
IN PARTNERSHIP WITH:
CNRS

Université de Strasbourg

Activity Report 2014

Team CAMUS

Compilation pour les Architectures
MUlti-coeurS

IN COLLABORATION WITH: ICube

RESEARCH CENTER
Nancy - Grand Est

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Research Program . 2

3.1. Research directions 2
3.2. Static parallelization and optimization 3
3.3. Profiling and execution behavior modeling 3
3.4. Dynamic parallelization and optimization, virtual machine 3
3.5. Proof of program transformations for multicores 4

4. Application Domains .4
5. New Software and Platforms . 4

5.1. PolyLib 4
5.2. APOLLO software and LLVM 5
5.3. IBB source-to-source xfor compiler 5
5.4. CLooG 5
5.5. OpenScop 5
5.6. Clan 6
5.7. Clay 6

6. New Results . 6
6.1. Highlights of the Year 6
6.2. APOLLO (Automatic speculative POLyhedral Loop Optimizer) 6
6.3. The XFOR programming structure 7
6.4. CPU+GPU adaptive computation 8
6.5. Minimizing the synchronization overhead of X10 programs 8
6.6. Hardware/Software helper thread prefetching 9
6.7. Loop-based Modeling of Parallel Communication Traces 9
6.8. Switcheable scheduling 10
6.9. Interactive Code Restructuring 10

7. Bilateral Contracts and Grants with Industry . 11
8. Partnerships and Cooperations . 11

8.1. National Initiatives 11
8.2. European Initiatives 11
8.3. International Initiatives 11

8.3.1. Inria Associate Teams 11
8.3.2. Inria International Partners 12

8.4. International Research Visitors 12
9. Dissemination . 12

9.1. Promoting Scientific Activities 12
9.1.1. Scientific events organisation 12
9.1.2. Scientific events selection 13

9.1.2.1. member of the conference program committee 13
9.1.2.2. reviewer 13

9.1.3. Journal 13
9.2. Teaching - Supervision - Juries 13

9.2.1. Teaching 13
9.2.2. Supervision 14
9.2.3. Juries 14

9.3. Popularization 15
10. Bibliography .15

Team CAMUS

Keywords: Compiling, Embedded Systems, Hardware Accelerators, Proofs Of Programs, For-
mal Methods, Processors

Creation of the Team: 2009 July 01.

1. Members
Faculty Members

Philippe Clauss [Team leader, Univ. Strasbourg, Professor, HdR]
Cédric Bastoul [Univ. Strasbourg, Professor, HdR]
Alain Ketterlin [Univ. Strasbourg, Associate Professor]
Vincent Loechner [Univ. Strasbourg, Associate Professor]
Nicolas Magaud [Univ. Strasbourg I, Associate Professor]
Julien Narboux [Univ. Strasbourg I, Associate Professor]
Éric Violard [Univ. Strasbourg, Associate Professor, HdR]

PhD Students
Yann Barsamian [Univ. Strasbourg, from Oct 2014]
Jean-François Dollinger [Univ. Strasbourg, from Oct 2011]
Imen Fassi [Inria, Univ. Strasbourg and Univ. El Manar, from Jun 2013]
Juan Manuel Martinez Caamaño [Univ. Strasbourg, from Nov 2013]
Aravind Sukumaran-Rajam [Inria, from Nov 2012]

Administrative Assistant
Isabelle Blanchard [Inria]

Others
Luis Esteban Campostrini [Inria, Master student, from Aug 2014 until Dec 2014]
Matías Perez [Inria, Master student, from May 2014 until Nov 2014]
César Sabater [Inria, Master student, from May 2014 until Oct 2014]
Willy Wolff [Inria, Master student, , from Jan 2014 until Dec 2014]

2. Overall Objectives

2.1. Overall Objectives
The CAMUS team is focusing on developping, adapting and extending automatic parallelizing and optimizing
techniques, as well as proof and certification methods, for the efficient use of current and future multicore
processors.

The team’s research activities are organized into five main issues that are closely related to reach the following
objectives: performance, correction and productivity. These issues are: static parallelization and optimization
of programs (where all statically detected parallelisms are expressed as well as all “hypothetical” parallelisms
which would be eventually taken advantage of at runtime), profiling and execution behavior modeling (where
expressive representation models of the program execution behavior will be used as engines for dynamic
parallelizing processes), dynamic parallelization and optimization of programs (such transformation processes
running inside a virtual machine), object-oriented programming and compiling for multicores (where object
parallelism, expressed or detected, has to result in efficient runs), and finally program transformations proof
(where the correction of many static and dynamic program transformations has to be ensured).

2 Activity Report INRIA 2014

3. Research Program

3.1. Research directions
The various objectives we are expecting to reach are directly related to the search of adequacy between the
sofware and the new multicore processors evolution. They also correspond to the main research directions
suggested by Hall, Padua and Pingali in [28]. Performance, correction and productivity must be the users’
perceived effects. They will be the consequences of research works dealing with the following issues:

• Issue 1: Static parallelization and optimization

• Issue 2: Profiling and execution behavior modeling

• Issue 3: Dynamic program parallelization and optimization, virtual machine

• Issue 4: Object-oriented programming and compiling for multicores

• Issue 5: Proof of program transformations for multicores

Efficient and correct applications development for multicore processors needs stepping in every application
development phase, from the initial conception to the final run.

Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transfor-
mation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the
running virtual machine about all the parallelism that can be taken advantage of. However the compiler does
not have much knowledge about the execution environment. It obviously knows the instruction set, it can be
aware of the number of available cores, but it does not know the effective available resources at any time
during the execution (memory, number of free cores, etc.).

That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources
(issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by
the application. Indeed some program information (variables values, accessed memory adresses, etc.) being
available only at runtime, another part of the available parallelism will have to be generated on-the-fly during
the execution, here also, thanks to a dynamic mechanism.

This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such
models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives,
we can add the behavior monitoring, or profiling, of a program version. Indeed current and future architectures
complexity avoids assuming an optimal behavior regarding a given program version. A monitoring process will
allow to select on-the-fly the best parallelization.

These different parallelizing steps are schematized on figure 1.

The more and more widespread usage of object-oriented approaches and languages emphasizes the need for
specific multicore programming tools. The object and method formalism implies specific execution schemes
that translate in the final binary by quite distant elementary schemes. Hence the execution behavior control
is far more difficult. Analysis and optimization, either static or dynamic, must take into account from the
outset this distortion between object-oriented specification and final binary code: how can object or method
parallelization be translated (issue 4).

