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        Overall Objectives

        The scientific objectives of ASPI are the design, analysis and
implementation of interacting Monte Carlo methods, also known as particle
methods, with focus on

        
          	
             statistical inference in hidden Markov models
and particle filtering,

          

          	
             risk evaluation and simulation of rare events,

          

          	
             global optimization.

          

        

        The whole problematic is multidisciplinary,
not only because of the many scientific and engineering areas
in which particle methods are used,
but also because of the diversity of the scientific communities
which have already contributed to establish the foundations
of the field

        
          target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods, etc.

        

        Intuitively speaking, interacting Monte Carlo methods are sequential
simulation methods, in which particles

        
          	
             explore the state space by mimicking the evolution
of an underlying random process,

          

          	
             learn their environment by evaluating a fitness function,

          

          	
             and interact so that only the most successful particles
(in view of the fitness function) are allowed to survive
and to get offsprings at the next generation.

          

        

        The effect of this mutation / selection mechanism is to automatically
concentrate particles (i.e. the available computing power) in regions of
interest of the state space. In the special case of particle filtering,
which has numerous applications under the generic heading of positioning,
navigation and tracking, in

        
          target tracking,
computer vision,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.,

        

        each particle represents a possible hidden state, and is replicated
or terminated at the next generation on the basis of its consistency with
the current observation, as quantified by the likelihood function.
With these genetic–type algorithms, it becomes easy to efficiently combine
a prior model of displacement with or without constraints, sensor–based
measurements, and a base of reference measurements, for example in the
form of a digital map (digital elevation map, attenuation map, etc.).
In the most general case, particle methods provide approximations of
Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions, by means of the weighted empirical probability distribution
associated with an interacting particle system,
with applications that go far beyond filtering, in

        
          simulation of rare events,
global optimization,
molecular simulation, etc.

        

        The main applications currently considered are
geolocalisation and tracking of mobile terminals,
terrain–aided navigation,
data fusion for indoor localisation,
optimization of sensors location and activation,
risk assessment in air traffic management,
protection of digital documents.
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        Interacting Monte Carlo methods
and particle approximation of Feynman–Kac distributions

        Monte Carlo methods are numerical methods that are widely used
in situations where
(i) a stochastic (usually Markovian) model is given for some underlying
process, and (ii) some quantity of interest should be evaluated, that
can be expressed in terms of the expected value of a functional of the
process trajectory, which includes as an important special case the
probability that a given event has occurred.
Numerous examples can be found, e.g. in financial engineering (pricing of options and derivative
securities)  [36] ,
in performance evaluation of communication networks (probability of buffer
overflow), in statistics of hidden Markov models (state estimation,
evaluation of contrast and score functions), etc.
Very often in practice, no analytical expression is available for
the quantity of interest, but it is possible to simulate trajectories
of the underlying process. The idea behind Monte Carlo methods is
to generate independent trajectories of this process
or of an alternate instrumental process,
and to build an approximation (estimator) of the quantity of interest
in terms of the weighted empirical probability distribution
associated with the resulting independent sample.
By the law of large numbers, the above estimator converges
as the size N of the sample goes to infinity, with rate 1/N
and the asymptotic variance can be estimated using an appropriate
central limit theorem.
To reduce the variance of the estimator, many variance
reduction techniques have been proposed.
Still, running independent Monte Carlo simulations can lead to
very poor results, because trajectories are generated blindly,
and only afterwards are the corresponding weights evaluated.
Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator,
i.e. computing power has been wasted.

        A recent and major breakthrough,
has been the introduction of interacting Monte Carlo methods,
also known as sequential Monte Carlo (SMC) methods,
in which a whole (possibly weighted) sample,
called system of particles, is propagated in time, where
the particles

        
          	
             explore the state space under the effect of
a mutation mechanism which mimics the evolution of the
underlying process,

          

          	
             and are replicated or terminated, under
the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power,
into regions of interest of the state space.

          

        

        In full generality, the underlying process is a discrete–time Markov
chain, whose state space can be

        
          finite,
continuous,
hybrid (continuous / discrete),
graphical,
constrained,
time varying,
pathwise, etc.,

        

        the only condition being that it can easily be simulated.

        In the special case of particle filtering,
originally developed within the tracking community,
the algorithms yield a numerical approximation of the optimal Bayesian
filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly
weighted) empirical probability distribution of the system of particles.
In its simplest version, introduced in several different scientific
communities under the name of
bootstrap filter  [38] ,
Monte Carlo filter  [43] 
or condensation (conditional density propagation)
algorithm  [40] ,
and which historically has been the first algorithm to include
a redistribution step,
the selection mechanism is governed by the likelihood function:
at each time step, a particle is more likely to survive
and to replicate at the next generation if it is consistent with
the current observation.
The algorithms also provide as a by–product a numerical approximation
of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction
error or the conditional least–squares criterion.

