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2. Overall Objectives
2.1. Overall Objectives

The research conducted in the Gallium group aims at improving the safety, reliability and security of software
through advances in programming languages and formal verification of programs. Our work is centered on
the design, formalization and implementation of functional programming languages, with particular emphasis
on type systems and type inference, formal verification of compilers, and interactions between programming
and program proof. The Caml language and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical foundations and formal semantics to applications
to real-world problems.

3. Research Program
3.1. Programming languages: design, formalization, implementation

Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:

• Safety. The programming language must not expose error-prone low-level operations (explicit
memory deallocation, unchecked array accesses, etc) to the programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type checking) and run-time checks.

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers around the statically-typed functional pro-
gramming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with
full imperative features and objects for additional expressiveness, and modules and classes for compositional-
ity. The OCaml language and system embodies many of our earlier results in this area [48]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.
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3.2. Type systems
Type systems [65] are a very effective way to improve programming language reliability. By grouping the data
manipulated by the program into classes called types, and ensuring that operations are never applied to types
over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it were
a function), a tremendous number of programming errors can be detected and avoided, ranging from the trivial
(misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are also
very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot analyze
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[59], [53], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing have
been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on row
polymorphism [69], integrated in OCaml, extended the benefits of this approach (reusable code with no loss of
typing precision) to object-oriented programming, extensible records and extensible variants. Another example
is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type system [66].



4 Activity Report INRIA 2014

Finally, the notion of “coercion polymorphism” proposed by Cretin and Rémy [28] combines and generalizes
both parametric and subtyping polymorphism.

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
typechecker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type checking undecidable, possibly requiring heuristics,
which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for typechecking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
designs of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.
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To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods
Formal methods refer collectively to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed in
interaction, and are interested in developing ways and means to facilitate this approach. One possibility that
we currently investigate is to extend functional programming languages such as Caml with the ability to state
logical invariants over data structures and pre- and post-conditions over functions, and interface with automatic
or interactive provers to verify that these specifications are satisfied. Another approach that we practice is to
start with a proof assistant such as Coq and improve its capabilities for programming directly within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

4. Application Domains

4.1. High-assurance software
A large part of our work on programming languages and tools focuses on improving the reliability of software.
Functional programming, program proof, and static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications, pure functional programming is well suited to
program proof. Moreover, functional programming languages such as Caml are eminently suitable to develop
the code generators and verification tools that participate in the construction and qualification of high-
assurance software. Examples include Esterel Technologies’s KCG 6 code generator, the Astrée static analyzer,
the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification
combines these two aspects of functional programming: writing a compiler in a pure functional language
and mechanically proving its correctness.
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Static typing detects programming errors early, prevents a number of common sources of program crashes
(null references, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data
structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and
other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security
Static typing is also highly effective at preventing a number of common security attacks, such as buffer
overflows, stack smashing, and executing network data as if it were code. Applications developed in a language
such as Caml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses
that automatically verify some security policies. Two examples from our past work include Java bytecode
verification [62] and enforcement of data confidentiality through type-based inference of information flows
and noninterference properties [67].

4.3. Processing of complex structured data
Like most functional languages, Caml is very well suited to expressing processing and transformations of
complex, structured data. It provides concise, high-level declarations for data structures; a very expressive
pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Therefore, Caml is
an excellent match for applications involving significant amounts of symbolic processing: compilers, program
analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced
Web applications, financial modeling tools, etc.

4.4. Rapid development
Static typing is often criticized as being verbose (due to the additional type declarations required) and
inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type
inference, as in the Caml language, substantially diminishes the importance of these problems: type inference
allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to
object-oriented programming completely separates the class inheritance hierarchy from the type compatibility
relation. Therefore, the Caml language is highly suitable for fast prototyping and the gradual evolution of
software prototypes into final applications, as advocated by the popular “extreme programming” methodology.

4.5. Teaching programming
Our work on the Caml language has an impact on the teaching of programming. Caml Light is one of
the programming languages selected by the French Ministry of Education for teaching Computer Science
in classes préparatoires scientifiques. OCaml is also widely used for teaching advanced programming in
engineering schools, colleges and universities in France, the USA, and Japan.

5. New Software and Platforms

5.1. OCaml
Participants: Damien Doligez [correspondant], Alain Frisch [LexiFi], Jacques Garrigue [Nagoya University],
Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White
[OCaml Labs, Cambridge University], Jeremy Yallop [OCaml Labs, Cambridge University].
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OCaml, formerly known as Objective Caml, is our flagship implementation of the Caml language. From a
language standpoint, it extends the core Caml language with a fully-fledged object and class layer, as well as
a powerful module system, all joined together by a sound, polymorphic type system featuring type inference.
The OCaml system is an industrial-strength implementation of this language, featuring a high-performance
native-code compiler for several processor architectures (IA32, AMD64, PowerPC, ARM, ARM64) as well
as a bytecode compiler and interactive loop for quick development and portability. The OCaml distribution
includes a standard library and a number of programming tools: replay debugger, lexer and parser generators,
documentation generator, and compilation manager.

Web site: http://caml.inria.fr/

5.2. CompCert C
Participants: Xavier Leroy [correspondant], Sandrine Blazy [EPI Celtique], Jacques-Henri Jourdan.

The CompCert C verified compiler is a compiler for a large subset of the C programming language that
generates code for the PowerPC, ARM and x86 processors. The distinguishing feature of Compcert is that it
has been formally verified using the Coq proof assistant: the generated assembly code is formally guaranteed
to behave as prescribed by the semantics of the source C code. The subset of C supported is quite large,
including all C types except long double, all C operators, almost all control structures (the only exception
is unstructured switch), and the full power of functions (including function pointers and recursive functions
but not variadic functions). The generated PowerPC code runs 2–3 times faster than that generated by GCC
without optimizations, and only 7% (resp. 12%) slower than GCC at optimization level 1 (resp. 2).

Web site: http://compcert.inria.fr/

5.3. The diy tool suite
Participants: Luc Maranget [correspondant], Jade Alglave [Microsoft Research, Cambridge], Jacques-Pascal
Deplaix, Susmit Sarkar [University of St Andrews], Peter Sewell [University of Cambridge].

The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests
on hardware, various generators for producing tests from concise specifications, and herd, a memory model
simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from
concise specification, run on hardware, or simulated on top of memory models. Test results can be handled
and compared using additional tools.

Web site: http://diy.inria.fr/

5.4. Zenon
Participant: Damien Doligez.

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle and
Dedukti).