Our project lies on the conception of a production chain for efficient execution of an application on a multicore
architecture. Each link of this chain has to be formally verified in order to ensure correction as well as
efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and
that the virtual machine actually performs the parallel execution semantically equivalent to the source code:
every transformation applied to the application, either statically by the compiler or dynamically by the virtual
machine, must preserve the initial semantics. They must be proved formally (issue 5).

In the following, those different issues are detailed while forming our global and long term vision of what has
to be done.

Team CAMUS 3

Figure 1. Automatic parallelizing steps for multicore architectures

3.2. Static parallelization and optimization
Participants: Vincent Loechner, Philippe Clauss, Éric Violard, Jean-François Dollinger, Aravind Sukumaran-
Rajam, Juan Manuel Martinez Caamaño.

Static optimizations, from source code at compile time, benefit from two decades of research in automatic
parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays,
and these works are now mature enough to generate efficient parallel code [27]. Low-level optimizations,
in the assembly code generated by the compiler, have also been extensively dealt for single-core and require
few adaptations to support multicore architectures. Concerning multicore specific parallelization, we propose
to explore two research directions to take full advantage of these architectures: adapting parallelization to
multicore architecture and expressing many potential parallelisms.

3.3. Profiling and execution behavior modeling
Participants: Alain Ketterlin, Philippe Clauss, Aravind Sukumaran-Rajam.

The increasing complexity of programs and hardware architectures makes it ever harder to characterize be-
forehand a given program’s run time behavior. The sophistication of current compilers and the variety of
transformations they are able to apply cannot hide their intrinsic limitations. As new abstractions like transac-
tional memories appear, the dynamic behavior of a program strongly conditions its observed performance. All
these reasons explain why empirical studies of sequential and parallel program executions have been consid-
ered increasingly relevant. Such studies aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such studies characterize more the compiler than
the program itself. These works are of tremendous importance to highlight all aspects that escape static analy-
sis, even though their results may have a narrow scope, due to the possible incompleteness of their input data
sets.

3.4. Dynamic parallelization and optimization, virtual machine
Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Jean-François Dollinger, Alexan-
dra Jimborean, Philippe Clauss, Vincent Loechner, Alain Ketterlin.

4 Activity Report INRIA 2014

This link in the programming chain has become essential with the advent of the new multicore architectures.
Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now
one of the keys for controling those new mechanisms complexity. From now on, performed instructions are not
only dedicated to the application functionalities, but also to its control and its transformation, and so in its own
interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”. It perfectly
knows the current characteristics of the execution environment and owns some qualitative information thanks
to a behavior modeling process (issue 2). It appends a significant part of optimizing ability compared to a static
compiler, while observing live resources availability evolution.

3.5. Proof of program transformations for multicores
Participants: Éric Violard, Julien Narboux, Nicolas Magaud.

Our main objective consists in certifying the critical modules of our optimization tools (the compiler and the
virtual machine). First we will prove the main loop transformation algorithms which constitute the core of our
system.

The optimization process can be separated into two stages: the transformations consisting in optimizing the
sequential code and in exhibiting parallelism, and those consisting in optimizing the parallel code itself. The
first category of optimizations can be proved within a sequential semantics. For the other optimizations, we
need to work within a concurrent semantics. We expect the first stage of optimizations to produce data-race
free code. For the second stage of optimizations, we will first assume that the input code is data-race free.
We will prove those transformations using Appel’s concurrent separation logic [29]. Proving transformations
involving program which are not data-race free will constitute a longer term research goal.

4. Application Domains

4.1. Application domains
Performance being our main objective, our developments’ target applications are characterized by intensive
computation phases. Such applications are numerous in the domains of scientific computations, optimization,
data mining and multimedia.

Applications involving intensive computations are necessarily high energy consumers. However this consump-
tion can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior
objective, we can expect some positive effects for the following reasons:

• Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent
performance, or even a better performance, to a sequential higher frequency execution on one single
core, can be obtained.

• Memory and memory accesses are high energy consumers. Lowering the memory consumption,
lowering the number of memory accesses and maximizing the number of accesses in the low levels
of the memory hierarchy (registers, cache memories) have a positive consequence on execution
speed, but also on energy consumption.

5. New Software and Platforms

5.1. PolyLib
Participant: Vincent Loechner.

Team CAMUS 5

PolyLib 1 is a C library of polyhedral functions, that can manipulate unions of rational polyhedra of any
dimension. It was the first to provide an implementation of the computation of parametric vertices of a
parametric polyhedron, and the computation of an Ehrhart polynomial (expressing the number of integer points
contained in a parametric polytope) based on an interpolation method. Vincent Loechner is the maintainer of
this software. It is distributed under GNU General Public License version 3 or later.

Apart from normal maintenance, it was parallelized using OpenMP with the support of Master student Adilla
Susungi, funded by the ICPS team (ICube laboratory, University of Strasbourg).

5.2. APOLLO software and LLVM
Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Willy Wolff, Luis Esteban
Campostrini, Matías Perez, Alexandra Jimborean, Philippe Clauss.

We are developing a framework called APOLLO (Automatic speculative POLyhedral Loop Optimizer) whose
main concepts are based on our previous framework VMAD. However, several important implementation
issues are now handled differently in order to improve the performance and usability of the framework, and
also to open its evolution to new interesting perspectives. APOLLO is dedicated to automatic, dynamic and
speculative parallelization of loop nests that cannot be handled efficiently at compile-time. It is composed of
a static part consisting of specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a
dynamic part consisting of a runtime system. Its last extensions are presented in subsection 6.2.

5.3. IBB source-to-source xfor compiler
Participants: Imen Fassi, Philippe Clauss, Cédric Bastoul.

Imen Fassi has developped a source-to-source xfor compiler called IBB (Iterate-But-Better) which is automat-
ically translating any C source code containing xfor-loops into an equivalent source code where xfor-loops
have been transformed into equivalent for-loops. The polyhedral code generator CLooG [27] is used to gener-
ate the corresponding code. The IBB compiler has been improved in some aspects in 2014: loop bounds can
now be min and max functions, IBB uses the OpenScop format to encode statements and iteration domains.

The xfor structure is also currently incorporated in the polyhedral parser Clan 2, opening the door of xfor
usage to polyhedral compilation tools. Additionally, an xfor programming wizard is currently being developed,
providing automatic dependence analysis and code verification to users, thanks to the dependence analyzer
Candl 3.

