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2. Overall Objectives

2.1. Overall Objectives
Team Ecuador studies Algorithmic Differentiation (AD) of computer programs, blending :

• AD theory: We study software engineering techniques, to analyze and transform programs mechan-
ically. Algorithmic Differentiation (AD) transforms a program P that computes a function F , into a
program P’ that computes analytical derivatives of F . We put emphasis on the adjoint mode of AD,
a sophisticated transformation that yields gradients for optimization at a remarkably low cost.

• AD application to Scientific Computing: We adapt the strategies of Scientific Computing to take
full advantage of AD. We validate our work on real-size applications.

We want to produce AD code that can compete with hand-written sensitivity and adjoint programs used in the
industry. We implement our algorithms into the tool Tapenade, one of the most popular AD tools now.

Our research directions :

• Efficient adjoint AD of frequent dialects e.g. Fixed-Point loops.

• Development of the adjoint AD model towards Dynamic Memory Management.

• Development of the adjoint AD model towards Parallel Languages.

• Optimal shape design and optimal control for steady and unsteady simulations. Higher-order
derivatives for uncertainty quantification.

• Adjoint-driven mesh adaptation.
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3. Research Program

3.1. Algorithmic Differentiation
Participants: Laurent Hascoët, Valérie Pascual, Ala Taftaf.

algorithmic differentiation (AD, aka Automatic Differentiation) Transformation of a program, that
returns a new program that computes derivatives of the initial program, i.e. some combination of
the partial derivatives of the program’s outputs with respect to its inputs.

adjoint Mathematical manipulation of the Partial Derivative Equations that define a problem, obtain-
ing new differential equations that define the gradient of the original problem’s solution.

Algorithmic Differentiation (AD) differentiates programs. The input of AD is a source program P that, given
some X ∈ Rn, returns some Y = F (X) ∈ Rm, for a differentiable F . AD generates a new source program
P ′ that, given X , computes some derivatives of F [14].

The resulting P ′ reuses the control of P . For any given control, P is equivalent to a sequence of instructions,
which is identified with a composition of vector functions. Thus, if

P is {I1; I2; · · · Ip; },
F then is fp ◦ fp−1 ◦ · · · ◦ f1,

(1)

where each fk is the elementary function implemented by instruction Ik. AD applies the chain rule to obtain
derivatives of F . Calling Xk the values of all variables after instruction Ik, i.e. X0 = X and Xk = fk(Xk−1),
the Jacobian of F is

F ′(X) = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) (2)

which can be mechanically written as a sequence of instructions I ′k. Combining the I ′k with the control of P
yields P ′, and therefore this differentiation is piecewise.

AD can be generalized to higher level derivatives, Taylor series, etc. In practice, many applications only need
cheaper projections of F ′(X) such as:
• Sensitivities, defined for a given direction Ẋ in the input space as:

F ′(X).Ẋ = f ′p(Xp−1) . f
′
p−1(Xp−2) . · · · . f ′1(X0) . Ẋ . (3)

This expression is easily computed from right to left, interleaved with the original program instruc-
tions. This is the tangent mode of AD.

• Adjoints, defined after transposition (F ′∗), for a given weighting Y of the outputs as:

F ′∗(X).Y = f ′∗1 (X0).f
′∗
2 (X1). · · · .f ′∗p−1(Xp−2).f

′∗
p (Xp−1).Y . (4)

This expression is most efficiently computed from right to left, because matrix×vector products
are cheaper than matrix×matrix products. This defines the adjoint mode of AD, most effective for
optimization, data assimilation [28], adjoint problems [23], or inverse problems.

Adjoint-mode AD turns out to make a very efficient program, at least theoretically [25]. The computation time
required for the gradient is only a small multiple of the run-time of P . It is independent from the number
of parameters n. In contrast, computing the same gradient with the tangent mode would require running the
tangent differentiated program n times.
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However, the Xk are required in the inverse of their computation order. If the original program overwrites a
part of Xk, the differentiated program must restore Xk before it is used by f ′∗k+1(Xk). Therefore, the central
research problem of adjoint-mode AD is to make the Xk available in reverse order at the cheapest cost, using
strategies that combine storage, repeated forward computation from available previous values, or even inverted
computation from available later values.

