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2. Overall Objectives

2.1. Overall Objectives
The research group that we have entitled FLUMINANCE from a contraction between the words “Fluid” and
“Luminance” is dedicated to the extraction of information on fluid flows from image sequences and to the
development of tools for the analysis and control of these flows. The objectives of the group are at the frontiers
of several important domains. The group aims at providing in the one hand image sequence methods devoted to
the analysis and description of fluid flows and in the other hand physically consistent models and operational
tools to extract meaningful features characterizing or describing the observed flow and enabling decisions
or actions. Such a twofold goal is of major interest for the inspection, the analysis and the monitoring of
complex fluid flows, but also for control purpose of specific flows involved in industrial problems. To reach
these goals we will mainly rely on data assimilation strategies and on motion measurement techniques. From
a methodological point of view, the techniques involved for image analysis are either stochastic or variational.
One of the main originality of the FLUMINANCE group is to combine cutting-edge researches on these methods
with an ability to conduct proper intensive experimental validations on prototype flows mastered in laboratory.
The scientific objectives decompose in three main themes:

• Fluid flows characterization from images
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In this first axis, we aim at providing accurate measurements and consistent analysis of complex fluid
flows through image analysis techniques.The application domain ranges from industrial processes
and experimental fluid mechanics to environmental. This theme includes also the use of non-
conventional imaging techniques such as Schlieren techniques, Shadowgraphs, holography. The
objective will be here to go towards 3D dense velocity measurements.

• Coupling dynamical model and image data
We focus here on the study, through image data, of complex and partially known fluid flows involving
complex boundary conditions, multi-phase fluids, fluids and structures interaction problems. Our
credo is that image analysis can provide sufficiently fine observations on small and medium scales
to construct models which, applied at medium and large scale, account accurately for a wider range
of the dynamics scales. The image data and a sound modeling of the dynamical uncertainty at the
observation scale should allow us to reconstruct the observed flow and to provide efficient real flows
(experimental or natural) based dynamical modeling. Our final goal will be to go towards a 3D
reconstruction of real flows, or to operate large motion scales simulations that fit real world flow
data and incorporate an appropriate uncertainty modeling.

• Control and optimization of turbulent flows
We are interested on active control and more precisely on closed-loop control. The main idea is to
extract reliable image features to act on the flow. This approach is well known in the robot control
community, it is called visual servoing. More generally, it is a technique to control a dynamic system
from image features. We plan to apply this approach on flows involved in various domains such as
environment, transport, microfluidic, industrial chemistry, pharmacy, food industry, agriculture, etc.

3. Research Program

3.1. Estimation of fluid characteristic features from images
The measurement of fluid representative features such as vector fields, potential functions or vorticity maps,
enables physicists to have better understanding of experimental or geophysical fluid flows. Such measurements
date back to one century and more but became an intensive subject of research since the emergence of
correlation techniques [29] to track fluid movements in pairs of images of a particles laden fluid or by the
way of clouds photometric pattern identification in meteorological images. In computer vision, the estimation
of the projection of the apparent motion of a 3D scene onto the image plane, referred to in the literature
as optical-flow, is an intensive subject of researches since the 80’s and the seminal work of B. Horn and
B. Schunk [42]. Unlike to dense optical flow estimators, the former approach provides techniques that
supply only sparse velocity fields. These methods have demonstrated to be robust and to provide accurate
measurements for flows seeded with particles. These restrictions and their inherent discrete local nature limit
too much their use and prevent any evolutions of these techniques towards the devising of methods supplying
physically consistent results and small scale velocity measurements. It does not authorize also the use of scalar
images exploited in numerous situations to visualize flows (image showing the diffusion of a scalar such as
dye, pollutant, light index refraction, flurocein,...). At the opposite, variational techniques enable in a well-
established mathematical framework to estimate spatially continuous velocity fields, which should allow more
properly to go towards the measurement of smaller motion scales. As these methods are defined through PDE’s
systems they allow quite naturally including as constraints kinematic properties or dynamic laws governing
the observed fluid flows. Besides, within this framework it is also much easier to define characteristic features
estimation procedures on the basis of physically grounded data model that describes the relation linking the
observed luminance function and some state variables of the observed flow.
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A substantial progress has been done in this direction with the design of dedicated dense estimation techniques
to estimate dense fluid motion fields[4], [10], the setting up of tomographic techniques to carry out 3D velocity
measurements [36], the inclusion of physical constraints to infer 3D motions or the design of dynamically
consistent velocity measurements to provide coherent motion fields from time resolved fluid flow image
sequences [9]. These progresses have brought further accuracy and an improved spatial resolution for a variety
of applications ranging from experimental fluid mechanics to geophysical sciences. For a detailed review of
these approaches see [7].

We believe that such approaches must be first enlarged to the wide variety of imaging modalities enabling the
observation of fluid flows. This covers for instance, the systematic study of motion estimation for the different
channels of meteorological satellites, but also of other experimental imaging tools such as Shadowgraphs,
Background oriented Schlieren, Schlieren [49], diffusive scalar images, fluid holography [50], or Laser
Induced Fluorimetry. All these modalities offer the possibility to visualize time resolved sequences of the flow.
The velocity measurement processes available to date for that kind of images suffer from a lack of physical
relevancy to keep up with the increasing amount of fine and coherent information provided by the images. We
think, and have begun to prove, that a significant step forward can be taken by providing new tools based on
sound data models and adapted regularization functional, both built on physical grounds.

Additional difficulties arise when considering the necessity to go towards 3D measurements and 3D volumetric
reconstruction of the observed flows (e.g., the tomographic PIV paradigm). First, unlike in the standard setup,
the 2D images captured by the experimentalists only provide a partial information about the structure of
the particles transported by the fluid. As a matter of fact, inverse problems have to be solved in order to
recover this crucial information. Secondly, another issue stands in the increase of the underdetermination of
the problem, that is the important decrease of the ratio between the number of observations and the total
number of unknowns. In particular, this point asks for methodologies able to gather and exploit observations
captured at different time instants. Finally, the dimensions of the problem (that is, the number of unknown)
dramatically increase with the transition from the 2D to the 3D paradigm. This leads, as a by-product, to
a significant amplification of the computational burden and requires the conception of efficient algorithms,
exhibiting a reasonable scaling with the problem dimensions.