5.4. CLooG
Participant: Cédric Bastoul.

CLooG 4 is a free software and library to generate code (or an abstract syntax tree of a code) for scanning
Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of one or
more parameterized polyhedra. CLooG has been originally written to solve the code generation problem for
optimizing compilers based on the polyhedral model. Nevertheless it is used now in various area e.g. to build
control automata for high-level synthesis or to find the best polynomial approximation of a function. CLooG
may help in any situation where scanning polyhedra matters. While the user has full control on generated code
quality, CLooG is designed to avoid control overhead and to produce a very effective code. CLooG is widely
used (including by GCC and LLVM compilers), disseminated (it is installed by default by the main Linux
distributions) and considered as the state of the art in polyhedral code generation.

5.5. OpenScop
Participant: Cédric Bastoul.

1http://icps.u-strasbg.fr/PolyLib
2http://icps.u-strasbg.fr/~bastoul/development/clan
3http://icps.u-strasbg.fr/~bastoul/development/candl
4http://www.cloog.org

http://icps.u-strasbg.fr/PolyLib
http://icps.u-strasbg.fr/~bastoul/development/clan
http://icps.u-strasbg.fr/~bastoul/development/candl
http://www.cloog.org

6 Activity Report INRIA 2014

OpenScop 5 is an open specification that defines a file format and a set of data structures to represent a static
control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model. The goal of
OpenScop is to provide a common interface to the different polyhedral compilation tools in order to simplify
their interaction. To help the tool developers to adopt this specification, OpenScop comes with an example
library (under 3-clause BSD license) that provides an implementation of the most important functionalities
necessary to work with OpenScop.

5.6. Clan
Participants: Cédric Bastoul, Imen Fassi.

Clan 6 is a free software and library which translates some particular parts of high level programs written in C,
C++, C# or Java into a polyhedral representation called OpenScop. This representation may be manipulated
by other tools to, e.g., achieve complex analyses or program restructurations (for optimization, parallelization
or any other kind of manipulation). It has been created to avoid tedious and error-prone input file writing for
polyhedral tools (such as CLooG, LeTSeE, Candl etc.). Using Clan, the user has to deal with source codes
based on C grammar only (as C, C++, C# or Java). Clan is notably the frontend of the two major high-level
compilers Pluto and PoCC.

5.7. Clay
Participant: Cédric Bastoul.

Clay 7 is a free software and library devoted to semi-automatic optimization using the polyhedral model. It
can input a high-level program or its polyhedral representation and transform it according to a transformation
script. Classic loop transformations primitives are provided. Clay is able to check for the legality of the
complete sequence of transformation and to suggest corrections to the user if the original semantics is
not preserved. Clay is still experimental at this report redaction time but is already used during advanced
compilation labs at Paris-Sud University and is one of the foundations of our ongoing work on simplifying
code manipulation by programmers.

6. New Results

6.1. Highlights of the Year
One of Philippe Clauss’ early papers on Ehrhart polynomials has been celebrated, 18 years later, in a selection
of papers for the International Conference on Supercomputing (ICS) 25th anniversary retrospective [13]. 35
papers have been selected among roughly 1800 papers published between 1987 and 2011. The paper is:

"Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applications to Ana-
lyze and Transform Scientific Programs", by Philippe Clauss, ICS’96, which introduced Ehrhart polynomials
in the field of program analysis and optimization.

Philippe Clauss wrote an additional retrospective [12] related to this research which complements the paper in
the ICS special issue.

6.2. APOLLO (Automatic speculative POLyhedral Loop Optimizer)
The goal of the APOLLO project is to provide a set of annotations (pragmas) that the user can insert in the
source code to perform advanced analyses and optimizations, for example dynamic speculative parallelization.
It is based on the prototype named VMAD which was developed previously by the team between 2009 and
2012. Alexandra Jimborean defended her PhD thesis on this topic in 2012 [30].

5http://icps.u-strasbg.fr/~bastoul/development/openscop
6http://icps.u-strasbg.fr/~bastoul/development/clan
7http://icps.u-strasbg.fr/~bastoul/development/clay

http://icps.u-strasbg.fr/~bastoul/development/openscop
http://icps.u-strasbg.fr/~bastoul/development/clan
http://icps.u-strasbg.fr/~bastoul/development/clay

Team CAMUS 7

APOLLO includes a modified LLVM compiler and a runtime system. The program binary files are first
generated by our compiler to include necessary data, instrumentation instructions, parallel code skeletons,
and callbacks to the runtime system which is implemented as a dynamic library. External modules associated
to specific analyses and transformations are dynamically loaded when required at runtime.

APOLLO uses sampling, multi-versioning and code skeletons to limit the runtime overhead (profiling,
analysis, and code generation). At runtime, targeted codes are launched by successive chunks that can be
either original, instrumented or optimized/parallelized versions. These latter versions are generated on-the-fly
through fast instantiation of the code skeletons. After each chunk execution, decisions can be taken relatively
to the current optimization strategy. APOLLO is handling advanced memory access profiling through linear
interpolation of the addresses, dynamic dependence analysis, version selection and speculative polyhedral
parallelization [9].

Several extensions and improvements have been implemented inside Apollo in 2014:
• the scheduler of the polyhedral compiler Pluto has been integrated inside the framework. Thus,

the runtime decision regarding what optimizing and parallelizing transformation is now entirely
depending on Pluto, whose input is generated by the instrumentation and interpolation phase of
Apollo [20].

• the static compilation phase of Apollo has been significantly enforced. Linear dependencies be-
tween values of scalars and memory addresses are identified in order to alleviate the cost of the
instrumented code version. Additionally, memory reference functions that can be disambiguated at
compile-time are now fully handled. These improvements are using analysis passes of the LLVM
compiler, as well as passes that were specifically developed.

• Apollo is now using the LLVM JIT compiler to further optimize the instantiated code skeletons.
Previously, code skeletons were generated as binary executable at compile-time with global variables
instantiated at runtime. This approach yielded sub-optimal code including unnecessary or invariant
computations. Code skeletons are now kept in LLVM intermediate form until being instantiated and
compiled at runtime using the LLVM JIT compiler, thus resulting in faster optimized codes.

• Other memory behavior modeling approaches are now being studied and implemented, in order to
allow Apollo handling codes that do not have a completely linear behavior. Three main cases are
addressed:

– quasi-linear behavior in which memory accesses which do not fit the linear prediction are
checked on-the-fly, i.e., if these delinquent accesses do not invalidate the current parallel
schedule.

– linear regression behavior in which memory accesses are staying inside a “tube” bordered
by linear functions.

– behavior in which memory accesses are staying inside disjointed address ranges.