Another research issue is to make the AD model cope with the constant evolution of modern language
constructs. From the old days of Fortran77, novelties include pointers and dynamic allocation, modularity,
structured data types, objects, vectorial notation and parallel communication. We keep developing our models
and tools to handle these new constructs.

3.2. Static Analysis and Transformation of programs
Participants: Laurent Hascoët, Valérie Pascual, Ala Taftaf.

abstract syntax tree Tree representation of a computer program, that keeps only the semantically
significant information and abstracts away syntactic sugar such as indentation, parentheses, or
separators.

control flow graph Representation of a procedure body as a directed graph, whose nodes, known as
basic blocks, each contain a sequence of instructions and whose arrows represent all possible
control jumps that can occur at run-time.

abstract interpretation Model that describes program static analysis as a special sort of execution,
in which all branches of control switches are taken concurrently, and where computed values are
replaced by abstract values from a given semantic domain. Each particular analysis gives birth
to a specific semantic domain.

data flow analysis Program analysis that studies how a given property of variables evolves with
execution of the program. Data Flow analysis is static, therefore studying all possible run-time
behaviors and making conservative approximations. A typical data-flow analysis is to detect, at
any location in the source program, whether a variable is initialized or not.

data dependence analysis Program analysis that studies the itinerary of values during program
execution, from the place where a value is defined to the places where it is used, and finally
to the place where it is overwritten. The collection of all these itineraries is stored as Def-Use
and Use-Def chains or as a data dependence graph, and data flow analysis most often rely on
this graph.

data dependence graph Directed graph that relates accesses to program variables, from the write
access that defines a new value to the read accesses that use this value, and from the read
accesses to the write access that overwrites this value. Dependences express a partial order
between operations, that must be preserved to preserve the program’s result.

The most obvious example of a program transformation tool is certainly a compiler. Other examples are
program translators, that go from one language or formalism to another, or optimizers, that transform a
program to make it run better. AD is just one such transformation. These tools use sophisticated analysis
[15]. These tools share their technological basis. More importantly, there are common mathematical models
to specify and analyze them.

An important principle is abstraction: the core of a compiler should not bother about syntactic details of the
compiled program. The optimization and code generation phases must be independent from the particular
input programming language. This is generally achieved using language-specific front-ends and back-ends.
Abstraction can go further: the internal representation becomes more language independent, and semantic
constructs can be unified. Analysis can then concentrate on the semantics of a small set of constructs. We
advocate an internal representation composed of three levels.
• At the top level is the call graph, whose nodes are modules and procedures. Arrows relate nodes that

call or import one another. Recursion leads to cycles.
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• At the middle level is the flow graph, one per procedure. It captures the control flow between atomic
instructions. Loops lead to cycles.

• At the lowest level are abstract syntax trees for the individual atomic instructions. Semantic
transformations can benefit from the representation of expressions as directed acyclic graphs, sharing
common sub-expressions.

To each level belong symbol tables, nested to capture scoping.

Static program analysis can be defined on this internal representation, which is largely language independent.
The simplest analyses on trees can be specified with inference rules [18], [26], [16]. But many analyses
are more complex, and better defined on graphs than on trees. This is the case for data-flow analyses, that
look for run-time properties of variables. Since flow graphs may be cyclic, these global analyses generally
require an iterative resolution. Data flow equations is a practical formalism to describe data-flow analyses.
Another formalism is described in [19], which is more precise because it can distinguish separate instances
of instructions. However it is still based on trees, and its cost forbids application to large codes. Abstract
Interpretation [20] is a theoretical framework to study complexity and termination of these analyses.

Data flow analyses must be carefully designed to avoid or control combinatorial explosion. At the call graph
level, they can run bottom-up or top-down, and they yield more accurate results when they take into account
the different call sites of each procedure, which is called context sensitivity. At the flow graph level, they can
run forwards or backwards, and yield more accurate results when they take into account only the possible
execution flows resulting from possible control, which is called flow sensitivity.

