
IN PARTNERSHIP WITH:
CNRS

Université des sciences et
technologies de Lille (Lille 1)

Activity Report 2014

Team DREAMPAL

Dynamic Reconfigurable Massively Parallel
Architectures and Languages

RESEARCH CENTER
Lille - Nord Europe

THEME
Architecture, Languages and Compi-
lation

Table of contents

1. Members . 1
2. Overall Objectives . 1
3. Research Program . 2

3.1. New Models for New Technologies 2
3.2. Multi-softcore on 3D FPGA 3
3.3. When Hardware Meets Software 3

4. New Software and Platforms . 4
4.1.1. HoMade 4
4.1.2. JHomade 4
4.1.3. Kcheck 4

5. New Results . 5
5.1. Highlights of the Year 5
5.2. HoMade 5
5.3. HiHope : A higher level language for the HoMade processor 5
5.4. Integrating Profiling into MDE Compilers 5
5.5. Language-Independent Symbolic Execution, Program Equivalence, and Program Verification 6

5.5.1. Symbolic Execution 6
5.5.2. Program Equivalences 6
5.5.3. Program Verification 7
5.5.4. Language Definitions as Rewrite Theories 7

5.6. Hardware chain for partial reconfiguration 7
5.7. Generic pixel distribution for parallel video processing application 8
5.8. Massively Parallel Dynamically Reconfigurable Multi-FPGA 8
5.9. HoMade-based MPSoC 9
5.10. Communication-Computation Overlap in Massively Parallel System-on-Chip 9

6. Bilateral Contracts and Grants with Industry . 9
7. Partnerships and Cooperations . 10

7.1. Regional Initiatives 10
7.2. International Initiatives 10
7.3. International Research Visitors 10

8. Dissemination . 10
8.1. Promoting Scientific Activities 10

8.1.1. Scientific events organisation 10
8.1.2. Scientific events selection 10

8.1.2.1. responsable of the conference program committee 10
8.1.2.2. member of the conference program committee 10

8.2. Teaching - Supervision - Juries 11
8.2.1. Teaching 11
8.2.2. Supervision 11
8.2.3. Juries 12

8.3. Popularization 12
9. Bibliography .12

Team DREAMPAL

Keywords: Embedded Systems, Reconfigurable Hardware, Programming Languages, Formal
Methods

Creation of the Team: 2013 January 01, updated into Project-Team: 2015 January 01.

1. Members
Research Scientist

Vlad Rusu [Team leader, Inria, Researcher, HdR]
Faculty Members

Ahmad Aljendi [Univ. Lille I]
Rabie Ben Atitallah [Univ. Valenciennes, Associate Professor, HdR]
Sana Cherif [Univ. Lille III, until Aug 2014]
Jean-Luc Dekeyser [Univ. Lille I, Professor, HdR]
Frédéric Guyomarch [Univ. Lille I, Associate Professor]
Philippe Marquet [Univ. Lille I, Associate Professor]
Samy Meftali [Univ. Lille I, Associate Professor, HdR]
Chiraz Trabelsi [Univ. Valenciennes, until Aug 2014]

PhD Students
Karim Ali [Univ. Valenciennes]
Wissem Chouchene [Univ. Lille I]
Hana Krichene [Univ. Lille I]
Vlad Craciun [Univ. Iasi, Romania, since Sept 2014]
Venkatasubramanian Viswanathan [Univ Valenciennes & Nolam Industries]

Post-Doctoral Fellow
Andrei Arusoaie [Inria, since Nov 2014]

Visiting Scientists
Majdi Elhajji [Univ. Monastir (Tunisie), May 2014]
Dorel Lucanu [Univ. Iasi, (Romania), Professor, Jul-Aug 2014]

Administrative Assistant
Corinne Jamroz [Inria]

Other
Benjamin Danglot [Inria, Intern, from Apr 2014 until Jul 2014]

2. Overall Objectives

2.1. Executive Summary
Standard Integrated Circuits are reaching their limits and need to evolve in order to meet the requirements
of next-generation computing. We anticipate that FPGAs (Field Programmable Gate Arrays) will play a
major role in this evolution: FPGAs are currently only one or two generations behind the most advanced
technologies for standard processors, and their application-specific hardware is an order of magnitude faster
than software solutions on standard processors. One of the most promising evolutions are next-generation
3D-FPGAs, which, thanks to their fast reconfiguration and inherent parallelism, will enable users to build
dynamically reconfigurable, massively parallel hardware architectures around them. This new paradigm opens
many opportunities for research, since, to our best knowledge, there are no methodologies for building such
architectures, and there are no dedicated languages for programming on them.

2 Activity Report INRIA 2014

We shall thus address the following topics: proposing an execution model and a design environment, in
which users can build customized massively parallel dynamically reconfigurable hardware architectures,
benefiting from the reconfiguration speed and parallelism of 3D-FPGAs; proposing dedicated languages
for programming applications on such architectures; and designing software engineering tools for those
languages: compilers, simulators, and formal verifiers. The overall objective is to enable an efficient and
safe programming on the customized architectures. Our target application domain are embedded systems
performing intensive signal/image processing (e.g., smart cameras, radars, and set-top boxes)

3. Research Program
3.1. New Models for New Technologies

Over the past 25 years there have been several hardware-architecture generations dedicated to massively
parallel computing. We have contributed to them in the past, and shall continue doing so in the Dreampal
project. The three generations, chronologically ordered, are:

• Supercomputers from the 80s and 90s, based on massively parallel architectures that are more or less
distributed (from the Cray T3D or Connection Machine CM2 to GRID 5000). Computer scientists
have proposed methods and tools for mapping sequential algorithms to those parallel architectures
in order to extract maximum power from them. We have contributed in this area in the past: http://
www.lifl.fr/west/team.html.