6.3. The XFOR programming structure
We have proposed a new programming control structure called “xfor” or “multifor”, providing users a way
to schedule explicitly the statements of a loop nest, and take advantage of optimization and parallelization
opportunities that are not easily attainable using the standard programming structures. This work is the PhD
work of Imen Fassi, who started her work in 2013 and who is co-advised by Yosr Slama, Assistant Professor
at the University El Manar in Tunis, Tunisia, and Philippe Clauss.

Data locality optimization is a well-known goal when handling programs that must run as fast as possible
or use a minimum amount of energy. However, usual techniques never address the significant impact of
numerous stalled processor cycles that may occur when consecutive load and store instructions are accessing
the same memory location. In [15], we show that two versions of the same program may exhibit similar
memory performance, while performing very differently regarding their execution times because of the stalled
processor cycles generated by many pipeline hazards. The xfor structure enables the explicit control of the
way data locality is optimized in a program and thus, to control the amount of stalled processor cycles. In [15],
we also show the benefits of xfor regarding execution time and energy saving.

8 Activity Report INRIA 2014

While many advanced and fully automatic program analysis and optimization techniques have been developed
thanks to the accuracy and expressiveness of the polyhedral model, these techniques may fail in producing
efficient codes in some circumstances. The xfor structure eases the manual application of optimizing transfor-
mations on loop nests for expert programmers and allows to generate executable codes that may be signifi-
cantly faster than those generated automatically using well-established polyhedral strategies. we highlight five
main gaps regarding these strategies and discuss some ideas on how to bridge them in [14].

6.4. CPU+GPU adaptive computation
We aim to automatically use CPU and GPU to jointly execute a parallel code. To ensure load balance between
different PUs, thus to preserve performance, it is necessary to consider the underlying hardware and the
program parameters. Compiler optimizations, execution context, hardware availability and specification make
it difficult to determine execution times statically. To overcome this hurdle we rely on a portable and automatic
method for predicting execution times of statically generated codes on multicore CPUs and on CUDA GPUs.
This approach relies on three stages: automatic code generation, offline profiling of the target code and online
prediction.

This is mainly the work of PhD student Jean-François Dollinger, advised by Vincent Loechner since 2011.
Preliminary results, a "fastest-wins" algorithm between a multicore CPU and the best predicted GPU code
version, was published in 2013 in ICPP. Our latest advances, load balancing code between multiple cores CPUs
and multiple GPUs will be presented at the IMPACT 2015 workshop [25] in conjunction with the HiPEAC
conference. We are currently preparing an extended journal paper to present this work, and Jean-François
Dollinger will defend his PhD in 2015.

6.5. Minimizing the synchronization overhead of X10 programs
The CAMUS team has for long focused on compiling, optimizing, and parallelizing sequential programs.
The project described in this section is somewhat unusual in this context, in that it targets programs written
in an explicitly parallel language, and applies polyhedral modeling techniques to reschedule computations,
effectively introducing parallel-to-parallel program transformations. This work has been done in collaboration
with the Inria COMPSYS team at ENS Lyon, and first results were presented at the Compiler Construction
conference (CC’14) in April 2014.

The need to leverage the computing power of multi-core processors (and distributed computers) has lead to
the design of explicitly parallel programming languages. Such languages often employ a fork/join model, and
include syntax to launch and synchronize tasks (also called activities) with well-defined semantics. This brings
parallel constructions under the control of the compiler, and introduces new optimization opportunities. Our
work has focused on the various synchronization primitives available to the programmer, and more specifically
on how one type of synchronization can be replaced with another for specific classes of programs, the goal
being to minimize the synchronization overhead. We have demonstrated significant speedups on programs
written using the X10 programming language, and have obtained similar results on equivalent Habanero-Java
programs.

More specifically, our work focused on synchronization primitives of X10. The X10 language basically has
two activity synchronization primitives: one is the explicit use of “clocks” (synchronization barriers) during
activity execution, the other is the implicit use of activity containers that synchronize only on the end of
activities. Under reasonable conditions on the patterns of activity creation and control, we showed that long-
running activities using clocks can be replaced by short-lived activities synchronized only on the end of their
containers, and that this transformation provides a significant gain at run time.

We have studied the converse transformation, i.e. starting with an unclocked X10 program, obtaining a system
of sequential threads executing in parallel and synchronizing with clocks. This transformation is interesting
since it yields to further optimization opportunities. We have elaborated a system of rules to execute the
transformation. Applying these rules to "regular" programs gives good results, but fails on some paradigmatic
X10 codes. For irregular programs, some parallelism may be lost. We now are investigating a new set of rules

Team CAMUS 9

to give a correct result for arbitrary X10 programs. A main difficulty is bringing the proof that the set of
upgraded rules will give a correct result.

This work has been done in collaboration with Paul Feautrier, member of the COMPSYS Inria team, in ENS
Lyon. The CAMUS team has invited Paul Feautrier one more time for one week in June 2014 in Strasbourg.

6.6. Hardware/Software helper thread prefetching
Heterogeneous Many Cores (HMC) architectures that mix many simple/small cores with a few complex/large
cores are emerging as a design alternative that can provide both fast sequential performance for single threaded
workloads and power-efficient execution for through-put oriented parallel workloads. The availability of many
small cores in a HMC presents an opportunity to utilize them as low-power helper cores to accelerate memory-
intensive sequential programs mapped to a large core. However, the latency overhead of accessing small cores
in a loosely coupled system limits their utility as helper cores. Also, it is not clear if small cores can execute
helper threads sufficiently in advance to benefit applications running on a larger, much powerful, core.

In this project, we designed a hardware/software framework called core-tethering to support efficient helper
threading on heterogeneous manycores. Core-tethering provides a co-processor like interface to the small
cores that (a) enables a large core to directly initiate and control helper execution on the helper core and (b)
allows efficient transfer of execution context between the cores, thereby reducing the performance overhead of
accessing small cores for helper execution. Our evaluation on a set of memory intensive programs chosen from
the standard benchmark suites shows that helper threads using moderately sized small cores can significantly
accelerate a larger core compared to using a hardware prefetcher alone. We find that a small core provides a
good trade-off against using an equivalent large core to run helper threads in a HMC. Additionally, helper
prefetching on small cores when used along with hardware prefetching, can provide an alternate design
point to growing instruction window size for achieving higher sequential performance on memory intensive
applications.

This work is a collaboration between the ALF team in Rennes and CAMUS in Strasbourg. Our contribution is
mainly on the generation of helper thread code (as a followup to our work on program skeletonization). The
result of the work has been published in October 2014 in the Proceedings of the SBAC-PAD conference [17].