The first problem can be addressed by resorting to state-of-the-art methodologies pertaining to sparse
representations. These techniques consist in identifying the solution of an inverse problem with the most “zero"
components which, in the case of the tomographic PIV, turns out to be a physically relevant option. Hence, the
design of sparse representation algorithms and the study of their conditions of success constitute an important
research topic of the group. On the other hand, we believe that the dramatic increase of the under-determination
appearing in the 3D setup can be tackled by combining tomographic reconstruction of several planar views
of the flow with data assimilation techniques. These techniques enable to couple a dynamical model with
incomplete observations of the flow. Each applicative situation under concern defines its proper required scale
of measurement and a scale for the dynamical model. For instance, for control or monitoring purposes, very
rapid techniques are needed whereas for analysis purpose the priority is to get accurate measurements of the
smallest motion scales as possible. These two extreme cases imply the use of different models but also of
different algorithmic techniques. Recursive techniques and large scale representation of the flow are relevant
for the first case whereas batch techniques relying on the whole set of data available and models refined down
to small scales have to be used for the latter case.

The question of the scale of the velocity measurement is also an open question that must be studied carefully.
Actually, no scale considerations are taken into account in the estimation schemes. It is more or less abusively
assumed that the measurements supplied have a subpixel accuracy, which is obviously erroneous due to
implicit smoothness assumptions made either in correlation techniques or in variational estimation techniques.
We are convinced that to go towards the measurement of the smaller scales of the flow it is necessary to
introduce some turbulence or uncertainty subgrid modeling within the estimation scheme and also to devise
alternative regularization schemes that fit well with phenomenological statistical descriptions of turbulence
described by the velocity increments moments. As a by product such schemes should offer the possibility to
have a direct characterization, from image sequences, of the flow turbulent regions in term of vortex tube,



4 Activity Report INRIA 2014

area of pure straining, or vortex sheet. This philosophy should allow us to elaborate methods enabling the
estimation of relevant characteristics of the turbulence like second-order structure functions, mean energy
dissipation rate, turbulent viscosity coefficient, or dissipative scales.

We are planning to study these questions for a wide variety of application domains ranging from experimental
fluid mechanics to geophysical sciences. We believe there are specific needs in different application domains
that require clearly identified developments and modeling. Let us for instance mention meteorology and
oceanography which both involve very specific dynamical modeling but also micro-fluidic applications or
bio-fluid applications that are ruled by other types of dynamics.

3.2. Data assimilation and Tracking of characteristic fluid features
Real flows have an extent of complexity, even in carefully controlled experimental conditions, which prevents
any set of sensors from providing enough information to describe them completely. Even with the highest
levels of accuracy, space-time coverage and grid refinement, there will always remain at least a lack of
resolution and some missing input about the actual boundary conditions. This is obviously true for the complex
flows encountered in industrial and natural conditions, but remains also an obstacle even for standard academic
flows thoroughly investigated in research conditions.

This unavoidable deficiency of the experimental techniques is nevertheless more and more compensated by
numerical simulations. The parallel advances in sensors, acquisition, treatment and computer efficiency allow
the mixing of experimental and simulated data produced at compatible scales in space and time. The inclusion
of dynamical models as constraints of the data analysis process brings a guaranty of coherency based on
fundamental equations known to correctly represent the dynamics of the flow (e.g. Navier Stokes equations)
[3], [5].

Conversely, the injection of experimental data into simulations ensures some fitting of the model with reality.
When used with the correct level of expertise to calibrate the models at the relevant scales, regarding data
validity and the targeted representation scale, this collaboration represents a powerful tool for the analysis and
reconstruction of the flows. Automated back and forth sequencing between data integration and calculations
have to be elaborated for the different types of flows with a correct adjustment of the observed and modeled
scales. This appears more and more feasible when considering the sensitivity, the space resolution and above
all the time resolution that the imaging sensors are reaching now.

That becomes particularly true, for instance, for satellite imaging, the foreseeable advances of which will
soon give the right complement to the progresses in atmospheric and ocean modeling to dramatically improve
the analysis and predictions of physical states and streams for weather and environment monitoring. In that
domain, there is a particular interest in being able to combine image data, models and in-situ measurements,
as high densities of data supplied by meteorological stations are available only for limited regions of the
world, typically Europe and USA, while Africa, or the south hemisphere lack of refined and frequent in situ
measurements. Moreover, we believe that such an approach can favor great advances in the analysis and
prediction of complex flows interactions like those encountered in sea-atmosphere interactions, dispersion of
polluting agents in seas and rivers, etc. In other domains we believe that image data and dynamical models
coupling may bring interesting solutions for the analysis of complex phenomena which involve multi-phasic
flows, interaction between fluid and structures, and the general case of flows with complex unknown border
conditions.

The coupling approach can be extended outside the fluidics domain to complex dynamics that can be modeled
either from physical laws or from learning strategies based on the observation of previous events [1]. This
concerns for instance forest combustion, the analysis of the biosphere evolution, the observation and prediction
of the melting of pack ice, the evolution of sea ice, the study of the consequences of human activity like
deforestation, city growing, landscape and farming evolution, etc. All these phenomena are nowadays rapidly
evolving due to global warming. The measurement of their evolution is a major societal interest for analysis
purpose or risk monitoring and prevention.
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To enable data and models coupling to achieve its potential, some difficulties have to be tackled. It is in
particular important to outline the fact that the coupling of dynamical models and image data are far from being
straightforward. The first difficulty is related to the space of the physical model. As a matter of fact, physical
models describe generally the phenomenon evolution in a 3D Cartesian space whereas images provides
generally only 2D tomographic views or projections of the 3D space on the 2D image plane. Furthermore,
these views are sometimes incomplete because of partial occlusions and the relations between the model state
variables and the image intensity function are otherwise often intricate and only partially known. Besides, the
dynamical model and the image data may be related to spatio-temporal scale spaces of very different natures
which increases the complexity of an eventual multiscale coupling. As a consequence of these difficulties, it
is necessary generally to define simpler dynamical models in order to assimilate image data. This redefinition
can be done for instance on an uncertainty analysis basis, through physical considerations or by the way of
data based empirical specifications. Such modeling comes to define inexact evolution laws and leads to the
handling of stochastic dynamical models. The necessity to make use and define sound approximate models,
the dimension of the state variables of interest and the complex relations linking the state variables and the
intensity function, together with the potential applications described earlier constitute very stimulating issues
for the design of efficient data-model coupling techniques based on image sequences.

On top of the problems mentioned above, the models exploited in assimilation techniques often suffer from
some uncertainties on the parameters which define them. Hence, a new emerging field of research focuses
on the characterization of the set of achievable solutions as a function of these uncertainties. This sort of
characterization indeed turns out to be crucial for the relevant analysis of any simulation outputs or the correct
interpretation of operational forecasting schemes. In this context, the tools provided by the Bayesian theory
play a crucial role since they encompass a variety of methodologies to model and process uncertainty. As a
consequence, the Bayesian paradigm has already been present in many contributions of the Fluminance group
in the last years and will remain a cornerstone of the new methodologies investigated by the team in the domain
of uncertainty characterization.