• Parallelism pervades the chips! A new challenge appears: hardware/software co-design, in order to
obtain performance gains by designing algorithms together with the parallel architectures of chips
adapted to the algorithms. During the previous decade many studies, including ours in the Inria
DaRT team, were dedicated to this type of co-design. DaRT has contributed to the development
of the OMG MARTE standard (http://www.omgmarte.org) and to its implementation on several
parallel platforms. Gaspard2, our implementation of this concept, was identified as one of the
key software tools developed at Inria: http://www.inria.fr/en/centre/lille/research/platforms-and-
flagship-software/flagship-software.

• The new challenge of the 2010s is, in our opinion, the integration of dynamic reconfiguration and
massive parallelism. New circuits with high-density integration and supporting dynamic hardware
reconfiguration have been proposed. In such architectures one can dynamically change the archi-
tecture while an algorithm is running on it. The Dynamic Partial Reconfiguration (DPR) feature
offered by recent FPGA boards even allows, in theory, to generate optimized hardware at runtime,
by adding, removing, and replacing components on a by-need basis. This integration of dynamic
reconfiguration and massive parallelism induces a new degree of complexity, which we, as computer
scientists, need to understand and deal with order to make possible the design of applications running
on such architectures. This is the main challenge that we address in the Dreampal project. We note
that we adress these problems as computer scientists; we do, however, collaborate with electronics
specialists in order to benefit from their expertise in 3-D FPGAs.

Excerpt from the HiPEAC vision 2011/12

“The advent of 3D stacking enables higher levels of integration and reduced costs for off-chip
communications. The overall complexity is managed due to the separation in different dies,
independently designed.”

FPGAs (Field Programmable Gate Arrays) are configurable circuits that have emerged as a privileged target
platform for intensive signal processing applications. FPGAs take advantage of the latest technological
developments in circuits. For example, the Virtex7 from Xilinx offers a 28-nanometer integration, which is
only one or two generations behind the latest general-purpose processors. 3D-Stacked Integrated Circuits (3D
SICs) consist of two or more conventional 2D circuits stacked on the top of each other and built into the same
IC. Recently, 3D SICs have been released by Xilinx for the Virtex 7 FPGA family. 3D integration will vastly
increase the integration capabilities of FPGA circuits. The convergence of massive parallelism and dynamic
reconfiguration in inevitable: we believe it is one of the main challenges in computing for the current decade.

http://www.lifl.fr/west/team.html
http://www.lifl.fr/west/team.html
http://www.inria.fr/en/centre/lille/research/platforms-and-flagship-software/flagship-software
http://www.inria.fr/en/centre/lille/research/platforms-and-flagship-software/flagship-software

Team DREAMPAL 3

By incorporating the configuration and/or data/program memory on the top of the FPGA fabric, with fast and
numerous connections between memory and elementary logic blocks (∼10000 connections between dies), it
will be possible to obtain dynamically reconfigurable computing platforms with a very high reconfiguration
rate. Such a rate was not possible before, due to the serial nature of the interface between the configuration
memory and the FPGA fabric itself. The FPGA technology also enables massively parallel architectures due
to the large number of programmable logic fabrics available on the chip. For instance, Xilinx demonstrated
3600 8-bit picoBlaze softcore processors running simultaneously on the Virtex-7 2000T FPGA. For specific
applications, picoBlaze can be replaced by specialized hardware accelerators or other IPs (Intellectual
Property) components. This opens the possibility of creating massively parallel IP-based machines.

3.2. Multi-softcore on 3D FPGA
From the 2010 Xilinx white paper on FPGAs:

“Unlike a processor, in which architecture of the ALU is fixed and designed in a general-
purpose manner to execute various operations, the CLBs (configurable logic blocks) can
be programmed with just the operations needed by the application... The FPGA architecture
provides the flexibility to create a massive array of application-specific ALUs..The new solution
enables high-bandwidth connectivity between multiple die by providing a much greater number
of connections... enabling the integration of massive quantities of interconnect logic resources
within a single package”

Softcore processors are processors implemented using hardware synthesis. Proprietary solutions include
PicoBlaze, MicroBlaze, Nios, and Nios II; open-source solutions include Leon, OpenRisk, and FC16. The
choice is wide and many new solutions emerge, including multi-softcore implementations on FPGAs. An
alternative to softcores are hardware accelerators on FPGAs, which are dedicated circuits that are an order
of magnitude faster than softcores. Between these two approaches, there are other various approaches that
connect IPs to softcores, in which, the processor’s machine-code language is extended, and IP invocations
become new instructions. We envisage a new class of softcores (we call them reflective softcores 1), where
almost everything is implemented in IPs; only the control flow is assigned to the softcore itself. The partial
dynamic reconfiguration of next-generation FPGAs makes such dynamic IP management possible in practice.
We believe that efficient reflective softcores on the new 3D-FPGAs should be as small as possible: low-
performance generic hardware components (ALU, registers, memory, I/O...) should be replaced by dedicated
high-performance IPs.

We are developing a sofcore processor called HoMade (http://www.lifl.fr/~dekeyser/Homade) following these
ideas.

In the multi-reflective softcores that we develop, some softcores will be slaves and others will be masters.
Massively parallel dynamically reconfigurable architectures of softcores can thus be envisaged. This requires,
additionally, a parallel management of the partial dynamic reconfiguration system. This can be done, for
example, on a given subset of softcores: a massively parallel reconfiguration will replace the current replication
of a given IP with the replication of a new IP. Thanks to the new 3D-FPGAs this task can be performed
efficiently and in parallel using the large number of 3D communication links (Through-Silicon-Vias). Our
roadmap for HoMade is to evolve towards this multi-reflective softcore model.

3.3. When Hardware Meets Software
HIPEAC vision 2011/12: "The number of cores and instruction set extensions increases with every new
generation, requiring changes in the software to effectively exploit the new features."

