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2. Overall Objectives
2.1. Objectives

The team investigates applications of recent results in proof theory to the design of proof-checkers and
automated theorem proving systems. It develops the Dedukti proof-checker and the iProver modulo and Zenon
modulo automated theorem proving systems.
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2.2. History
Deduction modulo is a formulation of predicate logic where deduction is performed modulo an equivalence
relation defined on propositions. A typical example is the equivalence relation relating propositions differing
only by a re-arrangement of brackets around additions, relating, for instance, the propositions P ((x+ y) + z)
and P (x+ (y + z)). Reasoning modulo this equivalence relation permits to drop the associativity axiom.
Thus, in Deduction modulo, a theory is formed with a set of axioms and an equivalence relation. When the set
of axioms is empty the theory is called purely computational.

Deduction modulo was proposed at the end of the 20th century as a tool to simplify the completeness proof
of equational resolution. Soon, it was noticed that this idea was also present in other areas of logic, such as
Martin-Löf’s type theory, where the equivalence relation is definitional equality, Prawitz’ extended natural
deduction, etc. More generally, Deduction modulo gives an account on the way reasoning and computation
are articulated in a formal proof, a topic slightly neglected by logic, but of prime importance when proofs are
computerized.

The early research on Deduction modulo focused on the design of general proof search methods—Resolution
modulo, tableaux modulo, etc.—that could be applied to any theory formulated in Deduction modulo, to
general proof normalization and cut elimination results, to the definitions of models taking the difference
between reasoning and computation into account, and to the definition of specific theories—simple type theory,
arithmetic, some versions of set theory, etc.—as purely computational theories.

3. Research Program

3.1. From proof-checking to Interoperability
A new turn with Deduction modulo was taken when the idea of reasoning modulo an arbitrary equivalence
relation was applied to typed λ-calculi with dependent types, that permits to express proofs as algorithms,
using the Brouwer-Heyting-Kolmogorov interpretation and the Curry-de Bruijn-Howard correspondence [32].
It was shown in 2007, that extending the simplest λ-calculus with dependent types, the λΠ-calculus, with
an equivalence relation, led to a calculus we called the λΠ-calculus modulo, that permitted to simulate many
other λ-calculi, such as the Calculus of Constructions, designed to express proofs in specific theories.

This led to the development of a general proof-checker based on the λΠ-calculus modulo [3], that could be
used to verify proofs coming from different proof systems, such as Coq [30], HOL [39], etc. To emphasize
this versatility of our proof-system, we called it Dedukti —“to deduce” in Esperanto. This system is currently
developed together with companion systems, Coqine, Holide, Focalide, and Zenonide, that permits to translate
proofs from Coq, HOL, Focalize, and Zenon, to Dedukti. Other tools, such as Zenon Modulo, directly output
proofs that can be checked by Dedukti.

Dedukti proofs can also be exported to other systems, in particular to the MMT format [47].

A thesis, which is at the root of our research effort, and which was already formulated by the team of the
Logical Framework [38] is that proof-checkers should be theory independent. This is for instance expressed
in the title of our invited talk at Icalp 2012: A theory independent Curry-De Bruijn-Howard correspondence.

Using a single prover to check proofs coming from different provers naturally led to investigate how these
proofs could interact one with another. This issue is of prime importance because developments in proof
systems are getting bigger and, unlike other communities in computer science, the proof-checking community
has given little effort in the direction of standardization and interoperability. On a longer term we believe that,
for each proof, we should be able to identify the systems in which it can be expressed.
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3.2. Automated theorem proving
Deduction modulo has originally been proposed to solve a problem in automated theorem proving and some
of the early work in this area focused on the design of an automated theorem proving method called Resolution
modulo, but this method was so complex that it was never implemented. This method was simplified in 2010
[5] and it could then be implemented. This implementation that builds on the iProver effort [46] is called
iProver modulo.

iProver modulo gave surprisingly good results [4], so that we use it now to search for proofs in many areas:
in the theory of classes—also known as B set theory—, on finite structures, etc. Similar ideas have also been
implemented for the tableau method with in particular several extensions of the Zenon automated theorem
prover. More precisely, two extensions have been realized: the first one is called Super Zenon [13] [35] and
is an extension to superdeduction (which is a variant of Deduction modulo), and the second one is called
Zenon Modulo [33], [34] and is an extension to Deduction modulo. Both extensions have been extensively
tested over first order problems (of the TPTP library), and also provide good results in terms of number of
proved problems. In particular, these tools provide good performances in set theory, so that Super Zenon has
been successfully applied to verify B proof rules of Atelier B (work in collaboration with Siemens). Similarly,
we plan to apply Zenon Modulo in the framework of the BWare project to verify B proof obligations coming
from the modeling of industrial applications.

