

[image: cover]

 CELTIQUE

 Software certification with semantic analysis

 2014 Project-Team Activity Report
	

 Research centre:
 Rennes - Bretagne-Atlantique

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Keywords: Programming Languages, Static Analysis, Abstract Interpretation, Security, Interactive Theorem Proving, Formal Methods

 Project-Team Celtique

 Members

 Overall Objectives	Project overview

 Research Program	Static program analysis
	Software certification

 New Software and Platforms	
 Javalib

	
 SAWJA

	Jacal
	
 Timbuk

	
 JSCert

 New Results	Browser randomization against web
tracking
	Static analysis of functional programs
using tree automata and term rewriting
	Certified JavaScript
	SawjaCard: a static analysis tool for certifying Java Card applications
	Semantics for C programs
	Fast inference of polynomial invariants
	Quantitative analysis of security
	Formal Verification of an SSA-Based Middle-End for CompCert
	A verified information-flow architecture
	Formal Verification of Static Analysis

 Partnerships and Cooperations	National Initiatives
	International Initiatives
	International Research Visitors

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2009 July 01
Section: Members
Research Scientists
Thomas Jensen [Team leader, Inria, Senior Researcher, HdR]
Frédéric Besson [Inria, Researcher]
Alan Schmitt [Inria, Researcher, HdR]
Faculty Members
Sandrine Blazy [Univ. Rennes I, Professor, HdR]
David Cachera [Normale Sup Rennes, Associate Professor, HdR]
Delphine Demange [Univ. Rennes I, Associate Professor]
Thomas Genet [Univ. Rennes I, Associate Professor, HdR]
Barbara Kordy [INSA Rennes, Associate Professor, from Sep 2014]
David Pichardie [Normale Sup Rennes, Professor, HdR]
Engineer
Laurent Guillo [CNRS]
Post-Doctoral Fellows
Petar Maksimovic [Inria]
Daniela Petrisan [Inria, until Oct 2014, granted by ANR PiCoq project]
Administrative Assistant
Lydie Mabil [Inria]
Others
Oana Fabiana Andreescu [Prove&Run]
Martin Bodin [Univ. Rennes I]
Pauline Bolignano [Prove&Run]
David Buhler [CEA]
Vincent Laporte [Univ. Rennes I]
Colas Le Guernic [DGA]
André Oliveira Maroneze [Univ. Rennes I, until Aug 2014]
Stéphanie Riaud [DGA]
Yann Salmon [Univ. Rennes I]
Pierre Wilke [Univ. Rennes I]
Yannick Zakowski [Normale Sup Rennes]
Jean-Christophe Zapalowicz [Inria, until Nov 2014]

 Overall Objectives

 	Overall Objectives	Project overview

 Section:
 Overall Objectives

 Project overview

 The overall goal of the Celtique project is to improve the security and
reliability of software with semantic certification that attests to
its well-behavedness. The
semantic analyses extract approximate but sound descriptions of
software behaviour from which a proof of security can be constructed.
The analyses of relevance include numerical data flow
analysis, control flow analysis for higher-order languages, alias and
points-to analysis for heap structure manipulation, and various kinds
of information flow analysis.

 To achieve this goal, the project conducts work on improving semantic
analysis techniques, as well as work on using proof assistants such as
Coq to develop and prove properties of these analyses. We are
applying such techniques to a variety of source languages, including Java, C,
and JavaScript. We also study how these techniques apply to
low-level languages, and how they can be combined with certified
compilation.

 We target three application domains: Java software for small devices
(in particular smart cards and mobile telephones), embedded C programs, and web applications.

 Celtique is a joint project with the CNRS, the University of
Rennes 1 and ENS Rennes.

 Research Program

 	Research Program	Static program analysis
	Software certification

 Section:
 Research Program

 Static program analysis

 Static program analysis is concerned with obtaining information about
the run-time behaviour of a program without actually running it. This
information may concern the values of variables, the relations among
them, dependencies between program values, the memory structure being
built and manipulated, the flow of control, and, for concurrent
programs, synchronisation among processes executing in parallel.
Fully automated analyses usually render approximate information about
the actual program behaviour. The analysis is correct if the
information includes all possible behaviour of a
program. Precision of an analysis is improved by reducing the amount
of information describing spurious behaviour that will never occur.

 Static analysis has traditionally found most of its applications in the area of
program optimisation where information about the
run-time behaviour can be used to transform a program so that it
performs a calculation faster and/or makes
better use of the available memory resources.
The last decade has witnessed an increasing use of static analysis in
software verification for proving invariants about programs. The
Celtique
project is mainly concerned with this
latter use. Examples of static
analysis include:

 	
 Data-flow analysis as it is used in optimising compilers for
imperative languages. The properties can either be approximations of
the values of an expression (“the value of variable 𝗑 is
greater than 0” or 𝗑 is equal to 𝗒 at this
point in the program”) or more intensional information about program
behaviour such as “this variable is not used before being re-defined”
in the classical “dead-variable” analysis [72] .

 	
 Analyses of the memory structure includes shape analysis that
aims at approximating the data structures created by a program.
Alias analysis is another data flow analysis that finds out
which variables in a program addresses the same memory location. Alias
analysis is a fundamental analysis for all kinds of programs
(imperative, object-oriented) that manipulate state, because alias
information is necessary for the precise modelling of assignments.

 	
 Control flow analysis will find a safe approximation to the
order in which the instructions of a program are executed. This is
particularly relevant in languages where parameters or functions can be
passed as arguments to other functions, making it impossible to
determine the flow of control from the program syntax alone. The same
phenomenon occurs in object-oriented languages where it is the class
of an object (rather than the static type of the variable containing
the object) that determines which method a given method invocation
will call. Control flow analysis is an example of an analysis
whose information in itself does not lead to dramatic optimisations
(although it might enable in-lining of code) but is necessary for
subsequent analyses to give precise results.

 Static analysis possesses strong semantic foundations, notably abstract
interpretation [54] , that allow to prove its correctness. The
implementation of static analyses is usually based on well-understood
constraint-solving techniques and iterative fixpoint algorithms. In
spite of the nice mathematical theory of program analysis and the
solid algorithmic techniques available one problematic issue persists,
viz., the gap between the analysis that is proved
correct on paper and the analyser that actually runs on the
machine. While this gap might be small for toy languages, it becomes
important when it comes to real-life languages for which the
implementation and maintenance of program analysis tools become a
software engineering task. A certified static analysis is an
analysis that has been formally proved correct using a
proof assistant.

 In previous work we studied the benefit of using abstract
interpretation for developing certified static analyses
[52] , [75] . The development of
certified static analysers is an ongoing activity that will be part of
the Celtique project. We use the Coq proof assistant which allows for
extracting the computational content of a constructive proof. A Caml
implementation can hence be extracted from a proof of existence, for
any program, of a correct approximation of the concrete program
semantics. We have isolated a theoretical framework based on abstract
interpretation allowing for the formal development of a broad range of
static analyses. Several case studies for the analysis of Java byte
code have been presented, notably a memory usage analysis
[53] . This work has recently found
application in the context of Proof Carrying Code
and have also been successfully applied to
particular form of static analysis based on term rewriting and tree
automata [5] .

 Static analysis of Java

 Precise context-sensitive control-flow analysis is a fundamental
prerequisite for precisely analysing Java programs.
Bacon and Sweeney's Rapid Type Analysis (RTA) [45] is a
scalable algorithm for constructing an initial call-graph of the
program. Tip and Palsberg [80] have proposed a variety of
more precise but scalable call graph construction algorithms
e.g., MTA, FTA, XTA which accuracy is between RTA and 0'CFA.
All those analyses are not context-sensitive. As early as 1991,
Palsberg and Schwartzbach [73] , [74] proposed a theoretical
parametric framework for typing object-oriented programs in a
context-sensitive way. In their setting, context-sensitivity is
obtained by explicit code duplication and typing amounts to analysing
the expanded code in a context-insensitive manner. The framework
accommodates for both call-contexts and allocation-contexts.

 To assess the respective merits of different instantiations, scalable
implementations are needed. For Cecil and Java programs, Grove
et al., [61] , [60] have explored the algorithmic design
space of contexts for benchmarks of significant size.
Latter on, Milanova et. al., [67] have
evaluated, for Java programs, a notion of context called
object-sensitivity which abstracts the call-context by the
abstraction of the this pointer. More recently, Lhotak and
Hendren [65] have extended the empiric
evaluation of object-sensitivity using a BDD implementation allowing
to cope with benchmarks otherwise out-of-scope.
Besson and Jensen [49] proposed to use datalog
in order to specify context-sensitive analyses. Whaley and
Lam [81] have implemented a context-sensitive
analysis using a BDD-based datalog implementation.

 Control-flow analyses are a prerequisite for other analyses. For instance, the
security analyses of Livshits and Lam [66] and
the race analysis of Naik, Aiken [68] and
Whaley [69] both heavily rely on the precision of a
control-flow analysis.