Web site: http://zenon-prover.org/

http://caml.inria.fr/
http://compcert.inria.fr/
http://diy.inria.fr/
http://zenon-prover.org/
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6. New Results
6.1. Formal verification of compilers and static analyzers
6.1.1. Formal verification of static analyzers based on abstract interpretation

Participants: Jacques-Henri Jourdan, Xavier Leroy, Sandrine Blazy [EPI Celtique], Vincent Laporte [EPI
Celtique], David Pichardie [EPI Celtique], Sylvain Boulmé [Grenoble INP, VERIMAG], Alexis Fouilhe
[Université Joseph Fourier de Grenoble, VERIMAG], Michaël Périn [Université Joseph Fourier de Grenoble,
VERIMAG].

In the context of the ANR Verasco project, we are investigating the formal specification and verification in Coq
of a realistic static analyzer based on abstract interpretation. This static analyzer handles a large subset of the
C language (the same subset as the CompCert compiler, minus recursion and dynamic allocation); supports a
combination of abstract domains, including relational domains; and should produce usable alarms. The long-
term goal is to obtain a static analyzer that can be used to prove safety properties of real-world embedded C
codes.

This year, Jacques-Henri Jourdan continued the developpment of this static analyzer. He finished the proof of
correctness of the abstract interpreter, using an axiomatic semantics for the C#minor intermediate language to
decompose this proof in two manageable halves. He improved the precision and performance of the abstract
iterator and of numerical abstract domains. He designed and verified a symbolic domain that helps analyzing
sequential Boolean operators such as && and || that are encoded as Boolean variables and conditional
constructs in the C#minor intermediate language. As a more flexible alternative to reduced products of
domains, Jacques-Henri Jourdan designed, implemented and proved correct a communication system between
numerical abstract domains, based on communication channels and inspired by Astrée [56].

In parallel, IRISA and VERIMAG, our academic partners on the Verasco project, contributed a verified abstract
domain for memory states and pointer values (Vincent Laporte, Sandrine Blazy, and David Pichardie) and a
polyhedric abstract domain for linear numerical inequalities (Alexis Fouilhe, Sylvain Boulmé, Michaël Périn)
that uses validation a posteriori. Those various components were brought together by Jacques-Henri Jourdan
and Vincent Laporte, resulting in an executable static analyzer.

The overall architecture and specification of Verasco is described in a paper [29] accepted for presentation at
the forthcoming POPL 2015 conference.

6.1.2. The CompCert formally-verified compiler
Participants: Xavier Leroy, Jacques-Henri Jourdan.

In the context of our work on compiler verification (see section 3.3.1), since 2005 we have been developing
and formally verifying a moderately-optimizing compiler for a large subset of the C programming language,
generating assembly code for the PowerPC, ARM, and x86 architectures [5]. This compiler comprises a
back-end part, translating the Cminor intermediate language to PowerPC assembly and reusable for source
languages other than C [4], and a front-end translating the CompCert C subset of C to Cminor. The compiler
is mostly written within the specification language of the Coq proof assistant, from which Coq’s extraction
facility generates executable Caml code. The compiler comes with a 50000-line, machine-checked Coq proof
of semantic preservation establishing that the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

This year, we improved the CompCert C compiler in several directions:
• The parser, previously compiled to unverified OCaml code, was replaced by a parser compiled to

Coq code and validated a posteriori by a validator written and proved sound in Coq. This validation
step, performed when the CompCert compiler is compiled, provides a formal proof that the parser
recognizes exactly the language described by the source grammar. This approach builds on the earlier
work by Jacques-Henri Jourdan, François Pottier and Xavier Leroy on verified validation of LR(1)
parsers [60]. Jacques-Henri Jourdan succeeded in scaling this approach all the way up to the full
ISO C99 grammar plus some extensions.
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• Two new static analyses, value analysis and neededness analysis, were added to the CompCert
back-end. As described in section 6.1.3 below, the results of these analyses enable more aggressive
optimizations over the RTL intermediate form.

• As part of the work on formalizing floating-point arithmetic (see section 6.1.4 below), the semantics
and compilation of floating-point arithmetic in CompCert was revised to handle single-precision
floating-point numbers as first-class values, instead of systematically converting them to double
precision before arithmetic. This increases the efficiency and compactness of the code generated
for applications that make heavy use of single precision.

• Previously, the CompCert back-end compiler was assuming a partitioned register set from the target
architecture, where integer registers always contain 32-bit integers or pointers, and floating-point
registers always contain double-precision FP numbers. This convention on register uses simplified
the verification of CompCert, but became untenable with the introduction of single-precision FP
numbers as first-class values: FP registers can now hold either single- or double-precision FP
numbers. Xavier Leroy rearchitected the register allocator and the stack materialization passes of
CompCert, along with their soundness proofs, to lift this limitation on register uses. Besides mixtures
of single- and double-precision FP numbers, this new architecture makes it possible to support future
target processors with a unified register set, such as the SPE variant of PowerPC.

• We added support for several features of ISO C99 that were not handled previously: designated
initializers, compound literals, switch statements where the default case is not the last case,
switch statements over arguments of 64-bit integer type, and incomplete arrays as the last member
of a struct. Also, variable-argument functions and the <stdarg.h> standard include are now
optionally supported, but their implementation is neither specified nor verified.

• The ARM back-end was extended with support for the EABI-HF calling conventions (passing
FP arguments and results in FP registers instead of integer registers) and with generation of
Thumb2 instructions. Thumb2 is an alternate instruction set and instruction encoding for the ARM
architecture that results in more compact machine code (up to 30% reduction in code size on our
tests).

We released three versions of CompCert, integrating these enhancements: version 2.2 in February 2014,
version 2.3 in April, and version 2.4 in September.

In June 2014, Inria signed a licence agreement with AbsInt Angewandte Informatik GmbH, a software
publisher based in Saarbrucken, Germany, to market and provide support for the CompCert formally-verified
C compiler. AbsInt will extend CompCert to improve its usability in the critical embedded software market,
and also provide long-term maintenance as required in this market.

6.1.3. Value analysis and neededness analysis in CompCert
Participant: Xavier Leroy.

Xavier Leroy designed, implemented, and proved sound two new static analyses over the RTL intermediate
representation of CompCert. Both analyses are of the intraprocedural dataflow kind.

• Value analysis is a forward analysis that tracks points-to information for pointers, constantness
information for integer and FP numbers, and variation intervals for integer numbers, using intervals
of the form [0, 2n) and [−2n, 2n). This value analysis extends and generalizes CompCert’s earlier
constant analysis as well as the points-to analysis of Robert and Leroy [68]. In particular, it tracks
both the values of variables and the contents of memory locations, and it can take advantage of
points-to information to show that function-local memory does not escape the scope of the function.

