
IN PARTNERSHIP WITH:
CNRS

Université Rennes 1

Université Haute Bretagne
(Rennes 2)

Activity Report 2014

Project-Team ASPI

Applications of interacting particle systems to
statistics

IN COLLABORATION WITH: Institut de recherche mathématique de Rennes (IRMAR)

RESEARCH CENTER
Rennes - Bretagne-Atlantique

THEME
Stochastic approaches





Table of contents

1. Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Overall Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3. Research Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Interacting Monte Carlo methods and particle approximation of Feynman–Kac distributions 2
3.2. Statistics of HMM 4
3.3. Multilevel splitting for rare event simulation 5
3.4. Nearest neighbor estimates 7

4. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.1. Localisation, navigation and tracking 8
4.2. Rare event simulation 8

5. New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1. Adaptive multilevel splitting 8
5.2. Convergence of a two–step multilevel splitting algorithm for rare event simulation 9
5.3. Simulation–based algorithms for the optimization of sensor deployment 9
5.4. Non–homogeneous Markov switching auto–regressive models for wind time series 10
5.5. Gaussian state–space models for wind speed 10
5.6. Level–dependent time deformation of Gaussian processes 10
5.7. Self–similar prior and wavelet bases for hidden turbulent motion 10
5.8. Estimation of non–linear dynamics under sparse constraints 11

6. Bilateral Contracts and Grants with Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7. Partnerships and Cooperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.1. National Initiatives 12
7.1.1. PDMP Inférence, Évolution, Contrôle et Ergodicité (PIECE) — ANR Jeunes Chercheuses

et Jeunes Chercheurs 12
7.1.2. Advanced Geophysical Reduced–Order Model Construction from Image Observations

(GERONIMO) — ANR Jeunes Chercheuses et Jeunes Chercheurs 12
7.2. International Initiatives 12

8. Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.1. Promoting scientific activities 12
8.2. Teaching, supervision, thesis committees 13

8.2.1. Teaching 13
8.2.2. Supervision 13
8.2.3. Thesis committees 13

8.3. Participation in workshops, seminars, lectures, etc. 14
8.4. Collective responsibilities 14

9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14





Project-Team ASPI

Keywords: Monte Carlo Methods, Markovian Model, Rare Events, Particle Filtering, Tracking,
Data Assimilation

Creation of the Project-Team: 2005 January 10.

1. Members
Research Scientists

François Le Gland [Team leader, Inria, Senior Researcher]
Frédéric Cérou [Inria, Researcher]
Patrick Héas [Inria, Researcher, since Jul 2014]

Faculty Members
Arnaud Guyader [Univ. Rennes 2, Associate Professor, until Aug 2014, Univ. Paris 6, Professor, since Sep
2014, HdR]
Valérie Monbet [Univ. Rennes 1, Professor, HdR]

PhD Students
Damien-Barthélémy Jacquemart [ONERA, until Sep 2014]
Julie Bessac [Univ. Rennes 1, until Sep 2014]
Alexandre Lepoutre [ONERA]
Kersane Zoubert-Ousseni [CEA, from Dec 2014]

Administrative Assistant
Fabienne Cuyollaa [Inria]

2. Overall Objectives

2.1. Overall Objectives
The scientific objectives of ASPI are the design, analysis and implementation of interacting Monte Carlo
methods, also known as particle methods, with focus on

• statistical inference in hidden Markov models and particle filtering,

• risk evaluation and simulation of rare events,

• global optimization.

The whole problematic is multidisciplinary, not only because of the many scientific and engineering areas in
which particle methods are used, but also because of the diversity of the scientific communities which have
already contributed to establish the foundations of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods, etc.

Intuitively speaking, interacting Monte Carlo methods are sequential simulation methods, in which particles

• explore the state space by mimicking the evolution of an underlying random process,

• learn their environment by evaluating a fitness function,

• and interact so that only the most successful particles (in view of the fitness function) are allowed to
survive and to get offsprings at the next generation.
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The effect of this mutation / selection mechanism is to automatically concentrate particles (i.e. the available
computing power) in regions of interest of the state space. In the special case of particle filtering, which has
numerous applications under the generic heading of positioning, navigation and tracking, in

target tracking, computer vision, mobile robotics, wireless communications, ubiquitous com-
puting and ambient intelligence, sensor networks, etc.,

each particle represents a possible hidden state, and is replicated or terminated at the next generation on the
basis of its consistency with the current observation, as quantified by the likelihood function. With these
genetic–type algorithms, it becomes easy to efficiently combine a prior model of displacement with or without
constraints, sensor–based measurements, and a base of reference measurements, for example in the form of a
digital map (digital elevation map, attenuation map, etc.). In the most general case, particle methods provide
approximations of Feynman–Kac distributions, a pathwise generalization of Gibbs–Boltzmann distributions,
by means of the weighted empirical probability distribution associated with an interacting particle system,
with applications that go far beyond filtering, in

simulation of rare events, global optimization, molecular simulation, etc.

