improvements on these bounds themselves.

6.2.7. Comparison between binary and decimal floating-point numbers
In collaboration with Christoph Lauter and Marc Mezzarobba (LIP6 laboratory, Paris), Nicolas Brisebarre and
Jean-Michel Muller introduce an algorithm to compare a binary floating-point (FP) number and a decimal
FP number, assuming the “binary encoding” of the decimal formats is used, and with a special emphasis on
the basic interchange formats specified by the IEEE 754-2008 standard for FP arithmetic. It is a two-step
algorithm: a first pass, based on the exponents only, quickly eliminates most cases, then, when the first pass
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does not suffice, a more accurate second pass is performed. They provide an implementation of several variants
of our algorithm, and compare them [37].

6.2.8. Correctly rounded sum of floating-point numbers in GNU MPFR
Vincent Lefèvre has designed a new algorithm to compute the correctly rounded sum of several floating-point
numbers, each having its own precision and the output having its own precision, as in GNU MPFR. At the
same time, the mpfr_sum function is being reimplemented (not finished yet). While the old algorithm was just
an application of Ziv’s method, thus with exponential time and memory complexity in the worst case such as
the sum of a huge number and a tiny number, the new algorithm does the sum by blocks (reiterations being
needed only in case of cancellations), taking such holes between numbers into account.

6.3. Certified computing and computer algebra
6.3.1. Standardization of interval arithmetic

The IEEE 1788 working group is devoted to the standardization of interval arithmetic. V. Lefèvre and N. Revol
are very active in this group. This year has been devoted to a ballot on the whole text of the standard [28], and
to editorial work to make it compliant with IEEE rules. The final, remaining step, is the so-called “Sponsor
ballot” and it should be completed in 2015.

6.3.2. Interval linear algebra on multi-core processors
For the product of matrices with interval coefficients, fast approximate algorithms have been developed by
Philippe Théveny: they compute an enclosure of the exact product. These algorithms rely on the representation
of intervals by their midpoints and radii. This representation allows one to use optimized routines for
the multiplication of matrices with floating-point coefficients. In [4], the quality of the approximation of
several algorithms is established, which accounts for roundoff errors and not only method’s errors. A
new algorithm is proposed, which requires even less (only 2) calls to a floating-point routine and still
offers a good approximation quality, for a well specified type of input matrices. Three of the studied
algorithms are implemented on a multi-core architecture. To avoid problems listed in [12] and to offer
good performances, Philippe Théveny developed optimizations. The resulting implementations exhibit good
performances: guaranteed results are obtained with an overhead less than 3, high numerical intensity and good
scalability.

6.3.3. Numerical reproducibility
What is called numerical reproducibility is the problem of getting the same result when the scientific
computation is run several times, either on the same machine or on different machines. In [12], the focus
is on interval computations using floating-point arithmetic: Nathalie Revol and Philippe Théveny identified
implementation issues that may invalidate the inclusion property, and presented several ways to preserve this
inclusion property. This work has also been replaced in the larger context of numerical validation [15].

6.3.4. Faster multivariate interpolation with multiplicities
Muhammad Chowdhury (U. Western Ontario), Claude-Pierre Jeannerod, Vincent Neiger (ENS de Lyon), Éric
Schost (U. Western Ontario), and Gilles Villard proposed in [38] a fast algorithm for interpolating multivariate
polynomials with multiplicities. This algorithm relies on the reduction to a problem of simultaneous polyno-
mial approximations, which is then solved using fast structured linear algebra techniques. This algorithm leads
to the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes,
Parvaresh-Vardy codes or folded Reed-Solomon codes. In the special case of Reed-Solomon codes, it allows to
accelerate the interpolation step of Guruswami and Sudan’s list-decoding by a factor (list size)/(multiplicity).
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6.3.5. Polynomial system solving
M. Bardet (U. Rouen), J.-C. Faugère (PolSys team) and B. Salvy studied the complexity of Gröbner bases
computation, in particular in the generic situation where the variables are in simultaneous Noether position
with respect to the system. They gave a bound on the number of polynomials of each degree in a Gröbner basis
computed by Faugère’s F5 algorithm in this generic case for the grevlex ordering (which is also a bound on
the number of polynomials for a reduced Gröbner basis, independently of the algorithm used) and used it to
bound the complexity of the F5 algorithm [5].

6.3.6. Linear differential equations
In [6], A. Bostan (SpecFun team), K. Raschel (U. Tours) and B. Salvy proved that the sequence (eSn )n≥0

of excursions in the quarter plane corresponding to a nonsingular step set S ⊆ {0,±1}2 with infinite group
does not satisfy any nontrivial linear recurrence with polynomial coefficients. Accordingly, in those cases, the
trivariate generating function of the numbers of walks with given length and prescribed ending point is not
D-finite. Moreover, they displayed the asymptotics of eSn . This completes the classification of these walks.

