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2. Overall Objectives

2.1. GALEN@Centrale-Paris
Computational vision is one of the most challenging research domains in engineering sciences. The aim is
to reproduce human visual perception through intelligent processing of visual data. The application domains
span from computer aided diagnosis to industrial automation & robotics. The most common mathematical
formulation to address such a challenge is through mathematical modeling. In such a context, first the solution
of the desired vision task is expressed in the form of a parameterized mathematical model. Given such a
model, the next task consists of associating the model parameters with the available observations, which is
often called the model-to-data association. The aim of this task is to determine the impact of a parameter
choice to the observations and eventually maximize/minimize the adequacy of these parameters with the visual
observations. In simple words, the better the solution is, the better it will be able to express and fit the data. This
is often achieved through the definition of an objective function on the parametric space of the model. Last, but
not least given the definition of the objective function, visual perception is addressed through its optimization
with respect to the model parameters. To summarize, computation visual perception involves three aspects,
a task-specific definition of a parametric model, a data-specific association of this model with the available
observations and last the optimization of the model parameters given the objective and the observations.

Such a chain processing inherits important shortcomings. The curse of dimensionality is often used to express
the importance of the model complexity. In simple words, the higher the complexity of the model is, the better
its expressive power will be with counter effect the increase of the difficulty of the inference process. Non-
linearity is another issue to be addressed which simply states that the association between the model and the
data is a (highly) non-linear function and therefore direct inference is almost infeasible. The impact of this
aspect is enforced from the curse of non-convexity that characterizes the objective function. Often it lives in
high-dimensional spaces and is ill posed making exact inference problematic (in many cases not possible)
and computationally expensive. Last, but not least modularity and scalability is another important concern
to be addressed in the context of computational vision. The use of task-specific modeling and algorithmic
solutions make their portability infeasible and therefore transfer of knowledge from one task to another is not
straightforward while the methods do not always scale well with respect either to the dimensionality of the
representation or the data.

GALEN aims at proposing innovative techniques towards automatic structuring, interpretation and longitu-
dinal modeling of visual data. In order to address these fundamental problems of computational perception,
GALEN investigates the use of discrete models of varying complexity. These methods exhibit an important
number of strengths such as their ability to be modular with respect to the input measurements (clinical data),
the nature of the model (certain constraints are imposed from computational perspective in terms of the level
of interactions), and the model-to-data association while being computational efficient.

3. Research Program

3.1. Shape, Grouping and Recognition
A general framework for the fundamental problems of image segmentation, object recognition and scene
analysis is the interpretation of an image in terms of a set of symbols and relations among them. Abstractly
stated, image interpretation amounts to mapping an observed image, X to a set of symbols Y . Of particular
interest are the symbols Y ∗ that optimally explain the underlying image, as measured by a scoring function s
that aims at distinguishing correct (consistent with human labellings) from incorrect interpretations:

Y ∗ = argmaxY s(X,Y ) (1)
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Applying this framework requires (a) identifying which symbols and relations to use (b) learning a scoring
function s from training data and (c) optimizing over Y in Eq. 1.

Applying this framework requires (a) identifying which symbols and relations to use for image and object
representation (b) learning a scoring function s from training data and (c) optimizing over Y in Eq. 1 . One of
the main themes of our work is the development of methods that jointly address (a,b,c) in a shape-grouping
framework in order to reliably extract, describe, model and detect shape information from natural and medical
images. A principal motivation for using a shape-based framework is the understanding that shape- and more
generally, grouping- based representations can go all the way from image features to objects. Regarding aspect
(a), image representation, we cater for the extraction of image features that respect the shape properties of
image structures. Such features are typically constructed to be purely geometric (e.g. boundaries, symmetry
axes, image segments), or appearance-based, such as image descriptors. The use of machine learning has been
shown to facilitate the robust and efficient extraction of such features, while the grouping of local evidence
is known to be necessary to disambiguate the potentially noisy local measurements. In our research we have
worked on improving feature extraction, proposing novel blends of invariant geometric- and appearance- based
features, as well as grouping algorithms that allow for the efficient construction of optimal assemblies of local
features.

Regarding aspect (b) we have worked on learning scoring functions for detection with deformable models
that can exploit the developed low-level representations, while also being amenable to efficient optimization.
Our works in this direction build on the graph-based framework to construct models that reflect the shape
properties of the structure being modeled. We have used discriminative learning to exploit boundary- and
symmetry-based representations for the construction of hierarchical models for shape detection, while for
medical images we have developed methods for the end-to-end discriminative training of deformable contour
models that combine low-level descriptors with contour-based organ boundary representations.

Regarding aspect (c) we have developed algorithms which implement top-down/bottom-up computation both
in deterministic and stochastic optimization. The main idea is that ‘bottom-up’, image-based guidance is nec-
essary for efficient detection, while ‘top-down’, object-based knowledge can disambiguate and help reliably
interpret a given image; a combination of both modes of operation is necessary to combine accuracy with
efficiency. In particular we have developed novel techniques for object detection that employ combinatorial
optimization tools (A* and Branch-and-Bound) to tame the combinatorial complexity, achieving a best-case
performance that is logarithmic in the number of pixels.

In the long run we aim at scaling up shape-based methods to 3D detection and pose estimation and large-
scale object detection. One aspect which seems central to this is the development of appropriate mid-level
representations. This is a problem that has received increased interest lately in the 2D case and is relatively
mature, but in 3D it has been pursued primarily through ad-hoc schemes. We anticipate that questions
pertaining to part sharing in 3D will be addressed most successfully by relying on explicit 3D representations.
On the one hand depth sensors, such as Microsoft’s Kinect, are now cheap enough to bring surface modeling
and matching into the mainstream of computer vision - so these advances may be directly exploitable at
test time for detection. On the other hand, even if we do not use depth information at test time, having
3D information can simplify the modeling task during training. In on-going work with collaborators we
have started exploring combinations of such aspects, namely (i) the use of surface analysis tools to match
surfaces from depth sensors (ii) using branch-and-bound for efficient inference in 3D space and (iii) groupwise-
registration to build statistical 3D surface models. In the coming years we intend to pursue a tighter integration
of these different directions for scalable 3D object recognition.