This wide theme of research problems is a central topic in our research group. As a matter of fact, such a
coupling may rely on adequate instantaneous motion descriptors extracted with the help of the techniques
studied in the first research axis of the FLUMINANCE group. In the same time, this coupling is also essential
with respect to visual flow control studies explored in the third theme. The coupling between a dynamics and
data, designated in the literature as a Data Assimilation issue, can be either conducted with optimal control
techniques [44], [45] or through stochastic filtering approaches [37], [40]. These two frameworks have their
own advantages and deficiencies. We rely indifferently on both approaches.

3.3. Optimization and control of fluid flows with visual servoing
Fluid flow control is a recent and active research domain. A significant part of the work carried out so far in that
field has been dedicated to the control of the transition from laminarity to turbulence. Delaying, accelerating
or modifying this transition is of great economical interest for industrial applications. For instance, it has been
shown that for an aircraft, a drag reduction can be obtained while enhancing the lift, leading consequently
to limit fuel consumption. In contrast, in other application domains such as industrial chemistry, turbulence
phenomena are encouraged to improve heat exchange, increase the mixing of chemical components and
enhance chemical reactions. Similarly, in military and civilians applications where combustion is involved,
the control of mixing by means of turbulence handling rouses a great interest, for example to limit infra-red
signatures of fighter aircraft.

Flow control can be achieved in two different ways: passive or active control. Passive control provides a
permanent action on a system. Most often it consists in optimizing shapes or in choosing suitable surfacing
(see for example [33] where longitudinal riblets are used to reduce the drag caused by turbulence). The
main problem with such an approach is that the control is, of course, inoperative when the system changes.
Conversely, in active control the action is time varying and adapted to the current system’s state. This approach
requires an external energy to act on the system through actuators enabling a forcing on the flow through for
instance blowing and suction actions [52], [39]. A closed-loop problem can be formulated as an optimal control
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issue where a control law minimizing an objective cost function (minimization of the drag, minimization of
the actuators power, etc.) must be applied to the actuators [30]. Most of the works of the literature indeed
comes back to open-loop control approaches [47], [41], [46] or to forcing approaches [38] with control laws
acting without any feedback information on the flow actual state. In order for these methods to be operative,
the model used to derive the control law must describe as accurately as possible the flow and all the eventual
perturbations of the surrounding environment, which is very unlikely in real situations. In addition, as such
approaches rely on a perfect model, a high computational costs is usually required. This inescapable pitfall
has motivated a strong interest on model reduction. Their key advantage being that they can be specified
empirically from the data and represent quite accurately, with only few modes, complex flows’ dynamics. This
motivates an important research axis in the Fluminance group.

Another important part of the works conducted in Fluminance concerns the study of closed-loop approaches,
for which the convergence of the system to a target state is ensured even in the presence of errors (related
either to the flow model, the actuators, or the sensors) [35]. However, designing a closed loop control law
requires the use of sensors that are both non-intrusive, accurate and adapted to the time and spacial scales of
the phenomenon to monitor. Such sensors are unfortunately hardly available in the context of flow control.
The only sensors currently used are wall sensors located in a limited set of measurement points [31], [34].
The difficulty is then to reconstruct the entire state of the controlled system from a model based only on the
few measurements available on the walls [43]. Instead of relying on sparse measurements, we propose to use
denser features estimated from images. With the capabilities of up-to-date imaging sensors, we can expect
an improved reconstruction of the flow (both in space and time) enabling the design of efficient image based
control laws. This formulation is referred to as visual servoing control scheme.

Visual servoing is a widely used technique for robot control. It consists in using data provided by a vision
sensor for controlling the motions of a robot [32]. This technique, historically embedded in the larger domain
of sensor-based control [48], can be properly used to control complex robotic systems or, as we showed it
recently, flows [51].

Classically, to achieve a visual servoing task, a set of visual features, s, has to be selected from visual
measurements, m, extracted from a current image. A control law is then designed so that these visual features
reach a desired value, s∗, related to the target state of the system. The control principle consists in regulating
to zero the error vector: e = s− s∗. To build the control law, the knowledge of the so-called interaction
matrix Ls is usually required. This matrix links the time variation of s to the signal command u. However,
computing this matrix in the context of flow control is far more complex than in the case of robot control as
flows are associated to chaotic nonlinear systems living in infinite dimensional spaces. As such, it is possible
to formalize the model through a Galerkin projection in terms of an ODE system for which classical control
laws can be applied. It is also possible to express the system with finite difference approximations and to
use discrete time control algorithms amenable to modern micro-controllers. Alternatively, one may develop
control methods directly on the infinite dimensional system and then finally discretize the resulting process
for implementation purpose. Each approach has its own advantages and drawbacks. For the first two, known
control methods can be used at the expense of a great sensibility to space discretization. The last one is less
sensitive to discretization errors but more difficult to set up. These practical issues and their related theoretical
difficulties make this study a very interesting field of research.

4. Application Domains
4.1. Introduction

By designing new approaches for the analysis of fluid-image sequences the FLUMINANCE group aims at
contributing to several application domains of great interest for the community and in which the analysis
of complex fluid flows plays a central role. The group focuses mainly on two broad application domains:

• Environmental sciences;
• Experimental fluid mechanics and industrial flows.
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We detail hereafter these two application domains.

4.2. Environmental sciences
The first huge application domain concerns all the sciences that aim at observing the biosphere evolution
such as meteorology, climatology or oceanography but also remote sensing study for the monitoring of
meteorological events or human activities consequences. For all these domains image analysis is a practical
and unique tool to observe, detect, measure, characterize or analyze the evolution of physical parameters over
a large domain. The design of generic image processing techniques for all these domains might offer practical
software tools to measure precisely the evolution of fluid flows for weather forecasting or climatology studies.
It might also offer possibilities of close surveillance of human and natural activities in sensible areas such as
forests, river edges, and valley in order to monitor pollution, floods or fire. The need in terms of local weather
forecasting, risk prevention, or local climate change is becoming crucial for our tomorrow’s life. At a more
local scale, image sensors may also be of major utility to analyze precisely the effect of air curtains for safe
packaging in agro-industrial.