Colleagues from the LAAS (Toulouse) and B. Salvy provided a new method for computing the probability of
collision between two spherical space objects involved in a short-term encounter. In this specific framework
of conjunction, classical assumptions reduce the probability of collision to the integral of a 2-D normal
distribution over a disk shifted from the peak of the corresponding Gaussian function. Both integrand and
domain of integration directly depend on the nature of the short-term encounter. Thus the inputs are the
combined sphere radius, the mean relative position in the encounter plane at reference time as well as the
relative position covariance matrix representing the uncertainties. The method they presented is based on an
analytical expression for the integral. It has the form of a convergent power series whose coefficients verify a
linear recurrence. It is derived using Laplace transform and properties of D-finite functions. The new method
has been intensively tested on a series of test-cases and compares favorably to other existing works [29].

6.4. Lattices and cryptography
6.4.1. Worst-Case to Average-Case Reductions for Module Lattices

Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution
(SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching
the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of
hardness assumptions comes along with a possible security weakening: SIS and LWE are known to be at least
as hard as standard (worst-case) problems on euclidean lattices, whereas Ring-SIS and Ring-LWE are only
known to be as hard as their restrictions to special classes of ideal lattices, corresponding to ideals of some
polynomial rings. Adeline Langlois and Damien Stehlé defined the Module-SIS and Module-LWE problems,
which bridge SIS with Ring-SIS, and LWE with Ring-LWE, respectively. They proved that these average-case
problems are at least as hard as standard lattice problems restricted to module lattices (which themselves bridge
arbitrary and ideal lattices). As these new problems enlarge the toolbox of the lattice-based cryptographer, they
could prove useful for designing new schemes. Importantly, the worst-case to average-case reductions for the
module problems are (qualitatively) sharp, in the sense that there exist converse reductions. This property is
not known to hold in the context of Ring-SIS/Ring-LWE: Ideal lattice problems could reveal easy without
impacting the hardness of Ring-SIS/Ring-LWE [8].

6.4.2. Semantically Secure Lattice Codes for the Gaussian Wiretap Channel
Cong Ling (Imperial College, UK), Laura Luzzi (ENSEA), Jean-Claude Belfiore (Telecom ParisTech) and
Damien Stehlé proposed a new scheme of wiretap lattice coding that achieves semantic security and strong
secrecy over the Gaussian wiretap channel. The key tool in their security proof is the flatness factor which
characterizes the convergence of the conditional output distributions corresponding to different messages and
leads to an upper bound on the information leakage. They not only introduced the notion of secrecy-good
lattices, but also proposed the flatness factor as a design criterion of such lattices. Both the modulo-lattice
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Gaussian channel and the genuine Gaussian channel are considered. In the latter case, they proposed a novel
secrecy coding scheme based on the discrete Gaussian distribution over a lattice, which achieves the secrecy
capacity to within a half nat under mild conditions. No a priori distribution of the message is assumed, and no
dither is used in their proposed schemes [9].

6.4.3. GGHLite: More Efficient Multilinear Maps from Ideal Lattices
The Garg-Gentry-Halevi (GGH) Graded Encoding Scheme, based on ideal lattices, is the first plausible
approximation to a cryptographic multilinear map. Unfortunately, the scheme requires very large parameters
to provide security for its underlying encoding re-randomization process. Adeline Langlois, Damien Stehlé
and Ron Steinfeld (Monash University, Australia) formalized, simplified and improved the efficiency and the
security analysis of the re-randomization process in the GGH construction. This results in a new construction
that they called GGHLite. In particular, they first lowered the size of a standard deviation parameter of the GGH
re-randomization process from exponential to polynomial in the security parameter. This first improvement
is obtained via a finer security analysis of the so-called drowning step of re-randomization, in which they
applied the Rényi divergence instead of the conventional statistical distance as a measure of distance between
distributions. Their second improvement is to reduce the number of randomizers needed to 2, independently
of the dimension of the underlying ideal lattices. These two contributions allowed them to decrease the bit size
of the public parameters to O(λ log2 λ) in GGHLite, with respect to the security parameter λ (for a constant
multilinearity parameter κ) [22].

6.4.4. LLL reducing with the most significant bits
Let B be a basis of a Euclidean lattice, and B̃ an approximation thereof. Saruchi (IIT Delhi, India), Ivan
Morel, Damien Stehlé and Gilles Villard gave a sufficient condition on the closeness between B̃ and B so that
an LLL-reducing transformation U for B̃ remains valid for B. Further, they analysed an efficient reduction
algorithm when B is itself a small deformation of an LLL-reduced basis. Applications include speeding-up
reduction by keeping only the most significant bits of B, reducing a basis that is only approximately known,
and efficiently batching LLL reductions for closely related inputs [30].