6.7. Loop-based Modeling of Parallel Communication Traces
Parallel communication traces are traces of the various actions performed by parallel programs (typically
written using MPI or some such library). The traces usually contain actions like message sending and
receiving, and entering and exiting collective operations. The goal of this project is to build a model of the
parallel program from the traces of the various processes that form the program. Consolidating on our previous
work on sequential traces, we have developed an algorithm that takes the traces of the individual processes
and merges them into a global model.

The main characteristics of our algorithm is that the result takes the form of loops enclosing various parallel
constructs and communication actions. The driving goal of this work is to use the model for various analyzes,
mainly to draw qualitative conclusions on the program (like the affinity of the various processes involved), but
also to extract quantitative information (like communication matrices). A long term goal is to use the parallel
loops to suggest program optimizations.

As of today, our algorithm has been evaluated on several applications. The most obvious is trace compression,
with spectacular results because of the underlying loop-nest model (as was already the case for our sequential
trace analysis algorithm). Another application is replay, where the program’s (actual, i.e., traced) behavior can
be simulated on a different parallel architecture. The last application is to build a lightweight model from a
subset of trace data, and use the model to index into potentially massive quantitative data associated to the
various events.

10 Activity Report INRIA 2014

It turns out that it is difficult to publish such algorithms without evaluating them in “realistic” settings, on
applications running on massively parallel hardware, something we don’t have easy access to. Also, there
are currently a few algorithms that provide similar solutions to practitioners, in a way that we think are
fundamentally inferior to our proposition but that seem to be good enough for their current use. Waiting for
better opportunities to illustrate the power of our method, we have published a research report summarizing
our work [26].

6.8. Switcheable scheduling
Parallel applications used to be executed alone until their termination on partitions of supercomputers. The
recent shift to multicore architectures for desktop and embedded systems is raising the problem of the
coexistence of several parallel programs. Operating systems already take into account the affinity mechanism
to ensure a thread will run only onto a subset of available processors (e.g., to reuse data remaining in
the cache since its previous execution). But this is not enough, as demonstrated by the large performance
gaps between executions of a given parallel program on desktop computers running several processes. To
support many parallel applications, advances must be made on the system side (scheduling policies, runtimes,
memory management...). However, automatic optimization and parallelization can play a significant role by
generating programs with dynamic-auto-tuning capabilities to adapt themselves to the complete execution
context, including the system load.

Our approach is to design at compile-time programs that can adapt at run-time to the execution context. The
originality of our solution is to rely on switcheable scheduling, a selected set of program restructuring which
allows to swap between program versions at some meeting points without backtracking. A first step selects
pertinent versions according to their performance behavior on some execution contexts. The second step builds
the auto-adaptive program with the various versions. Then at runtime the program selects the best version by
a low overhead sampling and profiling of the versions, ensuring every computation is useful.

This is an ongoing work with the PhD student Lénaïc Bagnères (POSTALE Team at Inria Saclay-Île-de-
France, co-advised by Christine Eisenbeis and Cédric Bastoul). The first results have been presented in 2014
at the Euro-Par International Conference [11].

6.9. Interactive Code Restructuring
This work falls within the exploration and development of semi-automatic programs optimization techniques.
It consists in designing and evaluating new visualization and interaction techniques for code restructuring, by
defining and taking advantage of visual representations of the underlying mathematical model. The main goal
is to assist programmers during program optimization tasks in a safe and efficient way, even if they neither
have expertise into code restructuring nor knowledge of the underlying theories. This project is an important
step for the efficient use and wider acceptance of semi-automatic optimization techniques, which are still
tedious to use and incomprehensible for most programmers. More generally, this research is also investigating
new presentation and manipulation techniques for code, algorithms and programs, which could lead to many
practical applications: collaboration, tracking and verification of changes, visual search in large amount of
code, teaching, etc.

This is a rather new research direction which strengthen CAMUS’s static parallelization and optimization
issue. It has been initiated at Paris-Sud University as a collaboration between Compilation, represented by
Cédric Bastoul before he joined CAMUS, and Human-Machine Interaction, represented by Stéphane Huot
from the IN-SITU Team at Inria Saclay-Île-de-France. This work is essentially the PhD topic of Alexander
Zinenko (IN-SITU Team at Inria Saclay-Île-de-France, co-advised by Stéphane Huot and Cédric Bastoul,
CORDI Grant) which started in 2013. The first results have been presented in 2014 to the IEEE VL/HCC
Conference [22]. Moreover, another paper on the topic has been accepted to the International IMPACT 2015
Workshop to be held in conjunction with the HiPEAC International Conference.

Team CAMUS 11

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
The CAMUS team is taking part of the NANO 2017 national research program and its sub-project PSAIC
(Performance and Size Auto-tuning thru Iterative Compilation) with the company STMicroelectronics, starting
January 2015. Luis Esteban Campostrini has been recruited as PhD student in this project. His work will focus
on extending the Apollo framework to dynamic analysis providing useful feedbacks to users regarding code
optimization opportunities, and to code generation for ARM Cortex platforms.

8. Partnerships and Cooperations

8.1. National Initiatives
Philippe Clauss, Alain Ketterlin, Cédric Bastoul and Vincent Loechner are involved in the Inria Project Lab
entitled “Large scale multicore virtualization for performance scaling and portability” and regrouping several
french researchers in compilers, parallel computing and program optimization 8. The project started officially
in January 2013. In this context and since January 2013, Philippe Clauss is co-advising with Erven Rohou of
the Inria team ALF, Nabil Hallou’s PhD thesis focusing on dynamic optimization of binary code.

8.2. European Initiatives
8.2.1. Collaborations in European Programs, except FP7 & H2020

Program: ITEA

Project acronym: MANY

Project title: Many-core Programming and Resource Management for High-Performance Embedded
Systems

Duration: 09/2011 - 12/2014

Coordinator: XDIN

Other partners: France: Thales Communications and Security, CAPS Entreprise, Telecom SudParis;
Spain: UAB; Sweden: XDIN; Korea: ETRI, TestMidas, SevenCore; Netherlands: Vector Fabrics,
ST-Ericsson, TU Eindhoven; Belgium: UMONS.

Abstract: Adapting Industry for the for the disruptive landing of many-core processors in Embedded
Systems in order to provide scalable, reusable and very fast sofware development.