More generally, we believe that proof-checking and automated theorem proving have a lot to learn from each
other, because a proof is both a static linguistic object justifying the truth of a proposition and a dynamic
process of proving this proposition.

3.3. Models of computation
The idea of Deduction modulo is that computation plays a major role in the foundations of mathematics.
This led us to investigate the role played by computation in other sciences, in particular in physics. Some of
this work can be seen as a continuation of Gandy’s [36] on the fact that the physical Church-Turing thesis is
a consequence of three principles of physics, two well-known: the homogeneity of space and time, and the
existence of a bound on the velocity of information, and one more speculative: the existence of a bound on the
density of information.

This led us to develop physically oriented models of computations.

4. Application Domains

4.1. Safety of aerospace systems
In parallel with this effort in logic and in the development of proof checkers and automated theorem proving
systems, we always have been interested in using such tools. One of our favorite application domain is
the safety of aerospace systems. Together with César Muñoz’ team in Nasa-Langley, we have proved the
correctness of several geometric algorithms used in air traffic control.

This has led us sometimes to develop such algorithms ourselves, and sometimes to develop tools for
automating these proofs.

4.2. B-set theory
Set theory appears to be an appropriate theory for automated theorem provers based on Deduction modulo, in
particular the several extensions of Zenon (Super Zenon and Zenon Modulo). Modeling techniques using set
theory are therefore good candidates to assess these tools. This is what we have done with the B method whose
formalism relies on set theory. A collaboration with Siemens has been developed to automatically verify the B
proof rules of Atelier B [42]. From this work presented in the Doctoral dissertation of Mélanie Jacquel, the
Super Zenon tool [13] [35] has been designed in order to be able to reason modulo the B set theory. As a sequel

http://cedric.cnam.fr/~delahaye/super-zenon/
http://cedric.cnam.fr/~delahaye/super-zenon/
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of this work, we contribute to the BWare project whose aim is to provide a mechanized framework to support
the automated verification of B proof obligations coming from the development of industrial applications. In
this context, we have recently designed Zenon Modulo [33], [34] (Pierre Halmagrand’s PhD thesis, which has
started on October 2013) to deal with the B set theory. In this work, the idea is to manually transform the B
set theory into a theory modulo and provide it to Zenon Modulo in order to verify the proof obligations of the
BWare project.

4.3. Termination certificate verification
Termination is an important property to verify, especially in critical applications. Automated termination
provers use more and more complex theoretical results and external tools (e.g. sophisticated SAT solvers)
that make their results not fully trustable and very difficult to check. To overcome this problem, a language
for termination certificates, called CPF, has been developed since several years now. Deducteam develops a
formally certified tool, Rainbow, based on the Coq library CoLoR, that is able to automatically verify the
correctness of such termination certificates.

5. New Software and Platforms

5.1. Dedukti
Dedukti is a proof-checker for the λΠ-calculus modulo. As it can be parametrized by an arbitrary set of
rewrite rules, defining an equivalence relation, this calculus can express many different theories. Dedukti has
been created for this purpose: to allow the interoperability of different theories.

Dedukti’s core is based on the standard algorithm [29] for type-checking semi-full pure type systems and
implements a state-of-the-art reduction machine inspired from Matita’s [28] and modified to deal with rewrite
rules.

Dedukti’s input language features term declarations and definitions (opaque or not) and rewrite rule definitions.
A basic module system allows the user to organize its project in different files and compile them separately.

Dedukti now features matching modulo beta for a large class of patterns called Miller’s patterns, allowing for
more rewriting rules to be implemented in Dedukti.

Dedukti has been developed by Mathieu Boespflug, Olivier Hermant, Quentin Carbonneaux and Ronan
Saillard. It is composed of about 2500 lines of OCaml.

5.2. Coqine, Holide, Focalide and Sigmaid
Dedukti comes with four companion tools: Holide, an embedding of HOL proofs through the OpenTheory
format [41], Coqine, an embedding of Coq proofs, Focalide, an embedding of FoCaLiZe certified programs,
and Sigmaid, a type-checker for the simply-typed ς-calculus with subtyping and a translator to Dedukti. All
of the OpenTheory standard library and a part of Coq’s and FoCaLiZe’s libraries are checked by Dedukti.

A preliminary version of Coqine supports the following features of Coq: the raw Calculus of Constructions,
inductive types, and fixpoint definitions. Coqine is currently being rewritten to support universes. Coqine has
been developed by Mathieu Boespflug, Guillaume Burel, and Ali Assaf.