The main applications currently considered are geolocalisation and tracking of mobile terminals, terrain–aided
navigation, data fusion for indoor localisation, optimization of sensors location and activation, risk assessment
in air traffic management, protection of digital documents.

3. Research Program

3.1. Interacting Monte Carlo methods and particle approximation of
Feynman–Kac distributions
Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually
Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated,
that can be expressed in terms of the expected value of a functional of the process trajectory, which includes
as an important special case the probability that a given event has occurred. Numerous examples can be found,
e.g. in financial engineering (pricing of options and derivative securities) [36], in performance evaluation
of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state
estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression
is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process.
The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate
instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the
weighted empirical probability distribution associated with the resulting independent sample. By the law of
large numbers, the above estimator converges as the sizeN of the sample goes to infinity, with rate 1/

√
N and

the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce the variance
of the estimator, many variance reduction techniques have been proposed. Still, running independent Monte
Carlo simulations can lead to very poor results, because trajectories are generated blindly, and only afterwards
are the corresponding weights evaluated. Some of the weights can happen to be negligible, in which case the
corresponding trajectories are not going to contribute to the estimator, i.e. computing power has been wasted.

A recent and major breakthrough, has been the introduction of interacting Monte Carlo methods, also known
as sequential Monte Carlo (SMC) methods, in which a whole (possibly weighted) sample, called system of
particles, is propagated in time, where the particles

• explore the state space under the effect of a mutation mechanism which mimics the evolution of the
underlying process,

• and are replicated or terminated, under the effect of a selection mechanism which automatically
concentrates the particles, i.e. the available computing power, into regions of interest of the state
space.
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In full generality, the underlying process is a discrete–time Markov chain, whose state space can be

finite, continuous, hybrid (continuous / discrete), graphical, constrained, time varying, pathwise,
etc.,

the only condition being that it can easily be simulated.

In the special case of particle filtering, originally developed within the tracking community, the algorithms
yield a numerical approximation of the optimal Bayesian filter, i.e. of the conditional probability distribution
of the hidden state given the past observations, as a (possibly weighted) empirical probability distribution of
the system of particles. In its simplest version, introduced in several different scientific communities under
the name of bootstrap filter [38], Monte Carlo filter [43] or condensation (conditional density propagation)
algorithm [40], and which historically has been the first algorithm to include a redistribution step, the selection
mechanism is governed by the likelihood function: at each time step, a particle is more likely to survive and to
replicate at the next generation if it is consistent with the current observation. The algorithms also provide as
a by–product a numerical approximation of the likelihood function, and of many other contrast functions for
parameter estimation in hidden Markov models, such as the prediction error or the conditional least–squares
criterion.

Particle methods are currently being used in many scientific and engineering areas

positioning, navigation, and tracking [39], [33], visual tracking [40], mobile robotics [34], [55],
ubiquitous computing and ambient intelligence, sensor networks, risk evaluation and simulation
of rare events [37], genetics, molecular simulation [35], etc.

Other examples of the many applications of particle filtering can be found in the contributed volume [22] and
in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Methods for Statistical
Signal Processing in February 2002, where the tutorial paper [23] can be found, and in the textbook [52]
devoted to applications in target tracking. Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics, can be found in [51]. A recent overview can also be
found in [25].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes for Feynman–Kac distributions, a
pathwise generalization of Gibbs–Boltzmann distributions, in terms of the weighted empirical probability
distribution associated with a system of particles. This abstract point of view [31], [29], has proved
to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of particles (sample size) goes to infinity, using
techniques coming from applied probability (interacting particle systems, empirical processes [56]), see e.g.
the survey article [31] or the textbooks [29], [28], and references therein

convergence in p, convergence as empirical processes indexed by classes of functions, uniform
convergence in time, see also [48], [49], central limit theorem, see also [45], propagation of
chaos, large deviations principle, etc.

The objective here is to systematically study the impact of the many algorithmic variants on the convergence
results.
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3.2. Statistics of HMM
Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems, in
which the state of a Markov process (in discrete or continuous time, with finite or continuous state space)
should be estimated from noisy observations. The conditional probability distribution of the hidden state
given past observations is a well–known example of a normalized (nonlinear) Feynman–Kac distribution,
see 3.1. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space [26], including estimation of model parameters, early monitoring
and diagnosis of small changes in model parameters, etc.