1Hereafter, by reflective system, we mean a system that is able to modify its own structure and behaviour while it is running. A reflective
softcore thus dynamically adds, removes, and replaces IPs in the application running on it, and is able to dynamically modify its own
program memory, thereby dynamically altering the program it is executing.

http://www.lifl.fr/~dekeyser/Homade

4 Activity Report INRIA 2014

When the new massively parallel dynamically reconfigurable architectures become reality users will need
languages for programming software applications on them. The languages will be themselves dynamic and
parallel, in order to reflect and to fully exploit the dynamicity and parallelism of the architectures. Thus,
developers will be able to invoke reconfiguration and call parallel instructions in their programs. This
expressiveness comes with a cost, however, because new classes of bugs can be induced by the interaction
between dynamic reconfiguration and parallelism; for example, deadlocks due to waiting for output from an
IP that does not exist any more due to a reconfiguration. The detection and elimination of such bugs before
deployment is paramount for cost-effectiveness and safety reasons.

Thus, we shall build an environment for developing software on parallel, dynamically reconfigurable architec-
tures that will include languages and adequate formal analyses and verification tools for them, in addition to
more traditional tools (emulators, compilers, etc). To this end we shall be using formal-semantics frameworks
associated with easy-to-use formal verification tools in order to formally define our languages of interest and
allow users to formally verify their programs. The K semantic framework (http://k-framework.org), devel-
oped jointly by Univs. Urbana Champaign, USA, and Iasi, Romania) is one such framework, which is mature
enough (it has allowed defining a formal semantics of the largest subset of the C language to date, as well as
many other languages from essentially all programming paradigms) and is familiar to us from previous work.
In K, one can rapidly prototype a language definition and try several versions of the syntax and semantics
of instructions. This is important in our project, where the proposed programming languages (in particular,
the HoMade assembly language) will go through several versions before being stabilized. Moreover, once a
language is defined in K one gets an interpreter of the language and one gains access to formal verification
tools for free. We are also developing new analysis verification tools for K (in collaboration with the K team),
which will be adapted and used in the Dreampal project.

4. New Software and Platforms
4.1. New Software and Platforms

Download page : https://gforge.inria.fr/frs/?group_id=3646

4.1.1. HoMade
HoMade is a softcore processor that we have started developing in 2012. The current version is reflective (i.e.,
the program it executes is self-modifiable), and statically configurable; dynamically reconfigurable multi-
processors are the next steps. Users have to add to it the functionality they need in their applications via IPs.
We have also being developing a library of IPs for the most common processor functions (ALU, registers, ...).
All the design is in VHDL except for some schematic specifications.

The V5 version of HoMade has been developed in the Spring 2014. It has been used by ∼140 4th-year
computer science students at Univ. Lille enrolled in the hardware architecture course (https://sites.google.
com/site/tpm1aev/home). The new features of V5 are listed in Section 5.2.

4.1.2. JHomade
JHomade is a software suite written in JAVA, including compilers and tools for the HoMade processor. It
allows us to compile HiHope programs to Homade machine code and load the resulting binaries on FPGA
boards. It was first released in 2013. The second version in 2014 includes several new features, like a C-
frontend, a binary decoder and a code-generator for VHDL simulation. New features of the HiHope language
are described in more detail in Section 5.3.

4.1.3. Kcheck
Kcheck is a tool for the symbolic execution of programs in arbitrary languages defined in the K framework
(http://k-framework.org), such as C and Java as well as the languages HiHope and Homade machine-code
languages developed in out team. It also allow users to formally verify programs against specifications written
in Reachability Logic, a specification formalism that can be seen as a language-independent Hoare logic. More
information about the theory underlying Kcheck is given in Section 5.5.

http://k-framework.org
https://gforge.inria.fr/frs/?group_id=3646
https://sites.google.com/site/tpm1aev/home
https://sites.google.com/site/tpm1aev/home
http://k-framework.org

Team DREAMPAL 5

In 2014 we have developed a new and improved version of our tool, in order to keep up with the new modular
infrastructure of the K framework. An online interface has been developed and is available at https://fmse.
info.uaic.ro/tools/kcheck/. We have also started (since Nov. 2014) a development in the Coq proof assistant in
order to obtained certificates for the program verifications performed by our tool.

5. New Results
5.1. Highlights of the Year

The papers [4] and [6] are published in journals (Software Testing Verification and Analisys, resp. Formal
Aspects of Computing) that are among the best in their respective fields.

5.2. HoMade
HOMADE V5 is available from 03/2014. New features cover :

• new pipeline architecture with delayed conditional branch
• new unified FSM: Pipeline 2 stages
• renumbering of some IPs
• new activity management on the Slaves in 1D / 2D : by the master OnX , OnY, OnXY, and by the

slaves the IPsleep removes the Slave from the next SPMDcall
• new bit per bit loading of program memories, for master and slaves
• new names for some components.
• new versions of a lot of IPs (inside)
• new communication network between Slaves: 2D torus ring with broadcast and communication on

x or y axis
• new input binary file format (to respect !!)
• new test_bench for fast reading of instruction files
• new UART wrapper
• new assembler Hasm for those that do not speak binary
• nexys3 version for cheap platform experimentation (does not support more than 2x1 Slaves)
• V6 V7 xilinx supports up to 12 x 12 slaves
• Isim supports many more slaves !!!

More details can be found on www.lifl.fr/~dekeyser/Homade.

5.3. HiHope : A higher level language for the HoMade processor
HiHope is a programming language inspired by Forth used to program the HoMade processor. It includes lan-
guage constructs for switching at runtime between hardware functions (implemented by IPs) and software
functions in a transparent way. We also propose the notion of parallel function language construct. As a result,
HiHope programs can use either hardware IPs or software functions, and can perform both sequential and
parallel function calls, as well as sequential and parallel function redefinitions.