 Control-flow analysis allows to statically prove the absence of
certain run-time errors such as "message not understood" or cast
exceptions. Yet it does not tackle the problem of "null pointers".
Fahnrich and Leino [57] propose a type-system for
checking that after object creation fields are non-null. Hubert,
Jensen and Pichardie have formalised the type-system and derived a
type-inference algorithm computing the most precise
typing [64] . The
proposed technique has been implemented in a tool called
NIT [63] . Null pointer
detection is also done by bug-detection tools such as
FindBugs [63] . The main difference is that the
approach of findbugs is neither sound nor complete but effective in
practice.

 Quantitative aspects of static analysis

 Static analyses yield qualitative results, in the sense that they
compute a safe over-approximation of the concrete semantics of a
program, w.r.t. an order provided by the abstract domain structure.
Quantitative aspects of static analysis are two-sided: on one hand,
one may want to express and verify (compute) quantitative
properties of programs that are not captured by usual semantics, such
as time, memory, or energy consumption; on the other hand, there is a
deep interest in quantifying the precision of an analysis, in order to
tune the balance between complexity of the analysis and accuracy of
its result.

 The term of quantitative analysis is often related to probabilistic
models for abstract computation devices such as timed automata or
process algebras. In the field of programming languages which is more
specifically addressed by the Celtique project, several approaches have
been proposed for quantifying resource usage: a non-exhaustive list
includes memory usage analysis based on specific type
systems [62] , [44] , linear logic approaches to
implicit computational complexity [46] , cost
model for Java byte code [40] based on size relation inference,
and WCET computation by abstract interpretation based loop bound
interval analysis techniques [55] .

 We have proposed an original approach for designing
static analyses computing program costs: inspired from a probabilistic
approach [76] , a quantitative operational semantics
for expressing the cost of execution of a program has been
defined. Semantics is seen as a linear operator over a dioid structure
similar to a vector space. The notion of long-run cost is particularly
interesting in the context of embedded software, since it provides an
approximation of the asymptotic behaviour of a program in terms of
computation cost. As for classical static analysis, an abstraction
mechanism allows to effectively compute an over-approximation of the
semntics, both in terms of costs and of accessible
states [51] . An example of cache miss analysis has
been developed within this framework [79] .

 Section:
 Research Program

 Software certification

 The term "software certification" has a number of meanings ranging from
the formal proof of program correctness via industrial certification
criteria to the certification of software developers themselves! We
are interested in two aspects of software certification:

 	
 industrial, mainly process-oriented certification procedures

 	
 software certificates that convey semantic information about a
program

 Semantic analysis plays a role in both varieties.

 Criteria for software certification such as the Common criteria or the
DOA aviation industry norms describe procedures to be followed
when developing and validating a piece of software. The higher levels
of the Common Criteria require a semi-formal model of the software
that can be refined into executable code by traceable refinement
steps. The validation of the final product is done through testing,
respecting criteria of coverage that must be justified with respect to
the model. The use of static analysis and proofs has so far been
restricted to the top level 7 of the CC and has not been integrated
into the aviation norms.

 Process-oriented software certification

 The testing requirements present in existing certification procedures
pose a challenge in terms of the automation of the test data
generation process for satisfying functional and structural testing
requirements. For example, the standard document which currently
governs the development and verification process of software in
airborne system (DO-178B) requires the coverage of all the statements,
all the decisions of the program at its higher levels of criticality
and it is well-known that DO-178B structural coverage is a primary
cost driver on avionics project. Although they are widely used,
existing marketed testing tools are currently restricted to test
coverage monitoring and measurements (Coverage monitoring
answers to the question: what are the statements or branches covered
by the test suite ? While coverage measurements answers to: how many
statements or branches have been covered ?) but none of these tools
tries to find the test data that can execute a given statement, branch
or path in the source code. In most industrial projects, the
generation of structural test data is still performed manually and
finding automatic methods for this problem remains a challenge for the
test community. Building automatic test case generation methods
requires the development of precise semantic analysis which have to
scale up to software that contains thousands of lines of code.

 Static analysis tools are so far not a part of the approved
certification procedures. For this to change, the analysers themselves must be accepted by the certification
bodies in a process called “Qualification of the tools” in which the
tools are shown to be as robust as the software it will
certify. We believe that proof assistants have a role to
play in building such certified static analysis as we have already
shown by extracting provably correct analysers for Java byte code.

 Semantic software certificates

 The particular branch of information security called "language-based
security" is concerned with the study of programming language features
for ensuring the security of software.
Programming languages such as
Java offer a variety of language constructs for securing an
application. Verifying that these constructs have been used properly
to ensure a given security property is a challenge for program
analysis.
One such problem is confidentiality of the private data manipulated by
a program and a large group of researchers have addressed the
problem of tracking information flow in a program in order to ensure
that e.g., a credit card number does not end up being accessible to all
applications running on a computer
[78] , [48] .
Another kind of problems concern the way that computational
resources are being accessed and used, in order to ensure that a given
access policy is being implemented correctly and that a given
application does not consume more resources that it has been
allocated. Members of the Celtique team have proposed a verification
technique that can check the proper use of resources of Java
applications running on mobile telephones [50] .
Semantic software certificates
have been proposed as a means of dealing with the security problems caused
by mobile code that is downloaded from foreign sites of varying
trustworthiness and which can cause damage to the receiving host,
either deliberately or inadvertently. These certificates should contain
enough information about the behaviour of the downloaded code to allow
the code consumer to decide whether it
adheres to a given security policy.

 Proof-Carrying Code (PCC) [70] is a
technique to download mobile code on a host machine while ensuring
that the code adheres to a specified security policy. The key idea is
that the code producer sends the code along with a proof (in a
suitably chosen logic) that the code is secure. Upon reception of the
code and before executing it, the consumer submits the proof to a
proof checker for the logic. Our project focus on two components of
the PCC architecture: the proof checker and the proof generator.

 In the basic PCC architecture, the only components that have to be
trusted are the program logic, the proof checker of the logic, and the
formalization of the security property in this logic. Neither the mobile
code nor the proposed proof—and even less the tool that generated
the proof—need be trusted.

 In practice, the proof checker is a complex tool which relies
on a complex Verification Condition Generator (VCG). VCGs for real
programming languages and security policies are large and non-trivial
programs. For example, the VCG of the Touchstone verifier represents
several thousand lines of C code, and the authors observed that
"there were errors in that code that escaped the thorough testing of
the infrastructure" [71] . Many solutions have been
proposed to reduce the size of the trusted computing base. In the
foundational proof carrying code of Appel and
Felty [43] , [42] , the code producer gives a direct proof
that, in some "foundational" higher-order logic, the code respects a
given security policy. Wildmoser and
Nipkow [83] , [82] .
prove the soundness of a
weakest precondition calculus for a reasonable subset of the
Java bytecode.
Necula and Schneck [71] extend a small
trusted core VCG and describe the protocol that the untrusted verifier
must follow in interactions with the trusted infrastructure.

 One of the most prominent examples of software certificates and
proof-carrying code is given by the Java byte code verifier based on
stack maps. Originally proposed under the term “lightweight
Byte Code Verification” by Rose [77] , the
techniques consists in providing enough typing information (the stack
maps) to enable the byte code verifier to check a byte code in one
linear scan, as opposed to inferring the type information by an
iterative data flow analysis. The Java Specification Request 202
provides a formalization of how such a verification can be carried
out.

 Inspired by this, Albert et al.
[41] have proposed to use static
analysis (in the form of abstract interpretation) as a general tool in
the setting of mobile code security for building a
proof-carrying code architecture.
In their abstraction-carrying code framework, a program comes equipped
with a machine-verifiable certificate that proves to the code consumer
that the downloaded code is well-behaved.

 Certified static analysis

 In spite of the nice mathematical theory of program analysis (notably
abstract interpretation) and the solid algorithmic
techniques available one problematic issue persists, viz., the
gap between the analysis that is proved correct on paper and
the analyser that actually runs on the machine. While this gap might
be small for toy languages, it becomes important when it comes to
real-life languages for which the implementation and maintenance of
program analysis tools become a software engineering task.

 A certified static analysis is an analysis whose implementation
has been formally proved correct using a proof assistant. Such
analysis can be developed in a proof assistant like Coq [39]
by programming the analyser inside the assistant and formally proving
its correctness. The Coq extraction mechanism then allows for
extracting a Caml implementation of the analyser. The feasibility of
this approach has been demonstrated
in [7] .

 We also develop this technique through certified reachability analysis over term
rewriting systems.
Term rewriting systems are a very general, simple and convenient
formal model for a large variety of computing systems. For
instance, it is a very simple way to describe deduction systems, functions,
parallel processes or state transition systems where rewriting models
respectively deduction, evaluation, progression or transitions. Furthermore
rewriting can model every combination of them (for instance two
parallel processes running functional programs).