Large time asymptotics A fruitful approach is the asymptotic study, when the observation time increases to
infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the
prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all
previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter.
Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other
clasical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of
the extended Markov chain.

The following general approach has been proposed

• first, prove an exponential stability property (i.e. an exponential forgetting property of the initial
condition) of the prediction filter and its derivative, for a misspecified model,

• from this, deduce a geometric ergodicity property and the existence of a unique invariant probability
distribution for the extended Markov chain, hence a law of large numbers and a central limit
theorem for a large class of contrast processes and their derivatives, and a local asymptotic normality
property,

• finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast
function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [7], and has been generalized [32] under
an uniform minoration assumption for the Markov transition kernel, which typically does only hold when the
state space is compact. Clearly, the whole approach relies on the existence of an exponential stability property
of the prediction filter, and the main challenge currently is to get rid of this uniform minoration assumption
for the Markov transition kernel [30], [49], so as to be able to consider more interesting situations, where the
state space is noncompact.

Small noise asymptotics Another asymptotic approach can also be used, where it is rather easy to obtain
interesting explicit results, in terms close to the language of nonlinear deterministic control theory [44]. Taking
the simple example where the hidden state is the solution to an ordinary differential equation, or a nonlinear
state model, and where the observations are subject to additive Gaussian white noise, this approach consists
in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to
zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic
approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity
assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central
limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher
information matrix, asymptotic covariance matrix, etc.) take here a much more explicit form than in the large
time asymptotics.
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The following results have been obtained using this approach
• the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global

minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques,
with an analytical approach [41],

• if the abovementioned set M does not reduce to the true parameter value, i.e. if the model is not
identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [42]:
in the simple case where the state equation is a noise–free ordinary differential equation and using
a Bayesian framework, it has been shown that (i) if the rank r of the Fisher information matrix I is
constant in a neighborhood of the setM , then this set is a differentiable submanifold of codimension
r, (ii) the posterior probability distribution of the parameter converges to a random probability
distribution in the limit, supported by the manifold M , absolutely continuous w.r.t. the Lebesgue
measure on M , with an explicit expression for the density, and (iii) the posterior probability
distribution of the suitably normalized difference between the parameter and its projection on the
manifold M , converges to a mixture of Gaussian probability distributions on the normal spaces to
the manifold M , which generalized the usual asymptotic normality property,

• it has been shown [50] that (i) the parameter dependent probability distributions of the observations
are locally asymptotically normal (LAN) [47], from which the asymptotic normality of the maxi-
mum likelihood estimator follows, with an explicit expression for the asymptotic covariance matrix,
i.e. for the Fisher information matrix I , in terms of the Kalman filter associated with the linear
tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood
function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized,
converges to a Gaussian r.v. with zero mean and covariance matrix I .

3.3. Multilevel splitting for rare event simulation
See 4.2, and 5.1, 5.2, and 5.3.

The estimation of the small probability of a rare but critical event, is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [46], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. As shown in [5], the
Feynman–Kac formalism of 3.1 is well suited for the design and analysis of splitting algorithms for rare event
simulation.

Propagation of uncertainty Multilevel splitting can be used in static situations. Here, the objective is to learn
the probability distribution of an output random variable Y = F (X), where the function F is only defined
pointwise for instance by a computer programme, and where the probability distribution of the input random
variable X is known and easy to simulate from. More specifically, the objective could be to compute the
probability of the output random variable exceeding a threshold, or more generally to evaluate the cumulative
distribution function of the output random variable for different output values. This problem is characterized
by the lack of an analytical expression for the function, the computational cost of a single pointwise evaluation
of the function, which means that the number of calls to the function should be limited as much as possible,
and finally the complexity and / or unavailability of the source code of the computer programme, which makes
any modification very difficult or even impossible, for instance to change the model as in importance sampling
methods.

The key issue is to learn as fast as possible regions of the input space which contribute most to the computation
of the target quantity. The proposed splitting methods consists in (i) introducing a sequence of intermediate
regions in the input space, implicitly defined by exceeding an increasing sequence of thresholds or levels,
(ii) counting the fraction of samples that reach a level given that the previous level has been reached already,
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and (iii) improving the diversity of the selected samples, usually using an artificial Markovian dynamics. In
this way, the algorithm learns

• the transition probability between successive levels, hence the probability of reaching each interme-
diate level,

• and the probability distribution of the input random variable, conditionned on the output variable
reaching each intermediate level.

A further remark, is that this conditional probability distribution is precisely the optimal (zero variance)
importance distribution needed to compute the probability of reaching the considered intermediate level.