6.4.5. Hardness of k-LWE and Applications in Traitor Tracing
San Ling (NTU, Singapore), Duong Hieu Phan (LAGA), Damien Stehlé and Ron Steinfeld (Monash Univer-
sity, Australia) introduced the k-LWE problem, a Learning With Errors variant of the k-SIS problem. The
Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k. Ling et al. improved and
extended it to an LWE to k-LWE reduction with a polynomial loss in k, by relying on a new technique in-
volving trapdoors for random integer kernel lattices. Based on this hardness result, they presented the first
algebraic construction of a traitor tracing scheme whose security relies on the worstcase hardness of standard
lattice problems. The proposed LWE traitor tracing is almost as efficient as the LWE encryption. Further, it
achieves public traceability, i.e., allows the authority to delegate the tracing capability to untrusted parties. To
this aim, Ling et al. introduced the notion of projective sampling family in which each sampling function is
keyed and, with a projection of the key on a well chosen space, one can simulate the sampling function in a
computationally indistinguishable way. The construction of a projective sampling family from k-LWE allows
us to achieve public traceability, by publishing the projected keys of the users [27].

6.4.6. Lattice-Based Group Signatures Scheme with Verifier-local Revocation
Support of membership revocation is a desirable functionality for any group signature scheme. Among the
known revocation approaches, verifier-local revocation (VLR) seems to be the most flexible one, because it
only requires the verifiers to possess some up-to-date revocation information, but not the signers. All of the
contemporary VLR group signatures operate in the bilinear map setting, and all of them will be insecure once
quantum computers become a reality. Adeline Langlois, San Ling, Khoa Nguyen and Huaxiong Wang (NTU,
Singapore) introduced the first lattice-based VLR group signature [21], and thus, the first such scheme that
is believed to be quantum-resistant. In comparison with existing lattice-based group signatures, this scheme
has several noticeable advantages: support of membership revocation, logarithmic-size signatures, and weaker
security assumption. In the random oracle model, our scheme is proved to be secure based on the hardness of
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the Shortest Independent Vector Problem with approximation factor γ = Õ(n1.5) - an assumption that is as
weak as those of state-of-the-art lattice-based standard signatures. Moreover, this construction works without
relying on encryption schemes, which is an intriguing feature for group signatures.

6.4.7. Proxy Re-Encryption Scheme Supporting a Selection of Delegatees
Julien Devigne (Orange Labs), Eleonora Guerrini (Univ. Montpellier 2, LIRMM) and Fabien Laguillaumie
adapt the primitive of proxy re-encryption which allows a user to decide that in case of unavailability, one
(or several) particular user, the delegatee, will be able to read his confidential messages. They modify it so
that a sender can choose who among many potential delegatees will be able to decrypt his messages, and
propose a simple and efficient scheme which is secure under chosen plaintext attack under standard algorithmic
assumption in a bilinear setting. They also investigate the possibility to add a traceability of the proxy so that
one can detect if it has leaked some re-encryption keys [17].

6.4.8. Practical validation of several fault attacks against the Miller algorithm
Ronan Lashermes (SAS-ENSMSE, PRISM), Marie Paindavoine, Nadia El Mrabet (Univ. P8, LIASD),
Jacques Fournier (SAS-ENSMSE) and Louis Goubin (UVSQ, PRISM) describe practical implementations
of fault attacks against the Miller algorithm, which computes pairing evaluations on algebraic curves. These
implementations validate common fault models used against pairings. In the light of the implemented fault
attacks, they show that some blinding techniques proposed to protect the algorithm against Side-Channels
Analyses cannot be used as countermeasures against the implemented fault attacks [23].

6.4.9. Non-Malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs
and CCA2-Secure Encryption from Homomorphic Signatures
Verifiability is central to building protocols and systems with integrity. Initially, efficient methods employed the
Fiat-Shamir heuristics. Since 2008, the Groth-Sahai techniques have been the most efficient in constructing
non-interactive witness indistinguishable and zero-knowledge proofs for algebraic relations in the standard
model. For the important task of proving membership in linear subspaces, Jutla and Roy (Asiacrypt 2013) gave
significantly more efficient proofs in the quasi-adaptive setting (QA-NIZK). For membership of the row space
of a t× n matrix, their QA-NIZK proofs save Ω(t) group elements compared to Groth-Sahai. In [26], Benoît
Libert, Thomas Peters (UCL, Belgique), Marc Joye (Technicolor, USA) and Moti Yung (Google and Columbia
U, USA) gave QA-NIZK proofs made of a constant number group elements – regardless of the number of
equations or the number of variables – and additionally proved them unbounded simulation-sound. Unlike
previous unbounded simulation-sound Groth-Sahai-based proofs, their construction does not involve quadratic
pairing product equations and does not rely on a chosen-ciphertext-secure encryption scheme. Instead, they
built on structure-preserving signatures with homomorphic properties. They applied their methods to design
new and improved CCA2-secure encryption schemes. In particular, they built the first efficient threshold CCA-
secure keyed-homomorphic encryption scheme (i.e., where homomorphic operations can only be carried out
using a dedicated evaluation key) with publicly verifiable ciphertexts.