 Depending on the computing system modelled using rewriting,
reachability (and unreachability) permits to achieve some verifications on
the system: respectively prove that a deduction is feasible, prove
that a function call evaluates to a particular value, show that a
process configuration may occur, or that a state is reachable from
the initial state. As a consequence, reachability analysis has several applications in
equational proofs used in the theorem provers or in the proof
assistants as well as in verification where term rewriting systems can
be used to model programs.

 For proving unreachability, i.e. safety properties, we already have some
results based on the over-approximation of the set of reachable
terms [58] , [59] . We defined a simple and efficient
algorithm [56]
for computing exactly the set of reachable terms, when it is regular,
and construct an over-approximation otherwise. This algorithm consists of
a completion of a tree automaton, taking advantage
of the ability of tree automata to finitely represent infinite sets of
reachable terms.

 To certify the corresponding analysis, we have defined a checker
guaranteeing that a tree automaton is a valid fixpoint of the completion
algorithm. This consists in showing that for all term recognised by a tree
automaton all his rewrites are also recognised by the same tree automaton. This
checker has been formally defined in Coq and an efficient Ocaml implementation
has been automatically extracted [5] . This checker is now
used to certify all analysis results produced by the regular completion tool as
well as the optimised version of [47] .

 New Software and Platforms

 	New Software and Platforms	
 Javalib

	
 SAWJA

	Jacal
	
 Timbuk

	
 JSCert

 Section:
 New Software and Platforms

 Javalib

 Participants :
	Frédéric Besson [correspondant] , David Pichardie, Pierre Vittet, Laurent Guillo.

 Javalib is an efficient library to parse Java .class files into OCaml data structures, thus enabling the OCaml programmer to extract information from class files, to manipulate and to generate valid .class files.

 See also the web page http://sawja.inria.fr/ .

 	
 Version: 2.3

 	
 Programming language: Ocaml

 Section:
 New Software and Platforms

 SAWJA

 Participants :
	Frédéric Besson [correspondant] , David Pichardie, Pierre Vittet, Laurent Guillo.

 Sawja is a library written in OCaml, relying on Javalib to provide a high level representation of Java bytecode programs. It name comes from Static Analysis Workshop for JAva. Whereas Javalib is dedicated to isolated classes, Sawja handles bytecode programs with their class hierarchy and with control flow algorithms.

 Moreover, Sawja provides some stackless intermediate representations of code, called JBir and A3Bir. The transformation algorithm, common to these representations, has been formalized and proved to be semantics-preserving.

 See also the web page http://sawja.inria.fr/ .

 	
 Version: 1.5

 	
 Programming language: Ocaml

 Section:
 New Software and Platforms

 Jacal

 Participants :
	Frédéric Besson [correspondant] , Thomas Jensen, David Pichardie, Delphine Demange.

 Static program analysis, Javacard, Certification, AFSCM

 Jacal is a JAvaCard AnaLyseur developed on top of the SAWJA
(see Section
	5.2) platform.
This proprietary software verifies automatically that Javacard programs conform with the security
guidelines issued by the AFSCM (Association Française du Sans Contact
Mobile).
Jacal is based on the theory of abstract interpretation and combines several object-oriented and
numeric analyses to automatically infer sophisticated invariants about the program behaviour.
The result of the analysis is thereafter harvest to check that it is sufficient to ensure the desired security properties.

 Section:
 New Software and Platforms

 Timbuk

 Participant :
	Thomas Genet [correspondant] .

 Timbuk is a library of Ocaml functions for manipulating tree
automata. More precisely, Timbuk deals
with finite bottom-up tree automata (deterministic or not). This
library provides the classical operations over tree automata (intersection,
union, complement, emptiness decision) as well as exact or approximated sets of
terms reachable by a given term rewriting system. This last operation can be
certified using a checker extracted from a Coq specification. The checker is
now part of the Timbuk distribution. Timbuk distribution now also provides a
CounterExample Guided Abstraction Refinement (CEGAR) tool for tree
automata completion. The CEGAR part is based on the Buddy BDD library.
Timbuk also provides an implementation of Lattice Tree Automata to
(efficiently) represent built-in values such as integers, strings, etc. in
recognized tree languages. See also the web page http://www.irisa.fr/celtique/genet/timbuk/ .

 	
 Version: 3.1

 	
 Programming language: Ocaml

 Section:
 New Software and Platforms

 JSCert

 Participants :
	Alan Schmitt [correspondant] , Martin Bodin.

 The JSCert project aims to really understand JavaScript. JSCert itself
is a mechanised specification of JavaScript, written in the Coq proof
assistant, which closely follows the ECMAScript 5 English standard.
JSRef is a reference interpreter for JavaScript in OCaml , which
has been proved correct with respect to JSCert and tested with the
Test 262 test suite.

 We plan to build other verification and analysis projects on top of
JSCert and JSRef, in particular the certification of derivations in
program logics or static analyses.

 This project is an ongoing collaboration between Inria and Imperial
College. More information, including the source code, is available
at http://jscert.org/ .

 New Results

 	New Results	Browser randomization against web
tracking
	Static analysis of functional programs
using tree automata and term rewriting
	Certified JavaScript
	SawjaCard: a static analysis tool for certifying Java Card applications
	Semantics for C programs
	Fast inference of polynomial invariants
	Quantitative analysis of security
	Formal Verification of an SSA-Based Middle-End for CompCert
	A verified information-flow architecture
	Formal Verification of Static Analysis

 Section:
 New Results

 Browser randomization against web
tracking

 Participants :
	Frédéric Besson, Thomas Jensen.

 We have investigated different approaches for dynamically tracking
information flows in order to improve web browser security. We have
identified the problem of stateless web tracking (fingerprinting) and
have proposed a novel approach to hybrid information flow monitoring
by tracking the knowledge about secret variables using logical
formulae. In a follow-up work we investigated how to enforce browser
anonymity in the presence of finger-printing web trackers. One way to
protect the users' privacy is to make them switch between different
machine and browser configurations. We propose a formalisation of
this privacy enforcement mechanism. We use information-theoretic
channels to model the knowledge of the tracker and the fingerprinting
program, and show how to synthesise a randomisation mechanism that
defines the distribution of configurations for each user. This
mechanism provides a strong guarantee of privacy (the
probability of identifying the user is bounded by a given threshold)
while maximising usability (the user switches to other
configurations rarely). To find an optimal solution, we express the
enforcement problem of randomisation by a linear program. We
investigate and compare several approaches to randomisation and find
that more efficient privacy enforcement would often provide lower
usability. Finally, we relax the requirement of knowing the
fingerprinting program in advance, by proposing a randomisation
mechanism that guarantees privacy for an arbitrary program.

 Section:
 New Results

 Static analysis of functional programs
using tree automata and term rewriting

 Participants :
	Thomas Genet, Barbara Kordy, Yann Salmon.

 We develop a specific theory and the related tools for analyzing programs whose
semantics is defined using term rewriting systems. The analysis principle is
based on regular approximations of infinite sets of terms reachable by
rewriting. The tools we develop use, so-called, Tree Automata Completion to
compute a tree automaton recognizing a superset of all reachable terms. This
over-approximation is then used to prove properties on the program by showing
that some “bad” terms, encoding dangerous or problematic configurations, are
not in the superset and thus not reachable. This is a specific form of,
so-called, Regular Tree Model Checking. However, when dealing with
infinite-state systems, Regular Tree Model Checking approaches may have some
difficulties to represent infinite sets of data. We proposed Lattice Tree
Automata, an extended version of tree automata to represent complex data
domains and their related operations in an efficient manner. Moreover, we
introduce a new completion-based algorithm for computing the possibly infinite
set of reachable states in a finite amount of time. This algorithm is
independent of the lattice making it possible to seamlessly plug abstract
domains into a Regular Tree Model Checking
algorithm. These results are part of Valérie Murat's
PhD thesis [13] . Now, we aim at applying this technique to the
static analysis of programming languages whose semantics is based on terms,
like functional programming languages. We already shown that static analysis of
first order functional programs can be automated using tree automata
completion [28] . Now, one of the objective is to lift
those results to the static analysis of higher-order functions. This was
precisely the purpose of Yann Salmon's visit to Pr. Luke Ong. Barbara Kordy who
joined Celtique in September 2014 is also going to work on this subject.

 Section:
 New Results

 Certified JavaScript

 Participants :
	Martin Bodin, Alan Schmitt.

 We have completed our first milestone in the development of a
certified JavaScript semantics. We have finished a first version of
JSCert, a formalization of the current ECMA standard in the Coq
proof assistant, and JSRef, a reference interpreter for JavaScript
extracted from Coq to OCaml. We have also given a Coq proof that
JSRef is correct with respect to JSCert and assessed JSRef using
test262, the ECMA conformance test suite. Our methodology ensures
that JSCert is a comparatively accurate formulation of the English
standard. We have demonstrated that modern techniques of mechanized
specification can handle the complexity of JavaScript. This result,
obtained in the setting of a collaboration with Philippa Gardner
and Sergio Maffeis of Imperial College, and Arthur Charguéraud of
Inria Saclay, have been published in the conference Principles of
Programming Languages [25] .