3.2. Machine Learning & Structured Prediction
The foundation of statistical inference is to learn a function that minimizes the expected loss of a prediction
with respect to some unknown distribution

R(f) =

∫
`(f, x, y)dP (x, y), (2)
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where `(f, x, y) is a problem specific loss function that encodes a penalty for predicting f(x) when the correct
prediction is y. In our case, we consider x to be a medical image, and y to be some prediction, e.g. the
segmentation of a tumor, or a kinematic model of the skeleton. The loss function, `, is informed by the costs
associated with making a specific misprediction. As a concrete example, if the true spatial extent of a tumor
is encoded in y, f(x) may make mistakes in classifying healthy tissue as a tumor, and mistakes in classifying
diseased tissue as healthy. The loss function should encode the potential physiological damage resulting from
erroneously targeting healthy tissue for irradiation, as well as the risk from missing a portion of the tumor.

A key problem is that the distribution P is unknown, and any algorithm that is to estimate f from labeled
training examples must additionally make an implicit estimate of P . A central technology of empirical
inference is to approximate R(f) with the empirical risk,

R(f) ≈ R̂(f) =
1

n

n∑
i=1

`(f, xi, yi), (3)

which makes an implicit assumption that the training samples (xi, yi) are drawn i.i.d. from P . Direct
minimization of R̂(f) leads to overfitting when the function class f ∈ F is too rich, and regularization is
required:

min
f∈F

λΩ(‖f‖) + R̂(f), (4)

where Ω is a monotonically increasing function that penalizes complex functions.

Equation (4) is very well studied in classical statistics for the case that the output, y ∈ Y, is a binary or scalar
prediction, but this is not the case in most medical imaging prediction tasks of interest. Instead, complex
interdependencies in the output space leads to difficulties in modeling inference as a binary prediction problem.
One may attempt to model e.g. tumor segmentation as a series of binary predictions at each voxel in a
medical image, but this violates the i.i.d. sampling assumption implicit in Equation (3). Furthermore, we
typically gain performance by appropriately modeling the inter-relationships between voxel predictions, e.g.
by incorporating pairwise and higher order potentials that encode prior knowledge about the problem domain.
It is in this context that we develop statistical methods appropriate to structured prediction in the medical
imaging setting.

3.3. Self-Paced Learning with Missing Information
Many tasks in artificial intelligence are solved by building a model whose parameters encode the prior domain
knowledge and the likelihood of the observed data. In order to use such models in practice, we need to estimate
its parameters automatically using training data. The most prevalent paradigm of parameter estimation is
supervised learning, which requires the collection of the inputs xi and the desired outputs yi. However, such an
approach has two main disadvantages. First, obtaining the ground-truth annotation of high-level applications,
such as a tight bounding box around all the objects present in an image, is often expensive. This prohibits the
use of a large training dataset, which is essential for learning the existing complex models. Second, in many
applications, particularly in the field of medical image analysis, obtaining the ground-truth annotation may not
be feasible. For example, even the experts may disagree on the correct segmentation of a microscopical image
due to the similarities between the appearance of the foreground and background.

In order to address the deficiencies of supervised learning, researchers have started to focus on the problem
of parameter estimation with data that contains hidden variables. The hidden variables model the missing
information in the annotations. Obtaining such data is practically more feasible: image-level labels (‘contains
car’,‘does not contain person’) instead of tight bounding boxes; partial segmentation of medical images.
Formally, the parameters w of the model are learned by minimizing the following objective:

min
w∈W

R(w) +
n∑
i=1

∆(yi, yi(w), hi(w)). (5)
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Here, W represents the space of all parameters, n is the number of training samples, R(·) is a regularization
function, and ∆(·) is a measure of the difference between the ground-truth output yi and the predicted output
and hidden variable pair (yi(w), hi(w)).

Previous attempts at minimizing the above objective function treat all the training samples equally. This is in
stark contrast to how a child learns: first focus on easy samples (‘learn to add two natural numbers’) before
moving on to more complex samples (‘learn to add two complex numbers’). In our work, we capture this
intuition using a novel, iterative algorithm called self-paced learning (SPL). At an iteration t, SPL minimizes
the following objective function:

min
w∈W,v∈{0,1}n

R(w) +

n∑
i=1

vi∆(yi, yi(w), hi(w))− µt
n∑
i=1

vi. (6)

Here, samples with vi = 0 are discarded during the iteration t, since the corresponding loss is multiplied by
0. The term µt is a threshold that governs how many samples are discarded. It is annealed at each iteration,
allowing the learner to estimate the parameters using more and more samples, until all samples are used. Our
results already demonstrate that SPL estimates accurate parameters for various applications such as image
classification, discriminative motif finding, handwritten digit recognition and semantic segmentation. We will
investigate the use of SPL to estimate the parameters of the models of medical imaging applications, such as
segmentation and registration, that are being developed in the GALEN team. The ability to handle missing
information is extremely important in this domain due to the similarities between foreground and background
appearances (which results in ambiguities in annotations). We will also develop methods that are capable of
minimizing more general loss functions that depend on the (unknown) value of the hidden variables, that is,

min
w∈W,θ∈Θ

R(w) +

n∑
i=1

∑
hi∈H

Pr (hi|xi, yi; θ)∆(yi, hi, yi(w), hi(w)). (7)

Here, θ is the parameter vector of the distribution of the hidden variables hi given the input xi and output yi,
and needs to be estimated together with the model parameters w. The use of a more general loss function will
allow us to better exploit the freely available data with missing information. For example, consider the case
where yi is a binary indicator for the presence of a type of cell in a microscopical image, and hi is a tight
bounding box around the cell. While the loss function ∆(yi, yi(w), hi(w)) can be used to learn to classify
an image as containing a particular cell or not, the more general loss function ∆(yi, hi, yi(w), hi(w)) can be
used to learn to detect the cell as well (since hi models its location)