Even then, data flow analyses are limited, because they are static and thus have very little knowledge of
actual run-time values. Far before reaching the very theoretical limit of undecidability, one reaches practical
limitations to how much information one can infer from programs that use arrays [32], [21] or pointers. In
general, conservative over-approximations are always made that lead to derivative code that is less efficient
than possibly achievable.

3.3. Algorithmic Differentiation and Scientific Computing
Participants: Alain Dervieux, Laurent Hascoët, Bruno Koobus.

linearization In Scientific Computing, the mathematical model often consists of Partial Derivative
Equations, that are discretized and then solved by a computer program. Linearization of these
equations, or alternatively linearization of the computer program, predict the behavior of the
model when small perturbations are applied. This is useful when the perturbations are effectively
small, as in acoustics, or when one wants the sensitivity of the system with respect to one
parameter, as in optimization.

adjoint state Consider a system of Partial Derivative Equations that define some characteristics of a
system with respect to some input parameters. Consider one particular scalar characteristic. Its
sensitivity, (or gradient) with respect to the input parameters can be defined as the solution of
“adjoint” equations, deduced from the original equations through linearization and transposition.
The solution of the adjoint equations is known as the adjoint state.

Scientific Computing provides reliable simulations of complex systems. For example it is possible to simulate
the steady or unsteady 3D air flow around a plane that captures the physical phenomena of shocks and
turbulence. Next comes optimization, one degree higher in complexity because it repeatedly simulates and
applies optimization steps until an optimum is reached. We focus on gradient-based optimization.

We investigate several approaches to obtain the gradient, between two extremes:

• One can write an adjoint system of mathematical equations, then discretize it and program it by hand.
This is mathematically sound [23], but very costly in development time. It also does not produce an
exact gradient of the discrete function, and this can be a problem if using optimization methods
based on descent directions.
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• One can apply adjoint-mode AD (cf 3.1) on the program that discretizes and solves the direct system.
This gives in fact the adjoint of the discrete function computed by the program. Theoretical results
[22] guarantee convergence of these derivatives when the direct program converges. This approach
is highly mechanizable, but leads to massive use of storage and may require code transformation by
hand [27], [30] to reduce memory usage.

If for instance the model is steady, or more generally when the computation uses a Fixed-Point iteration,
tradeoffs exist between these two extremes [24], [17] that combine low storage consumption with possible
automated adjoint generation. We advocate incorporating them into the AD model and into the AD tools.

4. Application Domains
4.1. Algorithmic Differentiation

Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for :
• optimum shape design under constraints, multidisciplinary optimization, and more generally any

algorithm based on local linearization,
• inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate

sciences (meteorology, oceanography),
• first-order linearization of complex systems, or higher-order simulations, yielding reduced models

for simulation of complex systems around a given state,
• mesh adaptation and mesh optimization with gradients or adjoints,
• equation solving with the Newton method,
• sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization
A CFD program computes the flow around a shape, starting from a number of inputs that define the shape
and other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize
a criterion by a gradient descent, one needs the gradient of the output criterion with respect to all the inputs,
and possibly additional gradients when there are constraints. Adjoint-mode AD is the most efficient way to
compute these gradients.

4.3. Inverse problems and Data Assimilation
Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend
on the hidden parameters through a system of equations. For example, the hidden parameter might be the
shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [28] in weather forecasting or in oceanography.
The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state
is not well known. Only some measurements at arbitrary places and times are available. A good initial state
is found by solving a least squares problem between the measurements and a guessed initial state which itself
must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done
though AD [31]. Figure 1 shows an example of a data assimilation exercise using the oceanography code OPA
[29] and its AD adjoint produced by Tapenade.

The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is
time, as available measurements are distributed over a given assimilation period. Therefore the least squares
mechanism must be applied to a simulation over time that follows the time evolution model. This process gives
a much better estimation of the initial state, because both position and time of measurements are taken into
account. On the other hand, the adjoint problem involved is more complex, because it must run (backwards)
over many time steps. This demanding application of AD justifies our efforts in reducing the runtime and
memory costs of AD adjoint codes.
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Figure 1. Twin experiment using the adjoint of OPA. Random noise was added to a simulation of the sea surface
temperature around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model
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4.4. Linearization
Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too
expensive, in particular in the context of real time. When one wants to simulate the reaction of this complex
system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose
that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system
is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the
system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix
is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor
expansions, which can also be computed through AD. The result is often called a reduced model.