• Neededness analysis is a backward analysis that tracks which memory locations and which bits of the
values of integer variables may be used later in a function, and which memory locations and integer
bits are “dead”, i.e. never used later. This analysis extends CompCert’s earlier liveness analysis to
memory locations and to individual bits of integer values.

http://www.absint.com
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Compared with the static analyses developed as part of Verasco (section 6.1.1), value analysis is much less
precise: every function is analyzed independently of its call sites, relations between variables are not tracked,
and even interval analysis is coarser (owing to CompCert’s lack of support for widened fixpoint iteration).
However, CompCert’s static analyses are much cheaper than Verasco’s, and scale well to large source codes,
making it possible to perform them at every compilation run.

Xavier Leroy then modified CompCert’s back-end optimizations to take advantage of the results of the two
new static analyses, thus improving performance of the generated code:

• Common subexpression elimination (CSE) takes advantage of non-aliasing information provided by
value analysis to eliminate redundant memory loads more aggressively.

• Many more integer casts (type conversions) and bit masking operations are discovered to be
redundant and eliminated.

• Memory stores and block copy operations that become useless after constant propagation and CSE
can now be eliminated entirely.

6.1.4. Verified compilation of floating-point arithmetic
Participants: Sylvie Boldo [EPI Toccata], Jacques-Henri Jourdan, Xavier Leroy, Guillaume Melquiond [EPI
Toccata].

In 2012, we replaced the axiomatization of floating-point numbers and arithmetic operations used in early
versions of CompCert by a fully-formal Coq development, building on the Coq formalization of IEEE-754
arithmetic provided by the Flocq library of Sylvie Boldo and Guillaume Melquiond. This verification of FP
arithmetic and of its compilation was further improved in 2013 with respect to the treatment of "Not a Number"
special values.

This year, Guillaume Melquiond improved the algorithmic efficiency of some of the executable FP operations
provided by Flocq. Xavier Leroy generalized the theorems over FP arithmetic used in CompCert’s soundness
proof so that these theorems apply both to single- and double-precision FP numbers. Jacques-Henri Jourdan
and Xavier Leroy proved additional theorems concerning conversions between integers and FP numbers.

A journal paper describing this 3-year work on correct compilation of floating-point arithmetic was accepted
for publication at Journal of Automated Reasoning [14].

6.1.5. Verified JIT compilation of Coq
Participants: Maxime Dénès, Xavier Leroy.

Evaluation of terms from Gallina, the functional language embedded within Coq, plays a crucial role in the
performance of proof checking or execution of verified programs, and the trust one can put in them. Today,
Coq provides various evaluation mechanisms, some internal, in the kernel, others external, via extraction to
OCaml or Haskell. However, we believe that the specific performance trade-offs and the delicate issues of trust
are still calling for a better, more adapted, treatment.

That is why we started in October this year the Coqonut project, whose objective is to develop and formally
verify an efficient, compiled implementation of Coq reductions. As a first step, we wrote an unverified
prototype in OCaml producing x86-64 machine code using a monadic intermediate form. We started to port it
to Coq and to specify the semantics of the source, target and intermediate languages.

6.2. Language design and type systems
6.2.1. The Mezzo programming language

Participants: Thibaut Balabonski, François Pottier, Jonathan Protzenko.

Mezzo is a programming language proposal whose untyped foundation is very much like OCaml (i.e.,
it is equipped with higher-order functions, algebraic data structures, mutable state, and shared-memory
concurrency) and whose type system offers flexible means of describing ownership policies and controlling
side effects.
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In 2013 and early 2014, Thibaut Balabonski and François Pottier re-worked the machine-checked proof
of type soundness for Mezzo. They developed a version of the proof which includes concurrency and
dynamically-allocated locks, and showed that well-typed programs do not crash and are data-race free. This
work was presented by François Pottier at FLOPS 2014 [24]. The proof was then extended with a novel and
simplified account of adoption and abandon, a mechanism for combining the static ownership discipline with
runtime ownership tests. A comprehensive paper, which contains both a tutorial introduction to Mezzo and a
description of its formal definition and proof, was submitted to TOPLAS.

Minor modifications were carried out by Jonathan Protzenko in the implementation. A version of Mezzo that
runs in a Web browser was developed and uploaded online, so that curious readers can play with the language
without installing the software locally.

Jonathan Protzenko wrote his Ph.D. dissertation [12], which describes the design of Mezzo and the implemen-
tation of the Mezzo type-checker. He defended on September 29, 2014.

Web site: http://protz.github.io/mezzo/

6.2.2. System F with coercion constraints
Participants: Julien Cretin [Trust In Soft], Didier Rémy, Gabriel Scherer.

Expressive type systems often allow non trivial conversions between types, which may lead to complex,
challenging, and sometimes ad hoc type systems. Such examples are the extension of System F with type
equalities to model GADTs and type families of Haskell, or the extension of System F with explicit contracts.
A useful technique to simplify the meta-theoretical study of such systems is to view type conversions as
coercions inside terms.

Following a general approach based on System F, Julien Cretin and Didier Rémy earlier introduced a language
of explicit coercions enabling abstraction over coercions and viewing all type transformations as explicit
coercions [57]. To ensure that coercions are erasable, i.e., that they only decorate terms without altering
their reduction, they are restricted to those that are parametric in either their domain or codomain. Despite this
restriction, this language already subsumed many extensions of System F, including bounded polymorphism,
instance-bounded polymorphism, and η-conversions—but not subtyping constraints.

To lift this restriction, Julien Crétin and Didier Rémy proposed a new approach were coercions are left
implicit. Technically, we extended System F with a rich language of propositions containing a first-order
logic, a coinduction mechanism, consistency assertions, and coercions (which are thus just a particular form
of propositions); we then introduced a type-level language using kinds to classify types, and constrained kinds
to restrict kinds to types satisfying a proposition. Abstraction over types of a constrained kind amounts to
abstraction over arbitrary propositions, including coercions.

By default, type abstraction should be erasable, which is the case when kinds of abstract type variables are
inhabited—we say that such abstractions are consistent. Still, inconsistent type abstractions are also useful,
for instance, to model GADTs. We provide them as a different construct, since they are not erasable, as they
must delay reduction of subterms that depend on them. This introduces a form of weak reduction in a language
with full reduction, which is a known source of difficulties: although the language remains sound, we loose the
subject reduction property. This work has been described in [28] and is part of Julien Cretin’s PhD dissertation
[11] defended in January 2014; a simpler, core subset is also described in [45].