4.3. Experimental fluid mechanics and industrial flows
In the domain of experimental fluid mechanics, the visualization of fluid flows plays a major role, especially
for turbulence study since high frequency imaging has been made currently available. Together with analysis of
turbulence at different scales, one of the major goals pursued at the moment by many scientists and engineers
consists in studying the ability to manipulate a flow to induce a desired change. This is of huge technological
importance to enhance or inhibit mixing in shear flows, improve energetic efficiency or control the physical
effects of strain and stresses. This is for instance of particular interest for:

• military applications, for example to limit the infra-red signatures of fighter aircraft;
• aeronautics and transportation, to limit fuel consumption by controlling drag and lift effects of

turbulence and boundary layer behavior;
• industrial applications, for example to monitor flowing, melting, mixing or swelling of processed

materials, or preserve manufactured products from contamination by airborne pollutants, or in
industrial chemistry to increase chemical reactions by acting on turbulence phenomena.

.

5. New Software and Platforms
5.1. DenseMotion software - Estimation of 2D dense motion fields

Participant: Etienne Mémin.

This code allows the computation from two consecutive images of a dense motion field. The estimator is
expressed as a global energy function minimization. The code enables the choice of different data models
and different regularization functionals depending on the targeted application. Generic motion estimators
for video sequences or fluid flows dedicated estimators can be set up. This software allows in addition
the users to specify additional correlation based matching measurements. It enables also the inclusion of a
temporal smoothing prior relying on a velocity vorticity formulation of the Navier-Stoke equation for Fluid
motion analysis applications. The different variants of this code correspond to research studies that have been
published in IEEE transaction on Pattern Analysis and machine Intelligence, Experiments in Fluids, IEEE
transaction on Image Processing, IEEE transaction on Geo-Science end Remote Sensing. The binary of this
code can be freely downloaded on the FLUID web site http://fluid.irisa.fr.

5.2. 2DLayeredMotion software - Estimation of 2D independent mesoscale
layered atmospheric motion fields
Participant: Etienne Mémin.

http://fluid.irisa.fr
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This software enables to estimate a stack of 2D horizontal wind fields corresponding to a mesoscale dynamics
of atmospheric pressure layers. This estimator is formulated as the minimization of a global energy function. It
relies on a vertical decomposition of the atmosphere into pressure layers. This estimator uses pressure data and
classification clouds maps and top of clouds pressure maps (or infra-red images). All these images are routinely
supplied by the EUMETSAT consortium which handles the Meteosat and MSG satellite data distribution. The
energy function relies on a data model built from the integration of the mass conservation on each layer. The
estimator also includes a simplified and filtered shallow water dynamical model as temporal smoother and
second-order div-curl spatial regularizer. The estimator may also incorporate correlation-based vector fields
as additional observations. These correlation vectors are also routinely provided by the Eumetsat consortium.
This code corresponds to research studies published in IEEE transaction on Geo-Science and Remote Sensing.
It can be freely downloaded on the FLUID web site http://fluid.irisa.fr.

5.3. 3DLayeredMotion software - Estimation of 3D interconnected layered
atmospheric motion fields
Participant: Etienne Mémin.

This software extends the previous 2D version. It allows (for the first time to our knowledge) the recovery of
3D wind fields from satellite image sequences. As with the previous techniques, the atmosphere is decomposed
into a stack of pressure layers. The estimation relies also on pressure data and classification clouds maps and
top of clouds pressure maps. In order to recover the 3D missing velocity information, physical knowledge on
3D mass exchanges between layers has been introduced in the data model. The corresponding data model
appears to be a generalization of the previous data model constructed from a vertical integration of the
continuity equation. This research study has been published in IEEE trans. on Geo-Science and Remote
Sensing. The binary of this code can be freely downloaded on the FLUID web site http://fluid.irisa.fr.

5.4. Low-Order-Motion - Estimation of low order representation of fluid
motion
Participants: Anne Cuzol, Etienne Mémin.

This code enables the estimation of a low order representation of a fluid motion field from two consecutive
images.The fluid motion representation is obtained using a discretization of the vorticity and divergence
maps through regularized Dirac measure. The irrotational and solenoidal components of the motion fields
are expressed as linear combinations of basis functions obtained through the Biot-Savart law. The coefficient
values and the basis function parameters are formalized as the minimizer of a functional relying on an intensity
variation model obtained from an integrated version of the mass conservation principle of fluid mechanics.
Different versions of this estimation are available. The code which includes a Matlab user interface can be
downloaded on the FLUID web site http://fluid.irisa.fr. This program corresponds to a research study that has
been published in the International Journal on computer Vision.

6. New Results
6.1. Highlights of the Year
6.1.1. Stochastic fluid flow dynamics under uncertainty

We have proposed the basis of a formalism allowing to built large scale stochastic representation of fluid flows
dynamics [17]. This formalism relies on a location uncertainty principle which separates the flow in terms
of a resolved large scale component and a highly oscillating random component. The dynamics is built in a
similar way as in the deterministic case through a stochastic representation of the Reynolds transport theorem.
This principle paves a new way for the construction of subgrid models from the uncertainties we have on
the flow. The associated subgrid tensor provides a clear interaction between small scale data and large scale
resolved quantities. This characteristic opens new directions for the devising of methods for the nulmerical
simulation of large scale components of the flow. It allows also deriving large-scale models that takes into
account explicitly the inherent errors to a particular geophysical dynamics representation.

http://fluid.irisa.fr
http://fluid.irisa.fr
http://fluid.irisa.fr
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6.2. Fluid motion estimation
6.2.1. Stochastic uncertainty models for motion estimation

Participants: Etienne Mémin, Manuel Saunier, Abed Malti.

In this study we have proposed a stochastic formulation of the brightness consistency used principally
in motion estimation problems. In this formalization the image luminance is modeled as a continuous
function transported by a flow known only up to some uncertainties. Stochastic calculus then enables to built
conservation principles which take into account the motion uncertainties. These uncertainties defined either
from isotropic or anisotropic models can be estimated jointly to the motion estimates. Such a formulation
besides providing estimates of the velocity field and of its associated uncertainties allows us to naturally
define a linear multiresolution scale-space framework. The corresponding estimator, implemented within a
local least squares approach, has shown to improve significantly the results of the corresponding deterministic
estimator (Lucas and Kanade estimator). This fast local motion estimator provides results that are of the same
order of accuracy than state-of-the-art dense fluid flow motion estimator for particle images. The uncertainties
estimated supply a useful piece of information in the context of data assimilation. This ability has been
exploited to define multiscale incremental data assimilation filtering schemes. The development of an efficient
GPU based version of this estimator recently started through the Inria ADT project FLUMILAB

6.2.2. 3D flows reconstruction from image data
Participants: Ioana Barbu, Kai Berger, Cédric Herzet, Etienne Mémin.