3.4. Discrete Biomedical Image Perception
A wide variety of tasks in medical image analysis can be formulated as discrete labeling problems. In very
simple terms, a discrete optimization problem can be stated as follows: we are given a discrete set of variables
V, all of which are vertices in a graph G. The edges of this graph (denoted by E) encode the variables’
relationships. We are also given as input a discrete set of labels L. We must then assign one label from L

to each variable in V. However, each time we choose to assign a label, say, xp1 to a variable p1, we are forced
to pay a price according to the so-called singleton potential function gp(xp), while each time we choose to
assign a pair of labels, say, xp1 and xp2 to two interrelated variables p1 and p2 (two nodes that are connected
by an edge in the graph G), we are also forced to pay another price, which is now determined by the so called
pairwise potential function fp1p2(xp1 , xp2). Both the singleton and pairwise potential functions are problem
specific and are thus assumed to be provided as input.
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Our goal is then to choose a labeling which will allow us to pay the smallest total price. In other words, based
on what we have mentioned above, we want to choose a labeling that minimizes the sum of all the MRF
potentials, or equivalently the MRF energy. This amounts to solving the following optimization problem:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2). (8)

The use of such a model can describe a number of challenging problems in medical image analysis.
However these simplistic models can only account for simple interactions between variables, a rather
constrained scenario for high-level medical imaging perception tasks. One can augment the expres-
sion power of this model through higher order interactions between variables, or a number of cliques
{Ci, i ∈ [1, n] = {{pi1 , · · · , pi|Ci|}} of order |Ci| that will augment the definition of V and will introduce
hyper-vertices:

arg min
{xp}

P(g, f) =
∑
p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2(xp1 , xp2) +
∑
Ci∈E

fp1···pn(xpi1 , · · · , pxi|Ci|
). (9)

where fp1···pn is the price to pay for associating the labels (xpi1 , · · · , pxi|Ci|
) to the nodes (p1 · · · pi|Ci|).

Parameter inference, addressed by minimizing the problem above, is the most critical aspect in computational
medicine and efficient optimization algorithms are to be evaluated both in terms of computational complexity
as well as of inference performance. State of the art methods include deterministic and non-deterministic
annealing, genetic algorithms, max-flow/min-cut techniques and relaxation. These methods offer certain
strengths while exhibiting certain limitations, mostly related to the amount of interactions which can be
tolerated among neighborhood nodes. In the area of medical imaging where domain knowledge is quite strong,
one would expect that such interactions should be enforced at the largest scale possible.

4. Application Domains
4.1. Brain Tumors and Neuro-degenerative diseases

The use of contrast enhanced imaging is investigated in collaboration with the Montpellier University Hospital
towards better understanding of low-gliomas positioning, automatic tumor segmentation/identification and
longitudinal (tumor) growth modeling. Furthermore, in collaboration with the Neurospin center of CEA and
the Brookhaven National Laboratory at StonyBrook University we investigate the use of machine learning
methods towards automatic interpretation of functional magnetic resonance imaging between cocaine addicted
and normal subjects. Last, but not least in collaboration with the Georges Pompidou European Hospital an
effort toward understanding tumor perfusion process through comportemental models is carried out with
emphasis given on elastic organs.

4.2. Image-driven Radiotherapy Treatment & Surgery Guidance
The use of CT and MR imaging for cancer guidance treatment in collaboration with the Gustave Roussy
Institute of Oncology. The aim is to provide tools for automatic dose estimation as well as off-line and online
positioning guidance through deformable fusion between imaging data prior to each session and the ones
used for scheduling/planning and dose estimation. The same concept will be explored in collaboration with
the Saint-Antoine University Hospital towards image-driven surgery guidance through 2D to 3D registration
between interventional and pre-operative annotated data.

4.3. Fundus Image Analysis
Retinal images–also known as fundus images or retinographies–are projective color im- ages of the inner
surface of the human eye. In collaboration with Pladema Institute, UNCPBA, Argentina, we are developing a
suite of software tools for automatic analysis of retinal images driven by statistical learning approaches.
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5. New Software and Platforms
5.1. Deformable Registration Software

Participant: Nikos Paragios [Correspondant].

deformable image and volume registration, is a deformable registration platform in C++ for the medical imag-
ing community (publicly available at http://www.mrf-registration.net) developed mainly at Ecole Centrale,
Technical University of Munich and University of Crete. This is the first publicly available platform which
contains most of the existing metrics to perform registration under the same concept. The platform is used for
clinical research from approximately 3,000 users worldwide.

5.2. Dense image and surface descriptors
Participant: Iasonas Kokkinos [Correspondant].

Scale-Invariant Descriptor, Scale-Invariant Heat Kernel Signatures DISD (publicly available at http://vision.
mas.ecp.fr/Personnel/iasonas/descriptors.html) implements the SID, SI-HKS and ISC descriptors. SID (Scale-
Invariant Descriptor) is a densely computable, scale- and rotation- invariant descriptor. We use a log-polar
grid around every point to turn rotation/scalings into translation, and then use the Fourier Transform Modulus
(FTM) to achieve invariance. SI-HKS (Scale-Invariant Heat Kernel Signatures) extract scale-invariant shape
signatures by exploiting the fact that surface scaling amounts to multiplication and scaling of a properly
sampled HKS descriptor. We apply the FTM trick on HKS to achieve invariance to scale changes. ISC
(Intrinsic Shape Context) constructs a net-like grid around every surface point by shooting outwards and
tracking geodesics. This allows us to build a meta-descriptor on top of HKS/SI-HKS that takes neighborhood
into account, while being invariant to surface isometries.

5.3. Ranking with High-Order Information
Participant: Puneet Dokania [Correspondant].

Average precision optimization, high-order information, ranking The software (publicly available at http://
cvn.ecp.fr/projects/ranking-highorder/) provides a convenient API for learning to rank with high-order infor-
mation. The samples are ranked according to a scorethat is proportional to the difference of max-marginals
of the positive and the negative class. The parameters of the score function are computed by minimizing an
upper bound on the average precision loss. The software also provides an instantiation of the API for ranking
samples according to their relevance to an action, using the poselet features.

5.4. Efficient bounding-based object detection
Participant: Iasonas Kokkinos [Correspondant].

branch-and-bound, parts detection, segmentation, DPMS implements branch-and-bound object detection,
cutting down the complexity of detection from linear in the number of pixels to logarithmic (publicly available
at http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html). The results delivered are identical to those of the
standard deformable part model detector, but are available in 5 to 20 times less time. This website has been
visited 1500 times in 10 months.