        Particle methods
are currently being used in many scientific and engineering areas

        
          positioning, navigation, and tracking  [39] , [33] ,
visual tracking  [40] ,
mobile robotics  [34] , [55] ,
ubiquitous computing and ambient intelligence,
sensor networks,
risk evaluation and simulation of rare events  [37] ,
genetics, molecular simulation  [35] , etc.

        

        Other examples of the many applications of particle filtering can be
found in the contributed volume  [22]  and in the special
issue of IEEE Transactions on Signal Processing devoted
to Monte Carlo Methods for Statistical Signal Processing
in February 2002,
where the tutorial paper  [23]  can be found,
and in the textbook  [52]  devoted
to applications in target tracking.
Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics,
can be found in  [51] .
A recent overview can also be found in  [25] .

        Particle methods are very easy to implement, since it is sufficient
in principle to simulate independent trajectories of the underlying
process.
The whole problematic is multidisciplinary,
not only because of the already mentioned diversity of the scientific
and engineering areas in which particle methods are used,
but also because of the diversity of the scientific communities
which have contributed to establish the foundations of the field

        
          target tracking,
interacting particle systems,
empirical processes,
genetic algorithms (GA),
hidden Markov models and nonlinear filtering,
Bayesian statistics,
Markov chain Monte Carlo (MCMC) methods.

        

        These algorithms can be interpreted as numerical approximation schemes
for Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann
distributions,
in terms of the weighted empirical probability distribution
associated with a system of particles.
This abstract point of view  [31] , [29] ,
has proved to be extremely fruitful in providing a very general
framework to the design and analysis of numerical approximation schemes,
based on systems of branching and / or interacting particles,
for nonlinear dynamical systems with values in the space of probability
distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of
particles (sample size) goes to infinity,
using techniques coming from applied probability (interacting particle
systems, empirical processes  [56] ),
see e.g. the survey article  [31] 
or the textbooks  [29] , [28] , and references therein

        
          convergence in Łp,
convergence as empirical processes indexed by classes of functions,
uniform convergence in time, see also  [48] , [49] ,
central limit theorem, see also  [45] ,
propagation of chaos,
large deviations principle,
etc.

        

        The objective here is to
systematically study the impact of the many algorithmic variants
on the convergence results.
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        Statistics of HMM

        Hidden Markov models (HMM) form a special case of partially
observed stochastic dynamical systems, in which the state of a Markov
process (in discrete or continuous time, with finite or continuous
state space) should be estimated from noisy observations.
The conditional probability distribution of the hidden state given
past observations is a well–known example of a normalized (nonlinear)
Feynman–Kac distribution,
see 
	3.1 .
These models are very flexible, because of the introduction of latent
variables (non observed) which allows to model complex time dependent
structures, to take constraints into account, etc.
In addition, the underlying Markovian structure makes it possible
to use numerical algorithms (particle filtering, Markov chain Monte Carlo
methods (MCMC), etc.) which are computationally intensive
but whose complexity is rather small.
Hidden Markov models are widely used in various applied areas, such as
speech recognition, alignment of biological sequences, tracking in
complex environment, modeling and control of networks, digital
communications, etc.

        Beyond the recursive estimation of a hidden state from noisy
observations, the problem arises of statistical inference of HMM
with general state space  [26] ,
including estimation of model parameters,
early monitoring and diagnosis of small changes in model parameters,
etc.

        Large time asymptotics   A fruitful approach is the asymptotic study, when the observation
time increases to infinity, of an extended Markov chain, whose
state includes (i) the hidden state, (ii) the observation,
(iii) the prediction filter (i.e. the conditional probability
distribution of the hidden state given observations at all previous
time instants), and possibly (iv) the derivative of the prediction
filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function,
the conditional least–squares criterion, and many other clasical
contrast processes, as well as their derivatives with respect to
the parameter, as additive functionals of the extended Markov chain.

        The following general approach has been proposed

        
          	
             first, prove an exponential stability property (i.e. an exponential forgetting property of the initial condition) of the
prediction filter and its derivative, for a misspecified model,

          

          	
             from this, deduce a geometric ergodicity property
and the existence of a unique invariant probability distribution
for the extended Markov chain, hence a law of large numbers
and a central limit theorem for a large class of contrast processes
and their derivatives, and a local asymptotic normality property,

          

          	
             finally, obtain the consistency (i.e. the convergence
to the set of minima of the associated contrast function), and the
asymptotic normality of a large class of minimum contrast estimators.

          

        

        This programme has been completed in the case of a finite state
space [7] , and has been generalized  [32] 
under an uniform minoration assumption for the Markov transition kernel,
which typically does only hold when the state space is compact.
Clearly, the whole approach relies on the existence of an exponential
stability property of the prediction filter, and the main challenge
currently is to get rid of this uniform minoration assumption for
the Markov transition kernel  [30] , [49] ,
so as to be able to consider more interesting situations, where
the state space is noncompact.