Our work focuses on the design of new tools for the estimation of 3D turbulent flow motion in the experimental
setup of Tomo-PIV. This task includes both the study of physically-sound models on the observations and
the fluid motion, and the design of low-complexity and accurate estimation algorithms. On the one hand,
we investigate state-of-the-art methodologies such as ,“sparse representations" for the characterization of the
observation and fluid motion models. On the other hand, we place the estimation problem into a probabilistic
Bayesian framework and use state-of- the-art inference tools to effectively exploit the strong time-dependence
on the fluid motion.

Last year, we focused on the design of new methodologies to jointly estimate the volume of particles and the
velocity field from the received image data. Our approach was based on the minimization (with respect to both
the position of the particles and the velocity field) of a cost function penalizing both the discrepancies with
respect to a conservation equation and some prior estimates of particle positions.

This year, we revisited the problem of volume reconstruction through the prism of some modern optimization
techniques. More specifically, we focussed our attention on the family of proximal and splitting methods and
showed that the standard techniques commonly adopted in the TomoPIV literature can be seen as particular
cases of such methodologies. Recasting standard methodologies in a more general framework allowed us to
propose extensions of the latter: i) we showed that the parcimony characterizing the sought volume can be
accounted for without increasing the complexity of the algorithms (e.g., by including simple thresholding
operations); ii) we emphasized that the speed of convergence of the standard reconstruction algorithms can be
improved by using Nesterov’s acceleration schemes; iii) we also proposed a totally novel way of reconstructing
the volume by using the so-called “alternating direction of multipliers method" (ADMM) . The journal
publications relative to the contributions developped this year are currently in construction.

6.2.3. Sparse-representation algorithms
Participant: Cédric Herzet.

The paradigm of sparse representations is a rather new concept which turns out to be central in many domains
of signal processing. In particular, in the field of fluid motion estimation, sparse representation appears to
be potentially useful at several levels: i) it provides a relevant model for the characterization of the velocity
field in some scenarios; ii) it plays a crucial role in the recovery of volumes of particles in the 3D Tomo-PIV
problem.
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Unfortunately, the standard sparse representation problem is known to be NP hard. Therefore, heuristic
procedures have to be devised to access to the solution of this problem. Among the popular methods available
in the literature, one can mention orthogonal matching pursuit (OMP), orthogonal least squares (OLS) and the
family of procedures based on the minimization of `p norms. In order to assess and improve the performance
of these algorithms, theoretical works have been undertaken in order to understand under which conditions
these procedures can succeed in recovering the "true" sparse vector.

Last, we contributed to this research axis by deriving conditions of success for the algorithms mentioned
above when some partial information is available about the position of the nonzero coefficients in the sparse
vector. This paradigm is of interest in the Tomographic-PIV volume reconstruction problem: one can indeed
expect volumes of particles at two successive instants to be pretty similar; any estimate of the position of
the particles at one given instant can therefore serve as a prior estimate about their position at the next instant.
Another information of interest which can help the algorithms in their reconstruction process is the decay of the
amplitude of the nonzero coeffcient in the sparse vector. In a TomoPIV context, this decay corresponds to the
fact that not all the particles in fluid diffuse the same quantity of light (notably beacuse of illumination or radius
variation). This year, we thus pursue our effort in the understanding of the success of some reconstruction
algorithms when the sparse vectors obey some decay. In particular, we showed that the standard coherence-
based guarantees for OMP/OLS can be relaxed by an amount which depends on the decay of the nonzero
coeffcients.

Another axis of research we have dealt with is the extension of sparse methodologies to the context of nonlinear
models. This type of situtation is indeed frequently encountered in fluid mechanics or geophysics where the
initial/boundary conditions of a system are known to be sparse in some basis and the collected observations
obey a nonlinear dynamical model (e.g., the Navier-Stokes equations). In our work, we showed that many
sparse representation algorithms, designed in the linear paradigm, can be nicely extended to the nonlinear
setup provided that the gradient of the functional can be evaluated efficiently. In order to do so, we suggested a
methodology, well-known in the commmunity of optimal control, but surprinsingly quite uncommon in many
fields of signal processing.

Our work have led to the publication of contributions in the IEEE International Conference on Speech,
Acoustic and Signal Processing (ICASSP) [23] and international - Traveling Workshop on Interactions
between Sparse models and Technology (iTwist) [22],[24]

6.3. Tracking, Data assimilation and model-data coupling
6.3.1. Stochastic filtering technique for the tracking of closed curves

Participant: Etienne Mémin.

We have studied a stochastic filtering technique for the tracking of closed curves along an image sequence. In
that goal, we designed a continuous-time stochastic dynamics that allows us to infer inter-frame deformations.
The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed properly
on the level-set function. It takes the form of a stochastic partial differential equation with a Brownian motion
of low dimension. The evolution model we proposed combines local photometric information, deformations
induced by the curve displacement and an uncertainty modeling of the dynamics. Specific choices of noise
models and drift terms lead to an evolution law based on mean curvature as in classic level set methods, while
other choices yield new evolution laws. The approach we propose is implemented through a particle filter,
which includes color measurements characterizing the target and the background photometric probability
densities respectively. The merit of this parameter free filter is demonstrated on various satellite image
sequences depicting the evolution of complex geophysical flows. This work has been recently published in the
Journal of Mathematical Imaging and Vision [13]. Let us note the method provides an empirical dynamical
model learned recursively from a data flow. Its short time forecasting skills have been used in the context of
weather-watch radar images within a fruitful collaboration with MeteoFrance.

6.3.2. Sequential smoothing for fluid motion
Participants: Anne Cuzol, Etienne Mémin.
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In parallel to the construction of stochastic filtering techniques for fluid motions, we have proposed a new
sequential smoothing method within a Monte-Carlo framework. This smoothing aims at reducing the temporal
discontinuities induced by the sequential assimilation of discrete time data into continuous time dynamical
models. The time step between observations can indeed be long in environmental applications for instance,
and much longer than the time step used to discretize the model equations. While the filtering aims at
estimating the state of the system at observations times in an optimal way, the objective of the smoothing
is to improve the estimation of the hidden state between observation times. The method is based on a Monte-
Carlo approximation of the filtering and smoothing distributions, and relies on a simulation technique of
conditional diffusions. The proposed smoother can be applied to general non linear and multidimensional
models. It has been applied to a turbulent flow in a high-dimensional context, in order to smooth the filtering
results obtained from a particle filter with a proposal density built from an Ensemble Kalman procedure. This
conditional simulation framework can also be used for filtering problem with low measurement noise. This has
been explored through a collaboration with Jean-Louis Marchand (ENS Bretagne) in the context of vorticity
tracking from image data.