Rare event simulation To be specific, consider a complex dynamical system modelled as a Markov process,
whose state can possibly contain continuous components and finite components (mode, regime, etc.), and the
objective is to compute the probability, hopefully very small, that a critical region of the state space is reached
by the Markov process before a final time T , which can be deterministic and fixed, or random (for instance
the time of return to a recurrent set, corresponding to a nominal behaviour).

The proposed splitting method consists in (i) introducing a decreasing sequence of intermediate, more and
more critical, regions in the state space, (ii) counting the fraction of trajectories that reach an intermedi-
ate region before time T , given that the previous intermediate region has been reached before time T , and
(iii) regenerating the population at each stage, through redistribution. In addition to the non–intrusive be-
haviour of the method, the splitting methods make it possible to learn the probability distribution of typical
critical trajectories, which reach the critical region before final time T , an important feature that methods based
on importance sampling usually miss. Many variants have been proposed, whether

• the branching rate (number of offsprings allocated to a successful trajectory) is fixed, which allows
for depth–first exploration of the branching tree, but raises the issue of controlling the population
size,

• the population size is fixed, which requires a breadth–first exploration of the branching tree, with
random (multinomial) or deterministic allocation of offsprings, etc.

Just as in the static case, the algorithm learns

• the transition probability between successive levels, hence the probability of reaching each interme-
diate level,

• and the entrance probability distribution of the Markov process in each intermediate region.

Contributions have been given to

• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to the
shape of the intermediate regions (selection of the importance function), to the thresholds (levels),
to the population size, etc.

• controlling the probability of extinction (when not even one trajectory reaches the next intermediate
level),

• designing and studying variants suited for hybrid state space (resampling per mode, marginalization,
mode aggregation),

and in the static case, to

• minimizing the asymptotic variance, obtained through a central limit theorem, with respect to
intermediate levels, to the Metropolis kernel introduced in the mutation step, etc.

A related issue is global optimization. Indeed, the difficult problem of finding the set M of global minima of
a real–valued function V can be replaced by the apparently simpler problem of sampling a population from
a probability distribution depending on a small parameter, and asymptotically supported by the set M as the
small parameter goes to zero. The usual approach here is to use the cross–entropy method [53], [27], which
relies on learning the optimal importance distribution within a prescribed parametric family. On the other hand,
multilevel splitting methods could provide an alternate nonparametric approach to this problem.
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3.4. Nearest neighbor estimates
This additional topic was not present in the initial list of objectives, and has emerged only recently.

In pattern recognition and statistical learning, also known as machine learning, nearest neighbor (NN)
algorithms are amongst the simplest but also very powerful algorithms available. Basically, given a training
set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features, the question is how to
generalize, that is how to guess the feature associated with any new object. To achieve this, one chooses some
integer k smaller than N , and takes the mean–value of the k features associated with the k objects that are
nearest to the new object, for some given metric.

In general, there is no way to guess exactly the value of the feature associated with the new object, and the
minimal error that can be done is that of the Bayes estimator, which cannot be computed by lack of knowledge
of the distribution of the object–feature pair, but the Bayes estimator can be useful to characterize the strength
of the method. So the best that can be expected is that the NN estimator converges, say when the sample
size N grows, to the Bayes estimator. This is what has been proved in great generality by Stone [54] for the
mean square convergence, provided that the object is a finite–dimensional random variable, the feature is a
square–integrable random variable, and the ratio k/N goes to 0. Nearest neighbor estimator is not the only
local averaging estimator with this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in finite dimension, but the situation
is radically different in general infinite dimensional spaces, when the objects to be classified are functions,
images, etc.

Nearest neighbor classification in infinite dimension In finite dimension, the k–nearest neighbor classifier
is universally consistent, i.e. its probability of error converges to the Bayes risk as N goes to infinity, whatever
the joint probability distribution of the pair, provided that the ratio k/N goes to zero. Unfortunately, this result
is no longer valid in general metric spaces, and the objective is to find out reasonable sufficient conditions
for the weak consistency to hold. Even in finite dimension, there are exotic distances such that the nearest
neighbor does not even get closer (in the sense of the distance) to the point of interest, and the state space
needs to be complete for the metric, which is the first condition. Some regularity on the regression function is
required next. Clearly, continuity is too strong because it is not required in finite dimension, and a weaker form
of regularity is assumed. The following consistency result has been obtained: if the metric space is separable
and if some Besicovich condition holds, then the nearest neighbor classifier is weakly consistent. Note that the
Besicovich condition is always fulfilled in finite dimensional vector spaces (this result is called the Besicovich
theorem), and that a counterexample [3] can be given in an infinite dimensional space with a Gaussian measure
(in this case, the nearest neighbor classifier is clearly nonconsistent). Finally, a simple example has been found
which verifies the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor estimator Motivated by a broad range of
potential applications, such as regression on curves, rates of convergence of the k–nearest neighbor estimator
of the regression function, based on N independent copies of the object–feature pair, have been investigated
when the object is in a suitable ball in some functional space. Using compact embedding theory, explicit
and general finite sample bounds can be obtained for the expected squared difference between the k–nearest
neighbor estimator and the Bayes regression function, in a very general setting. The results have also been
particularized to classical function spaces such as Sobolev spaces, Besov spaces and reproducing kernel Hilbert
spaces. The rates obtained are genuine nonparametric convergence rates, and up to our knowledge the first of
their kind for k–nearest neighbor regression.