        Small noise asymptotics   Another asymptotic approach can also be used, where it is rather easy
to obtain interesting explicit results, in terms close to the language
of nonlinear deterministic control theory  [44] .
Taking the simple example where the hidden state is the solution to
an ordinary differential equation, or a nonlinear state model, and
where the observations are subject to additive Gaussian white noise,
this approach consists in assuming that covariances matrices
of the state noise and of the observation noise go simultaneously
to zero. If it is reasonable in many applications to consider that
noise covariances are small, this asymptotic approach is less natural
than the large time asymptotics, where it is enough (provided a
suitable ergodicity assumption holds) to accumulate observations
and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the
limit (Kullback–Leibler divergence, Fisher information matrix, asymptotic
covariance matrix, etc.) take here a much more explicit form than in the
large time asymptotics.

        The following results have been obtained using this approach

        
          	
             the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global minima of the Kullback–Leibler
divergence), has been obtained using large deviations techniques,
with an analytical approach  [41] ,

          

          	
             if the abovementioned set M does not reduce to the true
parameter value, i.e. if the model is not identifiable, it is still
possible to describe precisely the asymptotic behavior of the
estimators  [42] : in the simple case where the state
equation is a noise–free ordinary differential equation and using
a Bayesian framework,
it has been shown that (i) if the rank r of the Fisher
information matrix I is constant in a neighborhood of the
set M, then this set is a differentiable submanifold of
codimension r, (ii) the posterior probability distribution of the
parameter converges to a random probability distribution in the limit,
supported by the manifold M, absolutely continuous w.r.t. the Lebesgue measure on M, with an explicit expression for the density,
and (iii) the posterior probability distribution of the suitably
normalized difference between the parameter and its projection on
the manifold M, converges to a mixture of Gaussian probability
distributions on the normal spaces to the manifold M, which
generalized the usual asymptotic normality property,

          

          	
             it has been shown  [50] 
that (i) the parameter dependent
probability distributions of the observations are locally asymptotically
normal (LAN)  [47] , from which the asymptotic
normality of the maximum likelihood estimator follows, with an explicit
expression for the asymptotic covariance matrix, i.e. for the Fisher
information matrix I, in terms of the Kalman filter
associated with the linear tangent linear Gaussian model,
and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the
parameter and suitably normalized, converges to a Gaussian r.v. with
zero mean and covariance matrix I.
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        Multilevel splitting for rare event simulation

        
          See 
	4.2 ,
and 
	6.1 ,

	6.2 ,
and 
	6.3 .

        

        The estimation of the small probability of a rare but critical event,
is a crucial issue in industrial areas such as

        
          nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

        

        In such complex systems, analytical methods cannot be used, and
naive Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [46] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
As shown in [5] , the Feynman–Kac formalism
of 
	3.1  is well suited for the design
and analysis of splitting algorithms for rare event simulation.

        Propagation of uncertainty   Multilevel splitting can be used in static situations. Here, the
objective is to learn the probability distribution of an output random
variable Y=F(X), where the function F is only defined pointwise
for instance by a computer programme, and where the probability distribution
of the input random variable X is known and easy to simulate from.
More specifically, the objective
could be to compute the probability of the output random variable
exceeding a threshold, or more generally to evaluate the
cumulative distribution function of the output random variable for
different output values.
This problem is characterized by
the lack of an analytical expression for the function, the
computational cost of a single pointwise evaluation of the function,
which means that the number of calls to the function should be limited as
much as possible, and finally the complexity and / or unavailability of the
source code of the computer programme, which makes any modification
very difficult or even impossible, for instance to change the model as in
importance sampling methods.

        The key issue is to learn as fast as possible regions of the input space
which contribute most to the computation of the target quantity. The
proposed splitting methods consists in (i) introducing a sequence of
intermediate regions in the input space, implicitly defined by exceeding
an increasing sequence of thresholds or levels, (ii) counting the fraction
of samples that reach a level given that the previous level has been
reached already, and (iii) improving the diversity of the selected
samples, usually using an artificial Markovian dynamics.
In this way, the algorithm learns

        
          	
             the transition probability between successive levels, hence
the probability of reaching each intermediate level,

          

          	
             and the probability distribution of the input random variable,
conditionned on the output variable reaching each intermediate level.

          

        

        A further remark, is that this conditional probability distribution is
precisely the optimal (zero variance) importance distribution needed to
compute the probability of reaching the considered intermediate level.

        Rare event simulation   To be specific, consider a complex dynamical system modelled as a Markov
process, whose state can possibly contain continuous components and
finite components (mode, regime, etc.), and the objective is to
compute the probability, hopefully very small, that a critical region
of the state space is reached by the Markov process before a final
time T, which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal
behaviour).