4.5. Mesh adaptation
Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The
classical optimization step can give an optimization direction not only for the control parameters, but also for
the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal
control parameters up to a precision prescribed in advance.

5. New Software and Platforms

5.1. AIRONUM
Participant: Alain Dervieux [correspondant].

Aironum is an experimental software that solves the unsteady compressible Navier-Stokes equations with
k − ε, LES-VMS and hybrid turbulence modelling on parallel platforms, using MPI. The mesh model is
unstructured tetrahedrization, with possible mesh motion. See http://www-sop.inria.fr/tropics/aironum

• Version: v 1.0

• Programming language: Fortran95 (mostly). About 100,000 lines.

Aironum was developed by Inria and University of Montpellier. It is used by Inria, University of Montpellier
and University of Pisa (I). Aironum is used as an experimental platform for:

• Numerical approximation of compressible flows, such as upwind mixed element volume approxi-
mation with superconvergence on regular meshes.

• Numerical solution algorithms for the implicit time advancing of the compressible Navier-Stokes
equations, such as parallel scalable deflated additive Schwarz algorithms.

• Turbulence modelling such as the Variational Multiscale Large eddy Simulation and its hybridization
with RANS statistical models.

5.2. TAPENADE
Participants: Laurent Hascoët [correspondant], Valérie Pascual, Ala Taftaf, Jan Hueckelheim [Queen Mary
University of London].

http://www-sop.inria.fr/tropics/aironum
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Tapenade is an Algorithmic Differentiation tool that transforms an original program into a new program that
computes derivatives of the original program. Algorithmic Differentiation produces analytical derivatives, that
are exact up to machine precision. Adjoint-mode AD can compute gradients at a cost which is independent
from the number of input variables. Tapenade accepts source programs written in Fortran77, Fortran90, or
C. It provides differentiation in the following modes: tangent, vector tangent, adjoint, and vector adjoint.
Documentation is provided on http://www-sop.inria.fr/tropics/tapenade.html, in Inria technical report RT-
0300, and in [9].
• Version: v3.9, r5092, February 2014
• ACM: D.3.4 Compilers; G.1.0 Numerical algorithms; G.1.4 Automatic differentiation; I.1.2 Analysis

of algorithms
• AMS: 65K10; 68N20
• APP: IDDN.FR.001.040038.002.S.P.2002.000.10600
• Keywords: algorithmic differentiation, adjoint, gradient, optimisation, inverse problems, static anal-

ysis, data-flow analysis, compilation
• Programming language: Java

Tapenade implements the results of our research about models and static analyses for AD. Tapenade can be
downloaded and installed on most architectures. Alternatively, it can be used as a web server. Higher-order
derivatives can be obtained through repeated application.

Tapenade performs sophisticated data-flow analysis, flow-sensitive and context-sensitive, on the complete
source program to produce an efficient differentiated code. Analyses include Type-Checking, Read-Write
analysis, and Pointer analysis. AD-specific analyses include:
• Activity analysis: Detects variables whose derivative is either null or useless, to reduce the number

of derivative instructions.
• Adjoint Liveness analysis: Detects the source statements that are dead code for the computation of

derivatives.
• TBR analysis: In adjoint-mode AD, reduces the set of source variables that need to be recovered.

Tapenade is not open-source. Academic usage is free for one year. Other usages require a paying license,
as detailled on the web page. Ten industrial licences have been sold. Tapenade has been downloaded several
hundred times, and the web tool served several thousands of true connections (robots and crawlers excluded)
The tapenade-users mailing list is over one hundred registered users.

6. New Results
6.1. Resolution of linearised systems

Participants: Olivier Allain [Lemma], Gautier Brèthes, Alain Dervieux, Bruno Koobus, Stephen Wornom.