5.5. Fast Primal Dual Strategies for Optimization of Markov Random Fields
Participant: Nikos Komodakis [Correspondant].

discrete optimization, Markov random field, duality, graph cuts, FASTPD is an optimization platform in
C++ for the computer vision and medical imaging community (publicly available at http://www.csd.uoc.gr/
~komod/FastPD/ ) developed mainly at Ecole Centrale and University of Crete. This is the most efficient
publicly available platform in terms of a compromise of computational efficiency and ability to converge to a
good minimum for the optimization of generic MRFs. The platform is used from approximately 1,500 users
worldwide.

http://www.mrf-registration.net
http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
http://cvn.ecp.fr/projects/ranking-highorder/
http://cvn.ecp.fr/projects/ranking-highorder/
http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html
http://www.csd.uoc.gr/~komod/FastPD/ 
http://www.csd.uoc.gr/~komod/FastPD/ 
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5.6. imaGe-based Procedural Modeling Using Shape Grammars
Participant: Iasonas Kokkinos [Correspondant].

procedural modeling, image-based building reconstruction, shape grammars GRAPES is a generic image pars-
ing library based on re-inforcement learning (publicly available at http://vision.mas.ecp.fr/Personnel/teboul/
grapesPage/index.php). It can handle grammars (binary-split, four-color, Hausmannian) and image-based re-
wards (Gaussian mixtures, Randomized Forests) of varying complexity while being modular and computa-
tionally efficient both in terms of grammar and image rewards. The platform is used from approximately 500
users worldwide.

5.7. Learning-based symmetry detection
Participant: Stavros Tsogkas [Correspondant].

Scale-Invariant Descriptor, Scale-Invariant Heat Kernel Signatures LBSD (publicly available at http://cvn.ecp.
fr/personnel/tsogkas/code.html implements the learning-based approach to symmetry detection. It includes the
code for running a detector, alongside with the ground-truth symmetry annotations that we have introduced
for the Berkeley Segmentation Dataset (BSD) benchmark.

5.8. Texture Analysis Using Modulation Features and Generative Models
Participant: Iasonas Kokkinos [Correspondant].

Texture, modulation, generative models, segmentation, TEXMEG is a front-end for texture analysis and
edge detection platform in Matlab that relies on Gabor filtering and image demodulation (publicly available
at http://cvsp.cs.ntua.gr/software/texture/). Includes frequency- and time- based definition of Gabor- and
other Quadrature-pair filterbanks, demodulation with the Regularized Energy Separation Algorithm and
Texture/Edge/Smooth classification based on MDL criterion. The platform is used from approximately 250
users worldwide.

6. New Results

6.1. Highlights of the Year
• Handbook of Biomedical Imaging: Methodologies and Clinical Research [38] - co-edited from

Nikos Paragios, James Duncan and Nicholas Ayache - has been published from Springer Publishing
house.

• Nikos Paragios was admitted as a senior fellow at the Insitut Universitaire de France and has been
awarded an IBM Faculty award. He has also been one of the plenary invited lecturers at the IARP
International Conference in Pattern Recognition (ICPR’2015, Stockholm).

BEST PAPER AWARD :
[26] Predicting cross-task behavioral variables from fMRI data using the k-support norm in Sparsity
Techniques in Medical Imaging (STMI). M. MISYRLIS, A. KONOVA, M. BLASCHKO, J. HONORIO, N.
ALIA-KLEIN, R. GOLDSTEIN, D. SAMARAS.

6.2. Rounding-based Moves for Metric Labeling
Paticipants: M. Pawan Kumar

Metric labeling is an important special case of energy minimizaton in Markov random fields. While the best
known polynomial-time algorithm for the problem is the linear programming (LP) relaxation, in practice
it is slow to solve it. In [25], we introduced a new family of efficient move-making algorithms for metric
labeling. These algorithms mimic the rounding procedues used for converting a fractional LP solution to a
feasible integral solution. Our algorithms provide a matching theoretical guarantee to the LP relaxation, while
requiring significantly less computational time.

http://vision.mas.ecp.fr/Personnel/teboul/grapesPage/index.php
http://vision.mas.ecp.fr/Personnel/teboul/grapesPage/index.php
http://cvn.ecp.fr/personnel/tsogkas/code.html
http://cvn.ecp.fr/personnel/tsogkas/code.html
http://cvsp.cs.ntua.gr/software/texture/
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6.3. Optimizing Average Precision
Paticipants: Puneet Kumar Dokania, Aseem Behl, Pritish Mohapatra, C.V. Jawahar, M. Pawan Kumar

Average precision (AP) is one of the most commonly used measures for ranking. However, due to the
inefficiency of optimizing it during learning, a common approach is to use surrogate loss functions such as 0-1
loss. In [27], we proposed a new optimization algorithm for AP-SVM that allows training in a similar time
to binary SVM. In [23], we extended the AP-SVM framework to score the samples according to high-order
information, as opposed to simple first-order information used in prior work. Finally, in [19], we proposed
a novel latent AP-SVM formulation that allows learning from weakly supervised datasets. The advantage of
learning with high order and missing information is demonstrated on challenging computer vision problems
such as action classification and object detection using standard benchmark datasets.

6.4. Discriminative Training of Deformable Contour Models
Paticipants: Haithem Boussaid, Iasonas Kokkinos and Nikos Paragios

Deformable Contour Models (DCMs) are a main workhorse for medical image analysis - but are not commonly
studied from a machine learning perspective. In [21], [20] we haved proposed an integrated machine learning
and optimization framework to deploy DCMs in medical image analysis.

Our technical contributions are two-fold: firstly, we use an efficient decomposition-coordination algorithm to
solve the optimization problems resulting from Loopy DCMs, by means of the Alternating Direction Method
of Multipliers (ADMM); this yields substantially faster convergence than plain Dual Decomposition-based
methods.

Secondly, we use structured prediction to exploit loss functions that better reflect the performance criteria used
in medical image segmentation. By using the mean contour distance (MCD) as a structured loss during train-
ing, we obtain clear test-time performance gains.

We demonstrate the merits of exact and efficient inference with rich, structured models in a large X-Ray image
segmentation benchmark, where we obtain systematic improvements over the current state-of-the-art.