        The proposed splitting method consists in (i) introducing a decreasing
sequence of intermediate, more and more critical, regions in the state
space, (ii) counting the fraction of trajectories that reach an
intermediate region before time T, given that the previous intermediate
region has been reached before time T, and (iii) regenerating the
population at each stage, through redistribution. In addition to the
non–intrusive behaviour of the method, the splitting methods make it
possible to learn the probability distribution of typical critical
trajectories, which reach the critical region before final time T,
an important feature that methods based on importance sampling usually
miss.
Many variants have been proposed, whether

        
          	
             the branching rate (number of offsprings allocated to a
successful trajectory) is fixed, which allows for depth–first exploration
of the branching tree, but raises the issue of controlling the population
size,

          

          	
             the population size is fixed, which requires a breadth–first
exploration of the branching tree, with random (multinomial) or deterministic
allocation of offsprings, etc.

          

        

        Just as in the static case, the algorithm learns

        
          	
             the transition probability between successive levels, hence
the probability of reaching each intermediate level,

          

          	
             and the entrance probability distribution of the Markov process
in each intermediate region.

          

        

        Contributions have been given to

        
          	
             minimizing the asymptotic variance, obtained through a
central limit theorem, with respect to the shape of the intermediate
regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

          

          	
             controlling the probability of extinction (when not even one
trajectory reaches the next intermediate level),

          

          	
             designing and studying variants suited for hybrid state space
(resampling per mode, marginalization, mode aggregation),

          

        

        and in the static case, to

        
          	
             minimizing the asymptotic variance, obtained through a central
limit theorem, with respect to intermediate levels, to the Metropolis
kernel introduced in the mutation step, etc.

          

        

        A related issue is global optimization. Indeed, the difficult problem
of finding the set M of global minima of a real–valued function V
can be replaced by the apparently simpler problem of sampling a population
from a probability distribution depending on a small parameter,
and asymptotically supported by the set M as the small parameter goes
to zero. The usual approach here is to use the cross–entropy
method  [53] , [27] , which relies on learning
the optimal importance distribution within a prescribed parametric
family. On the other hand, multilevel splitting methods could provide
an alternate nonparametric approach to this problem.
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        Nearest neighbor estimates

        This additional topic was not present in the initial list of objectives,
and has emerged only recently.

        In pattern recognition and statistical learning, also known as machine
learning, nearest neighbor (NN) algorithms are amongst the simplest but
also very powerful algorithms available.
Basically, given a training set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features,
the question is how to generalize,
that is how to guess the feature associated with any new object.
To achieve this, one chooses some integer k smaller than N, and
takes the mean–value of the k features associated with the k objects
that are nearest to the new object, for some given metric.

        In general, there is no way to guess exactly the value of the feature
associated with the new object, and the minimal error that can be done
is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator
can be useful to characterize the strength of the method.
So the best that can be expected is that the NN estimator converges, say
when the sample size N grows, to the Bayes estimator. This is what has been
proved in great generality by Stone  [54]  for the mean square
convergence, provided that the object is a finite–dimensional random
variable, the feature is a square–integrable random variable,
and the ratio k/N goes to 0.
Nearest neighbor estimator is not the only local averaging estimator with
this property, but it is arguably the simplest.

        The asymptotic behavior when the sample size grows is well understood in
finite dimension, but the situation is radically different in
general infinite dimensional spaces, when the objects to be classified
are functions, images, etc.

        Nearest neighbor classification in infinite dimension   In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to
the Bayes risk as N goes to infinity, whatever the joint probability
distribution of the pair, provided that the ratio k/N goes to zero.
Unfortunately, this result is no longer valid in general metric spaces,
and the objective is to find out reasonable sufficient conditions for
the weak consistency to hold. Even in finite dimension, there are exotic
distances such that the nearest neighbor does not even get closer (in the
sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition.
Some regularity on the regression function is required next. Clearly,
continuity is too strong because it is not required in finite dimension,
and a weaker form of regularity is assumed. The following consistency
result has been obtained: if the metric space is separable and
if some Besicovich condition holds, then the nearest neighbor classifier
is weakly consistent.
Note that the Besicovich condition is always fulfilled in finite dimensional
vector spaces (this result is called the Besicovich theorem), and that
a counterexample [3]  can be given in an infinite
dimensional space with
a Gaussian measure (in this case, the nearest neighbor classifier is clearly
nonconsistent). Finally, a simple example has been found which verifies
the Besicovich condition with a noncontinuous regression function.

        Rates of convergence of the functional k–nearest neighbor
estimator   Motivated by a broad range of potential applications, such as regression
on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the
object–feature pair, have been investigated
when the object is in a suitable ball in some functional space.
Using compact embedding theory, explicit and general finite sample bounds
can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general
setting. The results have also been
particularized to classical function spaces such as Sobolev spaces,
Besov spaces and reproducing kernel Hilbert spaces.
The rates obtained are genuine nonparametric convergence rates,
and up to our knowledge the first of their kind for k–nearest neighbor
regression.