5.4. Integrating Profiling into MDE Compilers
This work [3] aims at improving performance by returning to the high-level models, specific execution data
from a profiling tool enhanced by smart advices computed by an analysis engine. In order to keep the
link between execution and model, the process is based on a traceability mechanism. Once the model is
automatically annotated, it can be re-factored aiming better performances on the re-generated code. Hence, this
work allows keeping coherence between model and code without forgetting to harness the power of parallel
architectures. The example uses a transformation chain from UML-MARTE models to OpenCL code.

https://fmse.info.uaic.ro/tools/kcheck/
https://fmse.info.uaic.ro/tools/kcheck/

6 Activity Report INRIA 2014

5.5. Language-Independent Symbolic Execution, Program Equivalence, and
Program Verification
A significant part of our research project consists in applying formal techniques for symbolically executing
and formally verifying HiHope programs, as well as for formally proving the equivalence of HiHope programs
with the corresponding HoMade assembly and machine-code programs obtained by compilation of HiHope.

• Symbolic execution will detect bugs (e.g., stack undeflow) in HiHope programs. Additionaly,
symbolic execution is the natural execution manner of HiHope programs as soon as they contain
(typically, underspecified) hardware IPs;

• program verification will guarantee the absence of bugs (with respect to specified properties, e.g., no
stack underflow, no invocation of unavailable IPs, ...);

• program equivalence will guarantee that such above-mentioned bugs are also absent from the
HoMade assembly and machine-code programs obtained by compilation of HiHope source code.

Since these languages are still evolving we decided to work (together with our colleagues from Univ.
Iasi, Romania) on language-independent symbolic execution, program-equivalence, and program-verification
techniques. In this way, when all the languages in our project become stable, we will be readily able to
instantiate the above generic techniques on (the K formal definitions of) the languages in question. We note that
all the techniques described below are also independent of K: they are applicable to other language-definition
frameworks that use similar rewriting-based formal operational semantics.

5.5.1. Symbolic Execution
In [15] we propose a language-independent symbolic execution framework. The approach is parameterised by
a language definition, which consists of a signature for the language’s syntax and execution infrastructure, a
model interpreting the signature, and rewrite rules for the language’s operational semantics. Then, symbolic
execution amounts to performing a so-called symbolic rewriting, which consists in changing both the model
and the manner in which the operational semantics rules are applied. We prove that the symbolic execution
thus defined has the properties naturally expected from it. A prototype implementation of our approach was
developed in the K Framework. We demonstrate the genericity of our tool by instantiating it on several
languages, and show how it can be used for the symbolic execution, bounded model checking, and deductive
verification of several programs. With respect to earlier versions of this work, we have redefined symbolic
execution in a more generic way and have included applications to model checking and deductive verification.
The current version of the report [15] is submitted to a journal and is based on Andrai Arusoaie’s PhD
thesis [1], defended in September 2014 at Univ. Iasi (Romania). Andrei was co-supervised by Vlad Rusu
and has since joined Dreampal as a postdoc.

5.5.2. Program Equivalences
In [6] we propose a logic and a deductive system for stating and automatically proving the equivalence of
programs written in languages having a rewriting-based operational semantics. The chosen equivalence is
parametric in a so-called observation relation, and it says that two programs satisfying the observation relation
will inevitably be, in the future, in the observation relation again. This notion of equivalence generalises
several well-known equivalences and is appropriate for deterministic (or, at least, for confluent) programs.
The deductive system is circular in nature and is proved sound and weakly complete; together, these results
say that, when it terminates, our system correctly solves the given program-equivalence problem. We show
that our approach is suitable for proving equivalence for terminating and non-terminating programs as well
as for concrete and symbolic programs. The latter are programs in which some statements or expressions are
symbolic variables. By proving the equivalence between symbolic programs, one proves the equivalence of
(infinitely) many concrete programs obtained by replacing the variables by concrete statements or expressions.
The approach is illustrated by proving program equivalence in two languages from different programming
paradigms. The examples in the paper, as well as other examples, can be checked using an online tool. This
work was started in 2012. With respect to earlier versions, the new journal publication [6] includes a new
and more general presentation of program equivalence as a temporal-logic formula, the generalisation of the

Team DREAMPAL 7

approach to nondeterministic-confluent language semantics, substantially more compact proofs, and a new
application to corecursive programs.

In another work [10] we deal with a different kind of equivalence: mutual equivalence, which says that two
programs are mutually equivalent if they both diverge or they end up in similar states. Mutual equivalence is an
adequate notion of equivalence for programs written in deterministic languages. It is useful in many contexts,
such as capturing the correctness of, program transformations within the same language, or capturing the
correctness of compilers between two different languages. In the case of different languages one needs an
operation called language aggregation, which we present in [11] in more detail, that combine two languages
into a single one. We introduce a language-independent proof system for mutual equivalence, which is
parametric in the operational semantics of two languages and in a state-similarity relation. The proof system
is sound: if it terminates then it establishes the mutual equivalence of the programs given to it as input. We
illustrate it on two programs in two different languages (an imperative one and a functional one), that both
compute the Collatz sequence.