6.3.3. Stochastic fluid flow dynamics under uncertainty
Participants: Etienne Mémin, Valentin Resseguier.

In this research axis we aim at devising Eulerian expressions for the description of fluid flow evolution laws
under uncertainties. Such an uncertainty is modeled through the introduction of a random term that allows
taking into account large-scale approximations or truncation effects performed within the dynamics analytical
constitution steps. This includes for instance the modeling of unresolved scales interaction in large eddies
simulation (LES) or in Reynolds average numerical simulation (RANS), but also uncertainties attached to
non-uniform grid discretization. This model is mainly based on a stochastic version of the Reynolds transport
theorem. Within this framework various simple expressions of the drift component can be exhibited for
different models of the random field carrying the uncertainties we have on the flow. We aim at using such a
formalization within image-based data assimilation framework and to derive appropriate stochastic versions of
geophysical flow dynamical modeling. This formalization has been published in the journal Geophysical and
Astrophysical Fluid Dynamics [17]. Numerical simulation on divergence free wavelets basis of 3D viscous
Taylor-Green vortex and Crow instability have been performed within a collaboration with Souleymane
Kadri-Harouna. First promising results have been obtained. Besides, we explore in the context of Valentin
Resseguier’s PhD the extension of such framework to oceanic models and to satellite image data assimilation.
This PhD thesis takes place within a fruitful collaboration with Bertrand Chapron (CERSAT/IFREMER).

6.3.4. Free surface flows reconstruction and tracking
Participants: Dominique Heitz, Etienne Mémin.

We investigated the combined use of a Kinect depth sensor and of a stochastic data assimilation method to
recover free-surface flows. More generally, we proposed a particle filter method to reconstruct the complete
state of free-surface flows from a sequence of depth images only. The data assimilation scheme introduced
accounts for model and observations errors. We evaluated the developed approach on two numerical test
cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more
realistic flow. The robustness of the method to simulated depth data quality and also to initial conditions was
considered. We illustrated the interest of using two observations instead of one observation into the correction
step. Then, the performance of the Kinect sensor to capture temporal sequences of depth observations was
investigated. Finally, the efficiency of the algorithm was qualified for a wave in a real rectangular flat bottom
tank. It was shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructed
velocity and height of the free surface flow based on noisy measures of the elevation alone. These results have
been recently submitted to a special issue of Fluid Dynamics Research.

6.3.5. Variationnal ensemble methods for data assimilation
Participants: Dominique Heitz, Etienne Mémin, Cordelia Robinson, Yin Yang.
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In this work, we aim at studying an ensemble based optimal control strategy for data assimilation. Such a
formulation nicely combines the ingredients of ensemble Kalman filters and variational assimilation. In the
same way as standard variational assimilation, it is formulated as the minimization of an objective function.
However, similarly to ensemble filters, it introduces in its objective function an empirical ensemble-based
background-error covariance and works in an off-line smoothing mode rather than sequentially like filtering
approaches in a sequential filter. These techniques have the great advantage to avoid the constitution of
tangent linear and adjoint models, which are necessary for standard incremental variational techniques. As the
background error covariance matrix plays a key role in the variational process, our study particularly focuses on
the generation of the analysis ensemble state with localization techniques. The proposed method was assessed
with a Shallow Water model combined with synthetic data and original incomplete experimental depth sensor
observations. Results submitted to Computers & Fluids showed that the modified ensemble technique was
better in quality and reduced the computational cost.

6.3.6. Optimal control techniques for the coupling of large scale dynamical systems and image
data
Participants: Dominique Heitz, Etienne Mémin, Cordelia Robinson.

This work aims at investigating the use of optimal control techniques for the coupling of Large Eddies
Simulation (LES) techniques and 2D image data. The objective is to reconstruct a 3D flow from a set of
simultaneous time resolved 2D image sequences visualizing the flow on a set of 2D plans enlightened with
laser sheets. This approach will be experimented on shear layer flows and on wake flows generated on the wind
tunnel of Irstea Rennes. Within this study we wish also to explore techniques to enrich large-scale dynamical
models by the introduction of uncertainty terms or through the definition of subgrid models from the image
data. This research theme is related to the issue of turbulence characterization from image sequences. Instead
of predefined turbulence models, we aim here at tuning from the data the value of coefficients involved in
traditional LES subgrid models or in longer-term goal to learn empirical subgrid models directly from image
data. An accurate modeling of this term is essential for Large Eddies Simulation as it models all the non
resolved motion scales and their interactions with the large scales.

We have pursued the first investigations on a 4DVar assimilation technique, integrating PIV data and Direct
Numerical Simulation (DNS), to reconstruct two-dimensional turbulent flows. The problem we are dealing
with consists in recovering a flow obeying Navier-Stokes equations, given some noisy and possibly incomplete
PIV measurements of the flow. By modifying the initial and inflow conditions of the system, the proposed
method reconstructs the flow on the basis of a DNS model and noisy measurements. The technique has been
evaluated in the wake of a circular cylinder. It denoises the measurements and increases the spatiotemporal
resolution of PIV time series. These results have been recently published in the Journal of Computational
Physics [6]. Along the same line of studies the 3D case is ongoing. The goal consists here to reconstruct a
3D flow from a set of simultaneous time resolved 2D images of planar sections of the 3D volume. This work
is mainly conducted within the PhD of Cordelia Robinson. The development of the variational assimilation
code has been initiated within a collaboration with A. Gronskis, S. Laizé (lecturer, Imperial College, UK) and
Eric Lamballais (institut P’ Poitiers). A High Reynolds number simulation of the wake behind a cylinder has
been recently performed within this collaboration. The 4DVar assimilation technique based on the numerical
code Incompact3D is now implemented. We are currently trying to reconstruct a 3D turbulent flow from dual
plane velocity observations. First assessments have been carried out with DNS based synthetic data. Further
evaluation will be done with real measurements based on dual stereo PIV experiments.

6.3.7. Ensemble variational data assimilation of large scale fluid flow dynamics with
uncertainty
Participants: Etienne Mémin, Yin Yang.

In this work we explore the assimilation of a large scale representation of the flow dynamics with image data
of finer resolution. The velocity field at large scales is described as a regular smooth component whereas
the complement component is a highly oscillating random velocity field defined on the image grid but
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living at all the scales. Following this route we have started to assess the performance of a variational
assimilation technique with direct image data observation. Preliminary encouraging results have been obtained
for simulation under uncertainty of 1D and 2D shallow water models.