Recently, Gabriel Scherer and Didier Rémy introduced assumption hiding [32], [50] to restore confluence
when mixing full and weak reductions and provide a continuum between consistent and inconsistent abstrac-
tion. Assumption hiding allows a fine-grained control of dependencies between computations and the logical
hypotheses they depend on; although studied for a language of coercions, the solution is more general and
should be applicable to any language with abstraction over propositions that are left implicit, either for the
user’s convenience in a surface language or because they have been erased prior to computation in an internal
language.

6.2.3. Singleton types for code inference
Participants: Gabriel Scherer, Didier Rémy.

http://protz.github.io/mezzo/
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We continued working on singleton types for code inference. If we can prove that a type contains, in a suitably
restricted pure lambda-calculus, a unique inhabitant modulo program equivalence, the compiler can infer the
code of this inhabitant. This opens the way to type-directed description of boilerplate code, through type
inference of finer-grained type annotations. A decision algorithm for the simply-typed lambda-calculus is
still work-in-progress. We presented at the TYPES’14 conference [42] our general approach to such decision
procedures, and obtained an independent counting result for intuitionistic logic [52] that demonstrates the
finiteness of the search space.

6.2.4. Generic programming with ornaments
Participants: Pierre-Évariste Dagand, Didier Rémy, Thomas Williams.

Since their first introduction in ML, datatypes have evolved: besides providing an organizing structure for
computation, they are now offering more control over what is a valid result. GADTs, which are now part of
the OCaml language, offer such a mechanism: ML programmers can express fine-grained, logical invariants
of their datastructures. Programmers thus strive to express the correctness of their programs in the types: a
well-typed program is correct by construction. However, these carefully crafted datatypes are a threat to any
library design: the same data-structure is used for many logically incompatible purposes. To address this issue,
McBride developed ornaments. It defines conditions under which a new datatype definition can be described
as an ornament of another one, typically when they both share the same inductive definition scheme. For
example, lists can be described as the ornament of the Church encoding of natural numbers. Once a close
correspondence between a datatype and its ornament has been established, certain kinds of operations on the
original datatype can be automatically lifted to its ornament.

To account for whole-program transformations, we developed a type-theoretic presentation of functional
ornament [17] as a generalization of ornaments to functions. This work built up on a type-theoretic universe of
datatypes, a first-class description of inductive types within the type theory itself. Such a presentation allowed
us to analyze and compute over datatypes in a transparent manner. Upon this foundation, we formalized the
concept of functional ornament by another type-theoretic universe construction. Based on this universe, we
established the connection between a base function (such as addition and subtraction) and its ornamented
version (such as, respectively, the concatenation of lists and the deletion of a prefix). We also provided support
for driving the computer into semi-automatically lifting programs: we showed how addition over natural
numbers could be incrementally evolved into concatenation of lists.

Besides the theoretical aspects, we have also tackled the practical question of offering ornaments in an ML
setting [33]. Our goal was to extend core ML with support for ornaments so as to enable semi-automatic
program transformation and fully-automatic code refactoring. We thus treated the purely syntactic aspects,
providing a concrete syntax for describing ornaments of datatypes and specifying the lifting of functions.
Such lifting specifications allow the user to declaratively instruct the system to, for example, lift addition of
numbers to concatenation of lists. We gave an algorithm that, given a lifting specification, performs the actual
program transformation from the bare types to the desired, ornamented types. This work has been evaluated by
a prototype implementation in which we demonstrated a few typical use-cases for the semi-automatic lifting
of programs.

Having demonstrated the benefits of ornaments in ML, it has been tempting to offer ornaments as first-
class citizens in a programming language. Doing so, we wished to rationalize the lifting of programs as an
elaboration process within a well-defined, formal system. To describe the liftings, one would like to specify
only the local transformations that are applied to the original program. Designing such a language of patches
and formalizing its elaboration has been the focus of our recent efforts.

6.2.5. Constraints as computations
Participant: François Pottier.



Project-Team GALLIUM 13

Hindley-Milner type inference–the problem of determining whether an ML program is well-typed–is well-
understood, and can be elegantly explained and implemented in two phases, namely constraint generation
and constraint solving. In contrast, elaboration–the task of constructing an explicitly-typed representation of
the program–seems to have received relatively little attention in the literature, and did not until now enjoy a
modular constraint-based presentation. François Pottier proposed such a presentation, which views constraints
as computations and equips them with the structure of an applicative functor. This work was presented as a
“functional pearl” at ICFP 2014 [31]. The code, in the form of a re-usable library, is available online.

6.2.6. Equivalence and normalization of lambda-terms with sums
Participants: Gabriel Scherer, Guillaume Munch-Maccagnoni [Université 13, LIPN lab].

Determining uniqueness of inhabitants requires a good understanding of program equivalence in presence of
sum types. In yet-unpublished work, Gabriel Scherer worked on the correspondence between two existing
normalization techniques, one coming from the focusing community [54] and the other using direct lambda-
term rewriting [63]. A collaboration with Guillaume Munch-Maccagnoni has also started this year, whose
purpose is to present normalization procedures for sums using System L, a rich, untyped syntax of terms (or
abstract machines) for the sequent calculus.

6.2.7. Computational interpretation of realizability
Participants: Pierre-Évariste Dagand, Gabriel Scherer.

We are trying to better understand the computational behavior of semantic normalization techniques such as
a realizability and logical relation models. As a very first step, we inspected the computational meaning of
a normalization proof by realizability for the simply-typed lambda-calculus. It corresponds to an evaluation
function; the evaluation order for each logical connective is determined by the definition of the sets of truth
and value witnesses. This preliminary work is to be presented at JFLA 2015 [35].

6.3. Shared-memory parallelism
6.3.1. Algorithms and data structures for parallel computing

Participants: Umut Acar, Arthur Charguéraud [EPI Toccata], Mike Rainey.

The ERC Deepsea project, with principal investigator Umut Acar, started in June 2013 and is hosted by the
Gallium team. This project aims at developing techniques for parallel and self-adjusting computations in the
context of shared-memory multiprocessors (i.e., multicore platforms). The project is continuing work that
began at Max Planck Institute for Software Systems between 2010 and 2013. As part of this project, we are
developing a C++ library, called PASL, for programming parallel computations at a high level of abstraction.
We use this library to evaluate new algorithms and data structures. We obtained two major results this year.