6.5. Improved Deformable Part Models for Object Detection
Paticipants: Iasonas Kokkinos, Stavros Tsogkas, Eduard Trulls, Pierre-Andre Savalle, George Papandreou.

In [30] and [36] we have worked on improving the classification accuracy of Deformable Part Models (DPMs)
for object detection in two distinct manners. Firstly, in [30] we propose a technique to combine bottom-
up segmentation, coming in the form of SLIC superpixels, with sliding window DPM detectors. The merit
of our approach lies in ‘cleaning up’ the low- level features by exploiting the spatial support indicated by
segmentation. - tion, for both the root and part filters of DPMs. We use these masks to construct enhanced,
background- invariant features to train DPMs. We test our approach on the PASCAL VOC 2007, outperforming
the standard DPM in 17 out of 20 classes, yielding an average increase of 1.7AP. Additionally, we demonstrate
the robustness of this ap- proach, extending it to dense SIFT descriptors for large dis- placement optical flow.

Secondly, in [36] we have explored the potential of convolutional neural networks as feature extractors
for detection with DPMs. In particular, we substitute the Histogram-of-Gradient features of DPMs with
Convolutional Neural Network (CNN) features, and demonstrate that we thereby obtain a substantial boost in
performance (+14.5 mAP) when compared to the baseline HOG-based models. Some more recent extensions
to this work are included in [41] where we explore the potential of explicit scale and aspect ratio search in the
context of sliding window detection with CNNs.

6.6. Fine-Grained models of objects and texture
Paticipants: Iasonas Kokkinos, Matthew Blaschko, Stavros Tsogkas, Andrea Vedaldi, Mircea Cimpol,
Subhransu Maji, Ross Girshick, Juho Kannala, Esa Rahtu, David Weiss, Ben Taskar, Karen Simonyan.
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In [31] and [22] we explore methods for the fine-grained understanding of objects and textures, respectively.

In [22] we introduce a texture dataset that is accompanied by descriptions that capture the essence of the
textures in terms of attributes. We explore a broad range of classification techniques for these texture attributes
and demonstrate that the learned classifiers help improve generic texture recognition methods.

In [31] we introduce a large-scale dataset of airplanes that is accompanied by thorough human annotations
at different levels: airplane types, segment lineouts, attributes, and part descriptions are provided for more
than 7000 airplane images. We explore the potential of these rich annotations for the task of constructed fine-
grained image descriptions using discriminative training techniques on top of standard image representations
(Histogram-of-gradient features).

6.7. Large Scale Video Segmentation
Paticipants: Matthew Blaschko

Spatio-temporal cues are powerful sources of information for segmentation in videos. In [24] we present an
efficient and simple technique for spatio-temporal segmentation that is based on a low-rank spectral clustering
algorithm. The complexity of graph-based spatio-temporal segmentation is dominated by the size of the graph,
which is proportional to the number of pixels in a video sequence. In contrast to other works, we avoid
oversegmenting the images into super-pixels and instead generalize a simple graph based image segmentation.
Our graph construction encodes appearance and motion information with temporal links based on optical flow.
For large scale data sets naïve graph construction is computationally and memory intensive, and has only been
achieved previously using a high power compute cluster. We make feasible for the first time large scale graph-
based spatio-temporal segmentation on a single core by exploiting the sparsity structure of the problem and a
low rank factorization that has strong approximation guarantees.

6.8. Higher Order Graph Matching
Paticipants: Chaohui Wang, Dimitris Samaras, Nikos Paragios

In [42] a generic framework for sparse and dense graph/3D surface matching has been introduced. The
framework is endowed with a novel mathematical formulation regarding the matching process along with
a novel deformation model. It exploits the power of invariance of higher order clique potentials and through a
low to high resolution approach determines optimal correspondences between two sets of 3D points while
taking advantage of Mobius tranformation to measure local similarity of shapes/graphs/surfaces. Graph
matching of objects undergoing non-rigid deformations along with temporal 3D surface tracking demonstrated
the potentials of our method. Inference is solved through an efficient dual decomposition scema.

6.9. Inference of Procedural Grammars from Images
Paticipants: Nikos Paragios

Grammar-like representations are powerful modeling and inference tools in computational vision. In [39]
a novel approach towards automatic inference of typology specific building grammars has been introduced.
The central idea was to consider that such grammars could be derived through a bottom up approach of
common sub-tree reasoning of derivation trees determined through parsing using elementary shape (binary
split) grammars. Such an approach performs common subtree reduction within the entire training set and
identifies meta-rules (corresponding to the same subtrees) which are then clustered together towards producing
a compact, typology specific grammar. Promising results both in terms of grammar compactness as well as in
terms of inference demonstrated the potentials of the method that could be used beyond the considered scoped.

6.10. Fully connected CRFs for blood vessel segmentation in retinal images
Paticipants: Matthew Blaschko, José Ignacio Orlando
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In [28], we present a novel method for blood vessel segmentation in fundus images based on a discriminatively
trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood
vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the
diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related
abnormalities. Blood vessel segmentation in fundus images has been considered extensively in the literature,
but remains a challenge largely due to the desired structures being thin and elongated, a setting that performs
particularly poorly using standard segmentation priors such as a Potts model or total variation.

6.11. Graph-based Segmentation
Paticipants: Sarah Parisot, Deepak Chittajallu, Ioannis Kakadiaris, Nikos Paragios

In [17] we revisited explicit contour-evolution segmentation methods driven from a graph-based shape prior.
Prior knowledge through geometric constraints has been encoded to the model within pair-wise interactions
between control points. The segmentation process was driven through an objective function seeking to move
the control points towards image locations optimizing the expected visual properties of the organ while
satisfying the prior geometric constraints being learned at training. In [18] we have proposed a mathematical
formalism for automatic tumor segmentation which was taking advantage of conventional segmentation
likelihoods and atlas-based segmentation methods. The central idea was to jointly deform and segment an
atlas such that the tumor likelihoods are maximized once projected to the targeted image while relaxing the
registration constraints in this area. Furthermore we have endowed to this framework explicit estimation of
uncertainties allowing the dynamic sampling of the graph structure resulting on significant speed up of the
process while producing quantitative means for the interpretation of the final result.