This emerging topic has produced several theoretical advances [1], [2] in collaboration with Gérard Biau
(université Pierre et Marie Curie, ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt), and a possible
target application domain has been identified in the statistical analysis of recommendation systems, that would
be a source of interesting problems.

4. Application Domains
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4.1. Localisation, navigation and tracking
Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has
decided to focus on applications in localisation (or positioning), navigation and tracking [39], [33], which
already covers a very broad spectrum of application domains. The objective here is to estimate the position
(and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information,
including
• a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior

model for inertial errors,
• measurements provided by sensors,
• and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at

each possible position.

In some applications, another useful source of information is provided by
• a map of constrained admissible displacements, for instance in the form of an indoor building map,

which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is
also called filtering, and its numerical implementation using particle methods, known as particle filtering, has
been introduced by the target tracking community [38], [52], which has already contributed to many of the
most interesting algorithmic improvements and is still very active, and has found applications in

target tracking, integrated navigation, points and / or objects tracking in video sequences,
mobile robotics, wireless communications, ubiquitous computing and ambient intelligence,
sensor networks, etc.

ASPI is contributing (or has contributed recently) to several applications of particle filtering in positioning,
navigation and tracking, such as geolocalisation and tracking in a wireless network, terrain–aided navigation,
and data fusion for indoor localisation.

4.2. Rare event simulation
See 3.3, and 5.1, 5.2, and 5.3.

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided
to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems.
This is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance indus-
try, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly un-
efficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread
technique consists in multilevel splitting [46], where trajectories going towards the critical set are given off-
springs, thus increasing the number of trajectories that eventually reach the critical set. This approach not
only makes it possible to estimate the probability of the rare event, but also provides realizations of the ran-
dom trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an
important feature that methods based on importance sampling usually miss.

ASPI is contributing (or has contributed recently) to several applications of multilevel splitting for rare event
simulation, such as risk assessment in air traffic management, detection in sensor networks, and protection of
digital documents.

5. New Results
5.1. Adaptive multilevel splitting

Participants: Frédéric Cérou, Arnaud Guyader.
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We show [21] that an adaptive version of multilevel splitting for rare events is strongly consistent. We also
show that the estimates satisfy a CLT (central limit theorem), with the same asymptotic variance as the non-
adaptive algorithm with the optimal choice of the parameters. It is a strong and general result, that generalizes
some of our previous results, and the proof is quite technical and involved.

This work has been presented at the 10th International Workshop on Rare Event Simulation (RESIM), held in
Amsterdam in August 2014.

5.2. Convergence of a two–step multilevel splitting algorithm for rare event
simulation
Participants: François Le Gland, Damien–Barthélémy Jacquemart.

The problem is to accurately estimate the (very small) probability that a rare but critical event (such as a
score function exceeding a given threshold) occurs before some fixed final time. Multilevel splitting is a
very efficient solution, in which sample paths are propagated and are eliminated or replicated when some
intermediate events (defined by some intermediate thresholds) occur. A common and efficient design is to
define the next intermediate level as an empirical quantile of the running maximum of the score function
along a surviving trajectory. However, it is practically impossible to remember when (at which time instant)
and where (in which state) did each successful trajectory cross the empirically defined threshold. The proposed
design is a two–step adaptive multilevel splitting algorithm: In the first step, a first set of trajectories is sampled
in order to obtain the next intermediate threshold as an empirical quantile. In the second step, once the new
intermediate threshold is obtained, a second set of trajectories is sampled in order to evaluate the transition
probability to the new empirically defined intermediate region. This two–step procedure is repeated until some
trajectories do hit the critical region before final time.

This work has been presented at the 10th International Workshop on Rare Event Simulation (RESIM), held in
Amsterdam in August 2014.

5.3. Simulation–based algorithms for the optimization of sensor deployment
Participant: François Le Gland.

This is a collaboration with Christian Musso (ONERA, Palaiseau) and with Sébastien Paris (LSIS, université
du Sud Toulon Var), related with the supervision of the PhD thesis of Yannick Kenné.