8.3. International Initiatives
8.3.1. Inria Associate Teams
8.3.1.1. ANCOME

Title: Memory and applications memory behavior

International Partner (Institution - Laboratory - Researcher):

Universidad de Buenos Aires (ARGENTINE)

Duration: 2011 - ___AT.ANNEEMOISFIN???___

See also: http://lafhis.dc.uba.ar/wiki/index.php/EA-Ancome

8https://team.inria.fr/multicore

http://lafhis.dc.uba.ar/wiki/index.php/EA-Ancome
https://team.inria.fr/multicore

12 Activity Report INRIA 2014

This associate team focuses on developing original methods for the analysis of programs memory
behavior, in particular in the context of applications using dynamic memory allocation. The proposed
approaches consist in analyzing and modeling the runtime behavior, where extracted properties
are then verified thanks to static analysis processes. Thus pure static approaches limits will be
overpassed. Further, the case of multi-threaded applications run on multi-core architectures will be
studied in order to elaborate and extend our analysis techniques and to extract properties specific to
this context. The issues are mainly concerned with the conception of real-time applications using
dynamic memory allocation.

8.3.2. Inria International Partners
8.3.2.1. Informal International Partners

The CAMUS team maintains regular contacts with the following entities:

• Reservoir Labs, New York, NY, USA

• Intel, Santa Clara, CA, USA

• UPMARC, University of Uppsala, Sweden

• University of Batna, Algeria

• University El Manar, Tunis, Tunisia

• Ohio State University, Colombus, USA

• Louisiana State University, Baton Rouge, USA

• Indian Institute of Science (IIIS) Bangalore, India

• University of Delaware, DE, USA

8.4. International Research Visitors
8.4.1. Visits of International Scientists
8.4.1.1. Internships

Matías Hernando Pérez Matías

Date: May 2014 - Nov 2014

Institution: Universidad de Buenos Aires (Argentina)

Sabater César Rufino

Date: May 2014 - Oct 2014

Institution: Universidad Nacional de Rosario (Argentina)

Campostrini Luis Esteban

Date: Jul 2014 - Dec 2014

Institution: Universidad Nacional de Rosario (Argentina)

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. member of the organizing committee

Cédric Bastoul has been co-organizing the HIP3ES 2015 workshop (High Performance Energy Efficient
Embedded Systems) held in conjunction with the international conference HiPEAC 2015.

Team CAMUS 13

9.1.2. Scientific events selection
9.1.2.1. member of the conference program committee

Philippe Clauss, Cédric Bastoul and Vincent Loechner have been part of the program committee of IMPACT
2014 (International Workshop on Polyhedral Compilation Techniques), held in conjunction with the inter-
national conferences HiPEAC 2014. Philippe Clauss, and Vincent Loechner have been part of the program
committee of IMPACT 2015, held in conjunction with HiPEAC 2015.

Vincent Loechner and Cédric Bastoul have been part of the program committee of HIP3ES 2015 workshop
(High Performance Energy Efficient Embedded Systems), held in conjunction with the international confer-
ence HiPEAC 2015.

Cédric Bastoul has been part of the program committee of PARMA+DITAM 2015 (6th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-core Architectures 4th Workshop on Design
Tools and Architerctures for Multicore Embedded Computing Platforms), held in conjunction with HiPEAC
2015.

9.1.2.2. reviewer

Vincent Loechner has been reviewer for the IMPACT 2015 workshop.

Philippe Clauss has been reviewer for the following conferences: ISMM ’14 (International Symposium on
Memory Management), IMPACT 2015.

Cédric Bastoul has been reviewer for the following conferences: CGO 2014 (International Conference on Code
Generation and Optimization), PARMA 2014 and 2015 (International Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures), IMPACT 2014 (International Workshop on
Polyhedral Compilation Techniques), HIP3ES 2015 (International Workshop on High Performance Energy
Efficient Embedded Systems).

9.1.3. Journal
9.1.3.1. reviewer

Philippe Clauss has been reviewer for the following journals: IEEE Transactions on Computers, ACM
Transactions on Programming Languages and Systems (TOPLAS), ACM Transactions on Architecture and
Code Optimization (TACO), IEEE Transactions on Parallel and Distributed Systems (TPDS).

Cédric Bastoul has been reviewer for the following journals: Journal of Parallel and Distributed Computing
(JPDC), ACM Transactions on Architecture and Code Optimization (TACO), Parallel Computing (ParCo).

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Philippe Clauss and Alain Ketterlin did not teach during the first semester of 2014 since they were detached at
Inria (délégation).

Licence : Vincent Loechner, Operating Systems, 38h, L2, Strasbourg University, France
Master : Vincent Loechner, Python Programming, 38h, M1, Strasbourg University, France
Master : Vincent Loechner, Parallelism, 15h, M1, Strasbourg University, France
Master : Vincent Loechner, Parallel Programming, 32h, M1, Strasbourg University, France
Master : Vincent Loechner, Parallel Programming, 30h, M2, Strasbourg University, France
Master : Vincent Loechner, Advanced compilation, 8h, M1, Strasbourg University, France
Master : Vincent Loechner, Embedded Systems, 32h, M2, Strasbourg University, France
Master : Vincent Loechner, Real-time Programming, 22h, M1, Strasbourg University, France
Licence : Philippe Clauss, Computer Architecture, 45h, L2, Strasbourg University, France
Master : Philippe Clauss, Compilation, 78h, M1, Strasbourg University, France

14 Activity Report INRIA 2014

Licence : Cédric Bastoul, System Programming, 49h, L2, Strasbourg University, France

Master : Cédric Bastoul, Compiler Design, 48h, M1, Strasbourg University, France

Master : Cédric Bastoul, Advanced compilation, 29h, M1, Strasbourg University, France

Master : Cédric Bastoul, Parallelism, 20h, M2, Strasbourg University, France

Master : Cédric Bastoul, Introduction to Research, 7h, M1, Strasbourg University, France

Licence : Éric Violard, Functional Programming, 42h, L2, Strasbourg University, France

Licence : Éric Violard, Computer Architectures, 23h, L2, Strasbourg University, France

Licence : Éric Violard, Algorithms and Data Structures, 34h, L2, Strasbourg University, France

Master : Éric Violard, Compiler Design, 54h, M1, Strasbourg University, France

Master : Éric Violard, Semantics, 48h, M1, Strasbourg University, France

Master : Éric Violard, Introduction to Research, 6h, M1, Strasbourg University, France

Licence : Alain Ketterlin, Computer Networks, 66h, L3, Strasbourg University, France

Licence : Alain Ketterlin, Algorithms and Data Structures, 40h, L3, Strasbourg University, France

9.2.2. Supervision
PhD in progress : Aravind Sukumaran-Rajam, Enlarging the scope of polyhedral speculative paral-
lelization, November 2012, Philippe Clauss and Alain Ketterlin