5.5.3. Program Verification
In [16] we present an automatic, language-independent program verification approach and prototype tool based
on symbolic execution. The program-specification formalism we consider is Reachability Logic, a language-
independent alternative to Hoare logics. Reachability Logic has a sound and relatively complete deduction
system that offers a lot of freedom to the user regarding the manner and order of rule application, but it
lacks a strategy for automatic proof construction. Hence, we propose a procedure for proof construction, in
which symbolic execution plays a major role. We prove that, under reasonable conditions on its inputs (the
operational semantics of a programming language, and a specification of a program, both given as sets of
Reachability Logic formulas) our procedure is partially correct: if it terminates it correctly answers (positively
or negatively) to the question of whether the given program specification holds when executing the program
according to the given semantics. Termination, of course, cannot be guaranteed, since program-verification is
an undecidable problem; but it does happen if the provided set of goals includes enough information in order
to be circularly provable (using each other as hypotheses). We introduce a prototype program-verification tool
implementing our procedure in the K language-definition framework, and illustrate it by verifying nontrivial
programs written in languages defined in K. With respect to earlier versions of this work from 2013, program
verification is now presented as a procedure (instead of a proof system), which leads to a direct implementation
in the new version of our prototype tool. We also have a new theoretical result: weak completeness, which says
that a negative answers returned by the verification procedure imply the fact that that the program does not
meet its specification. Finally, since Andrei Arusoaie’s arrival in the Dreampal team as a postdoc (Nov 2014)
we have started working on certifying our verification procedure in the Coq proof assistant.

5.5.4. Language Definitions as Rewrite Theories
In [8] we study the relationships between language definition frameworks (e.g., the K framework) and rewrite
theories (e.g., as those embodied in the Maude tool). K is a formal framework for defining the operational
semantics of programming languages. It includes software tools for compiling K language definitions to
Maude rewrite theories, for executing programs in the defined languages based on the Maude rewriting engine,
and for analyzing programs by adapting various Maude analysis tools. A recent extension to the K tool suite
is an automatic transformation of language definitions that enables the symbolic execution of programs, i.e.,
the execution of programs with symbolic inputs. In this paper we investigate more particularly the theoretical
relationships between K language definitions and their translations to Maude, between symbolic extensions
of K definitions and their Maude encodings, and how the relations between K definitions and their symbolic
extensions are reflected on their respective representations in Maude. These results show, in particular, how
analyses performed with Maude tools can be formally lifted up to the original language definitions. The results
presented in this paper provide the theoretical underpinnings for the current version of the K-Maude tool.

5.6. Hardware chain for partial reconfiguration

8 Activity Report INRIA 2014

The cost overhead due to the use of a softcore processor (MicroBlaze) to drive dynamic reconfiguration led
us to explore alternative solutions. The one we have adopted is the use of a dedicated hardware IP (that can
be invoked by HoMade) to control and manage dynamic and partial reconfiguration. This approach has led
us to develop a complete hardware chain for partial bitstreams reads and writes. The proposed architecture
is based on an external memory controller (DDR3) whose role is to manage bitstreams transfers from and
to the DDR. Bitstreams loading are managed by a HoMade instruction implemented in a dedicated IP that
drives the ICAP interface to transfer data into the reconfigurable area through the physical ICAP. One of the
most important performance criteria of dynamic and partial reconfiguration is the reconfiguration time, that
we always try to reduce while taking into account the compromise cost / area, speed and power consumption.
Preliminary results give a transfer rate exceeding 500 MB/s. Such a result is clearly promising, especially since
our hardware reconfiguration chain is constructed to be easily adaptable to SPMD (multi HoMade) needing
parallel partial reconfiguration. This work has been the subject of a first communication in the GDR / SOCSIP
conference in Paris: 11, 12, 13 June 2014.

5.7. Generic pixel distribution for parallel video processing application
In the frame of the PhD thesis of Karim Ali, we exploited this year the usage of parallel architectures for
real-time image/video processing applications. Our main concern was the data distribution according to the
parallelism level and respecting real-time processing constraint. As a first step, we proposed a generic pixel
distribution model to be used with different image/video applications. Several parameters in the model can
be configured according to the required size of the distributed macro-block with the possibility to control the
sliding step in both horizontal and vertical directions. We have implemented our architecture on the Xilinx
Zynq ZC706 FPGA evaluation board for two applications: the video downscaler (1:16) and the convolution
filter. The experimental results showed the low hardware cost of the solution and how flexible is the model to
be configured for different distribution scenarios. The architecture and experimental results were published in
a paper entitled "A Generic Pixel Distribution Architecture for Parallel Video Processing" at Reconfigurable
computing and FPGA international conference (ReConFig) in December 2014, Cancun, Mexico [7].

As a next step, we will reduce the operating clock frequency to decrease the power consumption while
increasing the number of processing elements in the parallel architecture to maintain the same performance
results. In this way, we will obtain a set of different design points differ in (area, power, other factors) and
the system will have the ability to adapt its structure by moving between different design points according to
the available resources to keep the same performance measurements. Furthermore, we will target intelligent
transportation system, specially dynamic obstacle detection and tracking for autonomous vehicle navigation
in collaboration with NAVYA (http://navya-technology.com).

5.8. Massively Parallel Dynamically Reconfigurable Multi-FPGA
In the frame of the PhD thesis of Venkatasubramanian Viswanathan, we conceived and validated a massively
parallel and dynamically reconfigurable execution model for next generation high performance embedded
systems. We have designed a multi-FPGA platform in order to conceive the massively parallel dynamically
reconfigurable execution model. We have used several IP cores developed during the first two years of my PhD
in order to test and validate the proposed model. We have proposed a new parallel dynamic reconfiguration
mechanism for our architecture. We use our parallel reconfiguration model to reconfigure a subset or several
IPs in parallel. We have proposed a partial reconfiguration model for next generation 3D FPGAs well-traced
on the execution model (SPMD) in order to reconfigure in parallel a subset of the computing nodes. Finally, we
have used the PicoComputing platform as an example to validate our proposed execution and reconfiguration
models.

In order to demonstrate various features of such an architecture, we have implemented a scalable distributed
secure H.264 encoding application with a FMC based high-speed sFPDP (serial Front Panel Data Port)
data acquisition protocol to capture RAW video data. The system has been implemented on 3 different
FPGAs, respecting the SPMD execution model managing several input video sources in parallel. We have
measured various performance metrics of the proposed massively parallel dynamically reconfigurable system

http://navya-technology.com

Team DREAMPAL 9

and demonstrated several benefits. This work is going to be published in the FPGA 2015 conference as a poster
titled "A Parallel And Scalable Multi-FPGA based Architecture for High Performance Applications" [13].