The problem considered here can be described as follows: a limited number of sensors should be deployed
by a carrier in a given area, and should be activated at a limited number of time instants within a given time
period, so as to maximize the probability of detecting a target (present in the given area during the given time
period). There is an information dissymmetry in the problem: if the target is sufficiently close to a sensor
position when it is activated, then the target can learn about the presence and exact position of the sensor, and
can temporarily modify its trajectory so as to escape away before it is detected. This is referred to as the target
intelligence. Two different simulation–based algorithms have been designed to solve separately or jointly this
optimization problem, with different and complementary features. One is fast, and sequential: it proceeds by
running a population of targets and by dropping and activating a new sensor (or re–activating a sensor already
available) where and when this action seems appropriate. The other is slow, iterative, and non–sequential; it
proceeds by updating a population of deployment plans with guaranteed and increasing criterion value at each
iteration, and for each given deployment plan, there is a population of targets running to evaluate the criterion.
Finally, the two algorithms can cooperate in many different ways, to try and get the best of both approaches.
A simple and efficient way is to use the deployment plans provided by the sequential algorithm as the initial
population for the iterative algorithm.

This work has been presented at the Conference on Optimization and Practices in Industry (COPI), held in
Palaiseau in October 2014.
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5.4. Non–homogeneous Markov switching auto–regressive models for wind
time series
Participants: Valérie Monbet, Julie Bessac.

This is a collaboration with Pierre Ailliot (UBO) and Françoise Pène (UBO).

We proposed [20] non–homogeneous Markov switching auto–regressive models for bivariate wind time series
considering Cartesian coordinates on one hand and polar coordinates on the other hand. In non–homogeneous
models, the transitions depend on the wind direction at the previous time. At the location of interest, wind is
rotating more often clockwise but wind direction may also oscillate around two prevailing directions (northeast
for anti–cyclonic conditions and southwest for cyclonic conditions). These features induce respectively some
cycles which can be seen in the second order structure and modes in the marginal distribution. In broad outline,
non–homogeneous transitions help the process to stay in the same weather regime when the wind direction is
close to the prevailing directions and lead to sojourn duration in the regimes which are not geometric.

5.5. Gaussian state–space models for wind speed
Participants: Valérie Monbet, Julie Bessac.

This is a collaboration with Pierre Ailliot (UBO).

A multi–site stochastic generator for wind speed has been developped [11]. It aims at simulating realistic wind
conditions with a focus on reproducing the space-time motions of the meteorological systems. A Gaussian
linear state–space model is used where the latent state may be interpreted as regional wind conditions and
the observation equation links regional and local scales. The model is fitted to 6–hourly reanalysis data in the
North–East Atlantic. It is shown that it is interpretable and provides a good description of important properties
of the space–time covariance function of the data, such as the non full–symmetry induced by prevailing flows
in this area.

5.6. Level–dependent time deformation of Gaussian processes
Participant: Valérie Monbet.

Many records in environmental science exhibit asymmetries. In this project, we introduce a time deformation
to produce asymmetric path from a Gaussian process with symmetric path. A simple case is obtained by
assuming that

Zt = Yφ(t), φ(t) =

∫ t

0

f(Zs)ds

with {Yt} a stationary Gaussian process. The function f which controls the time deformation is increasing.
The time–change function φ is such that the modified time increases quicker when the process is at high levels
and thus that the crests of the modified process {Zt} are narrower than the ones of {Yt}. The opposite holds
true for the troughs. Inference tools are developed to estimate the function f .

5.7. Self–similar prior and wavelet bases for hidden turbulent motion
Participant: Patrick Héas.

This is a collaboration with Frédéric Lavancier (université de Nantes) and Souleymane Kadri–Harouna
(université de la Rochelle)
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This work [14] is concerned with the ill–posed inverse problem of estimating turbulent flows from the
observation of an image sequence. From a Bayesian perspective, a divergence–free isotropic fractional
Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self–similar
prior characterizes accurately second–order statistics of velocity fields in incompressible isotropic turbulence.
Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate
to implement in practice. To deal with this issue, we propose to decompose the divergence–free fBm on
well–chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show
that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative,
we use a divergence–free wavelet basis, which takes implicitly into account the incompressibility constraint
arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able
to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective
and efficient algorithms to approach the maximum a posteriori.

5.8. Estimation of non–linear dynamics under sparse constraints
Participant: Patrick Héas.

This is a collaboration with Cédéric Herzet (EPI FLUMINANCE, Inria Rennes–Bretagne Atlantique) and
Angélique Drémeau (ENSTA Bretagne, Brest).