 Section:
 New Results

 SawjaCard: a static analysis tool for certifying Java Card applications

 Participants :
	Frédéric Besson, Thomas Jensen, David Pichardie, Delphine Demange.

 We have transfered to the FIME company a static
analysis tool for certifying Java Card applications, according to security rules defined by the
smart card industry. Java Card is a dialect of Java designed for programming multi-application
smart cards and the tool, called SawjaCard, has been specialised for the particular
Java Card programming patterns. The tool is built around a static analysis engine which uses a
combination of numeric and heap analysis. It includes a model of the Java Card libraries and the
Java Card firewall. The tool has been evaluated on a series of industrial applets and is shown to
automate a substantial part of the validation process [21] .

 Section:
 New Results

 Semantics for C programs

 Participants :
	Frédéric Besson, Sandrine Blazy, Pierre Wilke.

 Real life C programs are often written using C dialects which, for the ISO C standard,
have undefined behaviours.
In particular,
according to the ISO C standard, reading an uninitialised variable has an
undefined behaviour and low-level pointer operations are implementation defined.
We propose a formal semantics which gives a well-defined meaning to those behaviours for the C dialect of the
CompCert compiler.
Our semantics builds upon a novel memory model leveraging a notion of symbolic
values. Symbolic values are used by the semantics to delay the evaluation of operations and
are normalised lazily to genuine values when needed.
We show that the most precise normalisation is computable and that a slightly relaxed normalisation
can be efficiently implemented using an SMT solver.
The semantics is executable and our experiments show that the enhancements of our semantics are
mandatory to give a meaning to low-levels idioms such as those found in the allocation functions
of a C standard library [21] .

 Section:
 New Results

 Fast inference of polynomial invariants

 Participants :
	David Cachera, Thomas Jensen.

 We have developed our static analysis techniques for computing polynomial
invariants for imperative programs. The analysis is derived from an
abstract interpretation of a backwards semantics, and computes
preconditions for equalities of the form g = 0 to hold at the end of
execution. A distinguishing feature of the technique is that it
computes polynomial loop invariants without resorting to Gröbner base
computations. The analysis uses remainder computations over
parameterized polynomials in order to handle conditionals and loops
efficiently. The algorithm can analyze and find a large majority of
loop invariants reported previously in the literature, and executes
significantly faster than implementations using Gröbner bases [15] .

 Section:
 New Results

 Quantitative analysis of security

 Participant :
	Barbara Kordy.

 Graphical models for security is a young but rapidly growing research field.
Security models based on graphs combine intuitive, visual representation with
rigorous, mathematical foundations.
In [30] we address the growing need of performing meaningful probabilistic
analysis of security using graphical models. We propose a framework that
integrates the modeling technique of attack–defense
trees with probabilistic information expressed in terms of Bayesian
networks. This allows us to perform probabilistic evaluation of
attack–defense scenarios involving dependent actions.
To improve the efficiency of our computations, we make use of
inference algorithms from Bayesian networks and encoding techniques from
constraint reasoning. We discuss
the algebraic theory underlying our framework and point out several
generalizations which are possible thanks to the use of semiring theory

 Section:
 New Results

 Formal Verification of an SSA-Based Middle-End for CompCert

 Participants :
	Delphine Demange, David Pichardie.

 CompCert is a formally verified compiler that generates compact and
efficient code for a large subset of the C language. However, CompCert
foregoes using SSA, an intermediate representation employed by many
compilers that enables writing simpler, faster optimizers. In fact, it
has remained an open problem to verify formally an SSA-based
compiler. We report in [14] on a formally
verified, SSA-based middle-end for CompCert. In addition to providing
a formally verified SSA-based middle-end, we address two problems
raised by Leroy in 2009: giving an intuitive formal semantics to SSA,
and leveraging its global properties to reason locally about program
optimizations. Joint work with Gilles Barthe.

 Section:
 New Results

 A verified information-flow architecture

 Participants :
	Delphine Demange, David Pichardie.

 SAFE is a clean-slate design for a highly secure computer system, with
pervasive mechanisms for tracking and limiting information flows. At
the lowest level, the SAFE hardware supports fine-grained programmable
tags, with efficient and flexible propagation and combination of tags
as instructions are executed. The operating system virtualizes these
generic facilities to present an information-flow abstract machine
that allows user programs to label sensitive data with rich
confidentiality policies. We present a formal, machine-checked model
of the key hardware and software mechanisms used to control
information flow in SAFE and an end-to-end proof of noninterference
for this model in the Coq proof assistant [17] .
This work has been obtained in collaboration with colleagues from
University of Pennsylvania, Portland State University, and Harvard
University, as part of the CRASH-SAFE project, funded by DARPA.

 Section:
 New Results

 Formal Verification of Static Analysis

 Participants :
	Sandrine Blazy, Vincent Laporte, David Pichardie.

 Static analysis of binary code is challenging for several
reasons. In particular, standard static analysis
techniques operate over control flow graphs, which are not available
when dealing with self-modifying programs which can modify
their own code at runtime.
We formalized in the Coq proof assistant some key abstract
interpretation techniques that automatically extract memory safety
properties and control flow graphs from binary
code [22] , and operate over a small subset of
the x86 assembly. Our analyzer is formally proved
correct and has been run on several self-modifying challenges,
provided by Cai et al. in their PLDI 2007 paper.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific events organisation

 general chair, scientific chair

 	
 EJCP 2014 (École jeunes chercheurs en programmation): Thomas Jensen, Alan Schmitt.

 member of the organizing committee

 	
 PLMW 2014 (Programming Languages Mentoring Workshop): Alan Schmitt.

 Scientific events selection

 responsible of the conference program committee

 	
 GraMSec 2014 (International Workshop on Graphical Models for Security): Barbara Kordy.

 member of the conference program committee

 	
 ESOP 2014 (European Symposium on Programming): David Pichardie.

 	
 ITP 2014 (Interactive Theorem Proving): David Pichardie.

 	
 CC 2014 (Compiler Construction): Sandrine Blazy

 	
 VSTTE 2014 (Verified Software: Theories, Tools and Experiments):
Sandrine Blazy

 	
 AFADL 2014 (Approches Formelles dans l'Assistance au
Développement de Logiciels) : Sandrine Blazy

 	
 WASMAS (Active Security Through Multi-Agent Systems): Barbara Kordy.

 reviewer

 	
 ESOP 2014 (European Symposium on Programming): Delphine
Demange, Alan Schmitt, Thomas Jensen.

 	
 FLOPS 2014 (Symposium on Functional and Logic Programming): Alan Schmitt.

 	
 ICFP 2014 (International Conference on Functional Programming): Alan Schmitt.

 	
 IFIP SEC 2014 (International Information Security and
Privacy Conference): Frédéric Besson, Thomas Jensen.

 	
 ITP 2014 (Interactive Theorem Proving): Delphine Demange.

 	
 LICS 2014 (Logic In Computer Science): Delphine Demange.

 	
 POPL 2014 (Symposium on Principles of Programming Languages): David Pichardie

 	
 PPDP 2014 (Principles and Practice of Declarative
Programming): Alan Schmitt.

 	
 PEPM 2015 (Partial Evaluation and Program Manipulation):
Thomas Jensen.

 	
 CC 2014 (Compiler Construction): Sandrine Blazy

 	
 VSTTE 2014 (Verified Software: Theories, Tools and Experiments):
Sandrine Blazy

 	
 AFADL 2014 (Approches Formelles dans l'Assistance au
Développement de Logiciels) : Sandrine Blazy

 	
 POST 2014 (Conference on Principles of Security and Trust): Barbara Kordy.

 	
 TACAS 2014 (International Conference on Tools and Algorithms for the Construction and Analysis of Systems): Barbara Kordy.

 	
 GraMSec 2014 (International Workshop on Graphical Models for Security): Barbara Kordy.

 	
 WASMAS 2014 (Active Security Through Multi-Agent Systems): Barbara Kordy.

 	
 FORTE 2014 (International Conference on Formal Techniques for Distributed Objects, Components and Systems): Barbara Kordy.

 	
 PRDC 2014 (IEEE Pacific Rim International Symposium on Dependable Computing): Barbara Kordy.

 	
 STM 2014 (International Workshop on Security and Trust Management): Barbara Kordy

 Journal

 reviewer

 	
 Logical Methods in Computer Science: Alan Schmitt.

 	
 Science of Computer Programming: Alan Schmitt.

 	
 Journal of Computer Security: Sandrine Blazy

 	
 Journal of Formalized Reasoning: Frédéric Besson, Sandrine Blazy.