For Fluid Mechanics as well as for Structural Mechanics, implicit time-advancing is mandatory. It can be
applied efficiently if the large systems involved are solved with a good parallel algorithm. In the 90’s, a
generation of solution algorithms was devised on the basis of Domain Decomposition Methods (DDM). For
complex models such as compressible flows, Schwarz DDM were combined with quasi-Newton algorithms
like GMRES. For example in the Aironum tool, we use Restrictive Additive Schwarz (RAS, developed by
Cai and Farhat). RAS is an ancestor of the widely used class of Newton-Krylov-Schwarz (NKS) algorithms.
NKS are, in some versions including RAS, almost scalable i.e. their convergence rate is independant of the
number of processors. But scalability degrades over a thousand processors. During the ANR ECINADS,
coordinated by Ecuador, a Coarse-Grid Deflated RAS was developed. The algorithmic scalability (iteration-
wise) holds for all part, except for the coarse grid direct solver, which concerns a much smaller problem.
Effective Convergence Scalability (ECS) was confirmed up to 2048 processors. After this level, the asymptotic
complexity of the coarse-grid direct solver become predominant and ECS is lost. In other words, with a Coarse-
Grid Deflated RAS, the size of the coarse grid problem must be limited in order to enjoy ECS.

http://www-sop.inria.fr/tropics/tapenade.html


Project-Team ECUADOR 9

In the thesis of Gautier Brèthes, we now study a further step towards super-massive scalability: we use a
number of fine and medium grids in order to solve the target large system by a multi-mesh multigrid (MG)
algorithm. An important novelty is that the complete FMG technology is applied, with a new stopping criterion
avoiding useless cycling [12]. It is well-known that parallel MG is limited to “no-too-coarse” coarse levels due
to an excessive ratio between communication and computation. Now our parallel MG can be complemented
by the previous version of the solver (deflated RAS) for this no-too-coarse coarse level.

6.2. Algorithmic Differentiation of a CFD code
Participants: Valérie Pascual, Laurent Hascoët, Alain Dervieux.

This activity continues in collaboration with the partners of the FP7 project UMRIDA. The team is assisting
Alenia-Aermacchi in the efficient differentiation of its Euler/Navier Stokes UNS3D code in tangent mode,
using in particular a differentiable extension of the MPI library.

Inside a collaboration with EDF, Valérie Pascual is also applying Tapenade to produce various adjoint
differentiations of the hydrographic code Mascaret.

6.3. Control of approximation errors
Participants: Gautier Brèthes, Eléonore Gauci, Alain Dervieux, Adrien Loseille [Gamma team, Inria-
Rocquencourt], Frederic Alauzet [Gamma team, Inria-Rocquencourt], Stephen Wornom, Olivier Allain
[Lemma], Anca Belme [University Paris VI].

A study of an interesting combination of Full Multigrid (FMG) and Anisotropic mesh Adaptation (AA) started
last year, with the beginning of the thesis of Gautier Brèthes. FMG is one of the (very) few algorithm giving
N results by consuming kN floats. Anisotropic adaptation produces approximation errors less than ε with
N = ε−

1
dim nodes, this for smooth and non-smooth solution fields. Anisotropic adaptative FMG may produce

approximation errors less than ε by consuming kε−
1

dim floats. Moreover, theory and experiments show that
FMG works better when combined with AA. A first AA-FMG platform has been developed. It combines
several mesh-adaptation modules developed by Gamma and Distene. It is used for testing new adaptation
criteria.

Third-order mesh adaptation was the main topic of last year in error control. The scheme is the ENO finite-
volume formulation with quadratic reconstruction. An article describing our results for 2D applications is
being written. A 3D version is developed in the Aironum CFD platform. A cooperation with Lemma is also
running, with Eléonore Gauci, to apply the scheme to fluid-gas interfaces. Further studies of mesh adaptation
for viscous flows are ongoing and an article in collaboration with Gamma3 and University Paris VI (Anca
Belme) is being written.