6.3.8. Reduced-order models for flows representation from image data
Participants: Cédric Herzet, Etienne Mémin.

One of the possibilities to neglect the influence of some degrees of freedom over the main characteristics
of a flow consists in representing it as a sum of K orthonormal spatial basis functions weighted with
temporal coefficients. To determine the basis function of this expansion, one of the usual approaches relies
on the Karhunen-Loeve decomposition (refered to as proper orthogonal decomposition – POD – in the fluid
mechanics domain). In practice, the spatial basis functions, also called modes, are the eigenvectors of an
empirical auto-correlation matrix which is built from “snapshots" of the considered physical process.

In this axis of work we focus on the case where one does not have a direct access to snapshots of the considered
physical process. Instead, the POD has to be built from the partial and noisy observations of the physical
phenomenon of interest. Instances of such scenarios include situations where real instantaneous vector-field
snapshots are estimated from a sequence of images. We have been working on several approaches dealing with
such a new paradigm. A first approach consists in extending standard penalized motion-estimation algorithms
to the case where the sought velocity field is constrained to span a low-dimensional subspace. In particular, we
have considered scenarios where the standard optical flow constraint (OFC) is no longer satisfied and one has
therefore to resort to a Discrete Finite Difference (DFD) model. The non-linearity of the latter leads to several
practical issues that we have addressed this year.

6.4. Analysis and modeling of turbulent flows
6.4.1. Hot-wire anemometry at low velocities

Participant: Dominique Heitz.

A new dynamical calibration technique has been developed for hot-wire probes. The technique permits,
in a short time range, the combined calibration of velocity, temperature and direction calibration of single
and multiple hot-wire probes. The calibration and measurements uncertainties were modeled, simulated and
controlled, in order to reduce their estimated values. Based on a market study the french patent application has
been extended this year to a Patent Cooperation Treaty (PCT) application.

6.4.2. Numerical and experimental image and flow database
Participant: Dominique Heitz.

The goal was to design a database for the evaluation of the different techniques developed in the Fluminance
group. The first challenge was to enlarge a database mainly based on two-dimensional flows, with three-
dimensional turbulent flows. Synthetic image sequences based on homogeneous isotropic turbulence and on
circular cylinder wake have been provided. These images have been completed with time resolved Particle
Image Velocimetry measurements in wake and mixing layers flows. This database provides different realistic
conditions to analyse the performance of the methods: time steps between images, level of noise, Reynolds
number, large-scale images. The second challenge was to carried out orthogonal dual plane time resolved
stereoscopic PIV measurements in turbulent flows. The diagnostic employed two orthogonal and synchronized
stereoscopic PIV measurements to provide the three velocity components in planes perpendicular and parallel
to the streamwise flow direction. These temporally resolved planar slices observations will be used in 4DVar
assimilation technique, integrating Direct Numerical Simulation (DNS) and Large Eddies Simulation (LES),
to reconstruct three-dimensional turbulent flows. This reconstruction will be conducted within the PhD of
Cordelia Robinson. The third challenge was to carried out a time resolved tomoPIV experiments in a turbulent
wake flow. These temporally resolved volumic observations will be used to assess the algorithms developped
in the PhD of Ioana Barbu and in the postdoc of Kai Berger. Then this data will be used in 4DVar assimilation
technique to reconstruct three-dimensional turbulent flows. This reconstruction will be conducted within the
PhD of Cordelia Robinson.
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6.5. Visual servoing approach for fluid flow control
6.5.1. Minimization of the kinetic energy density in the 2D plane Poiseuille flow

Participants: Christophe Collewet, Xuan Quy Dao.

This works concerns the PhD thesis of Xuan-Quy Dao. This year we have focused on a way to ensure a
strict decreasing of the kinetic energy density. In that purpose, we have first proposed an approach to increase
the controlled degrees of freedom. Indeed, the classical way to model this flow leads to only two degrees of
freedom. With so few degrees of freedom it is obviously impossible to reach high desired performances as
the strict minimization of the kinetic energy density. This way to proceed leads to a better minimization of
the kinetic energy density. We have also proposed on approach based on a local decoupling of the controlled
degree of freedom of the system so that an exponential decoupled decrease of each components of the state
vector is locally obtained.

6.5.2. Control of systems described by partial differential equations
Participants: Tudor-Bogdan Airimitoaie, Christophe Collewet.

This work concerns principally the post-doctoral research of Tudor-Bogdan Airimiţoaie. It aims at controlling
continuously evolving systems described by partial differential equations (PDEs). This is relevant in the
context of the Fluminance team because fluid flows are infinite dimensional systems and can be rigorously
described only through PDEs. In spite of this, practical approaches of flow control are based on low order
numerical implementation relying on space and time discretization of the continuous system. This implies
to setup strategies for model reduction that must be then in return properly understood with respect to the
convergence of the control law. For finite dimensional implementations, one of the research directions pursued
concerns the study on the benefit of increasing the controlled degrees of freedom (see the work of Xuan-Quy
Dao). Another research direction, started recently, consists in improving control by using real-time estimation
of a finite number of parameters related to the original infinite dimensional system. Indeed, this opens the
possibility of improving performances by using more advanced robust linear parametric varying (LPV) control
techniques existing in the literature. Two conference papers on these works have been submitted at the "7th
AIAA Flow Control Conference".

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. Contrat CERSAT/IFREMER

Participants: Etienne Mémin, Valentin Resseguier.

duration 36 months. This partnership between Inria and Ifremer funds the PhD of Valentin Resseguier, which
aims at studying image based data assimilation strategies for oceanic models incorporating random uncertainty
terms. The goal targeted will consist in deriving appropriate stochastic version of oceanic model and on top of
them to devise estimation procedures from noisy data to calibrate the associated subgrid models.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR SYSCOMM GeoFluids: Analyse et simulation d’écoulements fluides à partir de

séquences d’images : application à l’étude d’écoulements géophysiques
Participants: Dominique Heitz, Etienne Mémin.
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duration 48 months.

The project Geo-FLUIDS focuses on the specification of tools to analyze geophysical fluid flows from image
sequences. Geo-FLUIDS aims at providing image-based methods using physically consistent models to extract
meaningful features describing the observed flow and to unveil the dynamical properties of this flow. The
main targeted application domains concern Oceanography and Meteorology. The project consortium gathers
the Inria research groups: FLUMINANCE (leader), CLIME and MOISE. The group of the “Laboratoire de
Météorologie Dynamique” located at the ENS Paris, the IFREMER-CERSAT group located at Brest and the
METEOFRANCE GMAP group in Toulouse.

8.1.2. ANR JCJC GERONIMO : Advanced GEophysical Reduced-Order Model construction
from IMage Observations
Participant: Cédric Herzet.

duration 48 months. The GERONIMO project which starts in March 2014 aims at devising new efficient and
effective techniques for the design of geophysical reduced-order models from image data. The project both
arises from the crucial need of accurate low-order descriptions of highly-complex geophysical phenomena and
the recent numerical revolution which has supplied the geophysical scientists with an unprecedented volume of
image data. The project is placed at the intersection of several fields of expertise (Bayesian inference, matrix
factorization, sparse representations, etc.) which will be combined to handle the uncertainties associated to
image measurements and to characterize the accurate reduced dynamical systems.