Following recent contributions in non–linear sparse representations, this work [19], [18] focuses on a par-
ticular non–linear model, defined as the nested composition of functions. This family includes in particu-
lar discrete–time hidden Markov models. Recalling that most linear sparse representation algorithms can be
straightforwardly extended to non–linear models, we emphasize that their performance highly relies on an
efficient computation of the gradient of the objective function. In the particular case of interest, we propose
to resort to a well–known technique from the theory of optimal control to evaluate the gradient. This com-
putation is then implemented into the `1–reweighted procedure proposed by Candès et al. [24], leading to a
non–linear extension of it. As an example, we consider the problem of estimating the ocean state from satellite
low–dimensional information by exploiting a geophysical dynamical model and a sparse decomposition of the
initial condition in some redundant dictionary.

This work has also been presented at Congrès National d’Assimilation, a national event held in Toulouse in
December 2014.

6. Bilateral Contracts and Grants with Industry
6.1. Bilateral contracts with industry
6.1.1. DUCATI: Optimization of sensors location and activation — contract with DGA /

Techniques navales
Participant: François Le Gland.

See 3.3, 4.2 and 5.3

Inria contract ALLOC 7326 — April 2013 to December 2016.

This is a collaboration with Christian Musso (ONERA, Palaiseau) and with Sébastien Paris (LSIS, université
du Sud Toulon Var), related with the supervision of the PhD thesis of Yannick Kenné.

The objective of this project is to optimize the position and activation times of a few sensors deployed by
one or several platforms over a search zone, so as to maximize the probability of detecting a moving target.
The difficulty here is that the target can detect an activated sensor before it is detected itself, and it can then
modify its own trajectory to escape from the sensor. This makes the optimization problem a spatio–temporal
problem. The activity in the beginning of this project has been to study different ways to merge two different
solutions to the optimization problem : a fast, though suboptimal, solution developped by ONERA in which
sensors are deployed where and when the probability of presence of a target is high enough, and the optimal
population–based solution developped by LSIS and Inria in a previous contract (Inria contract ALLOC 4233)
with DGA / Techniques navales.
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7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. PDMP Inférence, Évolution, Contrôle et Ergodicité (PIECE) — ANR Jeunes

Chercheuses et Jeunes Chercheurs
Participant: Florent Malrieu.

January 2013 to December 2016.

Piecewise deterministic Markov processes (PDMP) are non-diffusive stochastic processes which naturally
appear in many areas of applications as communication networks, neuron activities, biological populations
or reliability of complex systems. Their mathematical study has been intensively carried out in the past two
decades but many challenging problems remain completely open. This project aims at federating a group of
experts with different backgrounds (probability, statistics, analysis, partial derivative equations, modelling) in
order to pool everyone’s knowledge and create new tools to study PDMPs. The main lines of the project relate
to estimation, simulation and asymptotic behaviors (long time, large populations, multi-scale problems) in the
various contexts of application.

7.1.2. Advanced Geophysical Reduced–Order Model Construction from Image Observations
(GERONIMO) — ANR Jeunes Chercheuses et Jeunes Chercheurs
Participant: Patrick Héas.

March 2014 to February 2018.

The GERONIMO project aims at devising new efficient and effective techniques for the design of geophysical
reduced–order models (ROMs) from image data. The project both arises from the crucial need of accurate
low–order descriptions of highly–complex geophysical phenomena and the recent numerical revolution which
has supplied the geophysical scientists with an unprecedented volume of image data. Our research activities
are concerned by the exploitation of the huge amount of information contained in image data in order to reduce
the uncertainty on the unknown parameters of the models and improve the reduced–model accuracy. In other
words, the objective of our researches to process the large amount of incomplete and noisy image data daily
captured by satellites sensors to devise new advanced model reduction techniques. The construction of ROMs
is placed into a probabilistic Bayesian inference context, allowing for the handling of uncertainties associated
to image measurements and the characterization of parameters of the reduced dynamical system.

7.2. International Initiatives
7.2.1. Inria International Partners

Arnaud Guyader collaborates with the group of Nicolas Hengartner at Los Alamos National Laboratories,
on the development of fast algorithms to simulate rare events, and on iterative bias reduction techniques in
nonparametric estimation. This collaboration has a long record of bilateral visits.

8. Dissemination

8.1. Promoting scientific activities
8.1.1. Scientific events organisation

Valérie Monbet has co–organized the worshop on Stochastic Weather Generators, held in Avignon in
September 2014.

http://ciam.inra.fr/swg2014/accueil
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François Le Gland has been a member of the organizing committee of the 46èmes Journées de Statistique,
held in Bruz in June 2014.