Holide supports all the features of HOL, including ML-polymorphism, constant definitions, and type defini-
tions. It is able to translate all of the OpenTheory standard theory library. Holide has been developed by Ali
Assaf.

Focalide has been improved to support FoCaLiZe proofs found by Zenon using the Dedukti backend for Zenon
developped by Frédéric Gilbert. This backend has been improved by a simple typing mechanism in order to
work with Focalide. Focalide has also been updated again to work with the latest version of FoCaLiZe.

http://cl-informatik.uibk.ac.at/software/cpf/
http://color.inria.fr/rainbow.html
http://color.inria.fr/
https://www.rocq.inria.fr/deducteam/Dedukti
https://www.rocq.inria.fr/deducteam/Holide
http://www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en
https://www.rocq.inria.fr/deducteam/Focalide
http://sigmaid.gforge.inria.fr
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Sigmaid implements a shallow embedding of the simply-typed ς-calculus of Abadi and Cardelli with subtyping
in the λΠ-calculus modulo. This translation has been proved[21] to preserve the typing judgments and the
semantics of the simply-typed ς-calculus and tested on the examples of Abadi and Cardelli.

Focalide and Sigmaid have been developed by Raphaël Cauderlier.

Translators from Version 2.0 of the SMT-LIB standard and from the SMT-solver veriT have been initiated.
They are currently developed by Frédéric Gilbert.

5.3. iProver Modulo
iProver Modulo is an extension of the automated theorem prover iProver originally developed by Konstantin
Korovin at the University of Manchester. It implements Ordered polarized resolution modulo, a refinement
of the Resolution method based on Deduction modulo. It takes as input a proposition in predicate logic and a
clausal rewriting system defining the theory in which the formula has to be proved. Normalization with respect
to the term rewriting rules is performed very efficiently through translation into OCaml code, compilation and
dynamic linking. Experiments have shown that Ordered polarized resolution modulo dramatically improves
proof search compared to using raw axioms. iProver modulo is also able to produce proofs that can be checked
by Dedukti, therefore improving confidence. iProver modulo is written in OCaml, it consists of 1,200 lines of
code added to the original iProver.

A tool that transforms axiomatic theories into polarized rewriting systems, thus making them usable in iProver
Modulo, has also been developed. Autotheo supports several strategies to orient the axioms, some of them
being proved to be complete, in the sense that Ordered polarized resolution modulo the resulting systems is
refutationally complete, some others being merely heuristics. In practice, autotheo takes a TPTP input file and
transforms the axioms into rewriting rules, and produces an input file for iProver Modulo.

iProver Modulo and autotheo have been developed by Guillaume Burel. iProver Modulo is released under a
GPL license.

5.4. Super Zenon and Zenon Modulo
Several extensions of the Zenon automated theorem prover (developed by Damien Doligez at Inria in the
Gallium team) to Deduction modulo have been studied. These extensions intend to be applied in the context of
the automatic verification of proof rules and obligations coming from industrial applications formalized using
the B method.

The first extension, developed by Mélanie Jacquel and David Delahaye, is called Super Zenon and is an
extension of Zenon to superdeduction, which can be seen as a variant of Deduction modulo. This extension is
a generalization of previous experiments [42] together with Catherine Dubois and Karim Berkani (Siemens),
where Zenon has been used and extended to superdeduction to deal with the B set theory and automatically
prove proof rules of Atelier B. This generalization consists in allowing us to apply the extension of Zenon to
superdeduction to any first order theory by means of a heuristic that automatically transforms axioms of the
theory into rewrite rules. This work is described in [13] [35], which also proposes a study of the possibility of
recovering intuition from automated proofs using superdeduction.

The second extension, developed by Pierre Halmagrand, David Delahaye, Damien Doligez, and
Olivier Hermant, is called Zenon Modulo and is an extension of Zenon to Deduction modulo. Com-
pared to Super Zenon, this extension allows us to deal with rewrite rules both over propositions and terms.
Like Super Zenon, Zenon Modulo is able to deal with any first order theory by means of a similar heuristic.
To assess the approach of Zenon Modulo, we have applied this extension to the first order problems coming
from the TPTP library. An increase of the number of proved problems has been observed, with in particular
a significant increase in the category of set theory. Over these problems of the TPTP library, we have also
observed a significant proof size reduction, which confirms this aspect of Deduction modulo. These results
are gathered into two publications [33], [34].

http://www.ensiie.fr/~guillaume.burel/blackandwhite_iProverModulo.html.en
http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en
http://cedric.cnam.fr/~delahaye/super-zenon/
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The third extension, developed by Guillaume Bury and David Delahaye, is an extension of Zenon to (rational
and integer) linear arithmetic (using the simplex algorithm), that has been integrated to Zenon Modulo by
Guillaume Bury and Pierre Halmagrand, in order to be applied in the framework of the B set theory to the
verification of proof obligations of Atelier B [17]. Experiments have been conducted over the benchmarks
of the BWare project, and it turns out that more than 95% of the proof obligations are proved thanks to this
extension.