6.12. Multi-atlas Segmentation
Paticipants: Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios

In [33] a novel approach that couples pair-wise deformable registration with multi-atlas segmentation using
graphical models was proposed. The method exploits both spaces and seeks to determine the optimal solution
which will create the best possible visual agreement between atlases and target image along with their label
consistency. The approach optimizes the deformation models and the segmentation labels jointly through an
interconnected graph allowing either to relax registration constraints when segmentation labels do indicate or
the opposite. The joint optimization of both spaces allowing the “implicit” automatic selection of atlases and
therefore improves significantly segmentation performance.

6.13. Higher Order Graph Training throuh Dual Decomposition and Max
Margin Principles
Paticipants: Nikos Komodakis, Bo Xiang, Nikos Paragios

In [40] a novel framework based on the structure margin principle was introduced for training higher order
graphical models. The idea was to reduce the training of a complex high-order MRF in the parallel training of
a series of simple slave MRFs through a principled dual decomposition approach. The theoretical properties of
the framework have been studied while the method has been experimentally tested using 2d/3d segmentation
problems involving higher order geometric priors that are linear-invariant. The proposed formulation benefits
from theoretical guarantees as it concerns performance, computational simplicity while being modular and
scalable.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
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• Microsoft Research, Cambridge, UK: Large Scale Diverse Learning for Structured Output Predic-
tion [Ph.D. thesis D. Bouchacourt]

• General Electrric HealthCare, Buc, FR: Patient-Specific Optimization of Computed Tomography
Acquisition Protocols [Ph.D. thesis H. Pasquier]

8. Partnerships and Cooperations

8.1. Regional Initiatives
8.1.1. Excellence Clusters

• Program: DIGITEO (Chair)
Project acronym: SubSample
Project title: Identification and prediction of Salient brain States through probabilistic
structure learning towards fusion of imaging and genomic date
Duration: 01/2012-12/2015
Coordinator: ECP - FR

• Program: DIGITEO (OMTE)
Project acronym: Curator
Project title: Real-time 2D/3D Deformable Fusion Towards Computer Assisted Surgery
Duration: 01/2013-01/2015
Coordinator: ECP - FR

• Program: DIGITEO
– Project acronym: SOPRANO
– Project title: Structured Output Prediction on Large Scale Neuroscience Data
– Duration: 3/2013-3/2016
– Coordinator: Ecole Centrale Paris - FR

• Program: MEDICEN
Project acronym: ADOC
Project title: ADOC – Diagnostic peropératoire numérique en chirurgie du cancer
Duration: 11/2011-09/2015
Coordinator: LLTECH - FR

8.2. National Initiatives
8.2.1. ANR

• Program: ANR Blanc International
Project acronym: ADAMANTIUS
Project title: Automatic Detection And characterization of residual Masses in pAtients
with lymphomas through fusioN of whole-body diffusion-weighTed mrI on 3T and 18F-
flUorodeoxyglucoSe pet/ct
Duration: 9/2012-8/2015
Coordinator: CHU Henri Mondor - FR

• Program: ANR JCJC
Project acronym: HICORE
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Project title: HIerarchical COmpositional REpresentations for Computer Vision
Duration: 10/2010-9/2014
Coordinator: ECP - FR

• Program: ANR JCJC
Project acronym: LearnCost
Project title: Learning Model Constraints for Structured Prediction
Duration: 2014-2018
Coordinator: Inria Saclay - FR

• Program: ITMOs Cancer & Technologies pour la santé d’Aviesan / INCa
Project acronym: CURATOR
Project title: Slice-to-Image Deformable Registration towards Image-based Surgery Navi-
gation & Guidance
Duration: 12/2013-11/2015
Coordinator: ECP - FR

8.3. European Initiatives
8.3.1. FP7 & H2020 Projects
8.3.1.1. DIOCLES

Type: FP7
Instrument: European Research Council
Duration: September 2011 - August 2016
Coordinator: Nikos Paragios
Partner: Ecole Centrale de Paris (FR)
Inria contact: Nikos Paragios

8.3.1.2. MOBOT
Type: FP7
Defi: Cognitive Systems and Robotics
Instrument: Specific Targeted Research Project
Objectif: Cognitive Systems and Robotics
Duration: February 2013 - January 2016
Coordinator: Angelika Peer
Partner: University of Bristol (UK)
Inria contact: Iasonas Kokkinos

8.3.1.3. I-SUPPORT
Type: H2020
Defi: Cognitive Systems and Robotics
Instrument: Specific Targeted Research Project
Objectif: Cognitive Systems and Robotics
Duration: March 2015 - February 2018
Coordinator: Rafa Lopez
Partner: Robotnik Automation (Spain)
Inria contact: Iasonas Kokkinos
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8.3.1.4. RECONFIG
Type: FP7
Defi: Cognitive Systems and Robotics
Instrument: Specific Targeted Research Project
Objectif: Cognitive Systems and Robotics
Duration: February 2013 - January 2016
Coordinator: Dimos Dimarogonas
Partner: KTH (SE)
Inria contact: Iasonas Kokkinos

8.3.1.5. Strategie
Type: FP7
Instrument: Career Integration Grant
Duration: January 2014 - December 2017
Coordinator: Inria
Inria contact: Matthew Blaschko

8.4. International Initiatives
8.4.1. Inria Associate Teams
8.4.1.1. SPLENDID

Title: Self-Paced Learning for Exploiting Noisy, Diverse or Incomplete Data
International Partner (Institution - Laboratory - Researcher):

Stanford University (ÉTATS-UNIS)
Duration: 2012 - 2014
See also: http://cvn.ecp.fr/personnel/pawan/research/splendid.html
The goal of the project is to develop methods for learning accurate probabilistic models using
diverse (consisting of fully and weakly supervised samples), incomplete (consisting of partially
labeled samples) and noisy (consisting of mislabeled samples) data. To this end, we will build on the
intuitions gained from self-paced human learning, where a child is first taught simple concepts using
simple examples, and gradually increasing the complexity of the concepts and the examples. In the
context of machine learning, we aim to impart the learner with the ability to iteratively adapt the
model complexity and process the training data in a meaningful order. The efficacy of the developed
methods will be tested on several real world computer vision and medical imaging applications using
large, inexpensively assembled datasets.