        This emerging topic has produced several theoretical
advances [1] , [2] 
in collaboration with Gérard Biau (université Pierre et Marie Curie,
ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt),
and a possible target application domain has been identified
in the statistical analysis of recommendation systems, that would
be a source of interesting problems.
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        Localisation, navigation and tracking

        Among the many application domains of particle methods, or interacting
Monte Carlo methods, ASPI has decided to focus on applications
in localisation (or positioning), navigation and
tracking  [39] , [33] , which already covers a very broad
spectrum of application domains. The objective here is to estimate
the position (and also velocity, attitude, etc.) of a mobile object,
from the combination of different sources of information, including

        
          	
             a prior dynamical model of typical evolutions of the mobile,
such as inertial estimates and prior model for inertial errors,

          

          	
             measurements provided by sensors,

          

          	
             and possibly a digital map providing some useful feature
(terrain altitude, power attenuation, etc.) at each possible position.

          

        

        In some applications, another useful source of information is provided by

        
          	
             a map of constrained admissible displacements, for instance in
the form of an indoor building map,

          

        

        which particle methods can easily handle (map-matching).
This Bayesian dynamical estimation problem is also called filtering,
and its numerical implementation using particle methods, known as
particle filtering, has been introduced by the target tracking
community  [38] , [52] , which has already contributed
to many of the most interesting algorithmic improvements and is still
very active, and has found applications in

        
          target tracking,
integrated navigation,
points and / or objects tracking in video sequences,
mobile robotics,
wireless communications,
ubiquitous computing and ambient intelligence,
sensor networks, etc.

        

        ASPI is contributing (or has contributed recently)
to several applications of particle filtering in
positioning, navigation and tracking, such as
geolocalisation and tracking in a wireless network,
terrain–aided navigation,
and data fusion for indoor localisation.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      Application Domains

        Rare event simulation

        
          See 
	3.3 ,
and 
	6.1 ,

	6.2 ,
and 
	6.3 .

        

        Another application domain of particle methods, or interacting Monte Carlo
methods, that ASPI has decided to focus on is the estimation of the small
probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

        
          nuclear power plants,
food industry,
telecommunication networks,
finance and insurance industry,
air traffic management, etc.

        

        In such complex systems, analytical methods cannot be used, and naive
Monte Carlo methods are clearly unefficient to estimate accurately
very small probabilities.
Besides importance sampling, an alternate widespread technique
consists in multilevel splitting  [46] ,
where trajectories going towards the
critical set are given offsprings, thus increasing the number of
trajectories that eventually reach the critical set.
This approach not only makes it possible to estimate the probability of
the rare event, but also provides realizations of the random trajectory,
given that it reaches the critical set, i.e. provides realizations of typical
critical trajectories, an important feature that methods based on importance
sampling usually miss.

        ASPI is contributing (or has contributed recently)
to several applications of multilevel splitting for
rare event simulation, such as risk assessment in air traffic management,
detection in sensor networks,
and protection of digital documents.
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        Adaptive multilevel splitting

        Participants :
	Frédéric Cérou, Arnaud Guyader.

        We show [21] 
that an adaptive version of multilevel splitting for rare events
is strongly consistent. We also show that the estimates satisfy a CLT (central
limit theorem), with the same asymptotic variance as the non-adaptive
algorithm with the optimal choice of the parameters. It is a strong and
general result, that generalizes some of our previous results,
and the proof is quite technical and involved.

        This work has been presented at the 10th International Workshop on Rare
Event Simulation (RESIM), held in Amsterdam in August 2014.
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      New Results

        Convergence of a two–step multilevel
splitting algorithm for rare event simulation

        Participants :
	François Le Gland, Damien--Barthélémy Jacquemart.

        The problem is to accurately estimate the (very small) probability that
a rare but critical event (such as a score function exceeding
a given threshold) occurs before some fixed final time. Multilevel splitting
is a very efficient solution, in which sample paths are propagated and are
eliminated or replicated when some intermediate events (defined by some
intermediate thresholds) occur.
A common and efficient design is to define the next intermediate level
as an empirical quantile of the running maximum of the score function along
a surviving trajectory.
However, it is practically impossible to remember when (at which time
instant) and where (in which state) did each successful trajectory cross
the empirically defined threshold.
The proposed design is a two–step adaptive multilevel splitting algorithm:
In the first step, a first set of trajectories is sampled in order to obtain
the next intermediate threshold as an empirical quantile.
In the second step, once the new intermediate threshold is obtained,
a second set of trajectories is sampled in order to evaluate the transition
probability to the new empirically defined intermediate region.
This two–step procedure is repeated until some trajectories do hit
the critical region before final time.

        This work has been presented at the 10th International Workshop on Rare
Event Simulation (RESIM), held in Amsterdam in August 2014.
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      New Results

        Simulation–based algorithms for the
optimization of sensor deployment

        Participant :
	François Le Gland.