6.4.10. Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure
Threshold Signatures with Short Shares
Threshold cryptography is a fundamental distributed computational paradigm for enhancing the availability
and the security of cryptographic public-key schemes. It does it by dividing private keys into n shares handed
out to distinct servers. In threshold signature schemes, a set of at least t+ 1 ≤ n servers is needed to produce
a valid digital signature. Availability is assured by the fact that any subset of t+ 1 servers can produce
a signature when authorized. At the same time, the scheme should remain robust (in the fault tolerance
sense) and unforgeable (cryptographically) against up to t corrupted servers; i.e., it adds quorum control to
traditional cryptographic services and introduces redundancy. Originally, most practical threshold signatures
have a number of demerits: They have been analyzed in a static corruption model (where the set of corrupted
servers is fixed at the very beginning of the attack), they require interaction, they assume a trusted dealer in
the key generation phase (so that the system is not fully distributed), or they suffer from certain overheads in
terms of storage (large share sizes).
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In [24], Benoît Libert, Marc Joye (Technicolor, USA) and Moti Yung (Google and Columbia U, USA)
constructed practical fully distributed (the private key is born distributed), non-interactive schemes – where the
servers can compute their partial signatures without communication with other servers – with adaptive security
(i.e., the adversary corrupts servers dynamically based on its full view of the history of the system). Their
schemes are very efficient in terms of computation, communication, and scalable storage (with private key
shares of size O(1), where certain solutions incur O(n) storage costs at each server). Unlike other adaptively
secure schemes, their schemes are erasure-free (reliable erasure is a hard to assure and hard to administer
property in actual systems). Such a fully distributed highly constrained scheme has been an open problem in
the area. In particular, and of special interest, is the fact that Pedersen’s traditional distributed key generation
(DKG) protocol can be safely employed in the initial key generation phase when the system is born – although
it is well-known not to ensure uniformly distributed public keys. An advantage of this is that this protocol only
takes one round optimistically (in the absence of faulty player).

6.4.11. Concise Multi-challenge CCA-Secure Encryption and Signatures with Almost Tight
Security
To gain strong confidence in the security of a public-key scheme, it is most desirable for the security proof
to feature a tight reduction between the adversary and the algorithm solving the under-lying hard problem.
Recently, Chen and Wee (Crypto ’13) described the first Identity-Based Encryption scheme with almost tight
security under a standard assumption. Here, “almost tight” means that the security reduction only loses a factor
O(λ) – where λ is the security parameter – instead of a factor proportional to the number of adversarial queries.
Chen and Wee also gave the shortest signatures whose security almost tightly relates to a simple assumption in
the standard model. Also recently, Hofheinz and Jager (Crypto ’12) constructed the first CCA-secure public-
key encryption scheme in the multi-user setting with tight security. These constructions give schemes that are
significantly less efficient in length (and thus, processing) when compared with the earlier schemes with loose
reductions in their proof of security. Hofheinz and Jager’s scheme has a ciphertext of a few hundreds of group
elements, and they left open the problem of finding truly efficient constructions. Likewise, Chen and Wee’s
signatures and IBE schemes are somewhat less efficient than previous constructions with loose reductions
from the same assumptions.

In [25], Benoît Libert, Thomas Peters (UCL, Belgique), Marc Joye (Technicolor, USA) and Moti Yung
(Google and Columbia U, USA) considered space-efficient schemes with security almost tightly related to
standard assumptions. As a step in solving the open question by Hofheinz and Jager, they constructed an
efficient CCA-secure public-key encryption scheme whose chosen-ciphertext security in the multi-challenge,
multi-user setting almost tightly relates to the DLIN assumption (in the standard model). Quite remarkably,
the ciphertext size decreases to 69 group elements under the DLIN assumption whereas the best previous
solution required about 400 group elements. Their scheme is obtained by taking advantage of a new almost
tightly secure signature scheme (in the standard model) they developed and which is based on the recent
concise proofs of linear subspace membership in the quasi-adaptive non-interactive zero-knowledge setting
(QA-NIZK) defined by Jutla and Roy (Asiacrypt ’13). The new signature scheme reduces the length of the
previous such signatures (by Chen and Wee) by 37% under the Decision Linear assumption, by almost 50%
under the K-LIN assumption, and it becomes only 3 group elements long under the Symmetric eXternal Diffie-
Hellman assumption. Our signatures are obtained by carefully combining the proof technique of Chen and Wee
and the above mentioned QA-NIZK proofs.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. Contracts with Bosch.

Two studies were conducted for Bosch (Stuttgart) on the numerical aspects of embedded computing. In the
first one, Florent de Dinechin and Jean-Michel Muller dealt with the issue of the choice of an adequate
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representation of numbers (fixed-point or floating-point) for embedded systems. In the second one, Claude-
Pierre Jeannerod reported on the stability and accuracy issues of linear system solving in finite-precision
arithmetic.

7.1.2. Collaboration with Intel.
INTEL made a $20000 donation in recognition of our work on the correct rounding of functions.