8.4.2. Inria International Partners
8.4.2.1. Informal International Partners

Europe
• Technical University of Munich (DE) – Collaborative research with the Chair for Computer Aided

Medical Procedures& Augmented Reality at the department of Computer Science. Collaboration
Topic: Graph-based methods for linear/deformable registration, segmentation, and tracking.

• University College London (UK) – Collaborative research with the Gatsby Computational Neuro-
science Unit. Collaboration Topic: Kernel measures of dependence.

• University of Oxford (UK) – Collaborative research with the Visual Geometry Group of the
Department of Engineering Science. Collaboration Topic: Structured prediction and parts-based
models.

• University of Oulu (Finland) – Collaborative research with the Machine Vision Group at the
department of Electrical Engineering. Collaboration Topic: Ranking based learning algorithms for
cascaded object detection.

http://cvn.ecp.fr/personnel/pawan/research/splendid.html


Project-Team GALEN 15

Americas

• University of California at Los Angeles (US) – Collaborative research with the UCLA Vision Lab
and the UCLA Center for Cognition, Vision, and Learning Lab at the Departments of Computer
Science and Statistics. Collaboration Topic: Action Recognition & Object Detection Parsing.

• University of Pensylvania (USA) – Collaborative research with the section of Biomedical Imaging
of the Department of Radiology. Collaboration Topic: Graph-based methods for linear/deformable
registration.

• StonyBrook University, Computer Science Department (USA) – Collaborative research with the im-
age analysis lab in the context of the SubSample DIGITEO Chair. Collaboration Topic: Higher Order
Graph-based methods in graph-matching, cocaine addiction analysis with sparse graph models, ob-
ject detection and implicit 3D pose estimation

• Ecole Polytechnique de Montreal (CA) – Collaborative research with the Canada Research Chair
in Medical Imaging and Assisted Interventions. Collaboration Topic: Higher Order Graph-based
methods in Spine Imaging

• University of Colorado, Department of Computer Science (USA) - Research with the Autonomous
Robotics & Perception Group. Collaboration topic: Large scale video segmentation using efficient
approximations to a graph Laplacian.

Asia

• International Institute of Information Technology, Hyderabad (India) – Collaborative research with
Center for Visual Information Technology. Collaboration Topic: Average precision with weak
supervision and self-paced learning for deep convolutional neural networks.

8.5. International Research Visitors
8.5.1. Visits of International Scientists

• Professor Maragos, Petros: Technical University of Athens, GR (October 2014)

8.5.1.1. Internships

• Gastounioti, Aimilia: Technical University of Athens, GR (from February until June 2014)

• Trulls, Eduard: Universitat Politècnica de Catalunya, ES (from June until October 2014)

• Vedantam, Shanmukha Ramakrishna: Virginia Tech, USA ( from June 2014 until August 2014)]

8.5.2. Visits to International Teams
• Ferrante, Enzo: Stanford University, USA (from June to September 2014)

8.5.2.1. Research stays abroad

• Boussaid, Haithem: University of Pennsylvania, USA (from June to September 2014)

• Togkas, Stavros: Oxford University, UK (from August to November 2014)

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committee

• Blaschko, Matthew: Co-Organizer of Learning and inference in discrete graphical models tutorial,
in conjunction with IEEE Computer Vision and Pattern Recognition (CVPR).
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• Kokkinos, Iasonas: Co-Organizer of BASes for Images and Surfaces (BASIS) tutorial, in conjunction
with IEEE Computer Vision and Pattern Recognition (CVPR).

• Paragios, Nikos: (i) Co-Organizer of Bayesian and grAphical Models for Biomedical Imaging
(BAMBI) workshop, in conjunction with the Medical Image Computing and Computer Assisted
Intervention (MICCAI), (ii) Co-Organizer of the Learning and inference in discrete graphical models
tutorial, in conjunction with IEEE Computer Vision and Pattern Recognition (CVPR).

9.1.2. Scientific events selection
9.1.2.1. Member of the conference program committee

• Blaschko, Matthew: Neural Information Processing Systems (NIPS), British Machine Vision Confer-
ence (BMVC), Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP).

• Kumar, Pawan: Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP).

• Paragios, Nikos: IEEE Computer Vision and Pattern Recognition (CVPR), Medical Image Comput-
ing and Computer Assisted Intervention (MICCAI).

9.1.2.2. Reviewer

• Argyriou, Andreas: Neural Information Processing Systems (NIPS).

• Blaschko, Matthew: Artificial Intelligence and Statistics (AISTATS), Energy Minimization Methods
in Computer Vision and Pattern Recognition (EMMCVPR), IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)

• Kokkinos, Iasonas: European Conference on Computer Vision (ECCV), IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Neural Information Processing Systems (NIPS),
Artificial Intelligence and Statistics (AISTATS), Asian Conference on Computer Vision (ACCV).

• Kumar, Pawan: European Conference on Computer Vision (ECCV), Advances in Neural Information
Processing Systems (NIPS).

• Paragios, Nikos: European Conference on Computer Vision (ECCV).

9.1.3. Journal
9.1.3.1. Editor-in-Chief

• Paragios, Nikos: Computer Vision and Image Understanding Journal (CVIU).

9.1.3.2. Member of the editorial board

• Kumar, Pawan: Computer Vision and Image Understanding (CVIU).

• Kokkinos, Iasonas: Image and Vision Computing Journal (IVC), Guest Editor Special Issue on
Generative Models in Computer Vision - Computer Vision and Image Understanding Journal
(CVIU).

• Paragios, Nikos: Medical Image Analysis Journal (MedIA), SIAM Journal on Imaging Sciences,
Guest Editor Special Issue on Discrete Graphical Models in Biomedical Image Analysis - Medical
Image Analysis Journal (MedIA).

9.1.3.3. Reviewer

• Kokkinos, Iasonas: International Journal of Computer Vision (IJCV), IEEE Transactions on Pattern
Analysis and Machine Intelligence (T-PAMI), IEEE Transactions on Image Processing (T-IP), Image
and Vision Computing (IVC), Computer Vision and Image Understanding (CVIU).

• Kumar, Pawan: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), Com-
puter Vision and Image Understanding (CVIU).