8.2. Teaching, supervision, thesis committees
8.2.1. Teaching

François Le Gland gives

• a course on Kalman filtering and hidden Markov models, at université de Rennes 1, within the SISEA
(signal, image, systèmes embarqués, automatique, école doctorale MATISSE) track of the master in
electronical engineering and telecommunications,

• a 3rd year course on Bayesian filtering and particle approximation, at ENSTA (école nationale
supérieure de techniques avancées), Paris, within the systems and control module,

• a 3rd year course on linear and nonlinear filtering, at ENSAI (école nationale de la statistique et de
l’analyse de l’information), Ker Lann, within the statistical engineering track,

• and a 3rd year course on hidden Markov models, at Télécom Bretagne, Brest.

He has also animated a set of training sessions on particle filtering, with an application to video multi–object
tracking, to engineers from Canon Research France.

Patrick Héas gives a course on statistical image analysis at université de Rennes 1, within the SISEA (signal,
image, systèmes embarqués, automatique, école doctorale MATISSE) track of the master in electronical
engineering and telecommunications.

Valérie Monbet gives several courses on data analysis, on time series, and on mathematical statistics, all at
université de Rennes 1 within the master on statistics and econometrics. She is also the director of the master
on statistics and econometry at université de Rennes 1.

8.2.2. Supervision
François Le Gland has been supervising one PhD student

• Damien–Barthélémy Jacquemart, title: Contributions to multilevel splitting for rare events, and ap-
plications to air traffic, université de Rennes 1, started in October 2011, defense in December 2014,
funding: DGA / ONERA grant, co–direction: Jérôme Morio (ONERA, Palaiseau).

and he is currently supervising two PhD students

• Alexandre Lepoutre, provisional title: Detection issues in track–before–detect, université de
Rennes 1, started in October 2010, expected defense in 2015, funding: ONERA grant, co–direction:
Olivier Rabaste (ONERA, Palaiseau),

• Kersane Zoubert–Ousseni, provisional title: Particle filters for hybrid indoor navigation with smart-
phones, université de Rennes 1, started in December 2014, expected defense in 2017, funding: CEA
grant, co–direction: Christophe Villien (CEA LETI, Grenoble).

Valérie Monbet has been supervising one PhD student

• Julie Bessac, title: On the construction of stochastic wind data generators off–shore Brittany,
université de Rennes 1, started in October 2011, defense in October 2014, co–direction : Pierre
Ailliot (université de Bretagne Occidentale).

8.2.3. Thesis committees
François Le Gland has been a reviewer for the PhD theses of Paul Lemaître (université de Bordeaux 1, advisors:
Pierre Del Moral and Bertrand Iooss), Achille Murangira (université de technologie de Troyes, advisors: Igor
Nikoforov and Karim Dahia) and El houcine Bergou (université de Toulouse, advisor: Serge Gratton).

Valérie Monbet has been a member of the committee for the PhD thesis of Emmanuelle Autret (IFREMER).

http://jds2014.sfds.asso.fr/
http://www.irisa.fr/aspi/legland/rennes-1/
http://www.irisa.fr/aspi/legland/ensta/
http://www.irisa.fr/aspi/legland/ensai/
http://www.irisa.fr/aspi/legland/telecom-bretagne/
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8.3. Participation in workshops, seminars, lectures, etc.
In addition to presentations with a publication in the proceedings, which are listed at the end of the document
in the bibliography, members of ASPI have also given the following presentations.

Frédéric Cérou has given a talk on rare event simulation for molecular dynamics, at the ICMS workshop on
Computational Methods for Statistical Mechanics — at the Interface between Mathematical Statistics and
Molecular Simulation, held in Edinburgh in June 2014, and a talk on a central limit theorem for adaptive
splitting, at the 10th International Workshop on Rare Event Simulation (RESIM’14), held in Amsterdam in
August 2014. He has been invited to give two seminar talks on rare event simulation with multilevel splitting,
in Marseilles in May 2014.

François Le Gland has given a talk on a two–step multilevel splitting algorithm for rare event simulation, at
the 10th International Workshop on Rare Event Simulation (RESIM’14), held in Amsterdam in August 2014,
and a talk on simulation–based algorithms for the optimization of sensor deployment, at the Conference on
Optimization and Practices in Industry (COPI), held in Palaiseau in October 2014.

8.4. Collective responsibilities
François Le Gland is a member of the “conseil d’UFR” of the department of mathematics of université de
Rennes 1.

Valérie Monbet is a member of the two “comité de direction” and “conseil” of IRMAR (institut de recherche
mathématiques de Rennes, UMR 6625). She is also the deputy head, and a member of the two “conseil
scientifique” and “conseil d’UFR” of the department of mathematics of université de Rennes 1.
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