        This is a collaboration with Christian Musso (ONERA, Palaiseau)
and with Sébastien Paris (LSIS, université du Sud Toulon Var),
related with the supervision of the PhD thesis of Yannick Kenné.

        The problem considered here can be described as follows:
a limited number of sensors should be deployed by a carrier in a given
area, and should be activated at a limited number of time instants within
a given time period, so as to maximize the probability of detecting a
target (present in the given area during the given time period).
There is an information dissymmetry in the problem: if the target is
sufficiently close to a sensor position when it is activated, then
the target can learn about the presence and exact position of the sensor,
and can temporarily modify its trajectory so as to escape away
before it is detected. This is referred to as the target intelligence.
Two different simulation–based algorithms have been designed to solve
separately or jointly this optimization problem,
with different and complementary features.
One is fast, and sequential: it proceeds
by running a population of targets and by dropping and activating a new sensor
(or re–activating a sensor already available) where and when this action
seems appropriate.
The other is slow, iterative, and non–sequential; it proceeds by updating
a population of deployment plans with guaranteed and increasing criterion
value at each iteration, and for each given deployment plan,
there is a population of targets running to evaluate the criterion.
Finally, the two algorithms can cooperate in many different ways, to try
and get the best of both approaches. A simple and efficient way is to use
the deployment plans provided by the sequential algorithm as the initial
population for the iterative algorithm.

        This work has been presented at the Conference on Optimization and Practices
in Industry (COPI), held in Palaiseau in October 2014.
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        Non–homogeneous Markov switching
auto–regressive models for wind time series

        Participants :
	Valérie Monbet, Julie Bessac.

        This is a collaboration with Pierre Ailliot (UBO)
and Françoise Pène (UBO).

        We proposed [20] 
non–homogeneous Markov switching auto–regressive models for
bivariate wind time series considering Cartesian coordinates on one hand
and polar coordinates on the other hand. In non–homogeneous models,
the transitions depend on the wind direction at the previous time.
At the location of interest, wind is rotating more often clockwise but
wind direction may also oscillate around two prevailing directions (northeast
for anti–cyclonic conditions and southwest for cyclonic conditions).
These features induce respectively some cycles which can be seen
in the second order structure and modes in the marginal distribution.
In broad outline, non–homogeneous transitions help the process to stay
in the same weather regime when the wind direction is close to
the prevailing directions and lead to sojourn duration in the regimes
which are not geometric.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Gaussian state–space models
for wind speed

        Participants :
	Valérie Monbet, Julie Bessac.

        This is a collaboration with Pierre Ailliot (UBO).

        A multi–site stochastic generator for wind speed has been
developped [11] .
It aims at simulating realistic wind conditions with a focus on reproducing
the space-time motions of the meteorological systems. A Gaussian linear
state–space model is used where the latent state may be interpreted
as regional wind conditions and the observation equation links regional
and local scales. The model is fitted to 6–hourly reanalysis data
in the North–East Atlantic. It is shown that it is interpretable
and provides a good description of important properties of the space–time
covariance function of the data, such as the non full–symmetry induced
by prevailing flows in this area.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Level–dependent time
deformation of Gaussian processes

        Participant :
	Valérie Monbet.

        Many records in environmental science exhibit asymmetries. In this project,
we introduce a time deformation to produce asymmetric path from a Gaussian
process with symmetric path. A simple case is obtained by assuming that
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        with {Yt} a stationary Gaussian process. The function f which controls
the time deformation is increasing. The time–change function φ
is such that the modified time increases quicker when the process
is at high levels and thus that the crests of the modified process {Zt}
are narrower than the ones of {Yt}. The opposite holds true for the
troughs. Inference tools are developed to estimate the function f.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Self–similar prior and
wavelet bases for hidden turbulent motion

        Participant :
	Patrick Héas.

        This is a collaboration with Frédéric Lavancier (université de Nantes)
and Souleymane Kadri–Harouna (université de la Rochelle)

        This work [14] 
is concerned with the ill–posed inverse problem of estimating
turbulent flows from the observation of an image sequence. From a Bayesian
perspective, a divergence–free isotropic fractional Brownian motion (fBm)
is chosen as a prior model for instantaneous turbulent velocity fields.
This self–similar prior characterizes accurately second–order statistics
of velocity fields in incompressible isotropic turbulence. Nevertheless,
the associated maximum a posteriori involves a fractional Laplacian operator
which is delicate to implement in practice. To deal with this issue, we
propose to decompose the divergence–free fBm on well–chosen wavelet bases.
As a first alternative, we propose to design wavelets as whitening filters.
We show that these filters are fractional Laplacian wavelets composed with
the Leray projector. As a second alternative, we use a divergence–free
wavelet basis, which takes implicitly into account the incompressibility
constraint arising from physics. Although the latter decomposition involves
correlated wavelet coefficients, we are able to handle this dependence
in practice. Based on these two wavelet decompositions, we finally provide
effective and efficient algorithms to approach the maximum a posteriori.