PhD in progress : Juan Manuel Martinez Caamaño, Dynamic and flexible generation of parallel loops
using a dedicated intermediate representation, November 2013, Philippe Clauss and Philippe Helluy
(IRMA lab., University of Strasbourg)

PhD in progress : Jean-François Dollinger, Heterogeneous speculative parallelization, September
2010, Vincent Loechner and Philippe Clauss

PhD in progress : Imen Fassi, Multifor for Multicore, June 2013, Philippe Clauss and Yosr Slama
(University El Manar, Tunisia)

PhD in progress : Nabil Hallou, Dynamic binary optimizations, January 2013, Erven Rohou (ALF
team) and Philippe Clauss

PhD in progress : Lénaïc Bagnères, Automatic parallelization and optimization for manycore
architectures, November 2012, Christine Eisenbeis and Cédric Bastoul

PhD in progress : Alexander Zinenko, Interactive program manipulation, September 2013, Stéphane
Huot and Cédric Bastoul

PhD in progress : Yann Barsamian, A Parallel Programming Environment based on the Xfor Control
Structure, October 2014, Éric Violard

9.2.3. Juries
Philippe Clauss participated to the following PhD jurys in 2014:
Date Candidate Place Role

Sept. 22 Michael KRUSE Univ. Paris Sud Reviewer
June 20 Pierre ESTERIE Univ. Paris Sud Reviewer

Cédric Bastoul participated to the following PhD jurys in 2014:
Date Candidate Place Role

November 19 Rachid Habel École des Mines de Paris Reviewer

Team CAMUS 15

9.3. Popularization
Cédric Bastoul participated to the event Kids University at the University of Strasbourg in November
2014

Cédric Bastoul prepared activities for Fête de la Science at University of Paris-Sud in October 2014

10. Bibliography
Major publications by the team in recent years

[1] J. C. BEYLER, P. CLAUSS. Performance driven data cache prefetching in a dynamic software optimization
system, in "ICS ’07: Proceedings of the 21st annual international conference on Supercomputing", New York,
NY, USA, ACM, 2007, pp. 202–209, http://doi.acm.org/10.1145/1274971.1275000

[2] J. C. BEYLER, M. KLEMM, P. CLAUSS, M. PHILIPPSEN. A meta-predictor framework for prefetching in
object-based DSMs, in "Concurr. Comput. : Pract. Exper.", September 2009, vol. 21, pp. 1789–1803

[3] P. CLAUSS, F. J. FERNÁNDEZ, D. GARBERVETSKY, S. VERDOOLAEGE. Symbolic polynomial maximization
over convex sets and its application to memory requirement estimation, in "IEEE Transactions on Very Large
Scale Integration (VLSI) Systems", Aug 2009, vol. 17, no 8, pp. 983-996

[4] A. KETTERLIN, P. CLAUSS. Prediction and trace compression of data access addresses through nested
loop recognition, in "6th annual IEEE/ACM international symposium on Code generation and optimization",
Boston, USA, ACM, April 2008, pp. 94-103, http://dx.doi.org/10.1145/1356058.1356071

[5] A. KETTERLIN, P. CLAUSS. Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and
Optimization, in "MICRO-45 – Proceedings of the 2012 IEEE/ACM 45th International Symposium on
Microarchitecture", Vancouver, Canada, December 2012

[6] B. PRADELLE, A. KETTERLIN, P. CLAUSS. Polyhedral parallelization of binary code, in "ACM
Transactions on Architecture and Code Optimization", January 2012, vol. 8, no 4, pp. 39:1–39:21
[DOI : 10.1145/2086696.2086718], http://hal.inria.fr/hal-00664370

[7] R. SEGHIR, V. LOECHNER, B. MEISTER. Integer Affine Transformations of Parametric Z-polytopes and
Applications to Loop Nest Optimization, in "ACM Transactions on Architecture and Code Optimization",
June 2012, vol. 9, no 2, pp. 8.1-8.27 [DOI : 10.1145/2207222.2207224], http://hal.inria.fr/inria-00582388

[8] S. VERDOOLAEGE, R. SEGHIR, K. BEYLS, V. LOECHNER, M. BRUYNOOGHE. Counting Integer Points in
Parametric Polytopes Using Barvinok’s Rational Functions, in "Algorithmica", 2007, vol. 48, no 1, pp. 37–66,
http://dx.doi.org/10.1007/s00453-006-1231-0

Publications of the year
Articles in International Peer-Reviewed Journals

[9] A. JIMBOREAN, P. CLAUSS, J.-F. DOLLINGER, V. LOECHNER, M. JUAN MANUEL. Dynamic and Specu-
lative Polyhedral Parallelization Using Compiler-Generated Skeletons, in "International Journal of Parallel
Programming", August 2014, vol. 42, no 4, pp. 529-545, https://hal.inria.fr/hal-01003744

http://doi.acm.org/10.1145/1274971.1275000
http://dx.doi.org/10.1145/1356058.1356071
http://hal.inria.fr/hal-00664370
http://hal.inria.fr/inria-00582388
http://dx.doi.org/10.1007/s00453-006-1231-0
https://hal.inria.fr/hal-01003744

16 Activity Report INRIA 2014

[10] A. KETTERLIN, P. CLAUSS. Recovering memory access patterns of executable programs, in "Science of
Computer Programming", February 2014, vol. 80, pp. 440-456 [DOI : 10.1016/J.SCICO.2012.08.002],
https://hal.inria.fr/hal-00909961

International Conferences with Proceedings

[11] L. BAGNÈRES, C. BASTOUL. Switchable Scheduling for Runtime Adaptation of Optimization, in "Euro-
Par 2014 Parallel Processing", Porto, Portugal, Lecture Notes in Computer Science, Springer International
Publishing, August 2014, vol. 8632, pp. 222 - 233 [DOI : 10.1007/978-3-319-09873-9_19], https://hal.
inria.fr/hal-01097200

[12] P. CLAUSS. Author Retrospective for Counting Solutions to Linear and Nonlinear Constraints Through
Ehrhart Polynomials: Applications to Analyze and Transform Scientific Programs, in "ICS, International
Conference on Supercomputing", New York, United States, ACM ICS 25th Anniversary Volume, ACM, 2014
[DOI : 10.1145/2591635.2591654], https://hal.inria.fr/hal-01100296

[13] P. CLAUSS. Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applica-
tions to Analyze and Transform Scientific Programs, in "ICS, International Conference on Supercomputing",
Munich, Germany, ACM ICS 25th Anniversary Volume, 2014 [DOI : 10.1145/2591635.2667172], https://
hal.inria.fr/hal-01100306