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Licence: Delphine Demange, Functional Programming, 70h, L1,
Université de Rennes 1 / Istic, France

 	
 Licence: Thomas Genet, Software Engineering, 58h, L2,
Université de Rennes 1 / Istic, France

 	
 Licence: Delphine Demange, Software Engineering, 40h, L2,
Université de Rennes 1 / Istic, France

 	
 Licence : Sandrine Blazy, Functional programming in OCaml, 30h, L3, Rennes 1, France

 	
 Master : Sandrine Blazy, Méthodes Formelles pour le
développement de logiciels sûrs, 53h, M1, Rennes 1, France

 	
 Master : Sandrine Blazy, Software vulnerabilities, 26h, M2, Rennes 1

 	
 Master : Sandrine Blazy, Mechanised semantics, 15h, M2, Rennes 1, France

 	
 Licence : David Cachera, Formal Languages, 36h, L3, ENS Rennes,
France

 	
 Licence : David Cachera, Logic, 36h, L3, ENS Rennes,
France

 	
 Licence : David Pichardie, Algorithms, 36h, L3, ENS Rennes, France

 	
 Licence : Alan Schmitt, Programmation Fonctionnelle, 37h,
L3, Insa Rennes, France

 	
 Licence : Barbara Kordy, Formal Languages and Grammars, 36h , L3, INSA Rennes, France

 	
 Master : Thomas Genet, Formal Design and Verification, 108h, M1, Université de Rennes 1 / Istic, France

 	
 Master : Thomas Genet, Cryptographic Protocols, 24h, M2, Université de Rennes 1 / Istic, France

 	
 Master : Frédéric Besson, Compilation, 68h, M1, Insa Rennes, France

 	
 Master : Alan Schmitt, Méthodes Formelles pour le
développement de logiciels sûrs, 22h, M1, Rennes 1, France

 	
 Master : David Cachera, Semantics of Programming Languages, 36h, M1, Université Rennes 1, France

 	
 Master : Delphine Demange, Software Security, 9h, M2, Université Rennes 1, France

 	
 Master : David Pichardie, Software Security, 21h, M2, Université Rennes 1, France

 	
 Master : David Pichardie, Mechanized Semantics, 15h, M2, Université Rennes 1, France

 	
 Master : Thomas Jensen, Static Analysis and Software Security,
20h, University of Copenhagen, Denmark.

 	
 Master : Barbara Kordy, Security, 17h, M2, INSA Rennes, France

 	
 Master : Barbara Kordy, 4th year Project, 55h, M1, INSA Rennes, France

 Supervision

 	
 PhD in progress : Martin Bodin, Certified Analyses of JavaScript, 1st september 2012, Thomas Jensen and Alan Schmitt

 	
 PhD in progress : Vincent Laporte, Formal verification of static analyses for low level langages, 1st septembre 2012, Sandrine Blazy and David Pichardie

 	
 PhD in progress : Yannick Zakowski, Programs Logics for Concurrency, 1st september 2014, David Pichardie and David Cachera

 	
 PhD in progress: Pierre Wilke, Low-level memory models for compilers and static analysers, 1st august 1013, Sandrine Blazy and Frédéric Besson

 	
 PhD in progress: Yann Salmon, Reachability for Term Rewriting
Systems under Strategies, from Sept 2012, Thomas Genet

 	
 PhD in progress: David Bühler, Communication between
analyses by deductive verification and abstract
interpretation, November 2013, Sandrine Blazy and Boris
Yakobowski (CEA)

 	
 PhD in progress: Stéphanie Riaud, Transformations de
programmes pertinentes pour la sécurité du logiciel, septembre 2011, Sandrine Blazy

 	
 PhD: Valérie Murat, Tree Automata Extensions for the Verification of
Infinite State Systems, Université de Rennes 1, Thomas Genet

 	
 PhD: Andre Oliveira Maroneze,
Verified Compilation and Worst-Case Execution Time Estimation,
Université de Rennes 1,
Sandrine Blazy, David Pichardie and Isabelle Puaut

 Juries

 	
 Thomas Genet, jury member (reviewer) for the PhD defense of
Marc Sylvestre, October 2014, University Bordeaux 1

 	
 Alan Schmitt, jury member for the PhD defense of Alain Mebsout, September 2014, Laboratoire de Recherche en Informatique

 	
 Alan Schmitt, jury member (reviewer) for the PhD defense of Nuno
Gaspar, December 2014, Université de Sophia-Antipolis

 	
 Thomas Jensen, jury member (reviewer) for the PhD defense of
Jael Kriener, March 2014, University of Kent at Canterbury, UK

 	
 David Pichardie, jury member (chair) for the PhD defense of Sebastien Chedor, January 2014, University Rennes 1, France

 	
 David Pichardie, jury member (examiner) for the PhD defense of Jonathan Protzenko, September 2014, University Paris-Diderot, France

 	
 David Pichardie, jury member (chair) for the PhD defense of Hernan Vanzetto, December 2014, University of Lorraine, France

 	
 David Pichardie, jury member (chair) for the PhD defense of
Radoniaina Andriatsimandefitra Ratsisahanana, December 2014,
SUPELEC, France

 	
 Sandrine Blazy, jury member (reviewer) for the PhD defense of
Vincent Benayoun, May 2014, CNAM, France

 	
 Sandrine Blazy, jury member (chair) for the PhD defense of
Van Chan Ngo, July 2014, University Rennes 1, France

 	
 Sandrine Blazy, jury member (reviewer) for the PhD defense of
Etienne Millon, July 2014, University Paris 6, France

 	
 Barbara Kordy, jury member, (reviewer) for the PhD defense of Hannes Holm, February 2014, KTH, Sweden.

 Juries for competitive selections

 	
 Sandrine Blazy, jury member and external president for the selection of a
Maître de Conférences, May 2014, University Paris Sud, France.

 	
 Sandrine Blazy, jury member for the selection of a
Maître de Conférences, May 2014, INSA de Rennes, France.

 	
 Sandrine Blazy, jury member for the selection of a
Professeur des Universités, May 2014, University Paris Diderot,
France.

 	
 Sandrine Blazy, jury member for the final selection of Inria DR (senior
researchers) candidates, June 2014, Inria, Paris, France.

 	
 Sandrine Blazy, member of the evaluation committee CES 28
of ANR for the competitive selection of ANR projects, June 2014, Paris, France.

 	
 Delphine Demange, jury member for the selection of a Maître de
Conférences at University of Rennes 1 / ISTIC, May 2014, University
of Rennes 1, France.

 	
 Delphine Demange, jury member of the Gilles Kahn PhD award committee, December 2014, Inria Paris - Rocquencourt, Antenne Parisienne, France.

 Section:
 Dissemination

 Popularization

 	
 Talk “Bug, Virus, Intrusion, Pirates... So many threats and no defense?
Yes... maths.”, Thomas Genet, for high school teachers, ENS Rennes, Oct. 2014.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	F. Besson, N. Bielova, T. Jensen.
Hybrid Information Flow Monitoring Against Web Tracking, in: CSF - 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, United States, 2013. [
DOI : 10.1109/CSF.2013.23]
http://hal.inria.fr/hal-00924138

 	[2]

 	F. Besson, T. Jensen, D. Pichardie.
Proof-Carrying Code from Certified Abstract Interpretation to Fixpoint Compression, in: Theoretical Computer Science, 2006, vol. 364, no 3, pp. 273–291.

 	[3]

 	F. Besson, T. Jensen, T. Turpin.
Computing stack maps with interfaces, in: Proc. of the 22nd European Conference on Object-Oriented Programming (ECOOP 2008), LNCS, Springer-Verlag, 2008, vol. 5142, pp. 642-666.

 	[4]

 	M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G. Smith.
A Trusted Mechanised JavaScript Specification, in: POPL 2014 - 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, United States, November 2013.
http://hal.inria.fr/hal-00910135

 	[5]

 	B. Boyer, T. Genet, T. Jensen.
Certifying a Tree Automata Completion Checker, in: 4th International Joint Conference, IJCAR 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5195, pp. 347–362.

 	[6]

 	D. Cachera, T. Jensen, A. Jobin, P. Sotin.
Long-Run Cost Analysis by Approximation of Linear Operators over Dioids, in: Mathematical Structures in Computer Science, 2010, vol. 20, no 4, pp. 589-624.

 	[7]

 	D. Cachera, T. Jensen, D. Pichardie, V. Rusu.
Extracting a Data Flow Analyser in Constructive Logic, in: Theoretical Computer Science, 2005, vol. 342, no 1, pp. 56–78.

 	[8]

 	D. Demange, V. Laporte, L. Zhao, D. Pichardie, S. Jagannathan, J. Vitek.
Plan B: A Buffered Memory Model for Java, in: Proc. of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, ACM, 2013.
http://hal.inria.fr/hal-00924716

 	[9]

 	T. Genet, V. Rusu.
Equational Approximations for Tree Automata Completion, in: Journal of Symbolic Computation, 2010, vol. 45(5):574-597, May 2010, no 5, pp. 574-597.