5.5. Zipperposition (and extensions) and Logtk
Zipperposition is an implementation of the superposition method; it relies on the library Logtk for basic logic
data structures and algorithms. Zipperposition is designed as a testbed for extensions to superposition, and can
currently deal with polymorphic typed logic, integer arithmetic, and total orderings; an extension to handle
structural induction is being worked on by Simon Cruanes.

Those pieces of software also depend on many smaller tools and libraries developped by Simon Cruanes
in OCaml. In particular, efficient iterators were key to implementing arithmetic rules successfully, and a
lightweight extension to the standard library has been developped steadily and released regularly.

5.6. CoLoR
CoLoR is a Coq library on rewriting theory and termination of more than 83,000 lines of code [2]. It provides
definitions and theorems for:

• Mathematical structures: relations, (ordered) semi-rings.

• Data structures: lists, vectors, polynomials with multiple variables, finite multisets, matrices, finite
graphs.

• Term structures: strings, algebraic terms with symbols of fixed arity, algebraic terms with varyadic
symbols, pure and simply typed λ-terms.

• Transformation techniques: conversion from strings to algebraic terms, conversion from algebraic to
varyadic terms, arguments filtering, rule elimination, dependency pairs, dependency graph decom-
position, semantic labelling.

• Termination criteria: polynomial interpretations, multiset ordering, lexicographic ordering, first and
higher order recursive path ordering, matrix interpretations.

CoLoR is distributed under the CeCILL license. It is currently developed by Frédéric Blanqui and Kim-Quyen
Ly, but various people participated to its development since 2006 (see the website for more information).

5.7. HOT
HOT is an automated termination prover for higher-order rewrite systems based on the notion of computability
closure and size annotation [31]. It won the 2012 competition in the category “higher-order rewriting union
beta”. The sources (5000 lines of OCaml) are not public. It is developed by Frédéric Blanqui.

5.8. Moca
Moca is a construction functions generator for OCaml data types with invariants.

It allows the high-level definition and automatic management of complex invariants for data types. In addition,
it provides the automatic generation of maximally shared values, independently or in conjunction with the
declared invariants.

A relational data type is a concrete data type that declares invariants or relations that are verified by its
constructors. For each relational data type definition, Moca compiles a set of construction functions that
implements the declared relations.

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html
https://www.rocq.inria.fr/deducteam/Logtk/
https://github.com/c-cube/sequence/
https://github.com/c-cube/ocaml-containers/
http://color.inria.fr/
https://who.rocq.inria.fr/Frederic.Blanqui/hot.html
http://termination-portal.org/wiki/Termination_Competition
http://moca.inria.fr/
http://caml.inria.fr/
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Moca supports two kinds of relations:

• predefined algebraic relations (such as associativity or commutativity of a binary constructor),

• user-defined rewrite rules that map some pattern of constructors and variables to some arbitrary
user’s define expression.

The properties that user-defined rules should satisfy (completeness, termination, and confluence of the
resulting term rewriting system) must be verified by a programmer’s proof before compilation. For the
predefined relations, Moca generates construction functions that allow each equivalence class to be uniquely
represented by their canonical value.

Moca is distributed under QPL. It is written in OCaml (14,000 lines) It is developed by Frédéric Blanqui,
Pierre Weis (EPI Pomdapi) and Richard Bonichon (CEA).

5.9. Rainbow
Rainbow is a set of tools for automatically verifying the correctness of termination certificates expressed in
the CPF format used in the termination competition. It contains:

• a tool xsd2coq for generating Coq data types for representing XML files valid wrt some XML
Schema,

• a tool xsd2ml for generating OCaml data types and functions for parsing XML files valid wrt some
XML Schema,

• a tool for translating a CPF file into a Coq script,

• a standalone Coq certified tool for verifying the correctness of a CPF file.

Rainbow is distributed under the CeCILL license. It is developed in OCaml (10,000 lines) and Coq (19,000
lines). It is currently developed by Frédéric Blanqui and Kim-Quyen Ly. See the website for more information.