      

      
      

      
    

  
    
    
      
      
      

      
      
        
        Section: 
      New Results

        Estimation of non–linear dynamics
under sparse constraints

        Participant :
	Patrick Héas.

        This is a collaboration with Cédéric Herzet (EPI FLUMINANCE,
Inria Rennes–Bretagne Atlantique)
and Angélique Drémeau (ENSTA Bretagne, Brest).

        Following recent contributions in non–linear sparse representations,
this work [19] , [18] 
focuses on a particular non–linear model, defined as the nested
composition of functions. This family includes in particular discrete–time
hidden Markov models. Recalling that most linear sparse representation
algorithms can be straightforwardly extended to non–linear models,
we emphasize that their performance highly relies on an efficient computation
of the gradient of the objective function. In the particular case of interest,
we propose to resort to a well–known technique from the theory of optimal
control to evaluate the gradient.
This computation is then implemented into the ℓ1–reweighted procedure
proposed by Candès et al.  [24] , leading
to a non–linear extension of it. As an example, we consider the problem of
estimating the ocean state from satellite low–dimensional information
by exploiting a geophysical dynamical model and a sparse decomposition of
the initial condition in some redundant dictionary.

        This work has also been presented at Congrès National d'Assimilation,
a national event held in Toulouse in December 2014.
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        Bilateral contracts with industry

        
        DUCATI: Optimization of sensors location and
activation — contract with DGA / Techniques navales

        Participant :
	François Le Gland.

        
          See 
	3.3 ,

	4.2 
and 
	6.3 

          Inria contract ALLOC 7326 — April 2013 to December 2016.

        

        This is a collaboration with Christian Musso (ONERA, Palaiseau)
and with Sébastien Paris (LSIS, université du Sud Toulon Var),
related with the supervision of the PhD thesis of Yannick Kenné.

        The objective of this project is to optimize the position and activation
times of a few sensors deployed by one or several platforms over a search
zone, so as to maximize the probability of detecting a moving target.
The difficulty here is that the target can detect an activated sensor before
it is detected itself, and it can then modify its own trajectory to escape
from the sensor. This makes the optimization problem a spatio–temporal
problem.
The activity in the beginning of this project has been
to study different ways to merge two different solutions to the optimization
problem : a fast, though suboptimal, solution developped by ONERA in which
sensors are deployed where and when the probability of presence of a target
is high enough, and the optimal population–based solution developped by LSIS
and Inria in a previous contract (Inria contract ALLOC 4233)
with DGA / Techniques navales.
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        Section: 
      Dissemination

        Promoting scientific activities

        
        Scientific events organisation

        Valérie Monbet has co–organized the worshop
on Stochastic Weather Generators ,
held in Avignon in September 2014.

        François Le Gland has been a member of the organizing committee
of the 46èmes Journées de Statistique ,
held in Bruz in June 2014.
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      Dissemination

        Teaching, supervision, thesis committees

        
        Teaching

        François Le Gland gives

        
          	
             a course on
Kalman filtering and hidden Markov
models ,
at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE) track
of the master in electronical engineering and telecommunications,

          

          	
             a 3rd year course on
Bayesian filtering and particle
approximation ,
at ENSTA (école nationale supérieure de techniques avancées), Paris,
within the systems and control module,

          

          	
             a 3rd year course on
linear and nonlinear
filtering ,
at ENSAI (école nationale de la statistique et de l'analyse de
l'information), Ker Lann, within the statistical engineering track,

          

          	
             and a 3rd year course on
hidden Markov
models ,
at Télécom Bretagne, Brest.

          

        

        He has also animated a set of training sessions
on particle filtering, with an application to video multi–object tracking,
to engineers from Canon Research France.

        Patrick Héas gives a course on statistical image analysis
at université de Rennes 1,
within the SISEA (signal, image, systèmes embarqués, automatique,
école doctorale MATISSE) track
of the master in electronical engineering and telecommunications.

        Valérie Monbet gives several courses
on data analysis,
on time series,
and on mathematical statistics,
all at université de Rennes 1 within the master on statistics and
econometrics.
She is also the director of the master on statistics and
econometry at université de Rennes 1.

        
        Supervision

        François Le Gland has been supervising one PhD student

        
          	
             Damien–Barthélémy Jacquemart,
title: Contributions to multilevel splitting for rare events,
and applications to air traffic,
université de Rennes 1,
started in October 2011,
defense in December 2014,
funding: DGA / ONERA grant,
co–direction: Jérôme Morio (ONERA, Palaiseau).

          

        

        and he is currently supervising two PhD students

        
          	
             Alexandre Lepoutre,
provisional title: Detection issues in track–before–detect,
université de Rennes 1,
started in October 2010,
expected defense in 2015,
funding: ONERA grant,
co–direction: Olivier Rabaste (ONERA, Palaiseau),

          

          	
             Kersane Zoubert–Ousseni,
provisional title: Particle filters for hybrid indoor navigation
with smartphones,
université de Rennes 1,
started in December 2014,
expected defense in 2017,
funding: CEA grant,
co–direction: Christophe Villien (CEA LETI, Grenoble).