The first result is a sequence data structure that provides amortized constant-time access at the two ends,
and logarithmic time concatenation and splitting at arbitrary positions. These operations are essential for
programming efficient computation in the fork-join model. Compared with prior work, this novel sequence
data structure achieves excellent constant factors, allowing it to be used as a replacement for traditional, non-
splittable sequence data structures. This data structure, called chunked sequence due to its use of chunks (fixed-
capacity arrays), has been implemented both in C++ and in OCaml, and shown competitive with state-of-the
art sequence data structures that do not support split and concatenation operations. This work is described in a
paper published at ESA [22].

A second main result is the development of fast and robust parallel graph traversal algorithms, more precisely
for parallel BFS and parallel DFS. The new algorithms leverage the aformentioned sequence data structure
for representing the set of edges remaining to be visited. In particular, it uses the split operation for balancing
the edges among the several processors involved in the computation. Compared with prior work, these new
algorithms are designed to be efficient not just for particular classes of graphs, but for all input graphs. This
work has not yet been published, however it is described in details in a technical report [46].
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6.3.2. Weak memory models
Participants: Luc Maranget, Jacques-Pascal Deplaix, Jade Alglave [University College London, then Mi-
crosoft Research, Cambridge].

Modern multi-core and multi-processor computers do not follow the intuitive “Sequential Consistency” model
that would define a concurrent execution as the interleaving of the execution of its constituting threads and that
would command instantaneous writes to the shared memory. This situation is due both to in-core optimisations
such as speculative and out-of-order execution of instructions, and to the presence of sophisticated (and
cooperating) caching devices between processors and memory.

In the last few years, Luc Maranget took part in an international research effort to define the semantics of the
computers of the multi-core era. This research effort relies both on formal methods for defining the models
and on intensive experiments for validating the models. Joint work with, amongst others, Jade Alglave (now
at Microsoft Research, Cambridge), Peter Sewell (University of Cambridge) and Susmit Sarkar (University
of St. Andrews) achieved several significant results, including two semantics for the IBM Power and ARM
memory models: one of the operational kind [70] and the other of the axiomatic kind [64]. In particular, Luc
Maranget is the main developer of the diy tool suite (see section 5.3). Luc Maranget also performs most of the
experiments involved.

In 2014 we produced a new model for Power/ARM. The new model is simpler than the previous ones, in the
sense that it is based on fewer mathematical objects and can be simulated more efficiently than the previous
models. The new herd simulator (part of diy tool suite) is in fact a generic simulator, whose central component
is an interpreter for a domain-specific language. More precisely, memory models are described in a simple
language that defines relations by means of a few operators such as concatenation, transitive closure, fixpoint,
etc., and performs validity checks on relations such as acyclicity. The Power/ARM model consists of about 50
lines of this specific language. This work, with additional material, including in-depth testing of ARM devices
and data-mining of potential concurrency bugs in a huge code base, was published in the journal Transaction
on Programming Languages and Systems [13] and selected for presentation at the PLDI conference [23]. Luc
Maranget gave this presentation.

In the same research theme, Luc Maranget supervised the internship of Jacques-Pascal Deplaix (EPITECH),
from Oct. 2013 to May 2014. Jacques-Pascal extended litmus, our tool to run tests on hardware. litmus now
accepts test written in C; we can now perform the conformance testing of C compilers and machines with
respect to the C11/C++11 standard. Namely, Mark Batty (University of Cambridge), under the supervision of
Jade Alglave, wrote a herd model for this standard. The new litmus also proves useful to run tests that exploit
some machine idiosyncrasies, when our litmus assembly implementation does not handle them.

As a part of the litmus infrastructure, Luc Maranget designed a synchronisation barrier primitive by simplify-
ing the sense synchronisation barrier published by Maurice Herlily and Nir Shavit in their textbook [58]. He
co-authored a JFLA article [34], that presents this primitive and proves it correct automatically by the means
of the cubicle tool developed under the supervision of Sylvain Conchon (team Toccata, Inria Saclay).

6.4. The OCaml language and system
6.4.1. The OCaml system

Participants: Damien Doligez, Alain Frisch [Lexifi SAS], Jacques Garrigue [University of Nagoya], Fabrice
Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White [OCaml
Labs, Cambridge University], Jeremy Yallop [OCaml Labs, Cambridge University].

This year, we released versions 4.02.0 and 4.02.1 of the OCaml system. Release 4.02.0 is a major release
that fixes about 60 bugs and introduces 70 new features suggested by users. Damien Doligez acted as release
manager for both versions.
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OCaml 4.02.0 introduces a large number of major innovations:

• Extension points: a uniform syntax for adding attributes and extensions in OCaml source code:
most external preprocessors can now extend the language without need to extend the syntax and
reimplement the parser.

• Improvements to the module system: generative functors and module aliases facilitate the efficient
handling of large code bases.

• Separation between text-like read-only strings and array-like read-write byte sequences. This makes
OCaml programs safer and clearer.

• An extension to the pattern-matching syntax to catch exceptions gives a short, readable way to write
some important code patterns.

• Extensible open datatypes generalize the exception type and make its features available for general
programming.

• Several important optimizations were added or enhanced: constant propagation, common subexpres-
sion elimination, dead code elimination, optimization of pattern-matching on strings.

• A code generator for the new 64-bit ARM architecture “AArch64”.

• A safer and faster implementation of the printf function, based on the GADT feature introduced in
OCaml 4.00.0.

This version has also seen a reduction in size: the Camlp4 and Labltk parts of the system are now independent
systems. This makes them free to evolve on their own release schedules, and to widen their contributor
communities beyond the core OCaml team.

OCaml 4.02.1 fixes a few bugs introduced in 4.02.0, along with 25 older bugs.

In parallel, we designed and experimented with several new features that are candidates for inclusion in the
next major releases of OCaml:

• Ephemerons: a more powerful version of weak pointers.

• A parallel extension of the runtime system and associated language features that will let multi-
threaded OCaml programs run in parallel on several CPU cores.

• Modular implicits: a typeclass-like extension that will make is easy to write generic code (e.g. print
functions, comparison predicates, overloaded arithmetic operators, etc).

• “Inlined” records as constructor arguments, which will let the programmer select a packed represen-
tation for important data structures.

• Major improvements to the inlining optimization pass.

• Support for debugging native-code OCaml programs with GDB.

6.4.2. Namespaces for OCaml
Participants: Fabrice Le Fessant, Pierrick Couderc.

With the growth of the OCaml community and the ease of sharing code through OPAM, the new OCaml
package manager, OCaml projects are using more and more external libraries. As a consequence, conflicts
between module names of different libraries are now more likely for big projects, and the need for switching
from the current flat namespace to a hierarchical namespace is now real.