8.1.3. INSU-LEFE: Toward new methods for the estimation of sub-meso scale oceanic streams
Participant: Cédric Herzet.

duration 36 months. This project tackles the problem of deriving a precise submesoscale characterization of
ocean currents from satellite data. The targeted methodologies should in particular enable the exploitation
of data of different nature (for example sea surface temperature or height) and/or resolutions. This 36-
month project benefits from a collaboration with the Laboratoire de Météorologie Dynamique, Ecole Normale
Supérieure, Paris.

8.1.4. INSU-LEFE: MODELER
Participant: Etienne Mémin.

duration 24 months. This project with MeteoFrance aims at exploring error modeling and stochastic parame-
terization in geophysical flow dynamics. The theory explored in this context should enable the construction of
unified image data assimilation strategies.

8.2. International Initiatives
8.2.1. Inria International Partners
8.2.1.1. Informal International Partners

Universidad de Buenos Aires (ARGENTINA) We have maintained academic exchanges with the
group of Guillermo Artana.

Chico California State University (USA), We have pursue our collaboration with the group of
Shane Mayor on the GPU implementation of wavelet based motion estimator for Lidar data. This
code is developped in coproperty between Inria and Chico.

8.2.2. Participation In other International Programs
SticAMSUD project Voiceproduction leaded by Denisse Sciamarella (CNRS, LIMSI)
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9. Dissemination
9.1. Promoting Scientific Activities

Dominique Heitz
• Member of IRSTEA "Comité directeur des Systèmes d’Information"
• Responsible of the IRSTEA ACTA Team
• Reviewer for AIAA, Exp. in Fluids, Fluid Dynamics Research

Cédric Herzet
• Technical program committees of ICASSP 2014
• Project reviewer for the "Fond National de la Recherche Scientifique" (FNRS), Belgique
• Organizer of a monthly local seminar dedicated to sparse representations.
• Reviewing for ICASSP, IEEE trans. Signal Processing, IEEE Trans. Image Processing

Etienne Mémin
• invited speaker CIMI (Centre International de Mathématiques et d’Informatique - Trimestre EDP &

Probabilités - Weather Forecast, jan. 2014
• Associate editor of the Journal of Computer Vision (IJCV)
• Associate editor of the journal of Image and Vision Computing (IVC)
• Reviewing for Tellus-A, IEEE Im. Proc., IEEE trans. Pat. Anal. Mach. Intel. , Im. Vis. Comp., Exp in

Fluids, ICIP’14, Nonlinear Proc. in Geophysics., Journ. of Comp. Phys, Fluid Dynamics Research.
• Responsible of the "Commission Développement Technologique" Inria Rennes
• member of the "Commission Personnel" Inria-IRISA Rennes

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Licence : Dominique Heitz, Mécanique des fluides, 30h, niveau L2 INSA Rennes
Master : Dominique Heitz, Mécanique des fluides, 25h, niveau M1, Dep GMA INSA Rennes
Master : Cédric Herzet, Analyse de données, Mastere de Statistiques et Econométrie, 10h, niveau
M1, Université de Rennes I
Master : Etienne Mémin, Analyse du mouvement, Mastere Informatique, 15h, niveau M2, Université
de Rennes 1.
Master : Etienne Mémin, Vision par ordinateur , 15h, niveau M2, ESIR Université de Rennes 1.

9.2.2. Supervision
PhD : Ioana Barbu, Tridimensional estimation of turbulment fluid velocity, Université de Rennes I,
defended 15/12/2014, encadrants: Cédric Herzet, Etienne Mémin
PhD : Xuan Quy Dao, Fluid Flow control by visual servoing, Université de Rennes I, defended
16/12/2014, encadrant: Christophe Collewet
PhD : Yin Yuang, Study of variational ensemble methods for image assimilation, Université de
Rennes I, defended 16/12/2014, encadrant: Etienne Mémin
PhD in progress : Benoit Pinier, Scale similarity and uncertainty for Ocean-Atmosphere coupled
models, started 01/10/2014, supervisors: Roger Lewandowski, Etienne Mémin
PhD in progress : Valentin Resseguier, Oceanic models under uncertainty and image assimilitation,
started 01/10/2013, Bertrand Chapron (Ifremer), Etienne Mémin
PhD in progress : Cordelia Robinson, Variational assimilation for 3D wake reconstruction, started
01/10/2011, supervisors: Dominique Heitz, Etienne Mémin

9.2.3. Juries
Dominique Heitz

• Yin Yang, Study of variational ensemble methods for image assimilation, Université Rennes 1,
Rennes, 16/12/2014, Examiner.
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Cedric Herzet

• Ioana Barbu, Tridimensional estimation of turbulment fluid velocity, Université de Rennes I,
15/12/2014. Supervisor.

Etienne Mémin

• Emmanuelle Autret, Analyse des champs de température de surface de la mer à partir d’observations
satellite multi-sources, 07/10/2014, President

• Ioana Barbu, Tridimensional estimation of turbulment fluid velocity, Université de Rennes I,
15/12/2014. Supervisor.

• Xuan Quy Dao, Fluid Flow control by visual servoing, Université de Rennes I, 16/12/2014, Exam-
iner

• Denis Fortun, Aggregation framework and patch based image representation for optical flow,
Université de Rennes I, 10/07/2014, President

• Gilles Tissot, Réduction de modèles et contrôle d’écoulement, Université de Poitiers, 02/10/2014,
Examiner

• Yin Yang, Study of variational ensemble methods for image assimilation, Université Rennes 1,
Rennes, 16/12/2014. Supervisor.

• Pascal Zille, Modèles multi-échelles pour l’analyse d’images : application à la turbulence, Université
de Lyon, 07/11/2014, Examiner

9.3. Popularization
Etienne Mémin

• E. Mémin. Ou vont les nuages ?, Un jour, une brève, Mathématiques de la planète terre, (Brève)

• Invited paper in the journal "Revue francaise de photogrammetry et de Télédétection", Outils
méthodologiques d’analyse d’images MSG : estimation du mouvement, suivi de masses nuageuses
et détéction de fronts, with T. Corpetti, V. Dubreuil, E. Mémin, O. Planchon, C. Thomas.

• Invited paper in the journal de la Socieété Francaise de Statistique, Image data assimilation with
filtering methods, with Anne Cuzol.
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