Later an ICAP controller was setup for dynamic partial reconfiguration in order to swap IPs during runtime
on a single FPGA. We have used this IP along with the parallel communication feature of the multi-FPGA
architecture, in order to broadcast a partial bitstream to all FPGAs at the same time and to do a parallel DPR
in several FPGAs, thus emulating the reconfiguration model for next generation 3D FPGAs. These results
represent a conceptual proof for a massively parallel dynamically reconfigurable next generation embedded
computers that will use 3D PFGAs and reconfigure several logic layers in parallel.

5.9. HoMade-based MPSoC
The goal of this work is to build an MPSoC based on HoMade. The aimed system is a completely dynamically
reconfigurable system. This mean that both the processing elements (HoMade) and the interconnection
network are dynamically reconfigurable. The basic block in this system developped here is the interconnection
network. It is a MIN (Multistage Interconnection Network) that would utilize oversizing techniques in order
to reconfigure the network depending on the traffic.

5.10. Communication-Computation Overlap in Massively Parallel
System-on-Chip
The Synchronous Communication Asynchronous Computation (SCAC) model is an execution model ded-
icated to the Massively Parallel System-on-Chip. This model proposes a novel processing paradigm, teh
communication-computation overlap [17]. This concept does not only consider the programming level but
also the implementation level. Using a decoupled control structure, the synchronous communication control is
performed independently of the asynchronous computation control. Separating these two control phases allows
the programmer to define programming strategies that overlap communication by computation to decrease the
execution time.

To achieve this communication-computation overlap in SCAC architecture while avoiding the centralized
control, in addition to the master controller, we define a second hierarchical control level, namely the slave
controllers. The concept of this dual ontrol structure departs from the centralized configuration and instead of a
uni-processor master controlling a set of parallel Processing Elements (PEs), the master cooperates with a grid
of parallel slave controllers which supervises the activities of cluster of PEs. Based on this decoupled control
structure, the programmer can manage the master-slave program to overlap communication by computation
phase. Therefore, the basic idea to implement this paradigm is to divide the principal program into small
blocks of parallel instructions, called Slave Program (SP), and send these blocks to the activated PEs of
the system. Then, according to a predefined mask, the slave controllers send the begin execution orders. In
parallel to computation, the slave controllers manage the synchronous inter-node communication. Distinguish
communication from computation needs the separation of these two phases in different blocks. This repartition
should be provided at programming level. Then, the overlapped execution of these blocks will be done in
parallel according to the program description.

The aim of these last works is to define a new paradigm of a communication-computation overlap in massively
parallel System-on-Chip. This paradigm allows to decrease the execution time of parallel programs using
specific strategies in the programming level and a partially decoupled control system in the hardware level.
The difficulty of implementing this paradigm lies in the coordination between the programming level and the
architecture designing level in order to hide the communication cost.

6. Bilateral Contracts and Grants with Industry

6.1. Bilateral Contracts with Industry

10 Activity Report INRIA 2014

Collaboration contract with Nolam Embedded Systems: In conjunction with the CIFRE grant of Venkatasub-
ramanian Viswanathan, a collaboration contract is established with Nolam ES. The objective is to design an
innovative embedded computing platform supporting massively parallel dynamically reconfigurable execution
model. The use-cases of this platform cover several application domains such as medical, transportation and
aerospace.

Collaboration contract with NAVYA: In conjunction with the doctoral grant of Karim Ali, a collaboration
contract is established with NAVYA. The objective is to design an innovative embedded system dedicated for
dynamic obstacle detection and tracking for autonomous vehicle navigation.

7. Partnerships and Cooperations

7.1. Regional Initiatives
The CPER has financed the visit of Prof. Dorel Lucanu from Univ. Iasi (Romania) in July and August 2014.

7.2. International Initiatives
7.2.1. Participation In other International Programs

Wissem Chouchene is financed by the Euramus Mondus programme.

7.3. International Research Visitors
7.3.1. Visits of International Scientists

Prof. Dorel Lucanu from Univ. Iasi (Romania) visited us in July and August 2014. We continued work
on language-independent program-verification techniques and on the formal definitions of the HiHope and
HoMade assembler languages, as well as on the formally proved correctness of communication IPs.

8. Dissemination

8.1. Promoting Scientific Activities
8.1.1. Scientific events organisation
8.1.1.1. member of the organizing committee

F. Guyomarch, P. Marquet and S. Meftali are members of the ComPAS organizing committee. This conference
will take place in Lille in 2015.

F. Guyomarch and S. Meftali are members of the Archi organizing committee. This summer school will take
place in Lille in 2015.

R. Ben Atitallah is a member of the Green Days@Rennes organizing committee. The scientific event was held
in Rennes, July 2014.