5.10. mSAT
mSAT is a modular, proof-producing, SAT and SMT core based on Alt-Ergo Zero, written in OCaml. The
solver accepts user-defined terms, formulas and theory, making it a good tool for experimenting. This tool
produces resolution proofs as trees in which the leaves are user-defined proof of lemmas.

An encoding of tableaux rules as a theory for SMT solvers has been implemented and tested in mSAT. mSat
has also been extended to implement model constructing satisfiability calculus, a variant of SMT solvers in
which assignment of variables to values are propagated along with the usual boolean assignment of litterals.

6. New Results

6.1. Highlights of the Year
In the framework of the BWare project, Pierre Halmagrand, David Delahaye, Damien Doligez, and
Olivier Hermant designed a new version of the B set theory using deduction modulo, in order to automatically
verify a large part of the proof obligations of the benchmark of BWare, which consists of proof obligations
coming from the modeling of industrial applications (about 13,000 proof obligations). Using this B set theory
modulo with Zenon Modulo, as well as some other extensions of Zenon, such as typed proof search and
arithmetic (implemented by Guillaume Bury), we are able to automatically verify more than 95% of the proof
obligations of BWare, while the regular version of Zenon is only able to prove less than 1% of these proof
obligations. This is a real breakthrough for the BWare project, but also for automated deduction in general, as
it tends to show that deduction modulo is the way to go when reasoning modulo theories.

http://color.inria.fr/rainbow.html
http://cl-informatik.uibk.ac.at/software/cpf/
http://termination-portal.org/wiki/Termination_Competition
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6.2. Termination
Frédéric Blanqui, together with Jean-Pierre Jouannaud (Univ. Paris 11) and Albert Rubio (Technical University
of Catalonia), have finished their work on a new version of the higher-order recursive path ordering (HORPO)
[44], [43], a decidable monotone well-founded relation that can be used for proving the termination of higher-
order rewrite systems by checking that rules are included in it. This new version, called the computability
path ordering (CPO), appears to be the ultimate improvement of HORPO in the sense that this definition
captures the essence of computability arguments à la Tait and Girard [37], therefore explaining the name of
the improved ordering. It has been shown that CPO allows to consider higher-order rewrite rules in a simple
type discipline with inductive types, that most of the guards present in the recursive calls of its core definition
cannot be relaxed in any natural way without losing well-foundedness, and that the precedence on function
symbols cannot be made more liberal anymore. This new result is described in a 41-pages papers available on
Frédéric Blanqui’s web page which has been submitted to a journal for publication. A Prolog implementation
of CPO is also available on Albert Rubio’s web page.

Frédéric Blanqui revised his work on the compatibility of Tait and Girard’s notion of computability for proving
the termination of higher-order rewrite systems when matching is done modulo βη-equivalence. In particular,
he showed that computability is preserved by leaf-β-expansion, a key property for dealing with higher-order
pattern-matching. This work is described in a 46-pages paper available on his web page which has been
submitted to a journal for publication.

Frédéric Blanqui did some historical investigations on fixpoint theorems in posets used for instance for defining
the semantics of non-basic inductive types (i.e. types with constructors taking functions as arguments) and the
termination of functions defined by induction on such non-basic inductive types. These theorems assume the
function either extensive or monotone. However, as shown by Salinas in [48], these two conditions can be
subsumed by a more general one. Frédéric Blanqui slightly improved this condition further by using results
by Hartogs, Rubin and Rubin, and Abian and Brown. This work is described in a 10-pages note available on
his web page [20].

Kim Quyen Ly finished the development of a new version faster, safer (proved correct in Coq) and standalone
version of Rainbow, based on Coq extraction mechanism. She defended her PhD thesis [11] on the automated
verification of termination certificates in October.

6.3. Proof and type theory modulo rewriting
Ali Assaf defined a sound and complete embedding of the cumulative universe hierarchy of the calculus of
inductive constructions (CIC) in the λΠ-calculus modulo rewriting [18]. By reformulating universes in the
Tarski style, he showed that we can make cumulativity explicit without losing any typing power. This result
refines the translation used by Coqine, which was unsound because it collapsed the universe hierarchy to a
single type universe. It also sheds some light on the metatheory of Coq and its connection to Martin-Löf’s
intuitionistic type theory. This work was presented at the TYPES meeting in Paris.

Frédéric Gilbert and Olivier Hermant defined new encodings from classical to intuitionistic first-order logic.
These encodings, based on the introduction of double negations in formulas, are tuned to satisfy two purposes
jointly: basing their specifications on the definition of classical connectives inside intuitionistic logic – which
is the property of morphisms, and reducing their impact on the shape and size of formulas, by limiting as much
as possible the number of negations introduced. This paper has been submitted.