An important novelty in mesh adaptation is the norm-oriented AA method. The method relies on the definition
of ad hoc correctors. It has been developed in the academic FMG platform for elliptic problems. Another
version is developed by Gamma, in collaboration with Ecuador, for the compressible flow models. The
purpose is to devise a composite algorithm in which an approximation error norm can be specified by the
user. The introduction of the norm-oriented idea considerably amplifies the impact of adjoint-based AA. The
applied mathematician and the engineer now have methods when faced to mesh adaptation for the simulation
of a complex PDE system, since they can specify which error norm level they wish, and for which norm.
Eléonore Gauci starts a thesis, co-advised by Alain Dervieux and Frédéric Alauzet, on the norm-oriented
criteria for CFD and coupled CSM-CFD systems. She also works on a new version of the mesh adaptive CFD
demonstrator of Gamma3. This new version improves the resolution of curved features. A cooperation is also
starting between Gautier Brèthes and Thierry Coupez (Ecole Centrale de Nantes) on discrete metrics.

These studies are supported by an European FP7 project UMRIDA which deals with the application of AA to
approximation error modelling and control, and by ANR project MAIDESC coordinated by Ecuador, which
deals with meshes for interfaces, third-order accuracy, meshes for boundary layers, and curved meshes.
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6.4. Turbulence models
Participants: Emmanuelle Itam [University Montpellier II], Alain Dervieux, Bruno Koobus, Carine Moussaed
[University Montpellier II], Maria-Vittoria Salvetti [University of Pisa], Stephen Wornom, Bruno Sainte-Rose
[Lemma].

The purpose of our work in hybrid RANS/LES is to develop new approaches for industrial applications of
LES-based analyses. This year, many experiments have validated the dynamic version of our VMS-LES. The
quality of simulations is either comparable to non-dynamic, or better. In the applications targetted (aeronautics,
hydraulics), the Reynolds number can be as high as several tenth millions, far too high for pure LES models.
However, certain regions in the flow can be better predicted with LES than with usual statistical RANS
(Reynolds averaged Navier-Stokes) models. These are mainly vortical separated regions as assumed in one
of the most popular hybrid model, the hybrid Detached Eddy Simulation model. Here, “hybrid” means that
a blending is applied between LES and RANS. An important difference between a real life flow and a wind
tunnel or basin is that the turbulence of the flow upstream of each body is not well known. This year, we have
started the study of multiple-body flows. A typical case is the interaction between two parallel cylinders, one
being in the wake of the other. A recent workshop showed the rather disastrous predictions of LES models.
Most hybrid models behave better, mainly for the first cylinder. We are progressively extending and validating
our VMS-LES model and our hybrid ones ([11]).

6.5. AD tools infrastructure
Participants: Laurent Hascoët, Paul Hovland [Argonne National Lab. (Illinois, USA)], Sri Hari Krishna
Narayanan [Argonne National Lab. (Illinois, USA)].

We have an ongoing partnership with Paul Hovland’s team at Argonne National Lab, formalized by joint
participation in the Inria-Illinois joint lab on petascale computing and with travels funded by the Partner
University Fund (PUF) of the French embassy in the USA.

In this framework, we worked on the goal of blending our AD tool Tapenade with Argonne’s tool OpenAD,
buy developing bridges between their internal representations, through a common external representation of
analyzed programs. This representation called XAIF is based on XML. We have developed running prototypes
of these bridges in both directions, that run on a few examples and that need further development to allow
each tool to take advantage of the other’s analyses and models. This was supported by two visits of Krishna
Narayanan to Inria and one of Laurent Hascoët to Argonne.

We also continued joint development of the Adjoinable-MPI library (AMPI) that provides efficient tangent and
adjoint differentiation for MPI-parallel codes, independently of the AD tool used (now AdolC, dco, OpenAD,
Tapenade).

We also extracted from Tapenade a standalone kernel (with documented API) for program parsing, analysis,
and unparsing, which is not specific to AD and which could be used to develop other source-to-source code
transformations. Paul Hovland’s team and another Argonne team have shown interest for this library.

6.6. Algorithmic Differentiation and Dynamic Memory
Participants: Laurent Hascoët, Sri Hari Krishna Narayanan [Argonne National Lab. (Illinois, USA)].