7.2. Bilateral Grants with Industry
7.2.1. Collaboration with Kalray.

Nicolas Brunie has been supported by a CIFRE PhD grant (from 15/04/2011 to 14/04/2014) from Kalray. The
purpose was the study of a tightly coupled reconfigurable accelerator to be embedded in the Kalray multicore
processor.

7.2.2. Orange Labs PhD Grant.
Marie Paindavoine is supported by an Orange Labs PhD Grant (from October 2013 to November 2016). She
works on privacy-preserving encryption mechanisms.

8. Partnerships and Cooperations

8.1. Regional Initiatives
The PhD grant of Valentina Popescu is funded by Région Rhône-Alpes through the ARC6 programme.

8.2. National Initiatives
8.2.1. ANR HPAC Project

Participants: Claude-Pierre Jeannerod, Nicolas Louvet, Clément Pernet, Nathalie Revol, Philippe Théveny,
Gilles Villard.

“High-performance Algebraic Computing” (HPAC) is a four year ANR project that started in January 2012.
The Web page of the project is http://hpac.gforge.inria.fr/. HPAC is headed by Jean-Guillaume Dumas
(CASYS team, LJK laboratory, Grenoble); it involves AriC as well as the Inria project-team MOAIS
(LIG, Grenoble), the Inria project-team PolSys (LIP6 lab., Paris), the ARITH group (LIRMM laboratory,
Montpellier), and the HPC Project company.

The overall ambition of HPAC is to provide international reference high-performance libraries for exact
linear algebra and algebraic systems on multi-processor architecture and to influence parallel programming
approaches for algebraic computing. The central goal is to extend the efficiency of the LinBox and FGb
libraries to new trend parallel architectures such as clusters of multi-processor systems and graphics processing
units in order to tackle a broader class of problems in lattice-based cryptography and algebraic cryptanalysis.
HPAC conducts researches along three axes:

• A domain specific parallel language (DSL) adapted to high-performance algebraic computations;

• Parallel linear algebra kernels and higher-level mathematical algorithms and library modules;

• Library composition, their integration into state-of-the-art software, and innovative high performance
solutions for cryptology challenges.

8.2.2. ANR DYNA3S Project
Participants: Guillaume Hanrot, Gilles Villard.

http://hpac.gforge.inria.fr/
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Dyna3s is a four year ANR project that started in October 2013. The Web page of the project is http://www.
liafa.univ-paris-diderot.fr/dyna3s/. It is headed by Valérie Berthé (U. Paris 7) and involves also the University
of Caen.

The aim is to study algorithms that compute the greatest common divisor (gcd) from the point of view of
dynamical systems. A gcd algorithm is considered as a discrete dynamical system by focusing on integer
input. We are mainly interested in the computation of the gcd of several integers. Another motivation comes
from discrete geometry, a framework where the understanding of basic primitives, discrete lines and planes,
relies on algorithm of the Euclidean type.

8.2.3. ANR FastRelax Project
Participants: Nicolas Brisebarre, Guillaume Hanrot, Vincent Lefèvre, Jean-Michel Muller, Bruno Salvy,
Serge Torres, Silviu Filip, Sébastien Maulat.

FastRelax stands for “Fast and Reliable Approximation”. It is a four year ANR project started in October
2014. The web page of the project is http://fastrelax.gforge.inria.fr/. It is headed by B. Salvy and involves
AriC as well as members of the Marelle Team (Sophia), of the Mac group (LAAS, Toulouse), of the Specfun
and Toccata Teams (Saclay), as well as of the Pequan group in UVSQ and a colleague in the Plume group of
LIP.

The aim of this project is to develop computer-aided proofs of numerical values, with certified and reasonably
tight error bounds, without sacrificing efficiency. Applications to zero-finding, numerical quadrature or global
optimization can all benefit from using our results as building blocks. We expect our work to initiate a “fast and
reliable” trend in the symbolic-numeric community. This will be achieved by developing interactions between
our fields, designing and implementing prototype libraries and applying our results to concrete problems
originating in optimal control theory.

8.2.4. PEPS Quarenum
Participants: Nicolas Louvet, Nathalie Revol.

“Quarenum” is an abbreviation for Qualité et Reproductibilité Numériques dans le Calcul Scientifique Haute
Performance. This project focuses on the numerical quality of scientific software, more precisely of high-
performance numerical codes. Numerical validation is one aspect of the project, the second one regards
numerical reproducibility.

8.3. International Initiatives
8.3.1. Inria Associate Teams

QOLAPS (Quantifier elimination, Optimization, Linear Algebra and Polynomial Systems) is an Associate
Team between the Symbolic Computation Group at North Carolina State University (USA), the PolSys team
at LIP6, Paris 6, and the AriC team. Participants: Clément Pernet, Nathalie Revol, Gilles Villard.