Raphael Cauderlier and Catherine Dubois defined a shallow embedding of an object calculus (formalized
by Abadi and Cardelli), in the λΠ-calculus modulo rewriting . The main result concerns the encoding of
subtyping. This encoding shows that rewriting is an effective help for handling of subtyping proofs. The
implementation in Dedukti, Sigmaid. This work has been presented at the TYPES 2014 meeting in Paris. A
paper has been submitted.

Ali Assaf, Olivier Hermant and Ronan Saillard defined a rewrite system such that all strongly normalizable
proof term can be typed in Natural Deduction modulo this rewrite system. This work is inspired by Statman’s
work [49], and can be understood as an encoding of intersection types.

https://www.rocq.inria.fr/deducteam/Sigmaid
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Guillaume Burel showed how to get rewriting systems that admit cut by using standard saturation techniques
from automated theorem proving, namely ordered resolution with selection, and superposition. This work
relies on a view of proposition rewriting rules as oriented clauses, like term rewriting rules can be seen
as oriented equations. This also lead to introduce an extension of deduction modulo with conditional term
rewriting rules. This work was presented at the RTA-TLCA conference in Vienna [15].

Gilles Dowek, has generalized the notion of super-consistency to the lambda-Pi-calculus modulo theory and
proved this way the termination of the embedding of various formulations of Simple Type Theory and of the
Calculus of Constructions in the Lambda-Pi calculs modulo theory.

Gilles Dowek and Alejandro Díaz-Caro have finished their work on the extension of Simply Typed Lambda-
Calculus with Type Isomorphisms. This work has been presented at the Types meeting and recently accepted
for publication in the Theoretical Computer Science journal [26].

Gilles Dowek and Ying Jiang have given a new proof of the decidability of reachability in alternating pushdown
systems, based on a cut-elimination theorem.

Vaston Costa presented to the group a new structure to represent proofs through references rather than copy.
The structure, called Mimp-graph, was initially developed for minimal propositional logic but the results have
been extended to first-order logic. Mimp-graph preserves the ability to represent any Natural Deduction proof
and its minimal formula representation is a key feature of the mimp-graph structure, it is easy to distinguish
maximal formulas and an upper bound in the length of the reduction sequence to obtain a normal proof. Thus a
normalization theorem can be proved by counting the number of maximal formulas in the original derivation.
The strong normalization follow as a direct consequence of such normalization, since that any reduction
decreases the corresponding measures of derivation complexity. Sharing for inference rules is performed
during the process of construction of the graph. This feature is very important, since we intend to use this
graph in automatic theorem provers.

6.4. Automated theorem proving
Guillaume Bury defined a sound and complete extension of the tableaux method to handle linear arithmetic.
The rules are based on a variant of the simplex algorithm for rational and real linear arithmetic, and a
Branch&Bound algorithm for integer arithmetic.

Guillaume Bury defined an encoding of analytical tableaux rules as a theory for smt solvers. The theory acts
like a lazy cnf conversion during the proof search and allows to integrate the cnf conversion into the resolution
proof for unsatisfiable formulas. This work was implemented in mSAT.

Simon Cruanes added many improvements to Logtk, in particular a better algorithm to reduce formulas to
Clausal Normal Form. A presentation of its design and implementation has been made at PAAR 2014[16].
He also used Zipperposition as a testbed for integer linear arithmetic; a sophisticated inference system for
this fragment of arithmetic was designed and implemented in Zipperposition, including many redundancy
criteria and simplification rules that make it efficient in practice. The arithmetic-enabled Zipperposition version
entered CASC-J7, the annual competition of Automated Theorem Provers, in the first-order theorems with
linear arithmetic division where it had very promising results (on integer problems only, since Zipperposition
doesn’t handle rationals).

Another extension of Zipperposition has been performed by Julien Rateau, Simon Cruanes, and
David Delahaye, in order to deal with a fragment of set theory in the same vein as the STR+̇VE⊆
prover [40]. This extension relies on a specific normal form of literal, which only involves the ⊆, ∩, ∪, and
complement set operators. In the future, the idea is to use this extension in the framework of the BWare project
to verify B proof obligations coming from industrial benchmarks.

The current effort of research on Zipperposition focuses on extending superposition to handle structural
induction, following the work from [45]. The current prototype is able to prove simple properties on natural
numbers, binary trees and lists.

http://cs.miami.edu/~tptp/CASC/J7/
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Kailiang Ji defined a set of rewrite rules for the equivalence between CTL formulas (denote them asRCTL), by
taking them as terms of designed predicates. For a given transition system model, we transform it into a set of
rewrite rules (denote them asRm). Then any CTL property of the transition system can be proved in deduction
modulo RCTL ∪Rm, by specifying the model checking problems into designed first-order formulas. This
method was implemented in iProver Modulo, and the experimental evaluation was reported in workshop of
Locali 2014.