8.1.2. Scientific events selection
8.1.2.1. responsable of the conference program committee

S. Meftali is responsable of the ComPAS conference program committee. This conference will take place in
Lille in 2015.

8.1.2.2. member of the conference program committee

F. Guyomarch is a member of the ComPAS program committee.

Team DREAMPAL 11

V. Rusu is a member of the WRLA2014 program committee.

8.2. Teaching - Supervision - Juries
8.2.1. Teaching

Licence : Philippe Marquet, Introduction to Computer Science, 15h, Secondary Education Teatcher
Training, Université Lille 1, France
Licence : Philippe Marquet, System Programming, 60h, L3, Université Lille 1, France
Master: Philippe Marquet, Design of Operating System, 60h, M1, Université Lille 1, France
Master: Philippe Marquet, Web of Things: Embedded System Programming, 20h, M1, Université
Lille 1, France
Master: Philippe Marquet, Parallel and Distributed Programming, 24h, M1, Université Lille 1,
France
Master: Philippe Marquet, Introduction to Innovation and Research, 15h, M2, Université Lille 1,
France
Licence : Samy Meftali, Architecture des ordinateurs, 75h, L2, UFR IEEA, Université Lille 1,
France
Licence : Samy Meftali, Programmation du matériel, 40h, L3, UFR IEEA, Université Lille 1, France
Master: Samy Meftali, Architectures évoluées des ordinateurs, 80h, M1, UFR IEEA, Université
Lille 1, France
Master: Samy Meftali, Vérification des SoC, 16h, M2, UFR IEEA, Université Lille 1, France
Licence : Jean-Luc Dekeyser, Architecture des ordinateurs, 80h, L2, UFR IEEA, Université Lille 1,
France
Master: Jean-Luc Dekeyser, Architectures évoluées des ordinateurs, 105h, M1, UFR IEEA, Univer-
sité Lille 1, France
Licence : F. Guyomarch, Algorithmique et programmation, 144h, L1, IUT-A (Univ. Lille 1)
Licence : F. Guyomarch, Modélisation et théorie des langages, 64h, L2, IUT-A (Univ. Lille 1)
Licence : F. Guyomarch, Modélisation mathématique, 28h, L2, IUT-A (Univ. Lille 1)
Licence : Rabie Ben Atitallah, Introduction to Computer Architecture and Operating System, 36h,
L2, Université de Valenciennes et du Hainaut-Cambrésis, France
Licence : Rabie Ben Atitallah, Algorithms and Language C Programming, 48h, L2, Université de
Valenciennes et du Hainaut-Cambrésis, France
Master: Rabie Ben Atitallah, Tools for Embedded System Design, 32h, M2, Université de Valenci-
ennes et du Hainaut-Cambrésis, France
Master: Rabie Ben Atitallah, Development and Compilation of Embedded Application, 32h, M2,
Université de Valenciennes et du Hainaut-Cambrésis, France
Master : V. Rusu, Architecture avancée des ordinateurs, 42h, M1, UFR IEEA, (Univ. Lille 1)
Master : V. Rusu, Spécification et vérification de logiciels , 27h, M1, UFR IEEA, (Univ. Lille 1)

8.2.2. Supervision
PhD : A. Arusoaie, A Generic Framework for to Symbolic Execution, Univ. Iasi (Romania), Sept
2014. Supervisors: D. Lucanu, V. Rusu.
PhD in progress : H. Krichene, SCAC : Modèle d’exécution générique faiblement couplé pour les
architectures massivement parallèle sur puce, March 2011, Philippe Marque & Jean-Luc Dekeyser
PhD in progress : W. Chouchene, Partial reconfiguration model for dynamic and massively parallel
architecture : towards 3D FPGAs, 01/10/2013, Jean-Luc Dekeyser, Rabie Ben Atitallah and Samy
Meftali

12 Activity Report INRIA 2014

PhD in progress : K. Ali, Massively parallel dynamically reconfigurable architecture for real-time
vidéo processing applications, 01/10/2013, Jean-Luc Dekeyser, Rabie Ben Atitallah
PhD in progress : V. Viswanathan, Parallel and Dynamic reconfigurable computing system,
01/02/2012, Jean-Luc Dekeyser and Rabie Ben Atitallah
PhD in progress : V. Craciun, Hardware monitoring, Sept 2014, F. Guyomarch and D. Lucanu.

8.2.3. Juries
Doctorat de Amel Khiar, Virtualisation des communications au sein d’une plateforme hétérogène
et reconfigurable dynamiquement, Université de Cergy Pontoise, 5 novembre 2014, Samy Meftali
(examinateur).
Doctorat de Feriel Ben Abdallah, Modeling and Formal Verification of Power Management for
the Design of Systems-on-Chip, Université de Valenciennes, 12 décembre 2014, Samy Meftali
(examinateur).

8.3. Popularization
Philippe Marquet is vice-president of the Société informatique de France, the French learned society in
computer science.

Philippe Marquet is involved in scientific popularization and co-animate the group of people interested in
science popularization within the Inria Lille - Nord Europe Research Center. He is also of member of the
group for networking about computer science popularization inside Inria.

He organizes and participates to the visit of classrooms on the Inria Plateau at EuraTechnologies, promoting
interactions between the scientific community and secondary school students and their teachers. He organizes
and/or animates events with children and/or adults in order to initiate them to code via Scratch or to computer
science via unplugged activities (Poitiers, February 2014; Paris, October 2014; Inria Lille, December 2014).

Philippe Marquet is a member of the editorial board of 1024, the new bulletin of the Société informatique de
France that aims at showing informatics, science and technology, in all its dimensions. 1024 targets a wide
audience, from high school students to researcher, including anyone interested in computer science.

Hana Krichene participated in a contest "my thesis in 180 seconds", March 2014 - University Lille 1. The aim
of the competition is to present the PhD student researches in simple terms in 3 minutes, with a clear, concise
and convincing presentation to a diverse audience.