We experimented with a prototype of OCaml where the namespaces used by a module are explicitely written in
the OCaml module source header, to generate the environment in which the source is typed and compiled [39].
Namespaces are mapped on directories on the disk. This mechanism complements the recent addition of
module aliases to OCaml, by providing extensibility at the namespace level, whereas it is absent at the module
level, and solves also the problem of exact dependency analysis (the previous tool used for that purpose,
ocamldep, provides only an approximation of the dependencies, computed on the syntax tree).
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6.4.3. Memory profiling OCaml application
Participants: Fabrice Le Fessant, Çagdas Bozman [ENSTA ParisTech], Grégoire Henry [OCamlPro], Michel
Mauny [ENSTA ParisTech].

Most modern languages make use of automatic memory management to discharge the programmer from the
burden of allocating and releasing the chunks of memory used by the software. As a consequence, when
an application exhibits an unexpected usage of memory, programmers need new tools to understand what is
happening and how to solve such an issue. In OCaml, the compact representation of values, with almost no
runtime type information, makes the design of such tools more complex.

We have experimented with three tools to profile the memory usage of real OCaml applications. The first
tool saves snapshots of the heap after every garbage collection. Snapshots can then be analysed to display
the evolution of memory usage, with detailed information on the types of values, where they were allocated
and from where they are still reachable. A second tool updates counters at every garbage collection event,
it complements the first tool by providing insight on the behavior of the minor heap, and the values that are
promoted or not to the major heap. Finally, a third tool samples allocations and saves stacks of function calls
at these samples.

These tools have been used on real applications (Alt-Ergo, an SMT solver, or Cumulus, an Ocsigen website),
and allowed us to track down and fix memory problems with these applications, such as useless copies of data
structures and memory leaks.

6.4.4. OPAM, the OCaml package manager
Participants: Fabrice Le Fessant, Roberto Di Cosmo [IRILL], Louis Gesbert [OCamlPro].

With the growth of the OCaml community, the need for sharing libraries between users has lead to the
development of a new package manager, called OPAM. OPAM is based on Dose, a library developed by
the Mancoosi team at IRILL, to provide a unified format, CUDF, to query external dependency solvers. The
specific needs of OPAM have driven interesting research and improvements on the Dose library, that have
consequently opened new opportunities for improvements in OPAM, for the benefit of both software.

We have for example experimented with the design of a specific language [37] to describe optimization criteria,
when managing OPAM packages. Indeed, depending on the actions (installation, upgrade, removal), the user
might want to reach very different configurations, requiring an expressive power that go far beyond what
traditional package managers can express in their configuration options. For example, during installation,
the user would probably see as little compilation as possible, whereas upgrading is supposed to move the
configuration to the most up-to-date state, with as much compilation as needed.

We have also proposed a new paradigm: multi-switch constraints, to model switches used in OPAM to handle
different versions of OCaml on the same computer [41]. We proposed this new paradigm as a way to solve
multiple problems (cross-compilation, multi-switch packages, per-switch repositories and application-specific
switches). However, we expect this new paradigm to challenge the scalability of the current CUDF solvers
used by OPAM, and to require important changes and optimization in the Dose library.

6.5. Software specification and verification
6.5.1. Tools for TLA+

Participants: Damien Doligez, Jael Kriener, Leslie Lamport [Microsoft Research], Stephan Merz [EPI
VeriDis], Tomer Libal [Microsoft Research-Inria Joint Centre], Hernán Vanzetto [Microsoft Research-Inria
Joint Centre].

Damien Doligez is head of the “Tools for Proofs” team in the Microsoft-Inria Joint Centre. The aim of this
team is to extend the TLA+ language with a formal language for hierarchical proofs, formalizing the ideas in
[61], and to build tools for writing TLA+ specifications and mechanically checking the corresponding formal
proofs.
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This year, we released two versions of the TLA+ Proof System (TLAPS), the part of the TLA+ tools that
handles mechanical checking of TLA+ proofs. This environment is described in [55].

These versions add the propositional temporal logic prover LS4 as a back-end, which allows TLAPS to deal
with propositional temporal formulas. This relies on a technique called coalescing [40], which allows users
to prove arbitrary safety properties, as well as some liveness properties, by translating them into the back-end
prover’s logic without increasing the complexity of the formulas.

Jael Kriener started a post-doc contract in December 2013, funded by the ADN4SE contract, and left in
September 2014. She worked on the theory of temporal proofs in TLA+ and, in collaboration with CEA, on
proving some properties of the PharOS real-time operating system.

Web sites:
http://research.microsoft.com/users/lamport/tla/tla.html
http://tla.msr-inria.inria.fr/tlaps

6.5.2. The Zenon automatic theorem prover
Participants: Damien Doligez, David Delahaye [CNAM], Pierre Halmagrand [Equipe DEDUCTEAM],
Guillaume Bury [Equipe DEDUCTEAM], Olivier Hermant [Mines ParisTech].

Damien Doligez continued the development of Zenon, a tableau-based prover for first-order logic with equality
and theory-specific extensions.

Pierre Halmagrand continued his thesis work, funded by ANR BWare, on integrating Deduction Modulo in
Zenon, with emphasis on making it efficient for dealing with B set theory.

Guillaume Bury did an internship, also funded by ANR BWare. He implemented an extension of Zenon, based
on the simplex method, to deal with arithmetic formulas.

6.5.3. Well-typed generic fuzzing for module interfaces
Participants: Thomas Braibant, Jonathan Protzenko, Gabriel Scherer.

Property-based testing generates arbitrary instances of inputs to check a given correctness predicate/property.
Thomas Braibant proposed that, instead of a random generation function defined from the internals of one’s
data-structure, one could use the user-exposed interface to generate instances by composition of API calls.
GADTs let us reflect/reify a typed API, and program a type-respecting exploration/testing directly in the host
language. We developed a prototype library, Articheck, to experiment with this idea. This work was presented
at the ML Workshop [38].

6.5.4. Depth-First Search and Strong Connectivity in Coq
Participant: François Pottier.

In 2002, Ingo Wegener published a short paper which sketches a proof of Kosaraju’s linear-time algorithm for
computing the strongly connected components of a directed graph. At the same time, Wegener’s paper helps
explain why the algorithm works, which, from a pedagogical standpoint, makes it quite valuable. In 2013 and
2014, François Pottier produced a machine-checked version of Wegener’s proof, and wrote a precise informal
account of it, which will be presented at JFLA 2015 [36].