6.5. Algebraic λ-calculus
Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoit Valiron completed a journal
paper covering results on different algebraic extensions of the λ-calculus [12]. These extensions equip
the calculus with an additive and a scalar-multiplicative structure, and their set of terms is closed under
linear combinations. Two such extensions, the algebraic λ-calculus and the linear-algebraic λ-calculus arise
independently in different contexts – the former is a fragment of the differential λ-calculus, the latter is a
candidate λ-calculus for quantum computation – and have different operational semantics. In this paper, the
authors showed how the two approaches relate to each other. They showed that the the first calculus follows a
call-by-name strategy while the second follows a call-by-value strategy. They proved that the two can simulate
each other using algebraic extensions of continuation passing style (CPS) translations that are sound and
complete.

7. Partnerships and Cooperations

7.1. National Initiatives
7.1.1. ANR Locali

We are coordinators of the ANR-NFSC contract Locali with the Chinese Academy of Sciences.

7.1.2. ANR BWare
We are members of the ANR BWare, which started on September 2012 (David Delahaye is the national leader
of this project). The aim of this project is to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method.
The methodology used in this project consists in building a generic platform of verification relying on different
theorem provers, such as first order provers and SMT solvers. We are in particular involved in the introduction
of Deduction modulo in the first order theorem provers of the project, i.e. Zenon and iProver, as well as in the
backend for these provers with the use of Dedukti.

The ANR mid-term review of the project took place in October 2014 and the members of the project
received very positive feedbacks from the reviewers. A more detailed report is expected from the reviewers in
early 2015.

7.1.3. ANR Tarmac
We are members of the ANR Tarmac on models of computation, coordinated by Pierre Valarcher.

7.2. International Research Visitors
7.2.1. Visits to International Teams
7.2.1.1. Research stays abroad

Olivier Hermant was an invited researcher at the Natal University (UFRN, Brazil) in December 2014.
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8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific events organisation
8.1.1.1. General chair, scientific chair

Catherine Dubois was a general chair of the GDR GPL national days, and the AFADL’14, CAL’14, and
CIEL’14 conferences, organized at Cnam in Paris.

8.1.1.2. Member of the organizing committee

David Delahaye was a member of the organizing committee of the GDR GPL national days, and the
AFADL’14, CAL’14, and CIEL’14 conferences, organized at Cnam in Paris.

Olivier Hermant and Florian Rabe organized the 2nd KWARC-Deducteam workshop in Bremen, Germany
(May 2014).

Gilles Dowek is a member of the steering committees of RTA and TLCA. Catherine Dubois is the chair of the
steering committee of TAP.

8.1.2. Scientific events selection
8.1.2.1. Chair of conference program committee

Gilles Dowek has been the PC chair of RTA-TLCA.

David Delahaye and Catherine Dubois were co-chairs of the SETS’14 workshop (affiliated to ABZ’14).

David Delahaye was a co-chair of the ∀X.XΠ’14 workshop (affiliated to VSL’14).

Catherine Dubois was a co-chair of the F-IDE’14 workshop (affiliated to ETAPS’14). She was also a PC
co-chair of the AFADL’2014 national conference.

8.1.2.2. Member of the conference program committee

Olivier Hermant was member of the program committee of the RTA-TLCA 2014 conference (July 2014).

8.1.2.3. Reviewer

Frédéric Blanqui reviewed a paper submitted to the post-proceedings of TYPES’14.

Alejandro Díaz-Caro reviewed a paper submitted to the FSTTCS’14 conference.

Ronan Saillard reviewed a paper submitted to the RTA’14 conference.

8.1.3. Journal
8.1.3.1. Member of the editorial board

David Delahaye is a member of the editorial board of the Global Journal of Advanced Software Engineering
(GJASE).

8.1.3.2. Reviewer

David Delahaye reviewed one paper for the Global Journal of Advanced Software Engineering (GJASE) and
one paper for the Requirements Engineering (RE) journal.

Alejandro Díaz-Caro reviewed a paper submitted to Elsevier’s “Science of Computer Programming” journal.

Olivier Hermant reviewed a paper submitted to the journal “Theoretical Computer Science”.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

CPGE: Simon Cruanes, Mathématiques-Informatiques en MPSI, 64 HETD, MPSI, Lycée Saint-Louis, France.
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Licence : Raphaël Cauderlier, Eléments de programmation 2, 63 HETD, L1, UPMC, France.