In the same framework as in section 6.5, we made progress in the development of the adjoint AD model for
programs that use dynamic memory. Adjoint differentiated code obtained by source transformation (OpenAD,
Tapenade...) consists of a forward sweep that essentially copies the original code, and a backward sweep
that computes the derivatives, These two sweeps must have the same control-flow shape, only reversed. The
allocation and deallocation of dynamic memory inside the forward sweep requires a similar pattern in the
backward sweep. However, allocations do not always return the same memory chunk, and therefore all memory
addresses must be updated to preserve their consistency in the backward sweep.
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This problem can only be solved at run-time. A compile-time analysis simply cannot extract the information
needed. Our approach is thus to design a library that encapsulates all calls to memory allocation primitives
(malloc, free...) in order to register the allocated addresses and to restore consistency of pointers during the
backward sweep. This strategy is similar to the one we use for MPI calls, cf 6.5, and is actually an ingredient
in our AMPI strategy.

This approach was tested with success on a medium-size industrial application in structural mechanics. For
this unsteady simulation the C code allocates and frees memory repeatedly at each time step. The tangent and
adjoint differentiated C codes, as produced by Tapenade, have been adapted by hand to run the new model,
showing promising performance. Obviously, the next step is to update the Tapenade AD model to automate
this hand adaptation.

6.7. Algorithmic Differentiation and Iterative Processes
Participants: Laurent Hascoët, Ala Taftaf.

Adjoint codes naturally propagate partial gradients backwards from the result of the simulation. However, this
uses the data flow of the simulation in reverse order, at a cost that increases with the length of the simulation.
In the special case of iterative Fixed-Point loops, it is clear that the first iterations operate on a meaningless
“initial guess” state vector, and that reversing the corresponding data-flow is wasted effort. An adapted adjoint
strategy for the iterative process should consider only the last or the few last iterations. Also the adjoint loop,
which is itself a Fixed-Point iteration, must have its own stopping criterion and not merely run as many times
as the direct Fixed-Point loop. We selected the strategy proposed by Bruce Christianson [17] and this year we
implemented it in Tapenade. This strategy is triggered by differentiation directives that we defined. We tested
this strategy with success on the medium-size testcase provided by Queen Mary University for the AboutFlow
project.

Ala Taftaf presented her results at the WCCM congress during the Eccomas conference in Barcelona [13],
july 21-25. Ala Taftaf did a two-months secondment for her Marie Curie PhD grant, with our partner team of
Queen Mary University of London, during which she helped them take advantage of the latest developments
in Tapenade and of her developments about Fixed-Point adjoints.

6.8. Multi-Activity specialized Differentiation
Participants: Laurent Hascoët, Ian Hueckelheim [Queen Mary University of London].

Up to this year, Tapenade did not allow for specialization of differentiated routines for different “activity”
patterns. If a procedure must be differentiated once with respect to some of its arguments, and once with respect
to another subset of arguments, then only one generalized differentiated procedure is created, with respect to
the union of all subsets of active arguments. This incurs an efficiency penalty, but avoids a combinatorial
explosion of the differentiated code.

However, there are cases where the efficiency penalty is high, and some users want more flexibility. Also the
specialized adjoint for Fixed-Point iterations cf 6.7 uses two distinct activity patterns for the Fixed-Point loop
body, and merging them looses some of the benefits of the approach. We have modified Tapenade to perform
activity-specialized differentiation, giving the end-user a complete control through differentiation directives.

The experiments on a non-contrived industrial testcase of the AboutFlow project showed a non-negligible
improvement between 5 to 10%. Work is still in progress to incorporate this new functionality into the
mainstream distributed Tapenade. Ian Hueckelheim presented these results at the 16th EuroAD workshop
in Jena, Germany, December 8-9.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
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• Ecuador and Lemma share the results of Gautier Brèthes’ thesis, which is partly supported by
Lemma, the other part being supported by a PACA region fellowship.

• Ecuador and Lemma have a bilateral contract to share the results of Stephen Wornom.
• Ecuador and EDF have a bilateral contract on AD of the hydrology code “Mascaret”. The correspon-

dent on the Ecuador side is Valérie Pascual.