[14] P. CLAUSS. Mind The Gap! A study of some pitfalls preventing peak performance in polyhedral compila-
tion using a polyhedral antidote, in "IMPACT - Fifth International Workshop on Polyhedral Compilation
Techniques, In conjunction with HiPEAC", Amsterdam, Netherlands, January 2015, https://hal.inria.fr/hal-
01099583

[15] P. CLAUSS, I. FASSI, A. JIMBOREAN. Software-controlled Processor Stalls for Time and Energy Efficient
Data Locality Optimization, in "International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation - SAMOS XIV", Agios Konstantinos, Greece, July 2014, https://hal.inria.fr/hal-
01003228

[16] P. FEAUTRIER, E. VIOLARD, A. KETTERLIN. Improving X10 Program Performances by Clock Removal,
in "CC’14 - 23rd International Conference on Compiler Construction, part of ETAPS’14", Grenoble, France,
April 2014, https://hal.inria.fr/hal-00924206

[17] B. NARASIMHA SWAMY, A. KETTERLIN, A. SEZNEC. Hardware/Software Helper Thread Prefetching
On Heterogeneous Many Cores, in "2014 IEEE 26th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD)", Paris, France, October 2014 [DOI : 10.1109/SBAC-
PAD.2014.39], https://hal.inria.fr/hal-01087752

[18] E. RIOU, E. ROHOU, P. CLAUSS, N. HALLOU, A. KETTERLIN. PADRONE: a Platform for Online Profiling,
Analysis, and Optimization, in "DCE 2014 - International workshop on Dynamic Compilation Everywhere",
Vienne, Austria, January 2014, https://hal.inria.fr/hal-00917950

[19] S. STOJANOVIC, J. NARBOUX, M. BEZEM, P. JANICIC. A Vernacular for Coherent Logic, in "CICM 2014 -
Conferences on Intelligent Computer Mathematics", Coimbra, Portugal, Lecture Notes in Computer Science,
Springer, July 2014, vol. 8543, https://hal.inria.fr/hal-00983975

https://hal.inria.fr/hal-00909961
https://hal.inria.fr/hal-01097200
https://hal.inria.fr/hal-01097200
https://hal.inria.fr/hal-01100296
https://hal.inria.fr/hal-01100306
https://hal.inria.fr/hal-01100306
https://hal.inria.fr/hal-01099583
https://hal.inria.fr/hal-01099583
https://hal.inria.fr/hal-01003228
https://hal.inria.fr/hal-01003228
https://hal.inria.fr/hal-00924206
https://hal.inria.fr/hal-01087752
https://hal.inria.fr/hal-00917950
https://hal.inria.fr/hal-00983975

Team CAMUS 17

[20] A. SUKUMARAN-RAJAM, J. M. MARTINEZ, W. WOLFF, A. JIMBOREAN, P. CLAUSS. Speculative Program
Parallelization with Scalable and Decentralized Runtime Verification, in "Runtime Verification", Toronto,
Canada, B. BONAKDARPOUR, S. A. SMOLKA (editors), Springer, September 2014, vol. 8734, pp. 124-139
[DOI : 10.1007/978-3-319-11164-3_11], https://hal.inria.fr/hal-01070610

[21] O. ZINENKO, C. BASTOUL, S. HUOT. Manipulating Visualization, Not Codes, in "International Workshop
on Polyhedral Compilation Techniques (IMPACT)", Amsterdam, Netherlands, January 2015, 8 p. , https://hal.
inria.fr/hal-01100974

[22] O. ZINENKO, S. HUOT, C. BASTOUL. Clint: A Direct Manipulation Tool for Parallelizing Compute-Intensive
Program Parts, in "IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)",
Melbourne, Australia, IEEE, July 2014, https://hal.inria.fr/hal-01055788

Conferences without Proceedings

[23] P. BOUTRY, J. NARBOUX, P. SCHRECK, G. BRAUN. A short note about case distinctions in Tarski’s geometry,
in "Automated Deduction in Geometry 2014", Coimbra, Portugal, F. BOTANA, P. QUARESMA (editors),
Proceedings of ADG 2014, July 2014, pp. 1-15, https://hal.inria.fr/hal-00989785

[24] P. BOUTRY, J. NARBOUX, P. SCHRECK, G. BRAUN. Using small scale automation to improve both
accessibility and readability of formal proofs in geometry, in "Automated Deduction in Geometry 2014",
Coimbra, Portugal, F. BOTANA, P. QUARESMA (editors), Proceedings of ADG 2014, July 2014, pp. 1-19,
https://hal.inria.fr/hal-00989781

[25] J.-F. DOLLINGER, V. LOECHNER. CPU+GPU Load Balance Guided by Execution Time Prediction, in "Fifth
International Workshop on Polyhedral Compilation Techniques (IMPACT 2015)", Amsterdam, Netherlands,
January 2015, https://hal.inria.fr/hal-01095890

Research Reports

[26] A. KETTERLIN, M. KUHN, S. GENAUD, P. CLAUSS. Loop-based Modeling of Parallel Communication
Traces, July 2014, no RR-8562, 10 p. , https://hal.inria.fr/hal-01044636

References in notes

[27] C. BASTOUL. Code Generation in the Polyhedral Model Is Easier Than You Think, in "PACT’13 IEEE
International Conference on Parallel Architecture and Compilation Techniques", Juan-les-Pins, France, 2004,
pp. 7–16, https://hal.archives-ouvertes.fr/ccsd-00017260

[28] M. HALL, D. PADUA, K. PINGALI. Compiler research: the next 50 years, in "Commun. ACM", 2009, vol.
52, no 2, pp. 60–67, http://doi.acm.org/10.1145/1461928.1461946

[29] A. HOBOR, A. W. APPEL, F. Z. NARDELLI. Oracle Semantics for Concurrent Separation Logic, in "ESOP",
2008, pp. 353-367

[30] A. JIMBOREAN. Adapting the polytope model for dynamic and speculative parallelization, Université de
Strasbourg, September 2012, http://tel.archives-ouvertes.fr/tel-00733850

https://hal.inria.fr/hal-01070610
https://hal.inria.fr/hal-01100974
https://hal.inria.fr/hal-01100974
https://hal.inria.fr/hal-01055788
https://hal.inria.fr/hal-00989785
https://hal.inria.fr/hal-00989781
https://hal.inria.fr/hal-01095890
https://hal.inria.fr/hal-01044636
https://hal.archives-ouvertes.fr/ccsd-00017260
http://doi.acm.org/10.1145/1461928.1461946
http://tel.archives-ouvertes.fr/tel-00733850