8.3.2. Inria International Partners
8.3.2.1. Informal International Partners

Our international academic collaborators are from Courant Institute of Mathematical Sciences (USA), Ham-
burg University of Technology (Germany), Imperial College (UK), Macquarie University (Australia), Mc Gill
University (Canada), Monash University (Australia), Nanyang Technological University (Singapore), North
Carolina State University (USA), Technical University of Cluj-Napoca (Romania), University of California,
Los Angeles (USA), University of Delaware (USA), University of Southern Denmark (Denmark), University
of Western Ontario (Canada), University of Waterloo (Canada), Uppsala University (Sweden).

We also collaborate with Intel (Portland, USA).

http://www.liafa.univ-paris-diderot.fr/dyna3s/
http://www.liafa.univ-paris-diderot.fr/dyna3s/
http://fastrelax.gforge.inria.fr/
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8.3.3. Participation In other International Programs
• PICS CANTaL (Cryptography, Algorithmic Number Theory and Lattices). This is a collaborative

project involving several AriC members (Nicolas Brisebarre, Guillaume Hanrot, Fabien Laguillau-
mie, Adeline Langlois and Damien Stehlé), and collaborators in several Australian universities:
Christophe Doche (Macquarie University), Igor Shparlinski (UNSW) and Ron Steinfeld (Monash
University). It was funded by the International office of the CNRS, for 2012, 2013 and 2014.

• IEEE P1788 working group for the standardization of interval arithmetic. We contributed to the
creation in 2008 of this working group http://grouper.ieee.org/groups/1788/ and Nathalie Revol
chairs this group since its creation. In 2014, the final draft text has been approved upon by the
working group in June. The rest of the year was devoted to editorial polishing, before submitting
the text to the “Sponsor ballot”, which constitutes the final step and should be completed in 2015.
The annual in-person meeting, chaired by Nathalie Revol, took place at the end of the SCAN 2014
conference in Würzburg, Germany, the 26 September.

Vincent Lefèvre actively participated in various discussions, either in the mailing-list or in small
subgroups.

8.4. International Research Visitors
8.4.1. Visits of International Scientists

Many colleagues from all other the world visit us regularly for seminars and collaborations. We list only long
visits here.

Jie Chen (assistant professor at ECNU, China) visited us for a month, in November. He collaborated with
Fabien Laguillaumie, Benoît Libert and Damien Stehlé on functional encryption.

Jung Hee Cheon (professor at SNU, South Korea) and Changmin Lee (PhD student at SNU, South Korea)
visited us for a month, in August. They collaborated with Damien Stehlé on the approximate greatest common
divisor problem and its applications in homomorphic cryptography.

8.4.1.1. Internships

Mihai-Ioan Popescu (ENS de Lyon) did a Master 1 internship from May to July, under the supervision of
Damien Stehlé. He worked on heuristic algorithms for short lattice vector enumeration.

François Colas (U. Grenoble) did a Master 2 internship from March to June, under the supervision of Damien
Stehlé. He worked on lattice-based homomorphic encryption.

Catalin Cocis (ENS de Lyon) did a Master 2 internship from February to June under the supervision of Fabien
Laguillaumie. He worked on the implementation of multilinear maps.

Laura Chira (Technological U. of Cluj, Romania) did an L3 Summer internship from July to September
2014. This internship was supervised by Benoît Libert and devoted to the implementation of pseudo-random
functions based on hard algorithmic problems in lattices.

Thomas Grégoire (ENS de Lyon) did a Master 2 internship from February to June under the supervision of
Nicolas Brisebarre. He designed some tools for the certified approximation of functions in various orthogonal
bases.

Saurabh Yadav (2nd year student, Indian Institute of Technology Delhi, India) did a Summer internship
supervised by Benoît Libert in July and August 2014. The goal was to study and survey the applications
of a cryptographic primitive built on top of multi-linear maps and called “indistinguishability obfuscation.”

http://grouper.ieee.org/groups/1788/
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9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific animation

• Guillaume Hanrot is director of the LIP laboratory (Laboratoire de l’Informatique du Parallélisme)
since April 1, 2014. He was deputy director of the LIP before;

• Jean-Michel Muller is co-director of the Groupement de Recherche (GDR) Informatique Mathéma-
tique of CNRS;

• Gilles Villard has been director of the LIP laboratory until April 1, 2014.

9.1.2. Scientific events organisation
9.1.2.1. general chair, scientific chair

Damien Stehlé is a member of the steering committee of the PQCrypto conference series. He is also a member
of the steering committee of the Cryptography and Coding French research grouping (C2).

Claude-Pierre Jeannerod is a member of the scientific committee of JNCF (Journées Nationales de Calcul
Formel).

9.1.2.2. member of the organizing committee

Bruno Salvy was one of the organizers of a workshop “Challenges in 21st Century Experimental Mathematical
Computation”, at ICERM, Providence, Rhode Island.

Nicolas Brisebarre and Jean-Michel Muller organized a one week workshop “Formal Proof, Symbolic
Computation and Computer Arithmetic” which took place from February 3 to February 7 (50 participants), in
the framework of a whole month devoted to “Mathematical Structures of Computation” in Lyon.

9.1.3. Scientific events selection
9.1.3.1. member of the conference program committee

Jean-Michel Muller was a member of the program committees of ASAP’2014 and ARITH’2015.