• Paragios, Nikos: International Journal of Computer Vision (IJCV), IEEE Transactions on Pattern
Analysis and Machine Intelligence (T-PAMI), IEEE Transactions on Medical Imaging (T-MI).
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9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Masters
Blaschko, Matthew

• Master: Foundations of Machine Learning, 36, M1, Ecole Centrale Paris, FR

• Master: Structured Prediction, 24, M2, Ecole Centrale Paris, FR

Kokkinos, Iasonas

• Master: Machine Learning for Computer Vision, 24, M2, Ecole Normale
Superieure-Cachan, FR

• Master: Introduction to Deep Learning, 24, M2, Ecole Centrale de Paris, FR

• Master: Introduction to Signal Processing, 36, M1, Ecole Centrale de Paris, FR

• Master: Introduction to Computer Vision, 36, M1, Ecole Centrale de Paris, FR

Kumar, Pawan

• Master: Introduction to Discrete Optimization, 12, M2, Ecole Centrale de Paris,
FR

• Master: Discrete Optimization and Learning, 12, M2, Ecole Normale Superieure-
Cachan, FR

Paragios, Nikos

• Master: Advanced Mathematical Models in Computer Vision, 24, M2, Ecole
Normale Superieure-Cachan, FR

E-learning
MOOC: Coursera

Pedagogical resources : Kumar, Pawan & Paragios, Nikos, Discrete Inference and Lerning
in Artificial Vision, M2, https://www.coursera.org/course/artificialvision

9.2.2. Supervision
• HdR : Matthew Blaschko, Advances in Empirical Risk Minimization for Image Analysis and Pattern

Recognition, École Normale Supérieure de Cachan, 7 novembre 2014

• PhD in progress : Puneet Kumar Dokania, Learning to Rank with Missing and High-Order Informa-
tion, 2012-2015, M. Pawan Kumar

• PhD in progress : Diane Bouchacourt, Large Scale Diverse Learning for Structured Output Predic-
tion, 2014-2017, M. Pawan Kumar

• PhD in progress: Haithem Boussaid, Efficient Inference and Learning in Graphical Models for Multi-
organ Shape Segmentation, 2011-2015, I. Kokkinos

• PhD in progress: Stavros Tsogkas, Learning structured mid-level representations for object recogni-
tion, 2011-2015, I. Kokkinos

• PhD in progress: Siddhartha Chandra, Efficient Learning and Optimization for 3D Visual Data, 2013-
2016, Iasonas Kokkinos, Pawan Kumar

• PhD in progress: Stefan Kinauer, Surface-based representations for high-level vision tasks, 2013-
2016, Iasonas Kokkinos.

• PhD in progress : Wacha Bounliphone, Statistical tools for Imaging-Genetics data integration, 2013-
2016, Matthew Blaschko & Arthur Tenenhaus

• PhD in progress : Jiaqian Yu, Structured Prediction Methods for Computer Vision and Medical
Imaging, 2014-2017, Matthew Blaschko

 https://www.coursera.org/course/artificialvision
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• PhD in progress : Eugene Belilovsky, Structured Output Prediction on Large Scale Neuroscience
Data, 2014-2017, Matthew Blaschko

• PhD in progress : Stavros Alchatzidis, Message Passing Methods, Parallel Architectures & Visual
Processing, 2011-2014, Nikos Paragios

• PhD in progress : Enzo Ferrante, 2D-to-3D Multi-Modal Deformable Image Fusion, 2012-2015,
Nikos Paragios

• PhD in progress : Vivien Fecamp, Linear-Deformable Multi-Modal Deformable Image Fusion, 2012-
2015, Nikos Paragios

• PhD in progress : Evgenios Kornaropoulos, Diffusion Coefficient: a novel computer aided bio-
marker, 2010-2013, Nikos Paragios

• PhD in progress : Maxim Berman, Learning Higher Order Graphical Models, 2014-2017, Nikos
Paragios

• PhD in progress : Hariprasad Kannan, Efficient Inference on Higher Order Graphs, 2014-2017, Nikos
Paragios

• PhD in progress : Huu Dien Khue Le, Graph-based Visual Perception : Theories and Applications,
2014-2017, Nikos Paragios

9.2.3. Juries
• Matthew Blaschko

– PhD Thesis Participation: K. Gkirtzou - FR (PhD).
– Grant Reviewing Services: European Research Council (ERC).

• Iasonas Kokkinos
– PhD Thesis Participation: N. Dimitriou - GR (PhD).
– Grant Reviewing Services: Swiss National Science Foundation.

• Kumar, Pawan
– PhD Thesis Participation: K. Park - Australia (PhD), G. Lin - Australia (PhD).

• Paragios, Nikos
– PhD Thesis Participation: M. Blascho - FR (PhD), D. Fortun - FR (PhD), A. Gastounioti

- GR (PhD), B. Romain - FR (PhD), J. Tang - CA (PhD), J. Weissenberg - CH (PhD).
– Grant Reviewing Services: Agence National de la Recherche, Austrian Research Council,

Danish Research Council, Dutch Research Council, European Research Council, Israel
Research Foundation, Swiss National Science Foundation.

9.3. Popularization
• Blaschko, Matthew

– Presentations: Third School on Machine Learning and Knowledge Discovery in
Databases (BR), Computer Vision and Pattern Recognition Tutorial (US), KU Leuven
(BE), Machine Learning Challenge MICCAI Workshop (US), Agence Nationale de la
Recherche (FR)

• Kokkinos, Iasonas
– Presentations: Imagenet workshop (in conjunction with ECCV, CH), TTI-Chicago (USA),

KTH University (SE), Dagstuhl Seminar on Shape Analysis (DE).
• Kumar, Pawan M.

– Presentations: University of Oxford (UK), Ecole des Ponts (FR), Swedish AI Society
Workshop (SAIS ’14, SE), Xerox Research Center Europe (XRCE) (FR).

• Paragios, Nikos
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– Presentations: Reconnaissance de Formes et l’Intelligence Artificielle (RFIA’14, FR),
Medical Imaging Summer School (MISS’14, IT), International Conference on Pat-
tern Recogntion (ICPR’15, SE), Algorithmic issues for Inference in Graphical Models
(AIGM’14, FR), University of Patras (GR), Swiss Federal Institute of Technology in
Zurich (ETHZ) (CH).
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