8. Partnerships and Cooperations
8.1. National Initiatives
8.1.1. ANR
8.1.1.1. MAIDESC

Ecuador is coordinator of the ANR project MAIDESC, with Gamma team, University of Montpellier
II, CEMEF-Ecole des Mines, Inria-Bordeaux, Lemma and Transvalor. MAIDESC concentrates on mesh
adaptation and in particular meshes for interfaces, third-order accuracy, meshes for boundary layers, and
curved meshes.

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. AboutFlow

Type: PEOPLE
Instrument: Initial Training Network
Duration: 2012-2016
Coordinator: Jens-Dominik Mueller
Partner: Queen Mary University of London (UK)
Inria contact: Laurent Hascoët
Abstract: The aim of AboutFlow is to develop robust gradient-based optimisation methods using
adjoint sensitivities for numerical optimisation of flows. http://aboutflow.sems.qmul.ac.uk/

8.2.1.2. UMRIDA
Type:AAT
Instrument:Aeronautics and Air Transport
Duration: 2013-2016
Coordinator: Charles Hirsch
Partner: Numeca S.A. (Belgium)
Inria contact: Alain Dervieux
Abstract: UMRIDA addresses major research challenges in Uncertainty Quantification and Robust
Design: develop new methods that handle large numbers of simultaneous uncertainties and gener-
alized geometrical uncertainties. The turn-around time must be acceptable for industrial readiness.
UMRIDA will apply these methods to representative industrial configurations.

8.3. International Initiatives
8.3.1. Inria International Labs

Ecuador participates in the Joint Laboratory for Petascale Computing (JLPC) together with our colleagues
at Argonne National Laboratory. In 2014, Ecuador was local organizer of the 11th workshop of the JLPC in
Sophia-Antipolis, june 9-11, and of the PUF summer school on HPC systems, june 12-13.

http://aboutflow.sems.qmul.ac.uk/
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8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Krishna Narayanan, from Argonne National Laboratory, visited Ecuador twice, on april 14-18 and
on november 20-28

• Trond Steihaug, from University of Bergen (Norway), visited Ecuador from june 2 to june 27.
• Jan Hueckelheim, from Queen Mary University of London, did a secondment for the AboutFlow

project with the Ecuador team from september 22 to november 21.

8.4.2. Visits to International Teams
• Laurent Hascoët visited Argonne National Laboratory from may 13 to may 23.
• Ala Taftaf did a secondment for the AboutFlow project with Queen Mary University of London from

april 7 to june 6.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committee

• Laurent Hascoët is on the organizing commitee of the EuroAD Workshops on Algorithmic Differ-
entiation. The 15th EuroAD workshop was organized and hosted by the team in Sophia-Antipolis,
june 16-17.

• Ecuador was local organizer of the 11th workshop of the Inria-Illinois JLPC in Sophia-Antipolis,
june 9-11, and of the PUF summer school on HPC systems, June 12-13.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Master : Laurent Hascoët, Optimisation avancée, 15 h, M2, University of Nice

9.2.2. Supervision
PhD in progress : Gautier Brèthes, “Multigrilles anisotropes adaptatives”, started october 2012,
advisor A. Dervieux
PhD in progress : Ala Taftaf, “Adjoint Automatic Differentiation on High-performance codes”,
started july 2013, advisor L. Hascoët.

9.2.3. Juries
• Alain Dervieux, jury, PhD defense of Fernando Grossi, University of Toulouse, february 11.
• Alain Dervieux, jury, HDR defense of Elie Hachem, University of Nice, may 20.
• Laurent Hascoët, opponent, PhD defense of Mikko Auvinen, Aalto University, Finland, october 10.

9.3. Popularization
• Laurent Hascoët made a presentation on “Adjoint Automatic Differentiation for Data Assimilation”

at the EGC 2014 conference in Rennes, January 28.
• Laurent Hascoët made a presentation on “Using Algorithmic Differentiation Tools to Compute

Derivatives” at the ATOC Adjoint 2014 workshop organized by the British Antarctic Survey,
Cambridge, July 1-2.
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• Laurent Hascoët was invited to a seminar on adjoint methods http://www.dagstuhl.de/program/
calendar/partlist/?semnr=14371&SUOG in Dagstuhl, Germany, september 7-12.
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