 	[10]

 	A. Gotlieb, T. Denmat, B. Botella.
Goal-oriented test data generation for pointer programs, in: Information and Software Technology, Sep. 2007, vol. 49, no 9-10, pp. 1030–1044.

 	[11]

 	L. Hubert, T. Jensen, V. Monfort, D. Pichardie.
Enforcing Secure Object Initialization in Java, in: 15th European Symposium on Research in Computer Security (ESORICS), Lecture Notes in Computer Science, Springer, 2010, vol. 6345, pp. 101-115.

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[12]

 	A. Maroneze.
Verified compilation and worst-case execution time, Université de Rennes 1, June 2014.
https://hal.archives-ouvertes.fr/tel-01064869

 	[13]

 	V. Murat.
Tree automata extensions for verification of infinite states systems, Université Rennes 1, June 2014.
https://tel.archives-ouvertes.fr/tel-01065696

 Articles in International Peer-Reviewed Journals

 	[14]

 	G. Barthe, D. Demange, D. Pichardie.
Formal Verification of an SSA-based Middle-end for CompCert, in: ACM Transactions on Programming Languages and Systems (TOPLAS), 2014, 35 p.
https://hal.inria.fr/hal-01097677

 	[15]

 	D. Cachera, T. Jensen, A. Jobin, F. Kirchner.
Inference of polynomial invariants for imperative programs: a farewell to Gröbner bases, in: Science of Computer Programming, 2014, vol. 93, 21 p. [
DOI : 10.1016/j.scico.2014.02.028]
https://hal.inria.fr/hal-00932351

 	[16]

 	S. Jagannathan, V. Laporte, G. Petri, D. Pichardie, J. Vitek.
Atomicity Refinement for Verified Compilation, in: ACM Transactions on Programming Languages and Systems (TOPLAS), January 2014, 30 p.
https://hal.inria.fr/hal-01102435

 International Conferences with Proceedings

 	[17]

 	A. Azevedo De Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie, B. C. Pierce, R. Pollack, A. Tolmach.
A Verified Information-Flow Architecture, in: 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), San Diego, CA, United States, 2014. [
DOI : 10.1145/2535838.2535839]
https://hal.inria.fr/hal-00918847

 	[18]

 	G. Barthe, G. Betarte, J. D. Campo, C. Luna, D. Pichardie.
System-level Non-interference for Constant-time Cryptography, in: ACM SIGSAC Conference on Computer and Communications Security, CCS'14, Scottsdale, United States, ACM, November 2014, pp. 1267 - 1279. [
DOI : 10.1145/2660267.2660283]
https://hal.inria.fr/hal-01101950

 	[19]

 	F. Besson, N. Bielova, T. Jensen.
Browser Randomisation against Fingerprinting: A Quantitative Information Flow Approach, in: NordSec - Nordic Conference on Secure IT Systems, Tromsø, Norway, October 2014. [
DOI : 10.1007/978-3-319-11599-3_11]
https://hal.inria.fr/hal-01081037

 	[20]

 	F. Besson, S. Blazy, P. Wilke.
A Precise and Abstract Memory Model for C Using Symbolic Values, in: APLAS 2014 - 12th Asian Symposium on Programming Languages and Systems, Singapore, Singapore, LNCS, Springer, 2014, vol. 8858, pp. 449 - 468. [
DOI : 10.1007/978-3-319-12736-1_24]
https://hal.inria.fr/hal-01093312

 	[21]

 	F. Besson, T. Jensen, P. Vittet.
SawjaCard: A Static Analysis Tool for Certifying Java Card Applications, in: SAS - 21st International Static Analysis Symposium, Munich, Germany, Springer, 2014, vol. 8858, pp. 51 - 67. [
DOI : 10.1007/978-3-319-10936-7_4]
https://hal.inria.fr/hal-01093327

 	[22]

 	S. Blazy, V. Laporte, D. Pichardie.
Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying Code, in: ITP - The 5th International Conference on Interactive Theorem Proving, Vienna, Austria, LNCS : Interactive Theorem Proving, Springer, 2014, vol. 8558, pp. 128 - 143. [
DOI : 10.1007/978-3-319-08970-6_9]
https://hal.inria.fr/hal-01102445

 	[23]

 	S. Blazy, A. Maroneze, D. Pichardie.
Verified Validation of Program Slicing, in: CPP : Conference on Certified Programs and Proofs, Mumbai, India, 2015, pp. 109-117. [
DOI : 10.1145/2676724.2693169]
https://hal.inria.fr/hal-01110821

 	[24]

 	S. Blazy, S. Riaud.
Measuring the Robustness of Source Program Obfuscation - Studying the Impact of Compiler Optimizations on the Obfuscation of C Programs, in: Fourth ACM Conference on Data and Application Security and Privacy - SIGSAC ACM CODASPY, San Antonio, United States, March 2014.
https://hal.inria.fr/hal-00927427

 	[25]

 	M. Bodin, A. Charguéraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, G. Smith.
A Trusted Mechanised JavaScript Specification, in: POPL - 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, United States, January 2014.
https://hal.inria.fr/hal-00910135

 	[26]

 	M. Bodin, A. Schmitt.
Certified Abstract Interpretation with Pretty-Big-Step Semantics, in: CPP - Certified Programs and Proofs, Mumbai, India, Proceedings of the 2015 Conference on Certified Programs and Proofs, January 2015. [
DOI : 10.1145/2676724.2693174]
https://hal.inria.fr/hal-01111588

 	[27]

 	D. Demange, D. Pichardie, L. Stefanesco.
Verifying Fast and Sparse SSA-based Optimizations in Coq , in: CC - 24th International Conference on Compiler Construction, London, United Kingdom, 2015.
https://hal.inria.fr/hal-01110779

 	[28]

 	T. Genet.
Towards Static Analysis of Functional Programs Using Tree Automata Completion, in: Workshop on Rewriting Logic and its Applications, Grenoble, France, 10th International Workshop on Rewriting Logic and its Applications, Springer, April 2014, vol. 8663, pp. 147 - 161. [
DOI : 10.1007/978-3-319-12904-4_8]
https://hal.archives-ouvertes.fr/hal-01089993

 	[29]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A formally-verified C static analyzer, in: POPL : 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Mumbai, India, ACM, January 2015, pp. 247-259. [
DOI : 10.1145/2676726.2676966]
https://hal.inria.fr/hal-01078386

 	[30]

 	B. Kordy, M. Pouly, P. Schweitzer.
A Probabilistic Framework for Security Scenarios with Dependent Actions, in: IFM - Integrated Formal Methods - 11th International Conference, Bertinoro, Italy, E. Albert, E. Sekerinski (editors), Springer, September 2014, vol. Lecture Notes in Computer Science, no 8739, pp. 256 - 271. [
DOI : 10.1007/978-3-319-10181-1_16]
https://hal.archives-ouvertes.fr/hal-01093276

 	[31]

 	A. Oliveira Maroneze, S. Blazy, D. Pichardie, I. Puaut.
A Formally Verified WCET Estimation Tool, in: 14th International Workshop on Worst-Case Execution Time Analysis, Madrid, Spain, July 2014. [
DOI : 10.4230/OASIcs.WCET.2014.11]
https://hal.inria.fr/hal-01087194

 	[32]

 	D. Pous, A. Schmitt.
De la KAM avec un Processus d'Ordre Supérieur, in: JFLA - 25ème Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014, pp. 1-12.
https://hal.archives-ouvertes.fr/hal-00966097

 National Conferences with Proceedings

 	[33]

 	M. Bodin, T. Jensen, A. Schmitt.
Pretty-big-step-semantics-based Certified Abstract Interpretation, in: JFLA - 25ème Journées Francophones des Langages Applicatifs, Fréjus, France, January 2014.
https://hal.inria.fr/hal-00927400

 	[34]

 	M. Escarrá, M. Petar, A. Schmitt.
HOCore in Coq, in: JFLA - Vingt-sixièmes Journées Francophones des Langages Applicatifs, Le Val d'Ajol, France, D. Baelde, J. Alglave (editors), January 2015.
https://hal.inria.fr/hal-01099130

 Scientific Books (or Scientific Book chapters)

 	[35]

 	X. Leroy, A. W. Appel, S. Blazy, G. Stewart.
The CompCert memory model, in: Program Logics for Certified Compilers, A. W. Appel (editor), Cambridge University Press, April 2014, pp. 237-271.
https://hal.inria.fr/hal-00905435

 Internal Reports

 	[36]

 	F. Besson, N. Bielova, T. Jensen.
Enforcing Browser Anonymity with Quantitative Information Flow, 2014, no RR-8532.
https://hal.inria.fr/hal-00984654

 	[37]

 	T. Genet.
A Note on the Precision of the Tree Automata Completion, IRISA, December 2014, 13 p.
https://hal.inria.fr/hal-01091393

 Other Publications

 	[38]

 	B. Bonnefoy-Claudet.
Security analysis of Android applications, IRISA-Inria, Campus de Beaulieu, 35042 Rennes cedex, 2014, 35 p.
http://dumas.ccsd.cnrs.fr/dumas-01088788

 References in notes

 	[39]

 	The Coq Proof Assistant, 2009.
http://coq.inria.fr/

 	[40]

 	E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini.
COSTA: Design and Implementation of a Cost and Termination Analyzer for Java Bytecode, in: FMCO, 2007, pp. 113-132.