          

        

        Valérie Monbet has been supervising one PhD student

        
          	
             Julie Bessac,
title: On the construction of stochastic wind data generators
off–shore Brittany,
université de Rennes 1,
started in October 2011,
defense in October 2014,
co–direction : Pierre Ailliot (université de Bretagne Occidentale).

          

        

        
        Thesis committees

        François Le Gland has been a reviewer for the PhD theses of
Paul Lemaître (université de Bordeaux 1, advisors: Pierre Del Moral
and Bertrand Iooss),
Achille Murangira (université de technologie de Troyes,
advisors: Igor Nikoforov and Karim Dahia)
and El houcine Bergou (université de Toulouse, advisor: Serge Gratton).

        Valérie Monbet has been a member of the committee for the PhD thesis of
Emmanuelle Autret (IFREMER).
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        Participation in workshops, seminars,
lectures, etc.

        In addition to presentations with a publication in the proceedings,
which are listed at the end of the document in the bibliography,
members of ASPI have also given the following presentations.

        Frédéric Cérou has given a talk
on rare event simulation for molecular dynamics, at the ICMS workshop
on Computational Methods for Statistical Mechanics — at the Interface
between Mathematical Statistics and Molecular Simulation,
held in Edinburgh in June 2014,
and a talk
on a central limit theorem for adaptive splitting,
at the 10th International Workshop on Rare
Event Simulation (RESIM'14), held in Amsterdam in August 2014.
He has been invited to give two seminar talks
on rare event simulation with multilevel splitting,
in Marseilles in May 2014.

        François Le Gland has given a talk
on a two–step multilevel splitting algorithm for rare event simulation,
at the 10th International Workshop on Rare
Event Simulation (RESIM'14), held in Amsterdam in August 2014,
and a talk
on simulation–based algorithms for the optimization of sensor deployment,
at the Conference on Optimization and Practices
in Industry (COPI), held in Palaiseau in October 2014.
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        Collective responsibilities

        François Le Gland is a member of
the “conseil d'UFR” of the department of mathematics of université
de Rennes 1.

        Valérie Monbet is a member of the two “comité de direction”
and “conseil” of IRMAR (institut de recherche mathématiques
de Rennes, UMR 6625).
She is also the deputy head,
and a member of the two “conseil scientifique”
and “conseil d'UFR” of the department of mathematics of université
de Rennes 1.
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        Section: 
      Partnerships and Cooperations


        National Initiatives


        
        PDMP Inférence, Évolution, Contrôle et Ergodicité (PIECE) — ANR Jeunes Chercheuses et Jeunes Chercheurs


        Participant :
	Florent Malrieu.


        
          

January 2013 to December 2016.


        


        Piecewise deterministic Markov processes (PDMP) are non-diffusive
stochastic processes which naturally appear in many areas of
applications as communication networks, neuron activities, biological
populations or reliability of complex systems. Their mathematical
study has been intensively carried out in the past two decades but
many challenging problems remain completely open. This project aims
at federating a group of experts with different backgrounds
(probability, statistics, analysis, partial derivative equations,
modelling) in order to pool everyone's knowledge and create new tools
to study PDMPs. The main lines of the project relate to estimation,
simulation and asymptotic behaviors (long time, large populations,
multi-scale problems) in the various contexts of application.


        
        Advanced Geophysical Reduced–Order Model Construction from Image Observations (GERONIMO) — ANR Jeunes Chercheuses et Jeunes Chercheurs


        Participant :
	Patrick Héas.


        
          

March 2014 to February 2018.


        


        The GERONIMO project aims at devising new efficient and effective
techniques for the design of geophysical reduced–order models (ROMs)
from image data. The project both arises from the crucial need of
accurate low–order descriptions of highly–complex geophysical
phenomena and the recent numerical revolution which has supplied the
geophysical scientists with an unprecedented volume of image data.
Our research activities are concerned by the exploitation of the huge
amount of information contained in image data in order to reduce the
uncertainty on the unknown parameters of the models and improve the
reduced–model accuracy. In other words, the objective of our
researches to process the large amount of incomplete and noisy image
data daily captured by satellites sensors to devise new advanced model
reduction techniques. The construction of ROMs is placed into a
probabilistic Bayesian inference context, allowing for the handling of
uncertainties associated to image measurements and the
characterization of parameters of the reduced dynamical system.
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        Section: 
      Partnerships and Cooperations


        International Initiatives


        
        Inria International Partners


        Arnaud Guyader collaborates with the group of Nicolas Hengartner
at Los Alamos National Laboratories, on the development of fast algorithms
to simulate rare events, and on iterative bias reduction techniques
in nonparametric estimation.
This collaboration has a long record of bilateral visits.
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