6.5.5. Implementing hash-consed structures in Coq
Participants: Thomas Braibant, Jacques-Henri Jourdan, David Monniaux [CNRS, VERIMAG].

Hash-consing is a programming technique used to implement maximal sharing of immutable values in
memory, keeping a single copy of semantically equivalent objects. Hash-consed data-structures give a
unique identifier to each object, allowing fast hashing and comparisons of objects. This may lead to major
improvements in execution time by itself, but it also makes it possible to do efficient memoization of
computations.

http://research.microsoft.com/users/lamport/tla/tla.html
http://tla.msr-inria.inria.fr/tlaps
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Hash-consing and memoization are examples of imperative techniques that are of prime importance for
performance, but are not easy to implement and prove correct using the purely functional language of a proof
assistant such as Coq.

We published an article in Journal of Automated Reasoning [15], explaining our work on this subject during
the last 3 years. We gave four different approaches for implementing hash-consed data-structures in Coq. Then,
we performed an in-depth comparative study of how our “design patterns” for certified hash-consing fare on
two real-scale examples: BDDs and lambda-terms.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Contracts with Industry
7.1.1. The Caml Consortium

Participants: Xavier Leroy [correspondant], Damien Doligez, Didier Rémy.

The Caml Consortium is a formal structure where industrial and academic users of OCaml can support the
development of the language and associated tools, express their specific needs, and contribute to the long-term
stability of Caml. Membership fees are used to fund specific developments targeted towards industrial users.
Members of the Consortium automatically benefit from very liberal licensing conditions on the OCaml system,
allowing for instance the OCaml compiler to be embedded within proprietary applications.

The Consortium currently has 11 member companies:

• CEA

• Citrix

• Dassault Aviation

• Dassault Systèmes

• Esterel Technologies

• Jane Street

• LexiFi

• Microsoft

• Multitudine

• OCamlPro

• SimCorp

For a complete description of this structure, refer to http://caml.inria.fr/consortium/. Xavier Leroy chairs the
scientific committee of the Consortium.

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. ANR projects
8.1.1.1. BWare

Participants: Damien Doligez, Fabrice Le Fessant.

http://caml.inria.fr/consortium/
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The “BWare” project (2012-2016) is coordinated by David Delahaye at Conservatoire National des Arts et
Métiers and funded by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche.
BWare is an industrial research project that aims to provide a mechanized framework to support the automated
verification of proof obligations coming from the development of industrial applications using the B method
and requiring high guarantees of confidence.

8.1.1.2. Paral-ITP
Participant: Damien Doligez.

The “Paral-ITP” project (2011-2014) is coordinated by Burkhart Wolff at Université Paris Sud and funded
by the Ingénierie Numérique et Sécurité programme of Agence Nationale de la Recherche. The objective of
Paral-ITP is to investigate the parallelization of interactive theorem provers such as Coq and Isabelle.

8.1.1.3. Verasco
Participants: Jacques-Henri Jourdan, Xavier Leroy.

The “Verasco” project (2012-2015) is coordinated by Xavier Leroy and funded by the Ingéniérie Numérique
et Sécurité programme of Agence Nationale de la Recherche. The objective of this 4-year project is to develop
and formally verify a static analyzer based on abstract interpretation, and interface it with the CompCert C
verified compiler.

8.1.2. FSN projects
8.1.2.1. ADN4SE

Participants: Damien Doligez, Jael Kriener.

The “ADN4SE” project (2012-2016) is coordinated by the Sherpa Engineering company and funded by the
Briques Génériques du Logiciel Embarqué programme of Fonds national pour la Société Numérique. The
aim of this project is to develop a process and a set of tools to support the rapid development of embedded
software with strong safety constraints. Gallium is involved in this project to provide tools and help for the
formal verification in TLA+ of some important aspects of the PharOS real-time kernel, on which the whole
project is based.

8.1.2.2. CEEC
Participants: Thomas Braibant, Maxime Dénès, Xavier Leroy.

The “CEEC” project (2011-2014) is coordinated by the Prove & Run company and also involves Esterel
Technologies and Trusted Labs. It is funded by the Briques Génériques du Logiciel Embarqué programme
of Fonds national pour la Société Numérique. The CEEC project develops an environment for the develop-
ment and certification of high-security software, centered on a new domain-specific language designed by
Prove & Run. Our involvement in this project focuses on the formal verification of a C code generator for this
domain-specific language, and its interface with the CompCert C verified compiler.

8.1.3. FUI projects
8.1.3.1. Richelieu

Participants: Michael Laporte, Fabrice Le Fessant.

The “Richelieu” project (2012-2014) is funded by the Fonds unique interministériel (FUI). It involves Scilab
Enterprises, U. Pierre et Marie Curie, Dassault Aviation, ArcelorMittal, CNES, Silkan, OCamlPro, and Inria.
The objective of the project is to improve the performance of scientific programming languages such as
Scilab’s through the use of VMKit and LLVM.
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8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. DEEPSEA

Type: FP7
Defi: NC
Instrument: ERC Starting Grant
Objectif: NC
Duration: June 2013 - May 2018
Coordinator: Umut Acar
Partner: Inria
Inria contact: Umut Acar
Abstract: the objective of project DEEPSEA is to develop abstractions, algorithms and languages for
parallelism and dynamic parallelism, with applications to problems on large data sets.

8.3. International Initiatives
8.3.1. Inria International Partners
8.3.1.1. Informal International Partners

• Princeton University: interactions between the CompCert verified C compiler and the Verified
Software Toolchain developed at Princeton.

• Cambridge University and Microsoft Research Cambridge: formal modeling and testing of weak
memory models.

8.4. International Research Visitors
8.4.1. Visits of International Scientists
8.4.1.1. Internships

Sigurd Schneider, Ph.D. student at Saarlandes University in Saarbrucken, visited Gallium from Mar 2014
to May 2014. As part of his Ph.D., Sigurd Schneider develops an intermediate representation that unifies
static single assignment form (SSA) and functional intermediate representations. During his internship, he
considered the addition of GC support to this intermediate representation. He also developed a program logic
to verify the correctness of a class of optimizations, including constant subexpression elimination (CSE) and
global value numbering.

8.4.1.2. Research stays abroad

Since November 2014, Damien Doligez is on a sabbatical at Jane Street (New York, USA), a financial company
(member of the Caml Consortium) that invests considerable R&D in the OCaml language and system.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committee

Maxime Dénès was member of the organizing committee for the First International Workshop on Coq for
Programming Languages (CoqPL 2015), co-located with POPL’15 in Mumbai, India.

https://coqpl.cs.washington.edu/
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9.1.2. Scientific events selection
9.1.2.1. Chair of the conference program committee

Xavier Leroy co-chaired the program committee of the ACM SIGPLAN 2015 conference on Certified Proofs
and Programs (CPP’15), which will take place in January 2015 in Mumbai, India, colocated with POPL’15.