9. Bibliography
Publications of the year

Doctoral Dissertations and Habilitation Theses

[1] A. ARUSOAIE. A Generic Framework for Symbolic Execution:Theory and Applications, Alexandru Ioan Cuza,
University of Iasi, September 2014, https://hal.inria.fr/tel-01094765

[2] R. BEN ATITALLAH. Dynamic reconfiguration and low power design : towards self-adaptive massively parallel
embedded systems, Université de Valenciennes et Hainaut-Cambrésis, December 2014, Habilitation à diriger
des recherches, https://hal.inria.fr/tel-01104009

Articles in International Peer-Reviewed Journals

[3] V. ARANEGA, A. W. DE OLIVEIRA RODRIGUES, A. ETIEN, F. GUYOMARCH, J.-L. DEKEYSER. Integrating
Profiling into MDE Compilers, in "International Journal of Software Engineering & Applications (IJSEA)",
July 2014, vol. 5, no 4, 20 p. [DOI : 10.5121/IJSEA.2014.5401], https://hal.inria.fr/hal-01053031

https://hal.inria.fr/tel-01094765
https://hal.inria.fr/tel-01104009
https://hal.inria.fr/hal-01053031

Team DREAMPAL 13

[4] V. ARANEGA, J.-M. MOTTU, A. ETIEN, T. DEGUEULE, B. BAUDRY, J.-L. DEKEYSER. Towards an
Automation of the Mutation Analysis Dedicated to Model Transformation, in "Software Testing, Verification
and Reliability", April 2014 [DOI : 10.1002/STVR.1532], https://hal.inria.fr/hal-00988164

[5] A. A. E. CADI, R. B. ATITALLAH, S. HANAFI, N. MLADENOVIC, A. ARTIBA. New MIP model for
multiprocessor scheduling problem with communication delays, in "Optimization Letters", September 2014,
15 p. [DOI : 10.1007/S11590-014-0802-2], https://hal.inria.fr/hal-01104613

[6] D. LUCANU, V. RUSU. Program Equivalence by Circular Reasoning, in "Formal Aspects of Computing",
2014, 15 p. , forthcoming [DOI : 10.1007/S00165-014-0319-6], https://hal.inria.fr/hal-01065830

International Conferences with Proceedings

[7] K. M. A. ALI, R. BEN ATITALLAH, S. HANAFI, J.-L. DEKEYSER. A Generic Pixel Distribution Architecture
for Parallel Video Processing, in "International Conference on Reconfigurable Computing and FPGAs -
ReConFig 2014", Cancun, Mexico, December 2014, https://hal.inria.fr/hal-01070541

[8] A. ARUSOAIE, D. LUCANU, V. RUSU, T.-F. SERBANUTA, A. STEFANESCU, G. ROSU. Language Definitions
as Rewrite Theories, in "International Workshop on Rewriting Logic and Application", Grenoble, France,
April 2014, To appear in Springer LNCS, https://hal.inria.fr/hal-00950775

[9] M. BOUAIN, V. VISWANATHAN, R. BEN ATITALLAH, J.-L. DEKEYSER. Communication-centric design for
FMC based I/O system, in "ReCoSoC - 9th International Symposium on Reconfigurable and Communication-
Centric Systems-on-Chip", Montpellier, France, May 2014, https://hal.inria.fr/hal-01104610

[10] S. CIOBÂCAˇ, D. LUCANU, V. RUSU, G. ROSU. A Language-Independent Proof System for Mutual Program
Equivalence, in "ICFEM’14 - 16th International Conference on Formal Engineering Methods", Luxembourg-
Ville, Luxembourg, Springer, November 2014, forthcoming, https://hal.inria.fr/hal-01030754

[11] D. LUCANU, S. CIOBACA, V. RUSU, G. ROSU. A theoretical foundation for language aggregation, in "22nd
International Workshop on Algebraic Development Techniques", Sinaia, Romania, September 2014, https://
hal.inria.fr/hal-01076641

[12] C. TRABELSI, R. B. ATITALLAH, S. MEFTALI, J.-L. DEKEYSER. Model-Driven design flow for distributed
control in reconfigurable FPGA systems, in "Conference on Design and Architectures for Signal and Image
Processing (DASIP 2014)", Madrid, Spain, October 2014, https://hal.inria.fr/hal-01104617

[13] V. VISWANATHAN, R. BEN ATITALLAH, J.-L. DEKEYSER, B. NAKACHE, M. NAKACHE. Redefin-
ing the role of FPGAs in the next generation avionic systems, in "FPGA - ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays", Monterey, United States, February 2014
[DOI : 10.1145/2554688.2554744], https://hal.inria.fr/hal-01104615

Conferences without Proceedings

[14] S. CIOBÂCAˇ, D. LUCANU, V. RUSU, G. ROSU. Programming Language Aggregation with Applications in
Equivalence Checking, in "PAS - Third International Seminar on Program Verification, Automated Debugging
and Symbolic Computation", Vienne, Austria, July 2014, https://hal.inria.fr/hal-00998930

Research Reports

https://hal.inria.fr/hal-00988164
https://hal.inria.fr/hal-01104613
https://hal.inria.fr/hal-01065830
https://hal.inria.fr/hal-01070541
https://hal.inria.fr/hal-00950775
https://hal.inria.fr/hal-01104610
https://hal.inria.fr/hal-01030754
https://hal.inria.fr/hal-01076641
https://hal.inria.fr/hal-01076641
https://hal.inria.fr/hal-01104617
https://hal.inria.fr/hal-01104615
https://hal.inria.fr/hal-00998930

14 Activity Report INRIA 2014

[15] A. ARUSOAIE, D. LUCANU, V. RUSU. A Generic Framework for Symbolic Execution, Inria, March 2014,
no RR-8189, 27 p. , https://hal.inria.fr/hal-00766220

[16] A. ARUSOAIE, D. LUCANU, V. RUSU. Language-Independent Program Verification Using Symbolic
Execution, Inria, October 2014, no RR-8369, 28 p. , https://hal.inria.fr/hal-00864341

Other Publications

[17] H. KRICHENE, M. BAKLOUTI, M. ABID, P. MARQUET, J.-L. DEKEYSER. Communication-Computation
overlap in massively parallel System on Chip, May 2014, Tunisian Workshop on Embedded Systems Design
(TWESD’2014), https://hal.archives-ouvertes.fr/hal-01104157

https://hal.inria.fr/hal-00766220
https://hal.inria.fr/hal-00864341
https://hal.archives-ouvertes.fr/hal-01104157