 	[41]

 	E. Albert, G. Puebla, M. Hermenegildo.
Abstraction-Carrying Code, in: Proc. of 11th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR'04), Springer LNAI vol. 3452, 2004, pp. 380-397.

 	[42]

 	Andrew W. Appel.
Foundational Proof-Carrying Code, in: Logic in Computer Science, J. Halpern (editor), IEEE Press, June 2001, 247 p, Invited Talk.

 	[43]

 	Andrew W. Appel, Amy P. Felty.
A Semantic Model of Types and Machine Instructions for Proof-Carrying Code, in: Principles of Programming Languages, ACM, 2000.

 	[44]

 	D. Aspinall, L. Beringer, M. Hofmann, Hans-Wolfgang. Loidl, A. Momigliano.
A Program Logic for Resource Verification, in: In Proceedings of the 17th International Conference on Theorem Proving in Higher-Order Logics, (TPHOLs 2004), volume 3223 of LNCS, Springer, 2004, pp. 34–49.

 	[45]

 	D. F. Bacon, P. F. Sweeney.
Fast Static Analysis of C++ Virtual Function Calls, in: OOPSLA'96, 1996, pp. 324-341.

 	[46]

 	P. Baillot, P. Coppola, U. D. Lago.
Light Logics and Optimal Reduction: Completeness and Complexity, in: LICS, 2007, pp. 421-430.

 	[47]

 	E. Balland, Y. Boichut, T. Genet, P.-E. Moreau.
Towards an Efficient Implementation of Tree Automata Completion, in: Algebraic Methodology and Software Technology, 12th International Conference, AMAST 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5140, pp. 67-82.

 	[48]

 	G. Barthe, D. Pichardie, T. Rezk.
A Certified Lightweight Non-Interference Java Bytecode Verifier, in: Proc. of 16th European Symposium on Programming (ESOP'07), Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 4421, pp. 125-140.

 	[49]

 	F. Besson, T. Jensen.
Modular Class Analysis with DATALOG, in: SAS'2003, 2003, pp. 19-36.

 	[50]

 	F. Besson, T. Jensen, G. Dufay, D. Pichardie.
Verifying Resource Access Control on Mobile Interactive Devices, in: Journal of Computer Security, 2010, vol. 18, no 6, pp. 971-998.

 	[51]

 	D. Cachera, T. Jensen, A. Jobin, P. Sotin.
Long-Run Cost Analysis by Approximation of Linear Operators over Dioids, in: Algebraic Methodology and Software Technology, 12th International Conference, AMAST 2008, Lectures Notes in Computer Science, Springer-Verlag, 2008, vol. 5140, pp. 122-138.

 	[52]

 	D. Cachera, T. Jensen, D. Pichardie, V. Rusu.
Extracting a Data Flow Analyser in Constructive Logic, in: Theoretical Computer Science, 2005, vol. 342, no 1, pp. 56–78.

 	[53]

 	D. Cachera, T. Jensen, D. Pichardie, G. Schneider.
Certified Memory Usage Analysis, in: Proc. of 13th International Symposium on Formal Methods (FM'05), LNCS, Springer-Verlag, 2005.

 	[54]

 	P. Cousot, R. Cousot.
Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints, in: Proc. of POPL'77, 1977, pp. 238–252.

 	[55]

 	A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, B. Lisper.
Loop Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation, and Invariant Analysis, in: Seventh International Workshop on Worst-Case Execution Time Analysis, (WCET'2007), July 2007.
http://www.mrtc.mdh.se/index.php?choice=publications&id=1317

 	[56]

 	G. Feuillade, T. Genet, V. Viet Triem Tong.
Reachability Analysis over Term Rewriting Systems, in: Journal of Automated Reasoning, 2004, vol. 33, no 3–4, pp. 341–383.

 	[57]

 	M. Fähndrich, K. R. M. Leino.
Declaring and checking non-null types in an object-oriented language, in: OOPSLA, 2003, pp. 302-312.

 	[58]

 	T. Genet.
Decidable Approximations of Sets of Descendants and Sets of Normal forms, in: RTA'98, LNCS, Springer, 1998, vol. 1379, pp. 151–165.

 	[59]

 	T. Genet, V. Viet Triem Tong.
Reachability Analysis of Term Rewriting Systems with Timbuk, in: LPAR'01, LNAI, Springer, 2001, vol. 2250, pp. 691-702.

 	[60]

 	D. Grove, C. Chambers.
A framework for call graph construction algorithms, in: Toplas, 2001, vol. 23, no 6, pp. 685–746.

 	[61]

 	D. Grove, G. DeFouw, J. Dean, C. Chambers.
Call graph construction in object-oriented languages, in: ACM SIGPLAN Notices, 1997, vol. 32, no 10, pp. 108–124.

 	[62]

 	M. Hofmann, S. Jost.
Static prediction of heap space usage for first-order functional programs, in: POPL, 2003, pp. 185-197.

 	[63]

 	L. Hubert.
A Non-Null annotation inferencer for Java bytecode, in: Proc. of the Workshop on Program Analysis for Software Tools and Engineering (PASTE'08), ACM, 2008.

 	[64]

 	L. Hubert, T. Jensen, D. Pichardie.
Semantic foundations and inference of non-null annotations, in: Proc. of the 10th International Conference on Formal Methods for Open Object-based Distributed Systems (FMOODS'08), Lecture Notes in Computer Science, Springer-Verlag, 2008, vol. 5051, pp. 132-149.

 	[65]

 	O. Lhoták, L. J. Hendren.
Evaluating the benefits of context-sensitive points-to analysis using a BDD-based implementation, in: ACM Trans. Softw. Eng. Methodol., 2008, vol. 18, no 1.

 	[66]

 	V. B. Livshits, M. S. Lam.
Finding Security Errors in Java Programs with Static Analysis, in: Proc. of the 14th Usenix Security Symposium, 2005, pp. 271–286.

 	[67]

 	A. Milanova, A. Rountev, B. G. Ryder.
Parameterized object sensitivity for points-to analysis for Java, in: ACM Trans. Softw. Eng. Methodol., 2005, vol. 14, no 1, pp. 1–41.

 	[68]

 	M. Naik, A. Aiken.
Conditional must not aliasing for static race detection, in: POPL'07, ACM, 2007, pp. 327-338.

 	[69]

 	M. Naik, A. Aiken, J. Whaley.
Effective static race detection for Java, in: PLDI'2006, ACM, 2006, pp. 308-319.

 	[70]

 	G. C. Necula.
Proof-carrying code, in: Proceedings of POPL'97, ACM Press, 1997, pp. 106–119.

 	[71]

 	G. C. Necula, R. R. Schneck.
A Sound Framework for Untrusted Verification-Condition Generators, in: Proc. of 18th IEEE Symp. on Logic In Computer Science (LICS 2003), 2003, pp. 248-260.

 	[72]

 	F. Nielson, H. Nielson, C. Hankin.
Principles of Program Analysis, Springer, 1999.

 	[73]

 	J. Palsberg, M. Schwartzbach.
Object-Oriented Type Inference, in: OOPSLA'91, 1991, pp. 146-161.

 	[74]

 	J. Palsberg, M. Schwartzbach.
Object-Oriented Type Systems, John Wiley & Sons, 1994.

 	[75]

 	D. Pichardie.
Interprétation abstraite en logique intuitionniste : extraction d'analyseurs Java certiés, Université Rennes 1, Rennes, France, dec 2005.

 	[76]

 	A. D. Pierro, H. Wiklicky.
Operator Algebras and the Operational Semantics of Probabilistic Languages, in: Electr. Notes Theor. Comput. Sci., 2006, vol. 161, pp. 131-150.

 	[77]

 	E. Rose.
Lightweight Bytecode Verification, in: Journal of Automated Reasoning, 2003, vol. 31, no 3–4, pp. 303–334.

 	[78]

 	A. Sabelfeld, A. C. Myers.
Language-based Information-Flow Security, in: IEEE Journal on Selected Areas in Communication, January 2003, vol. 21, no 1, pp. 5–19.

 	[79]

 	P. Sotin, D. Cachera, T. Jensen.
Quantitative Static Analysis over semirings: analysing cache behaviour for Java Card, in: 4th International Workshop on Quantitative Aspects of Programming Languages (QAPL 2006), Electronic Notes in Theoretical Computer Science, Elsevier, 2006, vol. 164, pp. 153-167.

 	[80]

 	F. Tip, J. Palsberg.
Scalable propagation-based call graph construction algorithms, in: OOPSLA, 2000, pp. 281-293.

 	[81]

 	J. Whaley, M. S. Lam.
Cloning-based context-sensitive pointer alias analysis using binary decision diagrams, in: PLDI '04, ACM, 2004, pp. 131–144.