Damien Stehlé was a member of the program committees of LATINCRYPT’14, PQCrypto’14, and ACISP’14.

Bruno Salvy was a member of the program committee of AofA’2014.

Fabien Laguillaumie was a member of the program committee of Africacrypt’14.

Benoît Libert was a member of the program committee of ACM-CCS’14.

9.1.4. Journal
9.1.4.1. member of the editorial board

• Jean-Michel Muller is a member of the editorial board of the IEEE Transactions on Computers. He
is a member of the board of foundation editors of the Journal for Universal Computer Science. He
was co-guest editor of a special issue of the journal Science of Computer Programming [32].

• Bruno Salvy is a member of the editorial boards of the Journal of Symbolic Computation, of the
Journal of Algebra (section Computational Algebra) and of the collections Texts and Monographs
in Symbolic Computation (Springer) and Mathématiques et Applications (SMAI-Springer).

• Gilles Villard is a member of the editorial board of the Journal of Symbolic Computation.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching
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Master: Jean-Michel Muller, Floating-Point Arithmetic and Formal Proof (8h + coordination of the
24h course), ENS de Lyon.
Master: Nicolas Brisebarre, Introduction to Effective Approximation Theory (24h), Hanoi Institute
of Mathematics (Vietnam).
Master: Claude-Pierre Jeannerod, Nicolas Louvet, Nathalie Revol, Algorithmique numérique et
fiabilité des calculs en arithmétique flottante (24h), M2 ISFA (Institut de Science Financière et
d’Assurances), Université Claude Bernard Lyon 1.
Master: Vincent Lefèvre, Arithmétique des ordinateurs (20h), M2 ISFA (Institut de Science Finan-
cière et d’Assurances), Université Claude Bernard Lyon 1.
Professional teaching: Nathalie Revol, Contrôler et améliorer la qualité numérique d’un code de
calcul industriel (2h30), Collège de Polytechnique.
Master: Fabien Laguillaumie, Cryptography, Error Correcting Codes, 150h, Université Claude
Bernard Lyon 1.
Master: Damien Stehlé, Cryptography, 24h, ENS de Lyon.
Master: Benoît Libert, Advances cryptographic protocols, 24h, ENS de Lyon.
Research school: Adeline Langlois, Fabien Laguillaumie, Damien Stehlé, Chiffrement avancé à
partir du problème Learning With Errors (4h30), École de printemps Codes et Crypto, Université de
Grenoble.
Research school: Adeline Langlois, Fabien Laguillaumie, Damien Stehlé, Chiffrement avancé à par-
tir du problème Learning With Errors (4h30), École Jeunes Chercheurs en Informatique Mathéma-
tique, Université de Caen.
Research school: Damien Stehlé, Cryptographie reposant sur les réseaux euclidiens (3h), Colloque
Jeunes Chercheurs en Théorie des Nombres.

9.2.2. Supervision
PhD : Nicolas Brunie, Contribution à l’arithmétique des ordinateurs et applications aux systèmes
embarqués, ENS Lyon, May 2014, co-supervised by Florent de Dinechin (and Renaud Ayrignac).
PhD : Adeline Langlois, Lattice - Based Cryptography - Security Foundations and Constructions,
ENS Lyon, October 2014, supervised by Damien Stehlé.
PhD : Philippe Théveny, Numerical quality and high performance in interval linear algebra on
multi-core Processors, ENS Lyon, October 2014, supervised by Nathalie Revol.
PhD in progress: Silviu Filip, Filtroptim : tools for an optimal synthesis of numerical filters, since
September 2013, co-supervised by Nicolas Brisebarre and Guillaume Hanrot.
PhD in progress: Vincent Neiger, Multivariate interpolation in computer algebra: efficient algo-
rithms ans applications, since September 2013, co-supervised by Claude-Pierre Jeannerod and Gilles
Villard (together with Éric Schost (Western University, London, Canada)).
PhD in progress: Marie Paindavoine, Méthodes de calculs sur des données chiffrées, since October
2013 (Orange Labs - UCBL), co-supervised by Fabien Laguillaumie (together with Sébastien
Canard).
PhD in progress : Antoine Plet, Contribution à l’analyse d’algorithmes en arithmétique virgule
flottante, since September 2014, co-supervised by Nicolas Louvet and Jean-Michel Muller.
PhD in progress : Valentina Popescu, Vers des bibliothèques multi-précision certifiées et perfor-
mantes, since September 2014, co-supervised by Mioara Joldes (LAAS) and Jean-Michel Muller.
PhD in progress : Serge Torres, Some tools for the design of efficient and reliable function evaluation
libraries, since September 2010, co-supervised by Nicolas Brisebarre and Jean-Michel Muller.
PhD in progress: Louis Dumont, Algorithmique efficace pour les diagonales, applications en
combinatoire, physique et théorie des nombres, co-supervised by Alin Bostan (SpecFun team) and
Bruno Salvy.