License: Ali Assaf, Algorithmique et programmation, 36 HETD, L3, Ecole Polytechnique, France.

License: Ali Assaf, Les bases de la programmation et de l’algorithmique, 36 HETD, L3, Ecole Polytechnique,
France.

Licence : Alejandro Díaz-Caro, Mathématiques 2, 18 HETD, L1, Université Paris-Ouest Nanterre La Défense,
France.

Licence : Alejandro Díaz-Caro, Méthodologie de la mesure en sciences humaines, 48 HETD, L1, Université
Paris-Ouest Nanterre La Défense, France.

Licence : Alejandro Díaz-Caro, Statistiques et probabilités, 18 HETD, L2, Université Paris-Ouest Nanterre La
Défense, France.

Licence : Alejandro Díaz-Caro, Probabilités, 36 HETD, L2, Université Paris-Ouest Nanterre La Défense,
France.

Licence : Alejandro Díaz-Caro, Probabilités, 36 HETD, L2, Université Paris-Ouest Nanterre La Défense,
France.

Licence: Ronan Saillard, Programmation Orientée Objet en Java, 27 HETD, Telecom ParisTech, France.

Licence: Guillaume Burel, Programmation avancée, 25.5 HETD, L3, ENSIIE, France

Licence: Guillaume Burel, Logique, 10.5 HETD, L3, ENSIIE, France

Licence: Guillaume Burel, Projet informatique, 22.75 HETD, L3, ENSIIE, France

Master: Guillaume Burel, Systèmes et langages formels, 17.5 HETD, M1, ENSIIE, France

Master: Guillaume Burel, Compilation, 33.25 HETD, M1, ENSIIE, France

Licence: Guillaume Burel is in charge of the 4th, 5th, and 6th semesters of the engineering degree at ENSIIE.

Licence: Pierre Halmagrand, Initiation à la Programmation en JAVA, 48.75 HETD, L1, CNAM, France

Master: Pierre Halmagrand, Initiation à la Méthode B, 53.7 HETD, M2, CNAM, France

Master: Gilles Dowek has given invited classes at Supelec, Centrale, INSA-Lyon.

8.2.2. Supervision
PhD : Kim-Quyen Ly, Automated verification of termination certificates [11], University Joseph Fourier,
Grenoble, 9 October 2014, Jean-François Monin and Frédéric Blanqui.

PhD in progress : Ronan Saillard, Systèmes de Types Modulo, Oct 2012, Olivier Hermant and Pierre Jouvelot.

PhD in progress : Pierre Halmagrand, “Automated Deduction Modulo”, from Oct. 2013, David Delahaye,
Olivier Hermant, and Damien Doligez.

PhD in progress : Guillaume Bury, “SMT Modulo”, Oct. 2014, David Delahaye.

PhD in progress : Ali Assaf, Interoperability of Proof Systems, Oct. 2012, Gilles Dowek and Guillaume Burel.

PhD in progress : Simon Cruanes, Automated reasoning modulo theories, August 2012, Gilles Dowek and
Guillaume Burel.

PhD in progress : Kailiang Ji, Model Checking and Automated Theorem Proving, October 2012, Gilles Dowek.

8.2.3. Juries
David Delahaye reviewed the PhD thesis of Hernán Vanzetto, supervised by Stephan Merz and
Kaustuv Chaudhuri, and defended in Dec. 2014 in Nancy.

David Delahaye was part of the HDR jury of Stéphane Lengrand, defended in Dec. 2014 at École Polytech-
nique in Palaiseau.

Gilles Dowek has been part of the HDR committee of Philippe Malbos.
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Catherine Dubois reviewed the HDR thesis of Oum-El-Kheir Aktouf, defended in July 2014 in Valence.

8.3. Popularization
Gilles Dowek is the president of the scientific board of the “Société Informatique de France” (SIF).

Gilles Dowek is a member of the scientific board of “La Main à la Pâte”.

Raphaël Cauderlier, Simon Cruanes, Pierre Halmagrand et Ronan Saillard ont participé à l’animation du stand
Inria au Salon Culture et Jeux Mathématiques les 24 et 25 mai

Ali Asaf, Raphaël Cauderlier, Simon Cruanes et Pierre Halmagrand ont participé à l’animation du stand Inria
lors de la Fête de la Science les 9 et 10 octobre 2014 à Paris

Gilles Dowek has given a talk at Mathenjeans.

Alejandro Díaz-Caro is member of the scientific board of “Ensemble”, a journal of the Maison Argentina at
Cité Universitaire in Paris, ISSN 1852–5911.
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