 	[82]

 	M. Wildmoser, A. Chaieb, T. Nipkow.
Bytecode Analysis for Proof Carrying Code, in: Bytecode Semantics, Verification, Analysis and Transformation, 2005.

 	[83]

 	M. Wildmoser, T. Nipkow, G. Klein, S. Nanz.
Prototyping Proof Carrying Code, in: Exploring New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress, TC1 3rd Int. Conf. on Theoretical Computer Science (TCS2004), J.-J. Levy, E. W. Mayr, J. C. Mitchell (editors), Kluwer Academic Publishers, August 2004, pp. 333–347.

 OEBPS/uid53.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Inria Associate Teams

 JCERT

 		
 Title: Verified Compilation of Concurrent Managed Languages

 		
 International Partner (Institution - Laboratory - Researcher):

 		
 Purdue University (ÉTATS-UNIS)

 		
 Duration: 2014 -

 		
 See also: http://www.irisa.fr/celtique/ea/jcert/

 		
 Safety-critical applications demand rigorous, unambiguous guarantees on program correctness. While a combination of testing and manual inspection is typically used for this purpose, bugs latent in other components of the software stack, especially the compiler and the runtime system, can invalidate these hard-won guarantees. To address such concerns, additional laborious techniques such as manual code reviews of generated assembly code are required by certification agencies. Significant restrictions are imposed on compiler optimizations that can be performed, and the scope of runtime and operating system services that can be utilized. To alleviate this burden, the JCert project is implementing a verified compiler and runtime for managed concurrent languages like Java or C#.

 Inria International Partners

 Informal International Partners

 Yann Salmon spent one month in Luke Ong's group at Oxford University (UK)
between january and february. The objective of this stay was, on the one side, to
promote Yann's work on strategy-dependant analysis of functional programs
and, on the other side, to learn from Luke Ong's group on the analysis
principles for higher-order functions.

 JSCert

 The JSCert project is an informal collaboration
between Inria (Celtique and Toccata teams) and Imperial College. Alan
Schmitt (Celtique) and Arthur Charguéraud (Toccata) are external
collaborators for the “Certified Verification of Client-Side Web
Programs” EPSRC project, led by Imperial College. Sergio Maffeis and
Philippa Gardner are external collaborators for the “AJACS” ANR
project, led by Inria.

OEBPS/contrats.html

OEBPS/international.html

OEBPS/domaine.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid65.html

 Section:
 Partnerships and Cooperations

 International Research Visitors

 Visits to International Teams

 Sabbatical programme

 		
 Jensen Thomas

 		
 Date: Sep 2014 - Aug 2015

 		
 Institution: University
of Copenhagen, Denmark

 		
 Pichardie David

 		
 Date: Sep 2011 - Aug 2012

 		
 Institution: Purdue University (PAYS???)

 Explorer programme

 		
 Salmon Yann

 		
 Date: Jan 2014 - Feb 2014

 		
 Institution: University of Oxford (UK)

OEBPS/uid42.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 The PiCoq ANR project

 Participants :
	Alan Schmitt, Petar Maksimovic.

 Process calculi, Verification, Proof Assistants

 The goal of the PiCoq project is to develop an environment for the formal verification of properties of distributed, component-based programs. The project's approach approach lies at the interface between two research areas: concurrency theory and proof assistants. Achieving this goal relies on three scientific advances, which the project intends to address:

 		
 Finding mathematical frameworks that ease modular reasoning
about concurrent and distributed systems: due to their large size
and complex interactions, distributed systems cannot be analysed in
a global way. They have to be decomposed into modular components,
whose individual behaviour can be understood.

 		
 Improving existing proof techniques for distributed/modular systems: while behavioural theories of first-order concurrent languages are well understood, this is not the case for higher-order ones. We also need to generalise well-known modular techniques that have been developed for first-order languages to facilitate formalization in a proof assistant, where source code redundancies should be avoided.

 		
 Defining core calculi that both reflect concrete practice in distributed component programming and enjoy nice properties w.r.t. behavioural equivalences.

 The project partners include Inria, LIP, and Université de Savoie. The project runs from December 2010 to November 2014.

 The ANR VERASCO project

 Participants :
	Sandrine Blazy, Delphine Demange, Vincent Laporte, André Oliveira Maroneze, David Pichardie.

 Static program analysis, Certified static analysis

 The VERASCO project (2012–2015) is funded by the call ISN 2011, a
program of the Agence Nationale de la Recherche. It investigates the
formal verification of static analyzers and of compilers, two families
of tools that play a crucial role in the development and validation of
critical embedded software.
It is a joint project with the Inria teams
Abstraction , Gallium , The VERIMAG laboratory and the Airbus company.

 The ANR Binsec project

 Participants :
	Frédéric Besson, Sandrine Blazy, Pierre Wilke, Colas Le Guernic.

 Binary code, Static program analysis

 The Binsec project (2013–2017) is founded by the call ISN 2012, a
program of the Agence Nationale de la Recherche.
The goal of the BINSEC project is to develop static analysis techniques and tools for
performing automatic security analyses of binary code.
We target two main applicative domains: vulnerability analysis and virus detection.

 Binsec is a joint project with the Inria Carte team, CEA LIS , Verimag ,
EADS IW and Vupen Security . Abstraction , The VERIMAG laboratory and the
Airbus company.

 The ANR MALTHY project

 Participant :
	David Cachera.

 The MALTHY project, funded by ANR in the program INS 2013, aims at
advancing the state-of-the-art in real-time and hybrid model checking
by applying advanced methods and tools from linear algebra and
algebraic geometry.
MALTHY is coordinated by VERIMAG, involving
CEA-LIST, Inria Rennes (Estasys and Celtique),
Inria Saclay (MAXPLUS) and VISEO/Object Direct.

 The ANR AJACS project

 Participants :
	Martin Bodin, Thomas Jensen, Alan Schmitt.

 The goal of the AJACS project is to
provide strong security and privacy guarantees on the client side for
web application scripts. To this end, we propose to define a
mechanized semantics of the full JavaScript language, the most widely
used language for the Web. We then propose to develop and prove
correct analyses for JavaScript programs, in particular information
flow analyses that guarantee no secret information is leaked to
malicious parties. The definition of sub-languages of JavaScript, with
certified compilation techniques targeting them, will allow us to
derive more precise analyses. Finally, we propose to design and
certify security and privacy enforcement mechanisms for web
applications, including the APIs used to program real-world
applications.

 The project partners include the following Inria teams: Celtique,
Indes, Prosecco, and Toccata; it also involves researchers from
Imperial College as external collaborators. The project runs from
December 2014 to June 2018.

 The ANR DISCOVER project

 Participants :
	Sandrine Blazy, Delphine Demange, Thomas Jensen, David Pichardie.

 The DISCOVER project project aims at
leveraging recent foundational work on formal verification and proof
assistants to design, implement and verify compilation techniques used
for high-level concurrent and managed programming languages. The
ultimate goal of DISCOVER is to devise new formalisms and proof
techniques able to scale to the mechanized correctness proof of a
compiler involving a rich class of optimizations, leading to efficient
and scalable applications, written in higher-level languages than
those currently handled by cutting-edge verified compilers.

 In the light of recent work in optimizations techniques used in
production compilers of high-level languages, control-flow-graph based
intermediate representations seems too rigid. Indeed, the analyses and
optimizations in these compilers work on more abstract
representations, where programs are represented with data and control
dependencies. The most representative representation is the
sea-of-nodes form, used in the Java Hotspot Server Compiler, and which
is the rationale behind the highly relaxed definition of the Java
memory model. DISCOVER proposes to tackle the problem of verified
compilation for shared-memory concurrency with a resolute
language-based approach, and to investigate the formalization of
adequate program intermediate representations and associated
correctness proof techniques.

 The project runs from October 2014 to September 2018.

 Labex COMIN Labs Seccloud project

 Participants :
	Frédéric Besson, Thomas Jensen, Alan Schmitt, Thomas Genet, Martin Bodin.

 The SecCloud project, started in 2012, will provide a comprehensive
language-based approach to the definition, analysis and implementation
of secure applications developed using Javascript and similar
languages. Our high level objectives is to enhance the security of
devices (PCs, smartphones, ect.) on which Javascript applications can
be downloaded, hence on client-side security in the context of the
Cloud. We will achieve this by focusing on three related issues:
declarative security properties and policies for client-side
applications, static and dynamic analysis of web scripting programming
languages, and multi-level information flow monitoring.

 This is a joint project with Supelec Rennes and Ecole des Mines de Nantes.

OEBPS/IMG/iTunesArtwork.png
Activity Report 2014
Project-Team Celtique

Software certification
with semantic analysis

IN COLLABORATION WITH: Institut e recherche en informatique et systemes aléatoires (IRISA)