22 Activity Report INRIA 2014

PhD in progress: Sébastien Maulat, Évaluation efficace et certifiée de fonctions différentiellement
finies en précision modérée, since september 2014, supervised by Bruno Salvy.

PhD in progress: Stephen Melczer, Effective analytic combinatorics in one and several variables,
co-supervised by George Labahn (U. Waterloo, Canada) and Bruno Salvy.

9.2.3. Juries
In 2014, Jean-Michel Muller was vice-chair of the “Comité d’évaluation scientifique mathéma-
tiques–informatique théorique” of the ANR (the French national research agency). He participated to
the PhD committees for the defenses of Laurent Thévenoux (Univ. Perpignan) and Karim Bigou (Univ.
Rennes 1). He participated to the Habilitation committees for the defenses of Christophe Denis (Univ.
Perpignan), Sylvie Boldo (Paris Sud Univ.) and David Defour (Univ. Perpignan). He was a member of the
Scientific Council of ENS de Lyon until june 2014, and he is a member of the Scientific Council of CERFACS
(Toulouse).

Bruno Salvy was a member of the PhD committees of Julien Courtien (Bordeaux), Jules Svartz (UPMC), and
Pierre Lairez (École polytechnique).

Nathalie Revol was a member of the PhD committee of Olivier Mullier (École polytechnique). Nathalie Revol
was in the hiring committee for junior researchers (CR) of Inria Grenoble - Rhône-Alpes and in the hiring
committee for an assistant professor position at Université Paris Sud.

Damien Stehlé was reviewer of the PhD theses of Robert Fitzpatrick (Royal Holloway, UK), Tancrède Lepoint
(ENS Paris, Univ. du Luxembourg and CryptoExperts) and Nicola di Pietro (Univ. Bordeaux).

Fabien Laguillaumie was reviewer for the PhD thesis of Alain Patey (Telecom ParisTech). He was part of the
HDR committee of Damien Vergnaud (ENS).

Nicolas Louvet was a member of a hiring committee for an associate professor position at the university
Montpellier 2.

9.3. Invited Conferences
• Damien Stehlé gave an invited talk Secure lattice codes for the gaussian wiretap channel, at the

Algebra, Codes and Networks symposium, Bordeaux, France, in June 2014;

• Damien Stehlé gave an invited talk The Learning with Errors problem, at the Oberwolfach workshop
on combinatorial optimization, Oberwolfach, Germany, in November 2014;

• Jean-Michel Muller gave two invited talks, On the maximum relative error when computing xn in
floating-point arithmetic (in Tokyo) and On complex multiplication and division with an FMA (in
Kyoto), for the conference INVA 2014, Japan, in March 2014;

• Jean-Michel Muller gave an invited talk Getting tight error bounds in floating-point arithmetic:
illustration with complex functions, and the real xn function, at the workshop NSV’2014: Numerical
Software Verification, Vienna, in July 2014.

• Bruno Salvy gave an invited talk Algorithmic variations on linear differential equations at the
MBM2014 day organized in Bordeaux in October when Mireille Bousquet-Mélou received the
silver medal of the CNRS. He was also invited to give a talk in Oberwolfach, for their meeting
on Enumerative Combinatorics in March, where he talked about Multiple Binomial Sums, of which
he had given a previous version in February at the “Holonomy days” where he had been invited in
Grenoble.

• Nathalie Revol gave invited talks at the workshop “Challenges in 21st Century Experimental
Mathematical Computation” at ICERM, Providence, Rhode Island, and at French seminars: CEA-
LIST, Inria comité des projets, Aristote.

• Fabien Laguillaumie gave an invited scientific committee talk Anonymity-oriented Signatures based
on Lattices at the YACC’14 conference, Porquerolles, France, in June 2014.
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9.4. Popularization
• Sylvie Boldo (Proval project) and Jean-Michel Muller wrote a popular science paper Des ordinateurs

capables de calculer plus juste in the journal La Recherche [36].

• Nicolas Brisebarre co-organizes scientific conferences, called «Éclats de sciences», at Maison du
Livre, de l’Image et du Son in Villeurbanne. Around three conferences take place per year.

• Nathalie Revol gave talks for pupils at collèges and lycées, as an incentive to choose scientific
careers: lycée Camille Vernet (Valence, Drôme), lycée Jérémie de la Ville (Charlieu, Loire), lycée
Gabriel Fauré (Annecy, Haute-Savoie), collège Jean Renoir (Neuville-sur-Saône, Rhône). During the
“Week of mathematics”, she gave a 2-hour talk at lycée de la Côtière (La Boisse, Ain). She gave the
inaugural conference of the congress “Math en Jean’s” in Lyon and the conference for the scientific
camp “Math C2+” in Montbonnot. She was present for the “Mondial des Métiers” (Eurexpo Lyon,
Chassieu, Rhône). For the Science Fair, she gave 2 talks at MMI, ENS de Lyon. In 2014, she met
over 1000 pupils.
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