9.1.2.2. Member of the conference program committee

• ALENEX 2015 (Algorithm Engineering & Experiments): Umut Acar was a member of the program
committee.

• ECOOP 2014 (European Conference on Object-Oriented Programming): Mike Rainey was a
member of the artefact evaluation committee.

• ESOP 2015 (European Symposium on Programming): Umut Acar was a member of the program
committee.

• Eurosys 2015 (European Conference on Systems Research and Development): Pierre-Évariste
Dagand was a member of the shadow program committee.

• POPL 2015 (42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages): Umut Acar and François Pottier were members of the program committee; Xavier Leroy
was a member of the external review committee.

• CoqPL 2015 (Workshop on Coq for Programming Languages): Maxime Dénès and Xavier Leroy
were members of the program committee.

• MLW 2015 (ACM SIGPLAN ML Family Workshop): Didier Rémy was a member of the program
committee.

• WGP 2014 (Workshop on Generic Programming): Pierre-Évariste Dagand was a member of the
program committee.

9.1.2.3. Reviewer

In 2014, members of Gallium reviewed approximately 95 papers submitted to international conferences and
15 papers submitted to international workshops.

9.1.3. Journals
9.1.3.1. Member of the editorial board

• Communications of the ACM: Xavier Leroy is on the editorial board for the Research Highlights
column.

• Journal of Automated Reasoning: Xavier Leroy is a member of the editorial board.

• Journal of Functional Programming: François Pottier is a member of the editorial board.

• Journal of Formalized Reasoning: Xavier Leroy is a member of the editorial board.

9.1.3.2. Reviewer

In 2014, members of Gallium reviewed 4 journal submissions.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

Licence: Umut Acar and Mike Rainey, “Introduction to parallel computing with PASL”, 15h, L2,
University of Puerto Rico, USA.

Licence: Jacques-Henri Jourdan, “Langages de programmation et compilation” 46h, L3, École
Normale Supérieure, France.

Licence: François Pottier, “Algorithmique et programmation” (INF431), 13h30, L3, École Polytech-
nique, France.

http://cpp2015.inria.fr
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Licence: Gabriel Scherer, “IP1: Introduction to computer science and programming using Java”,
42h, L1, University Paris Diderot, France.

Licence: Gabriel Scherer, “IP1: Introduction to computer science and programming using C”, 42h,
L3, University Paris Diderot, France.

Master: Xavier Leroy and Didier Rémy, “Functional programming languages”, 15h + 20h, M2R
MPRI, University Paris Diderot/ENS Paris/ENS Cachan/Polytechnique, France.

Master: Luc Maranget, “Semantics, languages and algorithms for multi-core programming”, 9h, M2
MPRI, University Paris Diderot/ENS Paris/ENS Cachan/Polytechnique, France.

Master: François Pottier, “Compilation” (INF564), 13h30, M1, École Polytechnique, France.

9.2.2. Supervision
PhD: Çagdas Bozman, “Profilage mémoire d’applications OCaml”, Ecole Polytechnique, defended
on 16 Dec 2014, supervised by Michel Mauny (ENSTA), Pierre Chambart (OCamlPro), and Fabrice
Le Fessant (Inria).

PhD: Julien Cretin, “Erasable coercions: a unified approach to type systems” [11], École Polytech-
nique, defended on 30 Jan 2014, supervised by Didier Rémy.

PhD: Jonathan Protzenko, “Mezzo: a typed language for safe effectful concurrent programs” [12],
U. Paris Diderot, defended on 29 Sep 2014, supervised by François Pottier.

PhD in progress: Arthur Guillon, “Concurrent realizability and program verification for weak
memory computers”, U. Paris Diderot, started September 2014, interrupted January 2015, supervised
by Luc Maranget and Jade Alglave (Microsoft Research Cambridge).

PhD in progress: Pierre Halmagrand, “Déduction Automatique Modulo”, CNAM, since September
2013, supervised by David Delahaye (CNAM), Damien Doligez (Inria), and Olivier Hermant (Mines
ParisTech).

PhD in progress: Gabriel Scherer, “Term inference: proof search for singleton inhabitants”, U. Paris
Diderot, since October 2011, supervised by Didier Rémy.

PhD in progress: Jacques-Henri Jourdan, “Formal verification of a static analyzer for critical
embedded software”, U. Paris Diderot, since September 2012, supervised by Xavier Leroy.

Pre-PhD ENS year: Thomas Williams, “Putting ornaments into practice”, since September 2014,
supervised by Didier Rémy.

9.2.3. Juries
Damien Doligez was a member of the Ph.D. jury of Çagdas Bozman, ENSTA ParisTech, Palaiseau, December
2014.

Xavier Leroy chaired the PhD committee of André Maroneze, University Rennes 1, June 2014.

Xavier Leroy was a member of the committees for the PhD awards of ACM SIGPLAN and of the GDR GPL
(Génie de la Programmation et du Logiciel).

9.2.4. Collective responsibilities
Damien Doligez chaired the Commission des actions de développement technologiques of Inria Paris-
Rocquencourt until Oct 2014.

Xavier Leroy is vice-président du comité des projets of Inria Paris-Rocquencourt and appointed member of
Inria’s Commission d’Évaluation. He participated in the following Inria hiring and promotion committees:
jury d’admissibilité CR2 Saclay; jury d’admissibilité DR2; promotions CR1; promotions DR1 and DR0.

Luc Maranget is an elected member of the Comité Technique Inria.

Luc Maranget chairs the Commission des utilisateurs des moyens informatiques – Recherche of Inria Paris-
Rocquencourt.
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Didier Rémy is deputy scientific director of Inria, in charge of the fields Algorithmics, Programming, Software
and Architecture.

Didier Rémy represents Inria in the commission des études of the MPRI master, co-organized by U. Paris
Diderot, ENS Cachan, ENS Paris, and École Polytechnique.

9.3. Popularization
Jacques-Henri Jourdan is involved in the organization of the Junior Seminar of Inria Paris-Rocquencourt.

Jacques-Henri Jourdan manned a stand at “Salon Culture & Jeux Mathématiques”, in Paris.

Since 2012, the Gallium team publishes a research blog at http://gallium.inria.fr/blog/, edited by Gabriel
Scherer. This blog continued its activity in 2014, with 23 posts from 5 different authors.
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